
PLUMBER: DIAGNOSING AND REMOVING PERFORMANCE BOTTLENECKS IN
MACHINE LEARNING DATA PIPELINES

Michael Kuchnik 1 * Ana Klimovic 2 * Jiřı́ Šimša 3 Virginia Smith 1 George Amvrosiadis 1

ABSTRACT
Input pipelines, which ingest and transform input data, are an essential part of training Machine Learning (ML)
models. However, it is challenging to implement efficient input pipelines, as it requires reasoning about parallelism,
asynchrony, and variability in fine-grained profiling information. Our analysis of over two million ML jobs
in Google datacenters reveals that a significant fraction of model training jobs could benefit from faster input
data pipelines. At the same time, our analysis indicates that most jobs do not saturate host hardware, pointing
in the direction of software-based bottlenecks. Motivated by these findings, we propose Plumber, a tool for
finding bottlenecks in ML input pipelines. Plumber uses an extensible and interpretable operational analysis
analytical model to automatically tune parallelism, prefetching, and caching under host resource constraints.
Across five representative ML pipelines, Plumber obtains speedups of up to 47× for misconfigured pipelines.
By automating caching, Plumber obtains end-to-end speedups of over 50% compared to state-of-the-art tuners.

1 INTRODUCTION

The past decade has witnessed tremendous advances in
Machine Learning (ML), leading to custom hardware ac-
celerators (Jouppi et al., 2020), sophisticated distributed
software (Abadi et al., 2015), and increasing dataset
sizes (Krizhevsky et al., 2012; Wu et al., 2016; Deng et al.,
2009; Krasin et al., 2017; Lin et al., 2014). While ML
accelerators can radically reduce the time required to exe-
cute training (and inference) computations, achieving peak
end-to-end training performance also requires an efficient
input pipeline that delivers data for the next training step
before the current step completes. For example, an Ima-
geNet dataloader can improve end-to-end ResNet-50 train-
ing time by up to 10× by properly leveraging parallelism,
software pipelining, and static optimizations (Murray et al.,
2021; Mattson et al., 2020; He et al., 2016). An efficient
input pipeline also ensures that accelerator hardware is well-
utilized, lowering costs.

Our analysis of over two million ML training jobs from a va-
riety of domains (e.g., image recognition, natural language
processing, reinforcement learning) at Google shows that
input data processing bottlenecks occur frequently in prac-
tice, wasting valuable resources as ML accelerators sit idly
waiting for data. We find that in 62% of jobs, the input data

*Work started while at Google 1Carnegie Mellon University
2ETH Zürich 3Google. Correspondence to: Michael Kuchnik
<mkuchnik@cmu.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

pipeline repeatedly produces batches of data with a delay of
at least 1ms after the accelerator/model is able to consume
it, incurring a non-negligible slowdown per training step.

To understand this phenomenon, we classify input pipeline
bottlenecks as hardware bottlenecks, which occur when
input data processing saturates host CPU and/or memory
resources, or software bottlenecks, which don’t saturate
the host due to poor configuration or I/O. We find that the
majority of input data stalls arise due to software bottle-
necks, indicating a mismatch between host resources and
the software that drives them. While today’s input data
pipeline libraries hide implementation complexity behind
easy-to-use APIs (§ 2.1), it is difficult for ML users to un-
derstand and optimize the performance properties of input
data pipelines. Localizing an input pipeline bottleneck with
existing systems requires profiling the ML job and manually
analyzing its execution trace (§ 2.2), which is error-prone,
burdensome, and difficult to understand. Our experience
echoes lessons learned in databases and analytics, which
indicate it is unreasonable to expect experts in ML to also
be experts in writing data pipelines (Chamberlin et al., 1981;
Olston et al., 2008b; Armbrust et al., 2015; Yu et al., 2008;
Melnik et al., 2010; Olston et al., 2008a).

Motivated by the prevalence of input pipeline bottlenecks
across real ML training jobs and the burden users experi-
ence when attempting to debug the performance of input
pipelines, we introduce Plumber, an open-source tool that
traces input pipeline execution, models the pipeline’s com-
ponents, and predicts the effect of modifications. Plumber
can be used with a single line of code over arbitrary in-

Jakub Konečný

Jakub Konečný



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

put pipelines and consists of two components: a tracer
and a graph-rewriter. Similar to database execution plan-
ners (Ioannidis, 1996; Oracle, 2021), Plumber’s tracer
quantifies the performance of individual operators, focusing
the practitioner’s attention on the most underperforming sub-
set of the data pipeline, while also quantifying the resource
utilization (i.e., CPU, disk, memory) of the pipeline. Plum-
ber’s rewriter is an automatic front-end to the tracer and
acts as an optimizer without user intervention—introducing
parallelism, caching, and prefetching in a principled fashion,
and can be extended to support more. Our contributions are:

(1) We analyze two million ML jobs, providing evidence
that input data processing is a common bottleneck (§3).
(2) We introduce a principled tracing methodology, re-
source accounted rates (§4.4), which automatically esti-
mates pipeline CPU, disk, and memory requirements.
(3) We present a novel linear programming (LP) (§4.3)
formulation using the rates traced during runtime, predicting
an upper bound on performance. Unlike state-of-the-art
tuners, which have unbounded error, the LP’s predictions of
system state are bounded within 4× by resource usage.
(4) We present Plumber (§4), a tool that detects and re-
moves input pipeline bottlenecks using resource-accounted
rates and the LP. Plumber currently supports automatic
injection of parallelism, prefetching, and caching, and paves
a way forward toward more general query optimizer exten-
sions. Plumber requires one line of code to use.
(5) We evaluate Plumber (§5) on five workloads with
end-to-end performance improvements up to 47× over mis-
configured pipelines and 50% over state-of-the-art tuners.

2 PLUMBING BASICS

All ML training begins with input data, which is curated
by input pipeline frameworks. In this section, we outline
the abstractions provided by input pipeline frameworks,
noting design decisions that have an effect on understanding
performance (§2.1). We next jump into common tools for
understanding bottlenecks (§2.2).

2.1 Input Pipeline Architecture

Input pipelines specify: a data source, transformation func-
tions, iteration orders, and grouping strategies. For example,
image classification pipelines read, decode, shuffle, and
batch their (image, label) tuples, called training exam-
ples, into fixed-size arrays (Deng et al., 2009; Krizhevsky
et al., 2012). Unlike batch processing frameworks (e.g.,
Spark (Armbrust et al., 2015), Beam (bea, 2021), Flume (flu,
2021)), which may be used to create the data used for train-
ing, the main goal of input pipeline frameworks is to dy-
namically alter the training set online. Three major reasons

1 model = model_function() # Initialize model
2 ds=dataset_from_files().repeat()
3 ds=ds.map(parse).map(crop).map(transpose)
4 ds=ds.shuffle(1024).batch(128).prefetch(10)
5 for image, label in ds: # Iterator Next()
6 model.step(image, label) # Grad Update

Figure 1: Python pseudo-code for ImageNet-style training.
Line 2 is file reading, line 3 is user-defined image processing,
and line 4 samples, batches, and prefetches data. Lines 5–6
are the critical path of training, instantiating an Iterator.

for online processing are: 1) data is stored compressed in
order to conserve storage space, 2) data is randomly altered
online using data augmentations, and 3) practitioners may
experiment with features throughout modeling.

Input pipelines are programmed imperatively or declara-
tively, each with different APIs. Imperative frameworks,
like PyTorch’s and MxNet’s (Contributors, 2019; MXNET,
2018) DataLoader, allow users to specify their pipelines
in plain Python by overriding the DataLoader. Declara-
tive libraries, like DALI (Guirao et al., 2019) and Tensor-
Flow’s tf.data (Murray et al., 2021; TensorFlow,
2020b), compose functional, library-implemented primi-
tives, which are executed by the library’s runtime. While
both styles are equally expressive in terms of pipeline con-
struction, frameworks leave a large part of implementation
to the user. In contrast, the libraries decouple specification
from implementation, requiring the user to merely declare
the pipeline structure, offloading optimizations to the run-
time. We focus our discussion on tf.data, because it
allows for various backends to service similar pipeline defi-
nitions, enabling tracing and tuning behind the API, and can
be used with all major training ML frameworks.

Input Pipeline Abstractions. In tf.data, Datasets
are the basic building blocks for declaring input pipelines.
In Figure 1, each function call chains Datasets. Instan-
tiating a Dataset (line 5) yields a tree composed of one
or more Iterators, which produces a sequence of train-
ing examples through an iterator interface that maintains
the current position within a Dataset. Figure 2 illus-
trates how Datasets are unrolled into an Iterator tree.
Some Datasets (see Map) implement multi-threaded par-
allelism within the corresponding Iterator, while others
(see TFRecord) can only be parallelized by reading from
multiple sources in parallel (e.g., using Interleave). An
Iterator implements the following three standard Itera-
tor model (Lorie, 1974; Graefe, 1994) methods:

• Open defines Iterator parameters and references to
child Iterators and initializes internal state.

