
MLtuner: System Support for Automatic Machine
Learning Tuning

Henggang Cui, Gregory R. Ganger, and Phillip B. Gibbons
Carnegie Mellon University

CMU-PDL-16-108

October 2016

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

MLtuner automatically tunes settings for training tunables—such as the learning rate, the mini-batch size, and the data staleness
bound—that have a significant impact on large-scale machine learning (ML) performance. Traditionally, these tunables are set
manually, which is unsurprisingly error prone and difficult to do without extensive domain knowledge. MLtuner uses efficient
snapshotting and optimization-guided online trial-and-error to find good initial settings as well as to re-tune settings during execution.
Experiments with three real ML tasks show that MLtuner automatically enables performance within 40–178% of having oracle
knowledge of the best settings, and outperforms oracle when no single set of settings are best for the entire execution. It also
significantly outperforms most of the many feasible settings that might get used in practice.

Acknowledgements: We thank the members and companies of the PDL Consortium (including Broadcom, Citadel, Dell EMC, Facebook,
Google, Hewlett-Packard Labs, Hitachi, Intel, Microsoft Research, MongoDB, NetApp, Oracle, Samsung, Seagate, Tintri, Two Sigma, Uber, Veritas,
and Western Digital) for their interest, insights, feedback, and support. This research is supported in part by Intel as part of the Intel Science and
Technology Center for Cloud Computing (ISTC-CC), National Science Foundation under awards CNS-1042537 and CNS-1042543 (PRObE [15]).

Keywords: Big Data infrastructure, Big Learning systems

1

1 Introduction

Large-scale machine learning (ML) is quickly becoming a common activity for many organizations. ML
training computations generally use iterative algorithms to converge on thousands to millions of parameter
values that make a pre-chosen model (e.g., a neural network or pair of factor matrices) statistically approximate
the reality corresponding to the input training data over which they iterate. Trained models can be used to
predict, cluster, or otherwise help explain subsequent data.
For large, complex models, parallel execution over multiple cluster nodes is warranted. The algorithms
and frameworks used generally have multiple tunables that have significant impact on the execution and
convergence rates. For example, the learning rate is a key tunable when using stochastic gradient descent
(SGD) for training. As another example, the data staleness bound is a key tunable when using frameworks
that explicitly balance asynchrony benefits with inconsistency costs [7, 25].
These tunables are usually manually configured or left to broad defaults. Unfortunately, knowing the
right settings is often quite challenging. The best tunable settings can depend on the chosen model, the
hyperparameters (e.g., number and types of layers in a neural network), the algorithm, the framework, and
the resources on which the ML application executes. As a result, manual approaches not surprisingly involve
considerable effort by domain experts or yield (often highly) suboptimal training times and model accuracy.
Our interactions with both experienced and novice ML users comport with this characterization.
MLtuner is a tool for automatically tuning ML application training tunables. It hooks into and guides
a training system in trying different settings, using our API. MLtuner determines initial tunable settings
based on rapid trial-and-error search, wherein each option tested runs for a small (automatically determined)
amount of time, to find good choices based on the convergence rate. MLtuner will repeat this process when
convergence slows, to see if different settings provide faster convergence and/or higher model accuracy. We
address a number of challenges in auto-tuning ML applications such as large search spaces, noisy convergence
progress, variations in effective trial times, best tunable choices changing over time, when to re-tune, etc.
Through careful design, MLtuner ensures that the time spent running the application with optimized settings
dominates the time spent searching for such settings.
We have integrated MLtuner with two different state-of-the-art training systems and experimented with
several real ML applications, including a recommendation application on a CPU-based parameter server
system and both image classification and video classification on a GPU-based parameter server system. The
results show MLtuner’s effectiveness. MLtuner finds good tunable settings consistently, without excessive
overhead from searching. For example, MLtuner incurs only 40% extra runtime on the ILSVRC12 image
classification application, and reaches a higher model accuracy than not re-tuning the tunables multiple times
during execution or tuning with state-of-the-art SGD learning rate tuning algorithms, such as AdaGrad [12],
AdaRevision [27], AdaDelta [47], Nesterov [29], Adam [20], and RMSProp [42].
This paper makes the following primary contributions. First, it introduces the first approach for automatically
tuning the multiple tunables associated with nearly any ML application within the context of a single execution
of that application. Second, it describes a tool (MLtuner) that implements the approach, overcoming various
challenges, and how MLtuner was integrated with two different ML training systems. Third, it presents
results from experiments with real ML applications, demonstrating the efficacy of this new approach in
removing the “black art” of tuning from ML application training.

1

2 Background and Related Work

2.1 Distributed machine learning

The goal of a ML task is to train a ML model on training (input) data, so that the trained model can be
used to make predictions on unseen data. A model has trainable model parameters, and the ML task tries to
determine the values of these model parameters that best fit the training data. The fitness error of the set of
model parameters to the training data is defined mathematically with an objective function, and the current
value of the objective function is often called the training loss. Thus, the machine learning problem is an
optimization problem, whose goal is to minimize the objective function.
The ML task often optimizes the objective function with an iterative convergent algorithm, such as stochastic
gradient descent (SGD). The model parameters are first initialized to some random values, and in every step,
the SGD algorithm samples a batch of the training data (a training batch), and computes the gradient of the
training loss, w.r.t. the model parameters. The model parameter update will be the opposite direction of the
gradient (if we want to minimize the objective function), multiplied by a learning rate parameter.
To speed up ML tasks, people often distribute the ML computations across a cluster of machines. One
popular way of doing that is the data parallel approach, where we partition the training data across many ML
workers on different machines. Each ML worker keeps a local copy of the model parameters and computes
model gradients based on their local model parameter copy and training data partition. The ML workers
will propagate the computed model gradients and refresh their model parameter copies every clock, which
is often logically defined as some unit of work (e.g., one pass over the training data). Those shared model
parameters are often managed with a parameter server architecture [25, 9, 45, 8, 6, 10, 2, 32], in which a
simple key-value interface is used to read and update the model parameters that are the only shared state
among ML workers.
When training the model in this distributed manner, ML workers will have temporarily inconsistent model
parameter copies, causing data staleness errors [17, 7]. To guarantee model convergence, it is important to
enforce some consistency model that bounds the data staleness in some way. The Bulk Synchronous Parallel
(BSP) model, for example, requires all workers must see the parameter updates from all other workers from
the previous clocks before proceeding to the next clock. The Stale Synchronous Parallel (SSP) model [17, 7]
is a looser but still bounded model, with a slack parameter. It allows the fastest worker to be ahead of the
slowest worker by up to “slack” clocks, generalizing BSP as a special case of SSP with a slack of zero.