• Next yields an example from the Iterator or a signal
to end the stream. Source nodes read from storage or
memory to yield examples. Internal nodes call Next on



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

Figure 2: Top (Dataset View): A tf.data pipeline is
composed of Dataset objects characterized by attributes,
e.g., by their level of parallelism. Bottom (Iterator
View): The root Dataset is instantiated into an Itera-
tor tree at runtime, which feeds the model. Iterators
pull data from their children in a recursive manner.

their children to gather examples before applying transfor-
mations to them. In Figure 1, the data source outputs file
contents, which then undergo image processing, shuffling,
and batching.

• Close releases resources and terminates the Iterator.

User-Defined Functions. User-defined functions (UDFs)
comprise the bulk of data pipeline execution time and are
used to implement custom data transformations. Figure 1
shows an example of a computer-vision pipeline utilizing
UDFs, which perform image decoding, image preprocess-
ing, and tensor transposing for efficient execution on accel-
erators. Users are able to write UDFs in a restricted form of
Python, which is compiled into an efficient and parallel
implementation.

2.2 Understanding Input Bottlenecks

An input bottleneck occurs when the input pipeline is not
able to generate batches of training examples as fast as the
training computation can consume them. If the time spent
waiting for the input pipeline exceeds tens of microsec-
onds on average, the input pipeline is not keeping up with
model training, causing a data stall (Mohan et al., 2021)
The current practice of pipeline tuning, which optimizes the
throughput (rate) of the pipeline, is explained below.

Profilers. Event-based profilers, such as the TensorFlow
Profiler (TensorFlow, 2020a), can emit metadata at particu-
lar software events to aid in determining control-flow. As
there are thousands of concurrent events per second for
a pipeline, it is difficult to quantitatively determine which
events actually caused a throughput slowdown. To automate
and generalize past heuristics deployed in guides (Tensor-
flow, 2020), the TensorFlow Profiler added a bottleneck
discovery feature (TensorFlow, 2021). This tool works by
finding the Iterator with highest impact on the critical

path of a Dataset. However, it can only rank Datasets
by slowness, and it can’t predict their effect on performance.
Furthermore, critical-paths are not well-defined for concur-
rent and randomized event graphs (e.g., execution times
of individual operations overlap and are data-dependent),
forcing heuristics to be used.

Tuners. tf.data applies dynamic optimization of
pipeline parameters when users specify AUTOTUNE for sup-
ported parameters, such as the degree of parallelism and size
of prefetch buffers (Murray et al., 2021). The autotuning
algorithm works by representing Iterators in a pipeline
as an M/M/1/k queue (Lazowska et al., 1984; Shore, 1980),
and a formulation for the queue’s latency is analytically
determined. Statistics about the execution of Iterators
are recorded with a lightweight harness. Combining the
analytical model with the runtime statistics enables tuning
the latency of the pipeline with respect to performance pa-
rameters. Specifically, the processing time of each element
is normalized by the parallelism and the ratio of input to
output elements. This statistic is then combined with “input
latency” statistics of the children nodes in a node-type depen-
dent way to get an “output latency”. Output latency tuning
is done via hill-climbing or gradient descent and ends when
the tuning plateaus or reaches a resource budget. While
AUTOTUNE works in practice, it is hard to understand and
extend for two reasons. First, open-systems, like M/M/1/k
queues, have a throughput purely dependent on input arrival
rates, which are not applicable for closed-systems. Second,
because resource utilization is not modeled, the output la-
tency function can be driven to zero if parallelism is allowed
to increase unbounded, forcing heuristic constraints to be
used.

3 SPOT THE LEAK: FLEET ANALYSIS

We analyzed over two million ML jobs that ran in Google
datacenters to determine whether input bottlenecks are com-
mon and characterized their most typical root cause. The
jobs we analyzed used tf.data and ran over a one-month
period from July to August of 2020. The workload included
production and research jobs from a variety of ML domains,
including image recognition, natural language processing,
and reinforcement learning. To measure the frequency of
input bottlenecks in practice, we measured the average time
spent fetching input data per training step across jobs.

3.1 Are Input Bottlenecks Common?

We detect input pipeline bottlenecks by measuring the aver-
age latency across all Iterator Next calls, which is the
average time the job spends blocked waiting for input data
in each training step.

Observation 1: For a significant fraction of ML jobs, the



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

Figure 3: Time spent fetching training examples using
Next, in ms. On average, for 92% of jobs Next latency ex-
ceeds 50µs, for 62% of jobs it exceeds 1ms, and for 16% of
jobs it exceeds 100ms. Fetch latencies for well-configured
pipelines are in the low tens of microseconds.

input data pipeline produces data at a slower rate than the
model is able to consume it.

Figure 3 shows that for 62% of jobs, the average Next la-
tency per training step exceeds 1ms and for 16% of jobs, the
average wait time exceeds 100ms. Since the input pipeline
affects both end-to-end training performance and hardware
accelerator utilization, it is a critical part of ML training to
optimize. We note that fetch latency applies to each itera-
tion of the training process—over ten thousand times in a
typical session. At any point in time, between 1–10% of the
fleet is waiting on input data, which is significantly costly at
the scale the fleet operates at.

3.2 Why Do Input Bottlenecks Occur?

We classify input pipeline bottlenecks into two categories:
hardware and software bottlenecks. Hardware bottlenecks
occur when hardware resources used for data processing
saturate. The hardware resources typically used for input
processing are CPU cores, host memory, and local or re-
mote storage. Many workloads do not use local storage
for I/O, but pull their data from external data sources (e.g.,
distributed filesystems) (Murray et al., 2021). Thus, exter-
nal I/O resources may bottleneck training jobs. Hardware
resource saturation can be remedied by adjusting the re-
source allocation, e.g., switching to a node with more cores,
memory, or I/O bandwidth.

Software bottlenecks occur because the software is not driv-
ing the hardware efficiently, e.g., by using too little or too
much parallelism, or incorrectly sizing prefetch buffers to
overlap communication and computation. When a user is
confronted with a software bottleneck, they must find the
root cause and fix it; otherwise, they risk underutilizing
hardware performance. We note I/O bottlenecks can also be
caused by software configuration, due to inefficient access
patterns and low read parallelism.

Observation 2: Host hardware is rarely fully utilized for

Figure 4: CPU utilization of training jobs compared to
their memory bandwidth utilization. Larger points are for
jobs with longer pipeline latency. We annotate three major
clusters. The average CPU and memory-bandwidth usage is
11% and 18%, respectively, for jobs with pipeline latency
of 100ms or more. The majority of jobs do not saturate host
resources, suggesting bottlenecks in software.

jobs with high input pipeline latencies. Thus, input bot-
tlenecks are likely rooted in software or I/O inefficiencies,
rather than hardware saturation.

To understand the breakdown between these categories of
input bottlenecks, we measure the host CPU and memory
bandwidth resource utilization for the jobs captured in our
analysis. In Figure 4, we show a breakdown of different
jobs’ average Next call latencies organized according to
the CPU and memory bandwidth utilization of the pipeline
host. We exclude jobs with latency below 50µs because
for those jobs the input pipeline is not a bottleneck, as it
takes tens of microseconds to read input data that is readily
available from a prefetch buffer (including thread wakeup
and function invocation time). Our data indicates that jobs
with latency between 50µs and 100ms (small, dark dots)
utilize more of the host’s resources than those with latency
higher than 100ms (large, blue dots). For context, a TPUv3-
8 (Jouppi et al., 2020; MLPerfv0.7) takes roughly 120ms to
process a minibatch for ResNet-50 (He et al., 2016). Jobs
where the average fetch latency exceeds 100ms are, then,
significantly input-bound, and as shown in the Figure 4 their
resource usage for both memory bandwidth and CPU is
concentrated below 20%.

4 PLUMBER

To address the challenges that users face in configuring
input data pipelines in ML jobs, we introduce Plumber,
an extensible tool that automatically detects and removes
input data bottlenecks. Using a top-down approach, we start
with the architecture of Plumber (§4.1) and then explain
tuning methodology (§4.2). We later formulate the resource
allocation problem across Datasets as a LP (§4.3), which
relies on per-Dataset resource rates derived by Plumber
(§4.4). Plumber is released as an open-source artifact



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

Figure 5: An ImageNet pipeline with Plumber’s various
states of processing. Plumber starts with Dataset-level
tracing, which is then followed by analysis for CPU, disk,
and memory costs, which are subsequently modeled and op-
timized. Reading a TFRecord, for example, is converted
from bytes read to an I/O cost per minibatch, which can then
be linked with available I/O resources to find bottlenecks.

(§E) and consists of a 3k line patch on top of tf.data’s
C++ AUTOTUNE infrastructure and 8k lines of Python
interface.

4.1 Software Architecture

Plumber reasons about performance in a layered fash-
ion. The goal of the layers is to abstract basic Dataset-
level statistics into costs, which can be compared, opti-
mized over, and extended. We demonstrate this architecture
with a simplified, misconfigured ImageNet pipeline in Fig-
ure 5. This pipeline requires reading from TFRecords
in parallel, decoding the examples of each record, and ran-
domly augmenting the examples with crops and flips. Each
of the pipeline components has a tunable, except for the
TFRecords, which is parallelized by Interleave.

Tracing. By enabling a runtime flag, tracing collects
Dataset-level statistics, such as counters for elements
processed, CPU time spent, and the number of bytes per
element. Plumber periodically dumps these statistics into
a file along with the entire serialized pipeline program. Join-
ing the Datasets with their program counterpart enables
building an in-memory model of the pipeline dataflow. The
bottom of Figure 5 shows how a TFRecord Dataset is
traced, which reads a single TFRecord file. Plumber’s
tracing instruments all read() calls into the filesystem
within tf.data, allowing it to see all the reads into the
144MB file. Each record is unpacked into roughly 1200
elements (110kB images), which Plumber counts. By in-
specting the serialized program, Plumber knows that there
are 1024 total TFRecord files, and thus can estimate that
the dataset contains 1024× 1200 elements—ImageNet has
1.2 million. To get CPU usage, Plumber wraps a thread-
level CPU timer around Next calls, which only counts

active (not blocked) CPU-cycles. All Next calls are instru-
mented such that: 1) CPU timers stop when Datasets
call into their children and start when control is returned and
2) statistics (e.g., counts and sizes) about each yielded ele-
ment are attributed to the producer. The statistics necessary
for optimization total less than 144 bytes per Dataset.

Analysis. To find bottlenecks, Plumber must analyze
the traced data using analytical modeling, which puts each
Dataset in units of cost that can be compared. Plumber
treats the pipeline as a closed system, with each component
operating asynchronously yet sharing the same resource
budget. For example, we can see that TFRecord reads at
a rate of 15MB per minibatch, but decoding consumes 1/2
core per minibatch. Determining which Dataset is the
bottleneck depends on the resource allocation of CPU and
I/O—for example, 30 minibatches per second can only be
hit with 450MB/s of I/O and 15 CPU cores.

Optimizer. Plumber supports reasoning about CPU and
disk parallelism, caching, and prefetch injection. Achieving
optimal CPU and I/O parallelism requires allocating suffi-
cient parallelism to keep the pipeline balanced in terms of
throughput capacity, which we formalize in the LP. Caching
reduces the amount of work done by avoiding re-computing
data dependencies, and the optimal cache minimizes to-
tal work by placing it as high in the pipeline as possible.
Prefetching is a subsequent pass which injects prefetching
proportional to the idleness in the pipeline under a bench-
mark workload. As shown in the example, by placing
caching at MapDecode, we can avoid all CPU and I/O
operations except for the subsequent Crop and Batch at
the expected cost of 790GB of memory. In this example,
the optimizer knows that the machine only has 300GB of
memory and thus it must settle with caching at the 148GB
Interleave. By caching Interleave, Plumber can
redistribute remaining CPU resources to other stages with
the LP.

Extensions. Extending Plumber requires minimal effort
by cleanly interacting with existing optimizations. For ex-
ample, to add the ability to cache materialized results to
disk in addition to memory, one can reuse all caching logic
up to the cache decision itself, which would dispatch to
in-memory caching preferably and disk caching if space
and disk bandwidth allow it. Significant extensions (e.g.,
networking or GPU data transfer I/O) require adding the
corresponding tracing and rates at the lower levels, which
can then be incorporated as LP expressions and constraints.
Two areas of future work are in extending Plumber’s op-
timizer to reason about correctness optimizations, such as
reusing data (Choi et al., 2019), and extending Plumber to
perform optimal resource provisioning for matching a target
throughput (e.g., to minimize cost).



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

4.2 Tuning Methodology

The intuition behind Plumber’s performance debugging
methodology is that input pipeline performance is limited
by the Dataset with the lowest throughput and can be
alleviated by adjusting the resource allocation (out of the
available hardware resources) for this Dataset. However,
simply maximizing the number of threads used to compute
elements for a parallelizable Dataset is not always pro-
ductive, as threads compete for CPU and memory resources.
The end-to-end throughput of the input pipeline can also be
limited by I/O bandwidth. Caching Datasets in memory
alleviates CPU or I/O bottlenecks at the cost of memory
capacity. As all Plumber traces are also valid programs
(that can be rewritten), Plumber simply requires a way for
a user to mark the program for tracing, and thus one entry
point is sufficient for Plumber to accomplish all tuning.

Tuning Interface. Plumber introduces tuning annota-
tions to add on top of existing data loading code. A data load-
ing function is one which returns a tf.data Dataset,
which has an associated signature. Tagging the code with
an @optimize annotation gives Plumber permission to
intercept one or more Datasets and return an optimized
variant matching the Dataset signature. The annotation
provides Plumber with an entry point into the loader al-
lowing Plumber to trace it under a benchmark workload,
and rewrite it before passing it back to the application.

Modeling. Plumber maximizes throughput by modeling
the input pipeline as an asynchronous closed-system in the
context of operational analysis (Denning & Buzen, 1978),
which explicitly defines bottlenecks. The operational frame-
work has few statistical assumptions, unlike Markovian
queues, and parameterizes each component of a system with
a cost relative to the resource usage, usually expressed in
units of time. Plumber further measures the resources and
traces the analytical network to automatically “operational-
ize” and tune an arbitrary input pipeline.

4.3 Allocating Hardware Resources

In order to derive an improved input pipeline configuration,
we need to understand how each Dataset’s performance
is affected by changing the fraction of hardware resources
allocated to it, e.g., by changing the degree of parallelism of
a Dataset or inserting prefetching or caching Datasets
which consume extra memory. We are interested in char-
acterizing the usage of three types of resources in input
pipeline execution: CPU, disk bandwidth, and memory ca-
pacity. We first formulate a Linear Program (LP) to solve
for the optimal CPU resource allocation before moving onto
disk and, finally, memory capacity. The calculation of the
inputs into this LP are discussed in the following subsection
(§4.4).

CPU. For CPU optimizations, we optimize over a
Dataset tree in the input pipeline to decide what frac-
tion of the CPU-time each Dataset should receive such
that throughput is maximized. Having two Datasets
in series with rate R1 and R2 yields an aggregate rate of
X = min(R1, R2). The bottleneck Dataset determines
performance. For example, in Figure 2, if Map has rate R1

and Batch has rate R2, to increase X , we must assign the
slower of the two Datasets more resources. However,
the above is only true if we can parallelize the bottleneck
node and if we have resources left.

We optimize Maxθ [X = mini∈D[θi ∗Ri]] subject to con-
straints:

∑
i∈D θi ≤ nc; θi∈D ≥ 0; θi∈S ≤ 1. In the

above equations, D is the set of Datasets in consider-
ation, S ⊆ D a subset of sequential Datasets, nc the
total number of cores, X throughput, Ri the measured rate
of minibatches per second per core, and θ the fractional
number of cores allocated. The equation maximizes the
input pipeline throughput X by maximizing the aggregate
rate (θi ∗Ri) of the slowest Dataset (the minimum). We
constrain sequential Datasets to have at most one core,
and we cannot exceed all cores on the machine.

Disk. As shown in Figure 2, data flows from disk
(TFRecordDataset) into the CPU section of the
pipeline. Therefore, if the data source is slower than the rest
of the pipeline, the entire pipeline is disk-bound. For large
reads (e.g., records), there are two factors that can cause a
disk bound: 1) insufficient read parallelism and 2) max disk
I/O bandwidth. The latter can be found via benchmarking
tools (Axboe, 2021), but Plumber goes a step further by
benchmarking entire empirical parallelism vs. bandwidth
curve for a data source (via rewriting). The source paral-
lelism results can then be fit with a piecewise linear curve
to be injected into the optimizer to determine a minimal
parallelism to hit max bandwidth.