2.2 Machine learning tunables

Training a ML model requires selection and tuning of many training hyperparameters. For example, the
SGD algorithm has a learning rate (a.k.a. step size) parameter that controls the magnitude of the model
parameter updates. The training batch size parameter controls the amount of training data that each ML
worker processes in every clock. The data staleness bound parameter controls the degree of data staleness
that is allowed for the ML workers to have without forcing a synchronization. To emphasize that those
training hyperparameters can be tuned, we call them training tunables in this paper.
It is important to distinguish the training tunables from another class of ML hyperparameters, called model
hyperparameters. The training tunables do not show up in the objective functions of the ML task, and they
only control how we train the model. The model hyperparameters, on the other hand, show up in the objective
functions and define the models. Example model hyperparameters include the structure of the model (e.g.,
logistic regression or SVM), the depth of a neural network, the width and the scale of each neural network
layers, and the regularization method and magnitude. In this work, we focus on the training tunables, and we

2

assume the model hyperparameters are fixed.
Many people (as well as our own experiments) have found that the training tunables have a big impact on the
completion time of a ML task (e.g., orders of magnitude slower with a bad tunable choice) [34, 30, 12, 27,
47, 20, 17, 7]. Moreover, a bad tunable choice can also cause the model to diverge or converge to suboptimal
solutions [34, 30].
Tuning the tunables is hard. First, the optimal tunable choice depends on many factors, such as the ML
application, the model, the dataset, the size of the cluster, and the network condition. Second, the optimal
tunable choice can change during the training. For example, when training a deep neural network, people find
it is beneficial (sometimes even necessary) to start with a large learning rate at the beginning, to approach the
solution quickly, and then decrease the learning rate, to get better model convergence [40, 19, 39, 23, 16, 1].

2.3 Related work on tuning tunables

This section describes the related work on tuning tunables.
Manual tuning by domain experts. Most previous large-scale ML literature does not talk about the process
of selecting the training tunables at all. Users usually just manually set the tunables, either by using some
built-in defaults or trying various tunable settings offline and picking a settings via trial-and-error. This
process is inefficient, and the tunable settings chosen are often suboptimal.
For some problems, such as deep neural network training, people find dynamically changing the learning
rate during execution is necessary to achieve good model accuracy. There are typically two ways of doing
that. The first way (taken by [23, 1, 48]) is to manually change the learning rate every a few iterations or
when the model accuracy plateaus (i.e., stops increasing). The second way (taken by [40, 19, 39]) is to let the
learning rate automatically decrease with some function, such as η = η0 × γt. The speed of the learning rate
decrease is controlled by the γ parameter, and the best γ choice varies for different models and datasets. This
γ parameter is essentially a training tunable that is much harder to tune than the learning rate, because we are
not able to see its effect immediately. To decide the γ parameter, people actually need to manually train the
model multiple times, with different γ choices, and identify the best ones as their experimental setups.
Hyperparameter optimization. There are some prior works on optimizing ML hyperparameters (sometimes
also called model search), including [35, 37, 43, 3, 21, 4, 26, 31, 13, 41]. However, as their name suggests,
these works target a quite different goal from ours. They focus on tuning the model hyperparameters, rather
than the training tunables.
Because each set of model hyperparameter settings corresponds to a different ML model, evaluating each set
of hyperparameter settings generally requires training the model to completion. Because of the high overhead
of evaluating a hyperparameter choice, automated hyperparameter tuning schemes usually cannot afford
trying all possible hyperparameter choices with a grid search. Instead, they use more sophisticated algorithms,
such as Bayesian optimization [28], to decide based on a much smaller number of hyperparameter setting
trials [35].
These hyperparameter optimization works either do not mention the training tunables at all, or they optimize
them in the same way as optimizing the model hyperparameters, which is training the model to completion
with every hyperparameter/tunable combination [35, 37]. This is very inefficient. Moreover, with this
approach, people can only use a single tunable choice for the whole training, and they do not dynamically
change the tunables during the training.
SGD learning rate tuning algorithms. Because the SGD algorithm is well-known for being sensitive to the
learning rate, people have designed many learning rate tuning algorithms for SGD, such as AdaGrad [12],
AdaRevision [27], AdaDelta [47], RMSProp [42], Nesterov [29], and Adam [20]. These algorithms will
use relatively large learning rates for model parameters with small gradients, and relatively small learning

3

rates for model parameters with large gradients. However, they still require the user to select the initial
learning rate. Even though they are less sensitive to the initial learning rate choice than the original SGD
algorithm, our experiments show that choosing a good initial learning rate is still crucial. For example, a bad
initial learning rate choice can cause the training time to be orders of magnitude longer (e.g., Figure 1(a))
and/or cause the model converge to suboptimal solutions (e.g., Figure 1(b)). MLtuner’s auto-tuning approach
actually complements these SGD learning rate tuning algorithms, because the user can use MLtuner to pick
the initial learning rate for those algorithms.

10-5 10-4 10-3 10-2 10-1 100

Initial learning rate

102

103

104

C
o
n
v
e
rg

e
 t

im
e

(s
e
c

in
 l
o
g
 s

ca
le

)

AdaGrad

(a) Matrix factorization convergence times.

10-5 10-4 10-3 10-2 10-1 100

Initial learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Co
nv

er
ge

d
ac

cu
ra

cy

AdaRevision
RMSProp
AdaDelta

(b) Deep neural network (AlexNet on Cifar10) converged model
accuracies.

Figure 1: Different initial learning rates have big impact on convergence times and converged model
accuracies. Experimental setup details are described in Section 5.

Moreover, our experiments (as well as many other people) find that using these SGD learning rate tuning
algorithms alone is sometimes not enough to train the model to full convergence, especially for complicated
models such as the deep neural networks. That is why careful manual learning rate tuning (during the training)
is still a common approach taken by ML practitioners [40, 19, 39, 23, 16, 1, 48]. MLtuner automatically
re-tunes the tunables during execution.

3 System support for tunable tuning

Training tunables should be tuned automatically, with a much smaller overhead, and dynamically re-tuned
during the training. This section describes our auto-tuning approach and the high level design of our
realization, MLtuner.

3.1 MLtuner overview

MLtuner is a system for automatic tuning. It can be connected to existing training systems, such as a
parameter server, and automatically pick and tune the training tunables for them. The detailed interface is
described in Section 4.4.
MLtuner lets the user specify the tunables to be tuned via a config file. Similar to the hyperparameter
optimization approach [35], each tunable will be specified with the type, either continuous or discrete, and
the valid value range. The user will provide MLtuner with the minimum and maximum valid values (for a
continuous tunable), or the list of valid discrete values (for a discrete tunable).

4

Timetrial time trial time trial time

Training states
(e.g., model params)

Tunable choice #2

Branch #1

Training states
(e.g., model params)

Tunable choice #2

Branch #2

Training states
(e.g., model params)

Tunable choice #3

Branch #3

Training states
(e.g., model params)

Branch #0 (parent)

fork fork fork

Figure 2: Trying tunable choices in training branches.

3.2 Trying & evaluating tunable choices

MLtuner tries and evaluates the tunable choices with forked training branches, each running with a different
tunable choice. This is illustrated in Figure 2. Except for the tunables, the forked training branches have
exactly the same initial states (e.g., model parameters, worker-local states, and training data), and run on the
same hardware environment. MLtuner will run these training branches, each for a short period of trial time,
and collect their training progress to measure the convergence speed. MLtuner will pick the branch with the
fastest convergence speed, kill the other branches, and keep training only the best branch.
In our example applications, such as deep neural networks and matrix factorization, the training progress is
simply the current value of the objective function (i.e., training loss). Because SGD-based training algorithms
use the training loss to compute the gradients, the training loss can be obtained at no extra cost.
As is illustrated in Figure 2, the training branches are scheduled by MLtuner in a time-sharing manner,
running in the same cluster of machines. We decided not to run multiple training branches in parallel, for
two reasons. First, we want each training branch to use all the machines in the cluster; otherwise, the extra
machines will be wasted when the trials are not running (which is most of the time). Second, we want the
training branches to run independently, with no interference with each other, so that we can precisely measure
their convergence speeds. Moreover, we find it better to keep all the training branches in the same training
system instance, so that the branches can be forked with little overhead (simply memory copy within the same
process), and some resources, such as the memory for cache and immutable training data, can be shared.

3.3 Tunable searching

This section describes the procedure of tunable searching with the trial branches, illustrated in Figure 3.
MLtuner first sets the current model state as the parent branch, and all trial branches will be forked from it.
Then, inside the searching loop, a tunable searcher module (described in Section 4.3) proposes the tunable
choices to try. For each proposed tunable choice, MLtuner will instruct the training system to fork a new
branch from the parent branch, with the tunable choice, and schedule it to run for some amount of trial time.
Section 4.2 describes how MLtuner decides the trial time. Then MLtuner will collect the training progress of
the trial branch from the training system, and use a progress summarizer module (described in Section 4.1) to
summarize its convergence speed. The convergence speed will be reported to the tunable searcher to guide its
future tunable choice proposals. The searching finishes, when the tunable searcher thinks the best tunable
choice (or a good enough one) has been found.

5

Progress
Summarizer

Tunable
Searcher

tunable choice to try

Training System

Fork a
branch to try

tunable
for trial time

training progress

Searching
Logic

convergence speed

MLtuner

Figure 3: Tunable searching procedure.

Adjusting tunables. MLtuner not only searches the tunable choices at the beginning of the training, but
it will also adjust the tunable choices during the training, because the best tunable choice might change.
MLtuner adjusts tunables with the same searching procedure as is described above, but instead of searching
from scratch, MLtuner uses a special type of tunable searcher that is able to take advantage of the fact that we
know the previous best tunable choice before adjustment, which is described in more details in Section 4.3.
MLtuner will try to adjust the tunables, after the current training branch has been running for more than
10× of the last searching time, which bounds the searching overhead to be 10%. MLtuner will also try to
adjust the tunables, when the model stops making forward convergence progress with the current tunable
choice. This happens quite often for the deep learning application, where large learning rates cause the model
accuracy to plateau.

4 MLtuner implementation details

This section describes the design and implementation details of MLtuner.

4.1 Measuring convergence speed

The progress summarizer module takes in the training progress trace (which is timeseries data) of each tunable
trial branch, and summarizes its convergence speed. The progress trace has the form of {< ti, xi >}Ni=1,
where ti is the timestamp, and xi is the progress. In our example applications, we often use the current value
of the objective function (i.e., training loss) as the progress, and a smaller x value means better progress. The
convergence speed can be naturally expressed as the slope of the progress trace. However, for real world
applications, there are several tricky aspects that need to be taken into account, and we will describe them in
this section.
Downsampling the progress trace. The progress slope can be calculated as s = xN−x1

tN−t1
. However, this

simple calculation only works when the progress trace is smooth. In many real world applications, such as
deep neural networks, the progress trace is often quite noisy, such as the one shown in Figure 4.
To deal with the noisy progress trace, our progress summarizer will downsample the progress trace of
each branch. The downsampling uniformly divides the original timeseries data into K windows, and the
value of each window will be downsampled as the average of all data points in that window. Suppose the
downsampled progress trace is {< t̃i, x̃i >}Ki=1, MLtuner will use slope of the downampled progress trace

6

Time (t)

P
ro

g
re

ss
 (

x
) Noisy

Downsampled

Figure 4: Downsampling noisy progress into 10 samples.

as the convergence speed, which is s = x̃N−x̃1

t̃N−t̃1
. By default, MLtuner downsamples the training progress of

each branch into 10 samples (i.e., K = 10 uniformly divided windows). Figure 4 shows a real example of
downsampling the progress trace for deep neural network training. Downsampling smoothens the training
progress.
Convergence and stability checks. Because the progress trace is noisy, even after the downsampling,
calculating the slope by simply looking at the first and last downsampled points is likely to treat branches that
have unstable jumpy losses as a good converging branch. To deal with this problem, the summarizer module
will also check the stability of the training progress.
The progress summarizer labels the branch with a downampled progress trace of {< t̃i, x̃i >}Ki=1 as
converging, when both condition holds:
(1) x̃K < x̃1;
(2) max

1≤i≤K−1
(x̃i+1 − x̃i) < |x̃K − x̃1| × ε.

The first condition means the progress slope must be negative, assuming the progress trace of a converging
branch should be going down. The second condition means that each data point in the downsampled progress
trace cannot jump up from its previous point by too much (more than ε times the whole range). We usually
use 10% as the default value for the threshold ε.
If the progress trace violates either of the two conditions, the progress summarizer will label this branch as
not converging. Note that a “not converging” branches is not necessarily diverging. It might be because its
progress is very noisy, and we need to run it for longer to get stable progress.

4.2 Deciding tunable trial time

MLtuner is able to automatically decide the tunable trial time, based on the convergence information from
the progress summarizer module. Ideally, the trial time should be the minimal amount of time that allows a
good tunable choice to have stable converging progress.
MLtuner automatically decides the trial time, with a procedure shown in Algorithm 1. MLtuner first initializes
the trial time with some small value. Currently, we initialize the trial time to be at least as long as the tunable
searcher decision time, so that the decision time can efficiently overlap with the running of the trial branches.
MLtuner tries the tunable choices with the trial time, and if none of the tunable choices tried so far is
converging, MLtuner will double the trial time, and the next time it tries another tunable choice, it will try
the new tunable choice as well as all the previous tunable choices for longer, with the doubled trial time.
When MLtuner successfully finds a converging tunable choice, the trial time is decided and will be used to
try future tunable choices.