Memory. Caching aggressively is always desirable, because
it allows I/O to be entirely reduced and some CPU process-
ing to be partially reduced. The potential speedup grows as
one goes up the pipeline, but so does the memory require-
ment to cache, which may exceed system memory. Plum-
ber checks if operators are random functions (e.g., augmen-
tations), as described in the appendix (§B.1)—randomized
functions have infinite cardinality and cannot be cached.
However, if an operator’s output is finite, Plumber esti-
mates the materialized size. To solve memory caching for
typical, linear-structure pipelines, Plumber uses a greedy
(yet optimal) approach to select the Dataset closest to the
root that fits in memory. Plumber can also solve for more
generic topologies by adding Boolean decision variables for
each cache candidate over the LP already presented.



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

4.4 Resource Accounted Rates

The LP construction (§4.3) assumes the existence of calcu-
lated rates (for CPU and disk I/O) as well as the material-
ized size (for caches), and uses those values as inputs into
the algorithm. This section explains how those values are
calculated by using resource accounted rates. Resource
accounted rates encompass the cost of an operation or de-
cision to cache in the pipeline. For CPU and I/O, the cost
is the ratio of CPU core-time or I/O bytes per minibatch,
which are throughput bounds. Memory capacity measures
the cost in terms of bytes required for materialization at a
particular Dataset, and is a throughput optimization. The
middle of Figure 5 illustrates all three of these costs. The
full algorithm for resource accounted rates can be found in
the appendix; however, we give a brief description here.

Common Units. The root of the pipeline gives a common
set of units for CPU and I/O: minibatches. Children of
the root do not necessarily output elements in terms of
minibatches (e.g., prior to batching); thus, a conversion
factor between an arbitrary Dataset’s elements and that
of the root must be calculated—this is called the “visit
ratio”, Vi, and represents the mean number of completions
at Dataset i for each completion from the pipeline. To
calculate Vi, we start with the pipeline’s root “visit ratio”
V0 := 1. Then, we apply the following recurrence: Vi =
(Ci/Ci−1)× (Ci−1/C0), where Ci is the average number
of items of work completed at Dataset operation i. The
former ratio is the Dataset’s local input-output ratio, and
the latter is calculated in the recurrence. Intuitively, the visit
ratio allows one to say that n elements are in a batch, and
thus dependencies to batching must have a throughput n
times faster to “keep up”.

Throughput Cost. The throughput at the root, X0, is the
number of minibatches completed, C0, in a timeframe, T ,
and the child Datasets have Xi = ViX0. However, this
equation does not explain the bottleneck cause, which re-
quires reparameterizing the throughput in terms of CPU
core time or I/O bytes. As Xi = Ci/T , we factor the equa-
tion into 1) the product of completions per resource (e.g.,
elements per core-seconds) and 2) resource per time (core-
seconds per time). The former is the ratio of two traced vari-
ables (element completions and CPU-time or bytes used),
and the latter is a knob for modeling adding or removing
resources (e.g., CPU parallelism or extra bandwidth). In the
LP (§4.3), Ri is the first factor normalized by Vi, and θi is
the second factor; in a bottleneck, they determine X0.

Materialization Cost. Estimating the size of a Dataset’s
materialized artifacts is similar to the prior operational treat-
ment but involves propagating the estimates up from data
source to root. The materialized size of a data source is
the product of 1) the number of elements (cardinality) and
2) the average size of each element. Both are necessary

because a Dataset’s semantics may modify one or the
other; for example, truncation only modifies the former and
decompression only the latter. To start, the size of a data
source is the number of files, n, times the average bytes per
file, b̄. Propagating the number of elements, ni, involves
multiplying n by an input-output completion ratio. The sum
of output bytes and the number of completions for each
Dataset is measured in tracing, and thus b̄i is readily
computed. ni can grow unbounded (and thus uncacheable)
if the data is infinitely repeated or augmented. Datasets
that are children to a cache can be modeled as having no
steady-state cost (e.g., after the first epoch).

5 EVALUATION

We evaluate CPU bottleneck removal in §5.1, showing that
Plumber can indeed find bottlenecks, and we further an-
alyze how Plumber’s solutions differ from those of base-
lines. We additionally evaluate disk and caching in §5.2 and
§5.3. End-to-end results are presented in §5.4. The appendix
provides additional details and demonstrates that Plum-
ber’s overhead on modern hardware is less than 21% (due
to text workloads) and drops to below 5% on vision work-
loads. We compare against a naive configuration, which
has minimal parallelism, to two strong baselines: AUTO-
TUNE (Murray et al., 2021) and HEURISTIC, which set the
parallelism tunables to the number of cores on the machine.

Hardware. For microbenchmarks, we evaluate over two se-
tups to ensure our results generalize. Setup A is a consumer-
grade AMD 2700X CPU with 16 cores and 32GiB RAM.
Setup B is an older enterprise-grade 32–core Intel E5–
2698Bv3 Xeon 2GHz CPU with 64GiB RAM. Setup C
is for end-to-end results and is a TPUv3-8 (Jouppi et al.,
2020) with 96 Intel Xeon cores and 300GB of RAM.

Workloads. Our evaluation uses the MLPerfv0.6 subset
of MLPerf training (Mattson et al., 2020) benchmarks,
which is representative of datacenter workloads and cov-
ers both images and text. We use the following tasks and
datasets: ResNet/ImageNet (He et al., 2016; Deng et al.,
2009), Mask RCNN/COCO (Ren et al., 2016; Lin et al.,
2014), MultiBoxSSD/COCO (Liu et al., 2016), Trans-
former/WMT (Vaswani et al., 2017; Second Conference on
Machine Translation, 2017), and GNMT/WMT (Wu et al.,
2016; First Conference on Machine Translation, 2016).

5.1 CPU Bottleneck Removal

To assess how accurately bottlenecks are found, we use
Plumber’s analysis layer to rank nodes by bottleneck. The
pipeline’s parallelism parameters are initialized to the naive
configuration (parallelism=1) with prefetching, and Plum-
ber iteratively (using 1 minute of tracing) picks the node
to optimize by ranking nodes by their parallelism-scaled



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

0 10 20 30 40
Step

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (m

in
ib

at
ch

/s
)

Plumber
Random
Autotune
Heuristic

(a) ResNet (Setup A)

0 10 20 30 40
Step

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (m

in
ib

at
ch

/s
)

Plumber
Random
Autotune
Heuristic

(b) ResNet (Setup B)

Figure 6: Plumber outperforms random walks by 2–3×,
demonstrating that Plumber’s signal is markedly better
than guessing. X-axis denotes the optimization step, starting
at minimal parallelism. Y-axis denotes the pipeline rate in
minibatches per second with 95% confidence intervals.

rates. To compare against uninformed debugging, we plot a
random walk, which randomly picks a node to parallelize for
each “step” (x-axis in our plots). We run each experiment
three times to get confidence intervals.

Sequential Tuning. Figure 6 shows the ResNet workload
across both setups; other workloads look similar. Plumber
is consistently better than the random walk, as expected. We
observe that both HEURISTIC and AUTOTUNE are equiva-
lent in terms of reaching peak performance—over-allocation
does not usually result in performance degradation. On the
ResNet workload, the bulk of the work is in the JPEG decod-
ing Dataset, which services 2.5 minibatches/second/core
on Setup A. Most of Setup A’s steps are spent increasing the
parallelism of this Dataset, a transpose operation being
the second bottleneck. The bumps in Setup B correspond
to increasing the parallelism of Transpose rather than JPEG
decoding and occur roughly once every 8 steps. We observe
that, across all pipelines, such transition regions are the only
regions (in addition to fluctuations at convergence) where
Plumber struggles to characterize the locally optimal deci-
sion (see MultiBoxSSD example in Appendix). While Setup
B has 2× more cores than A, the per-core decoding rates
for B are lower, resulting in only a 1.2× higher throughput.

Observation 3: Plumber’s bottleneck finder converges
to the optimal throughput in 2–3× fewer steps than a ran-
dom walk. Inspecting the individual Dataset rates offers
pipeline and machine performance insights.

Linear Programming. Figure 7 demonstrates that Plum-
ber can understand performance through the LP formula-
tion on ResNet; other workloads are similar. As a baseline,
we include a “local” method, which allocates all remain-
ing resources to the current bottleneck node. This baseline
is unable to see past one bottleneck and thus oscillates as
the bottleneck node changes (the “bumps” in Figure 6).
Meanwhile, the LP steadily declines—upon inspecting the
solution, we find a strong correlation with the LP’s decline

0 10 20 30 40
Step

0

10

20

30

40

50

60

70

80

Ra
te

 (m
in

ib
at

ch
/s

ec
)

Rate Type
Observed Rate
Estimated Max Rate (Local)
Estimated Max Rate (LP)
Estimated AUTOTUNE Rate

(a) ResNet (Setup A)

0 10 20 30 40
Step

0

10

20

30

40

50

60

Ra
te

 (m
in

ib
at

ch
/s

ec
)

Rate Type
Observed Rate
Estimated Max Rate (Local)
Estimated Max Rate (LP)
Estimated AUTOTUNE Rate

(b) ResNet (Setup B)

Figure 7: Before optimizations begin, Plumber is able
to bound performance within 2× with the LP, and the gap
decreases over time. Setup B exhibits superlinear scaling
around step 10 and also exhibits more pronounced bottle-
necks, as it takes longer to converge. The AUTOTUNEmodel
does not account for saturation and therefore has unbounded
predicted throughput.