7

Algorithm 1 Deciding trial time
trialT ime← 0
Parent branch← current model states
while none of the tunables is converging do

Get tunableChoice from TunableSearcher
trialT ime← max(trialT ime, searcherDecisionT ime)
if tunableChoice is not empty then

Fork a branch from the parent branch with tunableChoice
Append the new branch to trialBranches

end if
for each branch in trialBranches do

Schedule branch to run for trialT ime− timeAlreadyRun
end for
Summarize the progress of all trialBranches
if any tunable choice is converging then

bestChoice← tunable choice that has the best convergence
Free the branches of the non-best tunable choices
Search tunables with trialT ime

else
trialT ime← trialT ime× 2

end if
end while

4.3 Tunable searchers

The tunable searcher is a replaceable module that proposes the trial tunable choices based on the reported
convergence speeds of previous trials. We have implemented and explored several types of tunable searchers
on MLtuner.
GridSearcher. The GridSearcher simply proposes every possible tunable choices in the tunable range,
without considering the reported convergence speeds. This searcher only works for discrete tunables, so
continuous tunables (such as the learning rate) need to be discretized.
BayesianOptSearcher. The BayesianOptSearcher searches the tunable space with the Bayesian optimization
algorithm [28], a tool for optimizing black-box functions. Unlike the previous model hyperparameter
optimization approach [35], where the model is trained to completion for every choice and the model
accuracy is used as the feedback, MLtuner just trains with each tunable choice for a short amount of trial
time, and uses the convergence speed as the feedback.
Our BayesianOptSearcher uses an open-source Bayesian optimization implementation, called Spearmint [35].
The Bayesian optimization tool itself does not have a stopping condition of when to stop trying new choices,
but our BayesianOptSearcher needs a stopping condition to terminate the searching loop. So we have to add
our own stopping condition, which is when the convergence speed of the top five best tunable choices differ
by less than 10%.
Since the BayesianOptSearcher proposes tunable choices based on the reported convergence speeds, it can
cause problems if we directly use the progress slopes of the diverged branches as the convergence speeds. For
example, suppose we have two diverged branches, we shouldn’t consider the one with the smaller diverged
losses as a better choice and closer to the optimal choice. Instead, we should treat all diverged branches as the
same quality, so our BayesianOptSearcher will use zero as the convergence speeds of the diverged branches.
MarginalSearcher for adjusting tunables. When MLtuner adjusts the tunables during the training, it is able
to take advantage of the fact that we know the original best tunable choice, and that the new best tunable choice
should be close to it. MLtuner achieves that by using a variant of the GridSearcher, called MarginalSearcher.

8

Method name Input Description
Messages sent from MLtuner

ForkBranch (clock, branchId, parentBranchId, tunable, [type]) fork a branch from a parent branch
FreeBranch (clock, branchId) free a branch
ScheduleBranch (clock, branchId) schedule the branch to run at clock

Messages sent to MLtuner
ReportProgress (clock, progress) report per-clock training progress

Table 1: MLtuner message signatures.

Instead of trying all possible tunable choices, the MarginalSearcher starts from the original best tunable
choice, and changes only one of its dimensions. For example, suppose we have two tunables A and B to
search, both have N possible values, so the GridSearcher will have to try N2 possible tunable choices in
total, which are {{< Ai, Bj >}Ni=1}Nj=1. If we know the original best tunable choice is < As, Bs >, the
MarginalSearcher only needs to try 2N −1 tunable choices, which are {< Ai, Bs >}Ni=1∪{< As, Bi >}Ni=1.

4.4 Training system interface

MLtuner consumes very little CPU computing power and network bandwidth, so we can just run it on one of
the training machines in the cluster. MLtuner communicates with the training system with messages sent via
network sockets, and Table 1 lists the message signatures.
MLtuner identifies each branch with a unique branch ID, and uses clock to indicate logical time. When
MLtuner forks a branch, it expects the training system to copy all the states (e.g., model parameters) from the
parent branch to the child branch, and an empty parent branch ID is provided, when it wants to create a new
branch from no parent. When MLtuner frees a branch, the training system can then reclaim all the resources
(e.g., storage for model parameters) associated with that branch. All the branch operations will be sent in
clock order, and exactly one ScheduleBranch message will be sent for every clock. The training system
is expected to report its training progress with the ReportProgress message every clock.
Although in our auto-tuning design, the branches are scheduled based on time, instead of clocks, MLtuner
still sends the per-clock branch schedules to the training system. We made this design choice, in order to
ease the modification of the training systems. To make sure each branch runs for (approximately) the amount
of scheduled trial time, MLtuner will first schedule that branch to run for a small number of clocks (e.g.,
three), and measure the per-clock time, and MLtuner will then schedule it to run for more clocks, based on
the measured per-clock time.
Distributed training support. The large-scale machine learning tasks are often trained on distributed
training systems (e.g., with a parameter server architecture). The distributed training system will have
multiple training workers, and MLtuner will broadcast the branch operations to all the training workers (with
the operations in the same order). MLtuner also allows each of the training workers to report their training
progress separately, and MLtuner will aggregate the training progress from all the workers with a user-defined
aggregation function. For the example applications we used in this paper, this aggregation function simply
adds together the training progress of all the workers. This aggregation is useful, because, when we do
data-parallel training with SGD, each training worker trains on a distinct partition of the training data, and
the objective value of the whole model is simply the summation of the objective values of all the partitions.
Evaluating the model on validation set. In some applications, such as image classification, the quality of
the model and the convergence criteria are defined as the classification accuracy on a set of validation data,

9

instead of the training loss. This can be easily done with MLtuner. To test the model on the validation set,
MLtuner will fork a branch with a special TESTING flag as the branch type, telling the training system to
use this branch to do the testing. The reported progress of the testing branch will be the validation accuracy.

4.5 Training system modifications

This section describes the possible modifications to be made, for a training system to work with MLtuner. The
modified training system will be able to keep multiple versions of the training states (e.g., model parameters
and local states), and make consistent decisions on which version of the training states to use.
We have modified two training systems to work with MLtuner. The first one is a CPU-based parameter server
system that is very similar architecturally to [45, 8, 25]. The second one is GeePS [9], a recently released
parameter server for deep learning GPU applications 1.
Both parameter server implementations store the parameter data as key-value pairs in memory, sharded across
all the machines. We modified their parameter data storage to keep multiple versions of the parameter data,
by adding the branch ID as another index. When a new branch is forked, we will allocate its data storage
and copy the data from its parent branch. When the branch is freed, we will free its memory. MLtuner tries
to keep as few active branches as possible, and except when exploring the trial time (with Algorithm 1),
MLtuner usually needs only three active branches to be kept in memory, the parent branch, the current best
branch, and the current trial branch. Because the parameter data is sharded across all the machines, keeping
extra copies of the parameter data is usually not an issue. For our example applications, we find the memory
is sufficient for keeping at least 50 copies of the parameter data in memory.
Those parameter server implementations also have multiple levels of caches, for worker machines to cache
the parameter data locally, and since MLtuner runs only one branch at a time, the branches can share the
cache memory. In fact, sharing the cache memory is critical for the GeePS system work on MLtuner, because
GeePS caches parameter data in GPU memory, and since GPU memory is a scarce resource, we usually
cannot afford having one GPU cache for every branch.

5 Evaluation

This section evaluates our auto-tuning design with the MLtuner system on several real ML applications
and models. The results confirm that MLtuner can robustly pick and adjust the tunables for ML tasks, with
reasonable overhead. In some applications, such as deep neural network training, adjusting tunables during
the training results in higher model accuracies than the state-of-art learning rate tuning algorithms.

5.1 Experimental setup

5.1.1 Application setup

Our experiments used three applications, image classification with deep convolutional neural network, video
classification with deep recurrent neural network, and movie recommendation with matrix factorization.
Table 2 summaries their distinct characteristics (e.g., supervised vs. unsupervised, one mini-batch per clock
vs. a whole training data pass per clock, trained with GPUs vs. trained with CPUs).
Image classification w/ convolutional neural network. The image classification application is a supervised
learning task that classifies images (raw pixel maps) into pre-defined labels. The model is trained on a set of

1We used the open-sourced GeePS code from https://github.com/cuihenggang/geeps as of June 3, 2016.