0 1 2 3 4 5 6 7
Step

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Th
ro

ug
hp

ut
 (m

in
ib

at
ch

/s
)

Plumber
Random
Autotune
Heuristic

(a) RCNN Convergence

0 5 10 15 20 25 30
Step

0

5

10

15

20

25

Ra
te

 (m
in

ib
at

ch
/s

ec
)

Rate Type
Observed Rate
Estimated Max Rate (Local)
Estimated Max Rate (LP)
Estimated AUTOTUNE Rate

(b) RCNN Predictions

Figure 8: RCNN on Setup A, along with its predictions.
RCNN exhibits heavy UDF parallelism, which causes thread
over-allocation to quickly deteriorate performance. AUTO-
TUNE has high variance estimates of latency.

and the value of Ri for the bottleneck node (JPEG decod-
ing). While Ri typically decreases (e.g., due to scaling
overhead), we find it increases briefly especially on Setup
B, peaking at step 10 and resulting in a “bell shape” LP
prediction (JPEG rate peaks at 1.8 and then drops to 1.4 by
the end of training), explaining the peak in the LP. AUTO-
TUNE, being oblivious to saturation, either overestimates or
underestimates throughput without bounding it.

Observation 4: Plumber’s LP solution captures both re-
source utilization and bottlenecks, bounding throughput to
within 2× from when optimization starts for pipelines like
ResNet and MultiBoxSSD. The bounds get tighter as opti-
mization proceeds due to differences in empirical rates.

Large UDF Parallelism Challenges. As shown in Fig-
ure 8, RCNN on Setup A is challenging and displays counter-
intuitive behavior. The reason is that RCNN features a large
UDF in its MapDataset, which is transparently paral-
lelized by the TensorFlow runtime. Parallelizing the
Map is dangerous because the parallelism compounds with
UDF parallelism—1 parallelism uses nearly 3 cores! As
parallelism increases for this Dataset, the corresponding



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Step

1000

2000

3000

4000

5000

Ra
te

 (m
in

ib
at

ch
/s

ec
)

Rate Type
Observed Rate
Estimated Max Rate (Local)
Estimated Max Rate (LP)
Estimated AUTOTUNE Rate

(a) Transformer Predictions

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Step

100

200

300

400

500

600

700

800

Ra
te

 (m
in

ib
at

ch
/s

ec
)

Rate Type
Observed Rate
Estimated Max Rate (Local)
Estimated Max Rate (LP)
Estimated AUTOTUNE Rate

(b) GNMT Predictions

Figure 9: Transformer and GNMT predictions on Setup A.
Transformer and GNMT exhibit small operations, which are
a mismatch to the Iterator model. It is difficult to fully
saturate a CPU with Dataset parallelism alone—caching
or outer parallelism are required.

per-core rate drops, causing the LP prediction to drop and
baselines to overshoot peak performance on both setups.
While the LP overestimates peak performance by 4×, it is
still qualitatively better than AUTOTUNE, which oscillates
in predictions. Upon inspection, AUTOTUNE allocates 16
parallelism to the bottleneck node, but 3 parallelism to a dif-
ferent MapDataset node. The bottleneck node operates at
0.5 minibatches/second/core, while the other node operates
at 20 minibatches/second/core. Thus, the optimal policy,
which Plumber follows, is to only allocate parallelism to
the main bottleneck (thus bounded by 0.5 ∗ 16 = 8). In fact,
due to UDF parallelism, only 4–5 parallelism is necessary.
Counterintuitively, this policy is no longer optimal for our
end-to-end results (§5.4), which have 6× more cores.

Observation 5: AUTOTUNE and HEURISTIC are vulnera-
ble to over-allocation, which can cause performance degra-
dation. Pipelines with heavy UDF parallelism may expe-
rience drops on the order of 10%. Dynamic parallelism
makes end-to-end performance hard to predict.

Text Processing (NLP) Challenges. We observe that both
Transformer and GNMT are difficult to optimize in practice.
As shown in Figure 9, both pipelines are predicted to be
2–8× faster than they actually end up being. Upon investi-
gation, we observe that nearly all operations in NLP are very
small e.g., grouping a few integers in a vector. The opera-
tions are so small that they are significant compared to the
Iterator abstraction’s overhead, causing idle “bubbles”.

According to Plumber, GNMT is bottlenecked by
ShuffleAndRepeatDataset; this Dataset is per-
forming minimal work and thus the result is unexpected. Be-
fore getting to this point, Plumber allocated 9 parallelism
to the first MapDataset and then gave up upon seeing
the non-optimizable Dataset. Similarly, for Transformer,
after alternating optimizing the 3 MapDatasets (all simi-
larly fast), Plumber indicates Transformer is bottlenecked
by FilterDataset, which is operating at about half of
its max rate (explaining the 2× difference). Using outer-

parallelism for both pipelines, introducing inner-parallelism
for Batching (GNMT), and resuming Plumber’s opti-
mization results in closing the predicted performance gap to
less than 2× (Transformer) and 4× (GNMT).

Observation 6: Text pipelines can require significant tuning
to overcome framework overheads. An in-memory cache
materializing results is ideal, when possible.

5.2 Disk Microbenchmarks

To simulate various bandwidths, we implement a token-
bucket bandwidth limiter in the TensorFlow filesystem
layer and use the most I/O intensive pipeline, ResNet.
Plumber correctly concludes that ImageNet records are ap-
proximately 110KB on average and infers that 128 records
are necessary for 1 minibatch. It thus infers that the I/O
load per minibatch is 128 ∗ 110 KB, or 6.9 minibatches
per 100MB/s of bandwidth, which it can join with known
bandwidth (e.g., from token-bucket or fio (Axboe, 2021)).
Using this bound, Plumber predicts the pipeline’s per-
formance within 5% from 50MB/s to 300MB/s, when the
compute bottleneck begins. We observe similar results for
RCNN and MultiBoxSSD, though MultiBoxSSD is eas-
ier to bottleneck consistently due to its faster CPU speed.
Plumber estimates that RCNN and MultiBoxSSD can
push 145 minibatches/sec on 100MB/s, since they use the
same dataset and same batch size; therefore, MultiBoxSSD
is 25× more I/O bound for a fixed CPU.

We then run this experiment on setup B with a real HDD
(Seagate ST4000NM0023) and NVMe SSD (400 GB Intel
P3600), which have 180MB/s and 2GB/s of read bandwidth,
respectively. We run the load for one minute to prevent the
page cache from kicking in (when the dataset reads repeat).
For ResNet, Plumber predicts 11.06 minibatches/sec, and
we are bound at 12.7 (15% error). On the NVMe SSD,
Plumber predicts 135 minibatches/sec, and, indeed, we
observe a compute bound. On RCNN, Plumber predicts
disk bounds of 970 and 11850 minibatches/sec, respectively;
for both, we observe the compute bound of 14 minibatch-
es/sec. On HDD with MultiBoxSSD, Plumber predicts
235 minibatches/sec, whereas we observe 215 (10% error).
On NVMe SSD with MultiBoxSSD, Plumber predicts a
disk bound of 2900 minibatches/sec; we observe the com-
pute bound being hit before the drive is saturated. The text
datasets are too small to test.

Observation 7: Plumber is able to bound disk-bound
workloads to within 15% of the observed throughput, notify-
ing users of potential hardware misconfigurations.

5.3 Memory (Cache) Microbenchmarks

We evaluate Plumber’s predictions on memory optimiza-
tion and summarize them below. Plumber predicts that



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

148GB are necessary to cache ImageNet for ResNet; 20GB
to cache COCO for RCNN and MultiBoxSSD; and 1GB
and 2GB for the Transformer and GNMT WMT datasets,
respectively, which matches their known size. While this
is expected for a full sweep of the training set (by simply
tracking all file sizes), it also holds for sampling the dataset.
Empirically, we find that observing a small subset of the
data is sufficient: 1% of files provide a relative error of 1%
for ImageNet and 2% for COCO, and 5 files gives less than
2% relative error for WMT datasets.