10

https://github.com/cuihenggang/geeps

Application Model Supervised/Unsupervised Clock size Hardware
Image classification Convolutional neural network Supervised learning One mini-batch GPU
Video classification Recurrent neural network Supervised learning One mini-batch GPU

Movie recommendation Matrix factorization Unsupervised learning Whole data pass CPU

Table 2: Applications used in the experiments. They have distinct characteristics.

training images with known labels. The state-of-art approach for this task is to use the deep convolutional
neural networks (CNNs) [23, 39, 19, 40, 16]. The deep neural network model consists of multiple layers of
interconnected neurons. The first layer of the neurons (input of the network) are the raw pixels of the input
image, and the last layer of the neurons (output of the network) are the probabilities that this image should be
assigned to each label. There is a weight associated with each neuron connection, and those weights are the
parameters of this model and will be trained from the training data.
The deep neural networks are often trained with the SGD algorithm, but because the training data is often
quite large (e.g., one million labelled images), people often divide the training data into many mini-batches,
and compute the gradients and parameter updates with only one mini-batch of the training data at a time
[10, 6, 9, 23, 39, 19, 40, 16]. As an optimization, people often smooth the gradients across mini-batches with
a method called momentum [38], and we also did that.
We used two datasets and two models for the image classification experiments. The first dataset is Large
Scale Visual Recognition Challenge 2012 (ILSVRC12) [33], which has 1.3 million training images labelled
to 1000 classes, and 5000 validation images. For this dataset, we used the Inception-BN [19] network as the
model. 2 The second dataset is Cifar10 [22], which has 50,000 training images labelled to 10 classes, and
10,000 validation images. We used the AlexNet [23] network for the Cifar10 dataset.
Image classification is a supervised classification task, and the quality of the trained model is evaluated by
testing it on a set of validation data, in terms of classification accuracy. The model convergence is defined as
when the validation accuracy plateaus (i.e., stops increasing). In our ILSVRC12 experiments, we test the
model, each time we finish a whole pass over the training data (i.e., every epoch). For the Cifar10 experiments,
we tested the model every five epoches, because its training set is quite small compared to the validation set.
We declare the model is converged, when the validation accuracy plateaus over the last five tests (i.e., when
the maximum validation accuracy was observed more than five tests ago). We did the image classification
experiments on our modified GeePS parameter server linked with MLtuner.
Video classification w/ recurrent neural network. To capture the sequence information of the video,
video classification tasks often use a structure called recurrent neural network (RNN). The RNN network
often uses a special type of neuron layers called Long-Short Term Memory (LSTM) [18] as the building
blocks [11, 44, 46]. A common approach for using RNNs on video classification tasks is to first encode each
image frame of the video with a convolutional neural network, and then feed the encoded image feature
vector sequences into the RNN network.
Our video classification experiments used the UCF-101 dataset [36], which contains about 8,000 training
videos and 4,000 testing videos, categorized into 101 human action classes. Similar to the approach described
by Cui et al. [9] and Donahue et al. [11]. we used the GoogLeNet [39] convolutional neural network, trained
with the ILSVRC12 image data, to encode the image frames, and fed the feature vectors into a RNN network
with LSTM layers. We extracted the video frames at a rate of 30 frames per second and trained the model

2The Inception-BN paper [19] did not release some minor details of the model, and we used an open-sourced version of the
Inception-BN model from a popular open-sourced deep learning system, MXNet [5].

11

Tunable Valid range

Learning rate
10x, where

x ∈ [−5, 0] for BayesianOptSearcher,
x ∈ {−5,−4.5, ..., 0} for GridSearcher

Data staleness {0, 1, 3, 7}

Mini-batch size

Inception-BN: {2, 4, 8, 16, 32}
AlexNet: {4, 16, 64, 256}
Video classification: {1}

Matrix Factorization: N/A

Table 3: Tunable setups in the experiments.

with randomly selected video clips of 32 frames each. We did the video classification experiments also on
our modified GeePS parameter server linked with MLtuner.
Movie recommendation with matrix factorization. The movie recommendation task tries to predict how
much a user will like a movie, based on lots of existing user-movie ratings. The movie recommendation
application is often modelled as a sparse matrix factorization problem, where we have a partially filled matrix
X , with entry < i, j > being user i’s rating of movie j, and we want to factorize X into two low ranked
matrices L and R, such that their product approximates X (i.e., X ≈ L×R) [14]. The matrix factorization
model is often trained with the SGD algorithm [14], and because the model parameter values are updated
with uneven frequency, people often use AdaGrad [12] or AdaRevision [27] to decide the per-parameter
learning rate adjustment, based on an initial learning rate [45].
Our matrix factorization (MF) experiments used the Netflix dataset, which has 100 million known ratings
from 480 thousand users for 18 thousand movies. We factorized the rating matrix with a rank of 400, which
is the same setting used by Wei et al. [45], and we set the convergence criteria as fixed loss threshold of 2e-7,
which is also the same as the one used by Wei et al. [45]. 3 The matrix factorization experiments used on our
modified CPU-based parameter server linked with MLtuner.

5.1.2 MLtuner setup

Table 2 summarizes the tunables to be searched in our experiments. The image classification and video
classification tasks have three tunables, learning rate, data staleness bound, and mini-batch size. The matrix
factorization task has two tunables, learning rate and data staleness bound. The tunable ranges for the learning
rate and data staleness bound are the same for all applications and models, because we assume the user has
no prior knowledge about how to choose the tunables. The mini-batch size range is different for each model,
which is based on the maximum mini-batch size that can fit in the GPU memory. For the video classification
task, we can only fit one video in one mini-batch, so the mini-batch size is fixed to one.
MLtuner decides whether the training progress of each application is noisy or not, based on its initial progress.
For noisy cases (which will be the neural network applications), it downsamples each progress trace into
10 samples, and for non-noisy cases (which will be the matrix factorization application) it downsamples each
progress trace into 3 samples.
MLtuner adjusts the tunables when the training branch has been running for more than 10× of the tunable
searching time, or (only for the neural network applications) when the model hits the convergence criteria,

3 We did not define the convergence criteria in terms of loss change between iterations, because different tunable choices will
greatly affect the per-iteration convergence rate, and thus make the model “converge” at different losses.

12

which is when the validation accuracy plateaus for the last five tests. We bound the time for doing each
adjustment to be less than 50% of the current runtime, and stop the adjustment early when exceeding the
bound. That is because, if the model has already converged, we will not be able to get further converging
progress with any tunable choice, leaving the adjustment time unbounded will cause the training to run
forever. If the adjustment is triggered by the convergence criteria, we will test the model on the validation set
for one more time, after the adjustment, and stop the training if the peak accuracy does not change.
By default, MLtuner uses the BayesianOptSearcher, but for comparison purpose, some of our experiments
also show the result of using the GridSearcher. The MarginalSearcher is used for all tunable adjustments.