For materialized caches, we observe that Plumber predicts
no changes until a node is hit, which changes the bytes/ele-
ment. For ImageNet, we observe that, if Plumber is fed a
fused decode and crop pipeline, it predicts caching is only
possible at the source, because the crop is random. However,
when the ImageNet pipeline is not fused, image decoding
amplifies the dataset size by 6×, which Plumber observes
as 793GB of a true 842GB, or 6% error with 60 seconds of
profiling. For this pipeline, we observe that relative error de-
creases as a function of tracing time, saturating at 2 minutes
and yielding relative error rates below 1%, offering a knob
for refining estimates at the expense of tuning time. RCNN
can only be cached at the disk-level, since the following
UDF is randomized. For MultiBoxSSD, Plumber detects
it takes 84GB of a true 97GB (14% error) to materialize
the dataset in memory after image decoding with only 60
seconds of profiling, with 2 minutes yielding a 5% error,
which continues to drop by∼1% for each additional minute.
Plumber additionally detects that the filter in the pipeline
reduces the dataset by less than 1%.

Observation 8: Plumber captures dataset sizes at the
source exactly, and, for large datasets, it is able to subsam-
ple 1% of files to obtain 1% error. For materialized caching,
Plumber propagates changes to dataset sizes (e.g., data
decompression and filtering).

5.4 End-to-End Pipeline Optimization

The end-to-end benefits of Plumber’s optimizations, eval-
uated over 5 epochs of training, are shown in Figure 10.
None of the pipelines have caches inserted manually, naive
configurations have 1 parallelism and no prefetching, and
HEURISTIC uses the prefetching hard-coded into the
dataset. We observe overprovisioning (HEURISTIC) is
competitive, if not faster, than AUTOTUNE across all trials.
Plumber can go beyond both of these strong baselines
because of caching, obtaining up to a 47× speedup. Such a
speedup, an absolute throughput of over 14k images/second,
is only possible because caching bypasses the (Plumber-
derived) 11k image/second data source bottleneck for the
cloud storage. For ResNet-18, it is sufficient to cache at
the data source, which is only 148GB; therefore, Plumber
picks the CPU-optimized branch of the pipeline (code in Ap-

pendix). However, when we use a linear model for ResNet,
we use the smaller validation set, which allows Plumber to
cache the 6× bigger decoded images in memory, avoiding a
CPU bottleneck. We also evaluate ResNet-50 and find that
Plumber obtains a 24× speedup over the naive configura-
tion, though it cannot improve over other baselines, as the
model’s throughput limits are hit at 8k images/second.

Compared to AUTOTUNE, Plumber obtains a 36–59%
speedup on three of the MLPerf benchmarks and ties on
Transformer and GNMT (due to model throughput). These
numbers are conservative—we observe that AUTOTUNE on
ResNetLinear often sets the I/O parallelism to 1, which re-
sults in a 35% performance drop compared to what is shown
in Figure 10 and creates a 2.4× performance gap between
AUTOTUNE and Plumber. To allow more competitive
tuning from AUTOTUNE on that workload, we set the I/O
parallelism to the default value of 10 used in MLPerf sub-
missions, which improves its final performance. For RCNN,
Plumber may perform worse than AUTOTUNE because
Plumber is conservative in its parallelism allocation, while
AUTOTUNE tends to allocate maximum parallelism to all
Datasets. Plumber estimates that one MapDataset
is two orders of magnitude more expensive than the other.
In some cases, Plumber allocates 95 parallelism to the
former, leaving only 1 parallelism for the remaining Map-
Dataset, which results in the shown 23% performance
loss. However, we also observe cases where Plumber
matches the throughput of the baselines because it allo-
cates at least 2 parallelism to the cheaper Dataset, which
removes the bottleneck—suggesting that a mild form of
“hedging” would be effective in preventing under-allocation
for such skewed workloads. For MultiBoxSSD, Plumber
is able to materialize the data after filtering is performed,
which makes the cache smaller and increases throughput by
removing load from the CPU. While we don’t see a large
benefit from Plumber’s optimizations on the MLPerf NLP
pipelines, we do see improvements when moving to the
related official Flax implementations of Transformer when
it is configured to use a single-layer Transformer (Trans-
formerSmall). We see a 2.5× difference between strong
baselines and Plumber on TransformerSmall because the
Flax pipeline performs text-processing and packing on-
the-fly, which, when combined with a smaller model, makes
peak throughput only achievable with aggressive caching.

Observation 9: Plumber frees the user from making indi-
vidual caching and parallelization decisions, enabling 50%
end-to-end improvements over AUTOTUNE and heuristics
and 40× improvements over naive configurations.

6 RELATED WORK

Pipeline Optimization. Dataset Echoing (Choi et al., 2019)
repeats input pipeline operations to match compute rate.



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

ResNet18
ResNetLinear

MultiBoxSSD RCNN
Transformer

TransformerSmall GNMT
0

10

20

30

40

R
el

at
iv

e
R

at
e

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

28
.8

29
.8

17
.2

5.
9

1.
0

4.
4

1.
0

31
.7

31
.0

17
.6

6.
0

1.
0

4.
5

1.
0

39
.2

47
.6

23
.6

4.
8

1.
0

12
.3

1.
0

Type
Naive
Autotune
Heuristic
Plumber

Figure 10: Relative speedups over the naive configuration
for end-to-end model training on TPUv3-8. Apart from
RCNN, Plumber surpasses strong baselines by adding
caching, yielding speedups of up to 47× compared to naive
and 50% compared to tuners. While text pipelines are chal-
lenging to improve on MLPerf, using a smaller Transformer
combined with a more complex pipeline can increase the
tuners gap to 2.5×.

DS-Analyzer predicts how much file cache memory is nec-
essary to match the compute steps (Mohan et al., 2021).
Progressive Compressed Records (Kuchnik et al., 2021)
match compression levels to likewise minimize I/O. Each of
these works is characterizing a piece of the input pipeline,
all of which can be homogenously dealt with via Plum-
ber—the first is a visit ratio and the latter two are memory
caching/disk.

Systems have also been built to natively support the data
pipeline workload. A cache library has been developed
to carefully partition and coordinate caches in distributed
training (Mohan et al., 2021) Dataset echoing has been
further expanded to support caching partially augmented
samples (Lee et al., 2021). Filesystem middleware has
been developed to natively support data prefetching (Dryden
et al., 2021). While Plumber primarily focuses on native
tf.data primitives, it could also be used to hook into
such systems to perform cross-system optimization.

Bottleneck Detection. Tools in the big-data domain (e.g.,
Spark (Zaharia et al., 2012)) have similar performance prob-
lems as those found in ML pipelines (Ousterhout et al.,
2015; 2017), but the differences in domain encourage a dif-
ferent approach. Notably, Monotasks (Ousterhout et al.,
2017) enables bottleneck finding by designing Spark prim-
itives to be easily measured on a per-resource level. In
contrast, Plumber does not modify the framework and
instead elects to carefully instrument selected resource us-
age, though the design is similarly simplified by having
resource-specialized operations. Big data systems, such as
DyradLINQ (Yu et al., 2008), have similarly benefited from
dedicated debugging utilities (Jagannath et al., 2011) and dy-
namic query rewriting (Ke et al., 2013). Roofline (Williams
et al., 2009; Cabezas & Püschel, 2014) models bound com-
pute kernels with CPU limits. Plumber generates similar
plots using Dataset and resource limits.

Recent studies have analyzed ML workloads and found
that data pipelines can become bottlenecks (Mohan et al.,
2021; Murray et al., 2021). This line of work is further
supported by empirical evidence of bottlenecks in recom-
mendation models (Zhao et al., 2021). Recent work has
also characterized the design space of input pipelines with a
profiling tool (Isenko et al., 2022); we do not focus on gen-
eral pipeline decisions (e.g., the choice of image resolution),
but rather focus on automatic tuning of performance knobs.
These works all highlight a growing need for systems which
better support the input pipeline workload.

7 CONCLUSION

Training ML models requires reading and transforming large
quantities of unstructured data. Our analysis of real ML
training jobs at Google shows that data pipelines do not ad-
equately utilize their allocated hardware resources, leading
to potential bottlenecks, which waste precious accelerator
resources. To enable practitioners to better utilize their hard-
ware and improve training performance, this paper intro-
duces Plumber, an extensible tracing and optimizing tool.
Plumber localizes bottlenecks to an individual operator
by tracing both the resource usage and rate of each opera-
tor, enabling both bottleneck-finding as well as inferences
on future performance. By adding caching in addition to
tuning, Plumber can surpass the end-to-end performance
of existing tuners by 50%. Future extensions to Plumber
include: distributed and accelerator-infeed level profiling,
optimal resource allocations for pipelines, and semantic-
level re-writing of augmentations.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their help improv-
ing the presentation of this paper. This material is based
upon work supported by the U.S. Army Research Office
and the U.S. Army Futures Command under Contract No.
W911NF-20-D-0002. The content of the information does
not necessarily reflect the position or the policy of the gov-
ernment and no official endorsement should be inferred. We
thank the members and companies of the PDL Consortium:
Amazon, Google, Hewlett Packard Enterprise, Hitachi Ltd.,
IBM Research, Intel Corporation, Meta, Microsoft Research,
NetApp, Inc., Oracle Corporation, Pure Storage, Salesforce,
Samsung Semiconductor Inc., Seagate Technology, Two
Sigma, and Western Digital for their interest, insights, feed-
back, and support. Michael Kuchnik was supported by a
National Defense Science and Engineering Graduate Fel-
lowship. This research was supported with Cloud TPUs
from Google’s TPU Research Cloud and research credits
from Google Cloud Platform.