5.1.3 Cluster setup

There are two clusters used in our experiments. We used a GPU cluster for the deep neural network
experiments, and a CPU cluster for the matrix factorization experiments.
The GPU cluster has 8 machines. Each machine has a NVIDIA Titan X GPU, with 12 GB of GPU device
memory. In addition to the GPU, each machine has one E5-2698Bv3 Xeon CPU (2.0 GHz, 16 cores with
2 hardware threads each), and 64 GB of RAM, and is installed with 64-bit Ubuntu 16.04, CUDA toolkit 8.0,
and cuDNN v5. The machines are inter-connected via a 40 Gbps Ethernet interface.
The CPU cluster has 32 machines. Each machine has four quad-core AMD Opteron 8354 CPUs (16
physical cores in total) and 32 GB of RAM, and is installed with 64-bit Ubuntu 14.04. The machines are
inter-connected via a 20 Gb Infiniband interface.

5.2 Auto-tuning with MLtuner

This section evaluates the robustness and the overhead of auto-tuning with MLtuner, on our example machine
learning applications.

5.2.1 ILSVRC12 image classification w/ Inception-BN

In this set of experiments, we trained the Inception-BN network on the ILSVRC12 dataset. We will compare
the validation accuracies of training with auto-tuning, and training with the state-or-art SGD learning rate
tuning algorithms, including AdaGrad [12], AdaRevision [27], AdaDelta [47], RMSProp [42], Nesterov [29],
and Adam [20]. Because these SGD learning rate tuning algorithms still require the selection of the initial
learning rate, we used auto-tuning (with GridSearcher) to pick the initial tunable choice (including learning
rate, batch size, and data staleness bound) for those setups, but we only adjust the tunables for the auto-tuning
setups. We have also manually verified that the initial learning rates picked for the SGD learning rate
tuning algorithms are very close to ideal. We did three runs for each of the two auto-tuning setups. Table 4
summaries the achieved model accuracies after convergence, and Figure 5 shows the convergence trace.
The results show that adjusting the tunables improves the model accuracy. This result echoes people’s finding
that, when training deep neural networks, it is necessary to decrease the learning rate during the training
[40, 19, 39, 23, 16, 1, 48]. When the validation accuracy plateaus, it is not necessarily because the model has
converged, but sometimes it’s because the current learning rate is too large for the SGD algorithm to make
any further progress. Auto-tuning is able to get around 69.5% validation accuracy on this task, which is the
same as (actually a little bit higher than) the reported validation accuracies for the same task by open-sourced
systems, such as MXNet [5].
Surprisingly, none of the SGD learning rate tuning algorithms is able to achieve the expected model accuracy.
Actually in the original papers of those algorithms, none of them evaluated their performance on this

13

0 5 10 15 20 25 30 35 40
Time (hours)

0.0

0.2

0.4

0.6

0.8

V
a
lid

a
ti

o
n
 a

cc
u
ra

cy

Auto-tuning w/
BayesianOptSearcher

Auto-tuning w/
GridSearcher

AdaRevision

RMSProp

Nesterov

Adam

AdaDelta

AdaGrad

Figure 5: ILSVRC12 with Inception-BN validation accuracies. We only show the result of the first run for
each setup, and the other runs have similar behavior. The “x” markers show the point where we adjust the
tunables.

ILSVRC12 image classification task. They only showed results on small datasets, such as Cifar10 or
MNIST [24]. We think the reason why they don’t work well for this task is that, because of the complexity
of the model and the size of the data, this task needs carefully scheduled learning rate decrease during the
training, in order to get full convergence. Those algorithms, however, are designed mostly for adjusting the
relative learning rates of each individual model parameter values. They try to use relatively large learning rates
for the model parameters with small gradients, and relatively small learning rates for the model parameters
with large gradients. They are shown to work well for sparse problems, such as matrix factorization [45], but
are not good at adjusting the overall global learning rate according to the model convergence. This problem
has already been found by many other people. For example, in the experimental setups described by Szegedy
et al. [40], they still needed to decrease the global learning rate during the training, even though they were
using the RMSProp algorithm.

Auto-tuning w/
BayesianOptSearcher

Auto-tuning w/
GridSearcher

0

5

10

15

20

25

30

T
im

e
 (

h
o
u
rs

)

Adjusting tunables

Training ML model

Picking initial tunables

Figure 6: ILSVRC12 Inception-BN runtime break down.

Figure 6 summaries the overhead of auto-tuning, by breaking the total runtime into three parts: time for
picking the tunable choice at the beginning, time for adjusting the tunables, and the actual training time with

14

Setup Accuracy (%)
AdaGrad [12] 30.8

AdaRevision [27] 63.8
AdaDelta [47] 55.2
RMSProp [42] 60.0
Nesterov [29] 60.0

Adam [20] 61.6
Auto-tuning w/
GridSearcher

69.8 ± 0.3

Auto-tuning w/
BayesianOptSearcher

69.0 ± 0.3

Table 4: ILSVRC12 with Inception-BN validation accuracies. We did three runs for each auto-tuning setups,
and showed their average accuracy and standard deviation.

the selected tunables. The results show that auto-tuning has relatively low overhead, and with either the
BayesianOptSearcher or the GridSearcher, the time for picking the initial tunable choice is negligible. With
the default BayesianOptSearcher, MLtuner spent 11.2 hours on the actual training, and 4.8 hours on searching
or adjusting the tunables (40% extra runtime). MLtuner with GridSearcher spent 18.7 hours training, and
7.3 hours tuning (39% extra runtime).
From Figure 6, we find a major part of the tuning time is spent on the last tunable adjustment. That is
because MLtuner always tries to adjust the tunables when the model hits the convergence criteria, hoping
to get further convergence with some other tunable choice. It keeps doubling the trail time, until it finds a
converging branch. However, if the model has already converged, none of the branches will have any further
convergence, so this searching procedure can end up taking very long (or even forever, if we don’t bound the
searching time). If we only look at the time for MLtuner to reach the converged accuracy, without counting
the last adjustment attempt after convergence, auto-tuning with BayesianOptSearcher has only 20% searching
overhead, and auto-tuning with GridSearcher has only 18% searching overhead. The GridSearcher setup has
longer training time, because it had longer searching time at the beginning and started the adjustments later,
so it was less likely to give up and declare convergence during the tunable adjustments.

5.2.2 Cifar10 image classification with AlexNet

Auto-tuning w/
BayesianOptSearcher

Auto-tuning w/
GridSearcher

0

100

200

300

400

500

600

T
im

e
 (

se
c)

Adjusting tunables

Training ML model

Picking initial tunables

Figure 7: Cifar10 AlexNet runtime break down. Only the first run of each setup is shown, and the other runs
have similar behavior.