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

REFERENCES

Apache Beam: An advanced unified programming model.
https://beam.apache.org/, 2021.

Apache Flume. https://flume.apache.org/,
2021.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D.,
Bradley, J. K., Meng, X., Kaftan, T., Franklin, M. J.,
Ghodsi, A., and Zaharia, M. Spark SQL: Relational data
processing in Spark. In Conference on Management of
Data, 2015.

Axboe, J. fio-flexible i/o tester. https://fio.readth
edocs.io/en/latest/fio doc.html, 2021.

Cabezas, V. C. and Püschel, M. Extending the roofline
model: Bottleneck analysis with microarchitectural con-
straints. In International Symposium on Workload Char-
acterization, 2014.

Chamberlin, D. D., Astrahan, M. M., Blasgen, M. W., Gray,
J. N., King, W. F., Lindsay, B. G., Lorie, R., Mehl, J. W.,
Price, T. G., Putzolu, F., et al. A history and evaluation
of System R. Communications of the ACM, 1981.

Choi, D., Passos, A., Shallue, C. J., and Dahl, G. E. Faster
neural network training with data echoing. arXiv preprint
arXiv:1907.05550, 2019.

Contributors, T. PyTorch Docs: torch.utils.data. https:
//pytorch.org/docs/stable/data.html,
2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Conference on Computer Vision and Pattern Recogni-
tion, 2009.

Denning, P. J. and Buzen, J. P. The operational analysis
of queueing network models. ACM Computing Surveys,
1978.

Dryden, N., Böhringer, R., Ben-Nun, T., and Hoefler, T.
Clairvoyant prefetching for distributed machine learning
I/O. In International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021.

First Conference on Machine Translation. WMT. http:
//www.statmt.org/wmt16/, 2016.

Graefe, G. Volcano - an extensible and parallel query eval-
uation system. Transactions on Knowledge and Data
Engineering, 1994.

Guirao, J. A., Lecki, K., Lisiecki, J., Panev, S., Szolucha,
M., Wolant, A., and Zientkiewicz, M. Fast AI Data
Preprocessing with NVIDIA DALI. https://devb
logs.nvidia.com/fast-ai-data-preproc
essing-with-nvidia-dali, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Conference on Computer
Vision and Pattern Recognition, 2016.

Ioannidis, Y. E. Query optimization. ACM Computing
Surveys, 1996.

Isenko, A., Mayer, R., Jeffrey, J., and Jacobsen, H.-A.
Where is my training bottleneck? Hidden trade-offs in
deep learning preprocessing pipelines. In International
Conference on Management of Data, 2022.

Jagannath, V., Yin, Z., and Budiu, M. Monitoring and debug-
ging DryadLINQ applications with daphne. In Interna-
tional Symposium on Parallel and Distributed Processing
Workshops and PhD Forum, 2011.

Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N.,
Laudon, J., Young, C., and Patterson, D. A domain-
specific supercomputer for training deep neural networks.
Communications of the ACM, 2020.

Ke, Q., Isard, M., and Yu, Y. Optimus: A dynamic rewriting
framework for data-parallel execution plans. In European
Conference on Computer Systems, 2013.

Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-Haija,
S., Kuznetsova, A., Rom, H., Uijlings, J., Popov,
S., Kamali, S., Malloci, M., Pont-Tuset, J., Veit, A.,
Belongie, S., Gomes, V., Gupta, A., Sun, C., Chechik, G.,
Cai, D., Feng, Z., Narayanan, D., and Murphy, K. Open-
images: A public dataset for large-scale multi-label and
multi-class image classification. Dataset available from
https://storage.googleapis.com/openimages/web/index.html,
2017.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems,
2012.

Kuchnik, M., Amvrosiadis, G., and Smith, V. Progressive
compressed records: Taking a byte out of deep learning
data. In Proceedings of Very Large Databases, volume 14,
2021.

https://beam.apache.org/
https://flume.apache.org/
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html
http://www.statmt.org/wmt16/
http://www.statmt.org/wmt16/
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali


Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik,
K. C. Quantitative System Performance: Computer Sys-
tem Analysis Using Queueing Network Models. Prentice-
Hall, Inc., USA, 1984. ISBN 0137469756.

Lee, G., Lee, I., Ha, H., Lee, K., Hyun, H., Shin, A., and
Chun, B.-G. Refurbish your training data: Reusing par-
tially augmented samples for faster deep neural network
training. In Annual Technical Conference, 2021.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
COCO: Common objects in context. In European Con-
ference on Computer Vision, 2014.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. SSD: Single shot multibox
detector. In European Conference on Computer Vision,
2016.

Lorie, R. A. XRM - an extended (n-ary) relational memory.
IBM Research Report, 1974.

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micike-
vicius, P., Patterson, D., Tang, H., Wei, G.-Y., Bailis, P.,
Bittorf, V., Brooks, D., Chen, D., Dutta, D., Gupta, U.,
Hazelwood, K., Hock, A., Huang, X., Kang, D., Kanter,
D., Kumar, N., Liao, J., Narayanan, D., Oguntebi, T.,
Pekhimenko, G., Pentecost, L., Janapa Reddi, V., Robie,
T., St John, T., Wu, C.-J., Xu, L., Young, C., and Za-
haria, M. MLPerf training benchmark. In Proceedings of
Machine Learning and Systems, volume 2, 2020.

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar,
S., Tolton, M., and Vassilakis, T. Dremel: interactive
analysis of web-scale datasets. In Proceedings of Very
Large Databases, volume 3, 2010.

MLPerfv0.7. MLPerf training v0.7. https://mlcomm
ons.org/en/training-normal-07/, 2020.

Mohan, J., Phanishayee, A., Raniwala, A., and Chi-
dambaram, V. Analyzing and mitigating data stalls in
DNN training. In Proceedings of Very Large Databases,
volume 14, 2021.

Murray, D. G., Šimša, J., Klimovic, A., and Indyk, I. tf.data:
A machine learning data processing framework. In Pro-
ceedings of Very Large Databases, volume 14, 2021.

MXNET. Designing Efficient Data Loaders for Deep Learn-
ing. https://mxnet.apache.org/api/archi
tecture/note data loading, 2018.

Olston, C., Reed, B., Silberstein, A., and Srivastava, U.
Automatic optimization of parallel dataflow programs. In
Annual Technical Conference, 2008a.

Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. Pig latin: a not-so-foreign language for
data processing. In Conference on Management of Data,
2008b.

Oracle. Using explain plan. https://docs.oracle.
com/cd/B19306 01/server.102/b14211/ex
plan.htm#g42231, 2021.

Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., and
Chun, B.-G. Making sense of performance in data ana-
lytics frameworks. In Symposium on Networked Systems
Design and Implementation, 2015.

Ousterhout, K., Canel, C., Ratnasamy, S., and Shenker,
S. Monotasks: Architecting for performance clarity in
data analytics frameworks. In Symposium on Operating
Systems Principles, 2017.

Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN:
Towards real-time object detection with region proposal
networks. Transactions on Pattern Analysis and Machine
Intelligence, 2016.

Second Conference on Machine Translation. WMT. http:
//www.statmt.org/wmt17/, 2017.

Shore, J. E. The lazy repairman and other models: Perfor-
mance collapse due to overhead in simple, single-server
queuing systems. SIGMETRICS Performance Evaluation
Review, 1980.

TensorFlow. Optimize TensorFlow performance using the
Profiler. https://www.tensorflow.org/gui
de/profiler, 2020a.

TensorFlow. tf.data: Build TensorFlow input pipelines.
https://www.tensorflow.org/guide/data,
2020b.

Tensorflow. Analyze tf.data performance with the TF Pro-
filer. https://www.tensorflow.org/guide/d
ata performance analysis, 2020.