15

In this set of experiments, we trained the AlexNet network on the Cifar10 dataset. We did five runs for
each auto-tuning setup, from different initial model parameter states, all shown in Figure 8. Figure 7 shows
the runtime break down. Similar to the ILSVRC12 task, most of the tunable adjustment time is spent on
the last adjustment attempt after convergence. If we include the last adjustment attempt, auto-tuning with
BayesianOptSearcher has 178% overhead, and auto-tuning with GridSearcher has 176% overhead. If we
don’t include the last adjustment attempt, because it did not improve the model accuracy at all, auto-tuning
with BayesianOptSearcher has 108% overhead, and auto-tuning with GridSearcher has 51% overhead.
Surprisingly, the GridSearcher has less searching overhead than the BayesianOptSearcher, for picking the
tunable choice at the beginning. That is because, for this relatively small dataset, MLtuner is able to identify
the good tunable choices with very short trial time. The GridSearcher spends only about 0.1 seconds to try
each tunable choice, while the BayesianOptSearcher needs to run the Bayesian optimization algorithm to
generate each trial tunable choice, and that takes up to 10 seconds. As a result, even though the GridSearcher
tried more tunable choices than the BayesianOptSearcher did (176 vs. an average of 30 for picking the
initial choice), it spent less time searching. Previously, people have found tuning machine learning with grid
searching is inefficient [35, 37], because, to evaluate each hyperparameter choice, they needed to train the
model to completion. MLtuner, on the other hand, tries each tunable choice with just a short amount of trial
time, so grid searching becomes acceptable and sometimes even superior. The BayesianOptSearcher setup
has longer training time, because MLtuner decides when to adjust tunables based on the searching time, so
the BayesianOptSearcher setup spent more time running the initial tunable choice before adjustment.

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Converged validation accuracy

0

2000

4000

6000

8000

To
ta

l r
un

tim
e

(s
ec

)

AdaRevision w/ all tunable choices
Tuning w/ BayesianOptSearcher
Tuning w/ GridSearcher

Figure 8: Cifar10 AlexNet converged accuracy and convergence time. The baseline used AdaRevision with
each of the all 176 tunable choices in range, and 79 of them diverged (not shown in this graph). We did five
runs for each of the auto-tuning setups, and showed the results of all of them in the graph.

Even though MLtuner needs to spend extra time tuning the tunables, we think being able to automatically
find the good tunables is worth this cost. The ideal training time is actually not achievable by any constant
tunable choice. Instead, it can only be achieved by changing the tunables during the training. Figure 8 shows
the total runtimes and the converged model accuracies of using each of the all 176 tunable choices in range
(with discretized learning rate). In order to compare with the state-of-art approach, we used AdaRevision [27]
to tune the learning rates for this baseline, and compared it with auto-tuning. The result shows that, even
with AdaRevision, the tunable choice not only affects the convergence time, but also affects the converged
model accuracy a lot. By picking the good tunable choices and adjusting them on the fly, our auto-tuning

16

setups robustly converged to the best model accuracy, and the convergence times are close to that achieved by
AdaRevision using the ideal best tunable choice.

5.2.3 Video classification

0 1 2 3 4 5 6 7 8 9
Time (hours)

0.0

0.2

0.4

0.6

0.8

Auto-tuning

(a) Validation accuracy.

AutoTuning
0

2

4

6

8

10

Adjusting tunables

Training ML model

Picking initial tunables

(b) Runtime (hours).

Figure 9: Video classification with RNN.

This set of experiments shows the performance of MLtuner on the video classification task. Figure 9(a)
shows model accuracy trace. By automatically picking and adjusting tunables, MLtuner reached a validation
accuracy of 70.4%, which is the same as the accuracy number reported by Cui et al [9]. Figure 9(b) summaries
the runtime break down. MLtuner spent about 1.7 hours tuning before convergence, 3.4 hours training, and
3.3 hours doing the last adjustment attempt after convergence. The tuning overhead is 147% if we include the
last adjustment attempt, or 50% if we don’t include the last adjustment attempt.

5.2.4 Matrix factorization

Because the model parameters of the MF task has uneven update frequency, we used AdaGrad [12] to decide
the per-parameter learning rates, and used auto-tuning to select the initial learning rate for AdaGrad, as well
as the data staleness bound. The MF task uses a loss threshold of 2e-7 as the convergence criteria, so we
will just compare the time for each setup to reach this loss threshold, and we do not adjust tunables after
convergence. We did three runs for each auto-tuning setup and showed their average and standard deviation.
Figure 10 shows the runtime break down of training with auto-tuning, and training with the ideal best tunable
choice. Considering both the overhead of tunable searching and the extra training time for using suboptimal
tunable choices, auto-tuning spent 155% more time than ideal. Compared to the neural network applications,
auto-tuning has a slightly higher overhead for this MF task, because the MF task converges in only about
75 clocks (iterations), while our MLtuner system needs to try each tunable choice for at least 3 clocks to
measure its convergence speed. We think a possible fix to this issue is to break the whole iteration into
multiple clocks, and let the training system report the training progress more frequently, so that MLtuner will
be able to identify good tunable choices in shorter time.
Even though MLtuner spent around double the ideal runtime, the ideal best tunable choice is usually not
achievable through manual tuning, and using bad tunable choices can cost much longer runtime. Figure 11

17

Ideal tunable choice Auto-tuning
0

100
200
300
400
500
600

T
im

e
 (

se
c)

Training ML model

Picking initial tunables

Figure 10: MF runtime break down.

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative probability

102

103

104

T
o
ta

l
ru

n
 t

im
e
 (

se
c)

lo
g
 s

ca
le

All tunable choices in range

Auto-tuning

Figure 11: MF runtimes with different tunable choices, and with auto-tuning. The graph shows the cumulative
probabilities of finishing the task in less than certain runtime.

shows the runtimes of using each of the 44 tunable choices in range (with discretized learning rate). The
result shows that, even considering the searching overhead, auto-tuning converges 10× faster than 55% of
the tunable choices in range, and 100× faster than 45% of the tunable choices in range. So being able to
automatically find the good tunable choices is worth the tuning cost.

5.3 Comparing to hyperparameter optimization

This section explicitly compares our auto-tuning approach with the traditional hyperparameter optimization
(HyperparamOpt) approach, where each tunable choice is evaluated by training the model to completion.
Similar to the approach described by Snoek et al. [35], our HyperparamOpt experiments used Bayesian
optimization to generate the trial tunable choices. We used their open-sourced Bayesian optimization imple-
mentation, called Spearmint [35]. Since Snoek et al. [35] did not provide a stopping condition for deciding
when to stop the searching, we used the same stopping condition as is used by our BayesianOptSearcher,
which is when the convergence accuracies of the top five best tunable choices differ by less than 10%.
Table 5 summarizes the total task completion times with the HyperparamOpt approach, and and with
auto-tuning (using the BayesianOptSearcher). For the Cifar10 image classification task, HyperparamOpt
spent 5000 seconds, trying 11 tunable choices (each running to completion), and auto-tuning is faster than
HyperparamOpt by 8× (and 22× faster with the GridSearcher). HyperparamOpt is not able to finish the
ILSVRC12 task or the matrix factorization task in reasonable amount of time, because, for both tasks,

18

Application Auto-tuning HyperparamOpt
ILSVRC12 14 hours >35 hours

Cifar10 620 seconds 5000 seconds
MF 510 seconds >16 hours

Table 5: Total task completion time with auto-tuning and with HyperparamOpt.

HyperparamOpt spent more than 10 hours training with the first tunable choice proposed by Bayesian
optimization, and, unfortunately, this first proposed tunable choice had a learning rate of 10−5, which was
too small and caused extremely long convergence time.

5.4 Discussion of design choices

This section justifies some of our design choices.
Adjust tunables with the MarginalSearcher. As is mentioned in Section 4.3, MLtuner uses MarginalSearcher
to adjust the tunables during the training. That is because the per-chocie tunable trial time is so long that we
cannot afford using the BayesianOptSearcher or the GridSearcher.

0 1 2 3 4 5
Searching stage

0

200

400

600

800

T
ri

a
l
ti

m
e
 p

e
r

ch
o
ic

e
 (

se
c)

(a) ILSVRC12.

0 1 2 3
Searching stage

0

2

4

6

8

10
T
ri

a
l
ti

m
e
 p

e
r

ch
o
ic

e
 (

se
c)

(b) Cifar10.

Figure 12: Tunable trial time per choice for each searching stage. The searching stage #0 stands for picking
the initial tunable choice at the beginning, and the other searching stages stand for adjusting the tunables.
Both graphs used the GridSearcher to pick the initial tunable choice, because we don’t want the trial time to
be affected by the long decision time of the BayesianOptSearcher.

Figure 12 summarizes the per-choice trial times of searching the initial tunable choice at the beginning, and
adjusting the tunables. The result shows that, when we adjust the tunables, the per-choice tunable trial time
can be over an order of magnitude longer than picking the initial tunables (37× longer for ILSVRC12, and 200
× longer for Cifar10). That is because, the training progress slopes are usually much flatter when MLtuner
adjusts the tunables than at the beginning, so we need much longer trial times to get stable converging
progress.

6 Conclusions

MLtuner automatically tunes the tunables that can have major impact of the performance and effectiveness of
ML applications. Experiments with three real ML applications on two real ML systems show that it works,

19

outdoing most reasonable settings and performing within 40–178% of having manually chosen the best
settings (but without the risk). It does better in cases, like the DNN examples, where runtime changes to
settings leads to better outcomes than any static settings.

20

References

[1] Training deep net on 14 million images by using a single machine. http://mxnet.readthedocs.
io/en/latest/tutorials/imagenet_full.html.

[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable inference in latent
variable models. In WSDM, 2012.

[3] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. ICML (1), 28:115–123, 2013.

[4] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
Advances in Neural Information Processing Systems, pages 2546–2554, 2011.

[5] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet: A
flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[6] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient and
scalable deep learning training system. In OSDI, 2014.

[7] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A.
Gibson, and E. P. Xing. Exploiting bounded staleness to speed up big data analytics. In USENIX ATC,
2014.

[8] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho, G. R. Ganger, P. B. Gibbons,
G. A. Gibson, and E. P. Xing. Exploiting iterative-ness for parallel ML computations. In SoCC, 2014.

[9] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. GeePS: Scalable deep learning on
distributed GPUs with a GPU-specialized parameter server. In Proceedings of the Eleventh European
Conference on Computer Systems, 2016.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le,
et al. Large scale distributed deep networks. In NIPS, 2012.

[11] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell.
Long-term recurrent convolutional networks for visual recognition and description. arXiv preprint
arXiv:1411.4389, 2014.

[12] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, (Jul), 2011.

[13] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust
automated machine learning. In Advances in Neural Information Processing Systems, pages 2962–2970,
2015.

[14] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed
stochastic gradient descent. In SIGKDD, 2011.

[15] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. PRObE: A thousand-node experimental cluster for
computer systems research. USENIX ;login:, 2013.

21

http://mxnet.readthedocs.io/en/latest/tutorials/imagenet_full.html
http://mxnet.readthedocs.io/en/latest/tutorials/imagenet_full.html

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

[17] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. R. Ganger, and E. P. Xing.
More effective distributed ML via a Stale Synchronous Parallel parameter server. In NIPS, 2013.

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8), 1997.

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[20] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[21] B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: automatic hyperparameter configuration for
scikit-learn. In ICML workshop on AutoML, 2014.

[22] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural
networks. In NIPS, 2012.

[24] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits, 1998.

[25] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with the parameter server. In OSDI, 2014.

[26] D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimization through
reversible learning. In Proceedings of the 32nd International Conference on Machine Learning, 2015.

[27] B. McMahan and M. Streeter. Delay-tolerant algorithms for asynchronous distributed online learning.
In NIPS, 2014.

[28] J. Močkus. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical
Conference. Springer, 1975.

[29] Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). In
Soviet Mathematics Doklady, 1983.

[30] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng. On optimization methods for
deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 265–272, 2011.

[31] F. Pedregosa. Hyperparameter optimization with approximate gradient. arXiv preprint
arXiv:1602.02355, 2016.

[32] R. Power and J. Li. Piccolo: Building fast, distributed programs with partitioned tables. In OSDI, 2010.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision, 2015.

22

[34] A. Senior, G. Heigold, K. Yang, et al. An empirical study of learning rates in deep neural networks for
speech recognition. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 6724–6728. IEEE, 2013.

[35] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning
algorithms. In NIPS, 2012.

[36] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes from videos in
the wild. arXiv preprint arXiv:1212.0402, 2012.

[37] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, and T. Kraska. Automating model
search for large scale machine learning. In SoCC, 2015.

[38] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initialization and momentum
in deep learning. ICML, 2013.

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. arXiv preprint arXiv:1512.00567, 2015.

[41] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka: Combined selection and
hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 847–855. ACM, 2013.

[42] T. TielemanWang and G. Hinton. Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning, 2012.

[43] M. Vartak, P. Ortiz, K. Siegel, H. Subramanyam, S. Madden, and M. Zaharia. Supporting fast iteration
in model building. NIPS ML Systems Workshop, 2015.

[44] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. arXiv
preprint arXiv:1411.4555, 2014.

[45] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing.
Managed communication and consistency for fast data-parallel iterative analytics. In SoCC, 2015.

[46] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond
short snippets: Deep networks for video classification. In CVPR, 2015.

[47] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

[48] H. Zhang, Z. Hu, J. Wei, P. Xie, G. Kim, Q. Ho, and E. Xing. Poseidon: A system architecture for
efficient GPU-based deep learning on multiple machines. arXiv preprint arXiv:1512.06216, 2015.

23

	Introduction
	Background and Related Work
	Distributed machine learning
	Machine learning tunables
	Related work on tuning tunables

	System support for tunable tuning
	MLtuner overview
	Trying & evaluating tunable choices
	Tunable searching

	MLtuner implementation details
	Measuring convergence speed
	Deciding tunable trial time
	Tunable searchers
	Training system interface
	Training system modifications

	Evaluation
	Experimental setup
	Application setup
	MLtuner setup
	Cluster setup

	Auto-tuning with MLtuner
	ILSVRC12 image classification w/ Inception-BN
	Cifar10 image classification with AlexNet
	Video classification
	Matrix factorization

	Comparing to hyperparameter optimization
	Discussion of design choices

	Conclusions