TensorFlow. tf.data bottleneck analysis. https://ww
w.tensorflow.org/guide/profiler#tfdat
a bottleneck analysis, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Williams, S., Waterman, A., and Patterson, D. Roofline:
an insightful visual performance model for multicore
architectures. Communications of the ACM, 2009.

https://mlcommons.org/en/training-normal-07/
https://mlcommons.org/en/training-normal-07/
https://mxnet.apache.org/api/architecture/note_data_loading
https://mxnet.apache.org/api/architecture/note_data_loading
https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm#g42231
https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm#g42231
https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm#g42231
http://www.statmt.org/wmt17/
http://www.statmt.org/wmt17/
https://www.tensorflow.org/guide/profiler
https://www.tensorflow.org/guide/profiler
https://www.tensorflow.org/guide/data
https://www.tensorflow.org/guide/data_performance_analysis
https://www.tensorflow.org/guide/data_performance_analysis
https://www.tensorflow.org/guide/profiler#tfdata_bottleneck_analysis
https://www.tensorflow.org/guide/profiler#tfdata_bottleneck_analysis
https://www.tensorflow.org/guide/profiler#tfdata_bottleneck_analysis


Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú.,
Gunda, P. K., and Currey, J. DryadLINQ: A system
for general-purpose distributed data-parallel computing
using a high-level language. In Symposium on Operating
Systems Design and Implementation, 2008.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauly, M., Franklin, M. J., Shenker, S., and Stoica,
I. Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In Symposium on
Networked Systems Design and Implementation, 2012.

Zhao, M., Agarwal, N., Basant, A., Gedik, B., Pan, S.,
Ozdal, M., Komuravelli, R., Pan, J., Bao, T., Lu, H.,
et al. Understanding and co-designing the data ingestion
pipeline for industry-scale recsys training. arXiv preprint
arXiv:2108.09373, 2021.



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

A RESOURCE ACCOUNTED RATES
ALGORITHM (EXTENDED)

The LP formulation in the main text hinges on our abil-
ity to predict two resource accounted rates: 1 the rate
Ri of a Dataset given its configuration (e.g., number of
cores assigned to each operation) and how that rate would
change when one operation is assigned more cores, and
2 the number of bytes needed to cache a Dataset at a

given operation, accounting for bytes added/removed by
data transformations applied by prior operations.

The intuition behind the computation of 1 is that the rate
of each operation from the source (e.g., data read from disk
into the pipeline) to the root (i.e., minibatches exiting the
pipeline) differs. For example, map operations may filter
or amplify their inputs. We therefore begin with the root of
the Dataset tree and traverse the pipeline until the source,
accounting for every operation’s rate in the process. The
intuition behind the computation of 2 is that the total data
that needs to be cached is known at the source (i.e., when it
enters the pipeline) and needs to be recomputed after each
operation is applied. We therefore begin with the source of
the Dataset tree and traverse the pipeline until the root.

1 Work Completion Rates. In input pipelines, each
Dataset operation is potentially characterized by differ-
ent units of work. Looking at Figure 2, we do not know
how many bytes are in a minibatch or how Map operations
turn bytes into training examples, but we can observe that
128 images are batched into a minibatch. We thus rely on
visit ratios from Operational Analysis (Denning & Buzen,
1978), i.e., normalization constants, to compute the equiv-
alent of root units, i.e., minibatches per second per core,
that are generated by the source. Each Dataset operation
is characterized by its local rate, ri, which is defined as
the average items of work completed per second per core,
and can be computed by tracking two items: the items ar-
rived and the items completed. The visit ratio, Vi, then, for
a given Dataset operation is the constant that converts
the local rate, ri, to the global rate, Ri, which expresses
the average amount of work completed by the operation
in minibatches per second per core, i.e., the unit of work
of the Dataset root given one core. Starting with the
pipeline’s root visit ratio, V0, which is equal to 1, Plum-
ber computes each Dataset operation’s visit ratio using
Vi = (Ci/Ci−1)×(Ci−1/C0) = ri×Vi−1, whereCi is the
average number of items of work completed at Dataset
operation i.

While the pipeline is running, Plumber collects counters
on items arrived and completed across all operations of a
given Dataset, which is used to model CPU performance.
This rests on two simplifying assumptions, which do not af-
fect Plumber’s efficiency in practice (§5): CPU work per
item is fixed, and there is linear scaling of operation perfor-

mance. Extending this approach to measure disk bandwidth
usage only requires measuring filesystem reads and divid-
ing by the wallclock time of the process. Converting usage
to utilization is a matter of dividing the bandwidth usage
by the available bandwidth, which Plumber measures by
profiling the training directory using fio (Axboe, 2021).

2 Cache Amplification Rates. In ML settings, the benefit
of caching is heavily skewed toward caching the entire disk-
resident data—there is no locality due to random sampling.
The fastest caching solution is one that is closest to the root
of the Dataset, while remaining in memory. We note that
random Datasets, which call into randomized functions,
do not qualify for caching. By virtue of being random, their
effective size is infinite—often, one can continue generating
unique results forever.

To determine memory requirements for caching, Plum-
ber assumes that files are consumed to completion and
tracks the size of all input files (i.e., bytes read until end
of file) used during the pipeline’s operation. Once a new
file is recorded, the file is added into a system-wide map
tracking filename to bytes used. The space requirements
are moderate for realistic use-cases; only two integers are
needed per filename with hashing, and the number of files
is likely small due to large files (e.g., ImageNet has 1024
files).

To calculate how many bytes it takes to materialize each
Dataset, we approximate two statistics: the number of
elements (cardinality), ni, and the average size of each
element (byte ratio), bi. For a data source, we have the
Dataset size in bytes:

∑
f∈F Sf , where Sf is the size of

a file f in the set of recorded files, F. As the source data
flows through the input pipeline, ni and bi will change as
training examples are grouped, filtered, and/or transformed
(e.g., parsed and decoded in Map). To build intuition, let
us revisit Figure 2. bi for Map is just the “decompression
ratio” from records to images, which is often approximated
to be 10× for JPEG. Likewise, the Batch makes bi 128
times bigger in the process of grouping, while making ni
128 times smaller. Therefore, we can conclude the root
Dataset is an order of magnitude larger than it was at the
source.

We first tackle how to solve ni. For exposition, assume
the common case that we only have one source (e.g., Fig-
ure 2) and the source is finite—we will be propagating our
analysis up from this source until we hit the root. Readers
emit elements at per-row or per-record granularity, thus,
for source Datasets, we overload ri from visit ratios to
denote this ratio (though it is a ratio of records/byte). The
initial dataset size at source i is thus ni = (

∑
f∈F Sf )× ri.

For a Dataset, i, the subsequent Dataset, j, follows
the recurrence nj = rj × ni, where rj follows previously
defined semantics from visit ratios. Intuitively, we convert



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

the size in bytes to the size in records to the size in training
examples, and so on. Special care must be taken to ac-
count for Datasets repeating examples or truncating the
examples stream. When generalizing to multiple children
(multiple sources), some Dataset-specific aggregation is
required (e.g., sum).

To obtain bi, we can use entirely local information. Plum-
ber tracks one local quantity, the bytes-per-element, bi =
bytes produced(i)/Ci, where the numerator is a
counter for bytes produced at i, and Ci is the counter for
number of completions from i. The accuracy of estimating
the materialized size with bi × ni depends on the variance
of each component’s estimate.

To deal with large datasets, which may take longer than
the Plumber tracing time to iterate through, we obtain
a subsample, s, of the set of file sizes, S, which we can
use to approximate S. If we have n of m samples, we
can simply rescale the subsampled size,

∑
n s, by m/n

to get an estimate of the full dataset size, m
n × E[

∑
n s].

Empirically, the estimate is sufficiently accurate: 1% of files
gives relative error of 1% ImageNet and 2% for COCO, and
5 file gives less than 2% relative error for WMT datasets.
This allows Plumber to get a tight estimate of the true
dataset size in seconds with sufficient read parallelism. The
normal distribution of error we observe matches intuition
that the Central Limit Theorem applies.

B IMPLEMENTATION DETAILS

Plumber is currently implemented with a fast but simple
C++ core on top of tf.data (3k line patch) and a higher-
level Python interface, analysis, and graph rewriting code
(8k lines). Plumber builds on tf.data’s C++ AUTO-
TUNE harness to collect statistics for each pipeline Iter-
ator. For each Iterator operator, a struct captures the
timer and counter-related statistics, along with additional
meta-data totaling less than 144 bytes, and the number of
Iterator operators is rarely over 1000. We describe how
these fields are collected and how they are used to derive
pipeline statistics when Plumber ingests the output file
(which is small—less than 200kB for ImageNet/ResNet).

Measuring CPU. To measure CPU work, Plumber adds
fine-grained CPU-timer support to TensorFlow and uses
this support to obtain more accurate statistics. We use a simi-
lar architecture to AUTOTUNE, which starts and ends timers
at the boundaries of Next calls. There are two advantages
to using CPU-timers. First, the sum over Dataset time
closely tracks CPU utilization, yielding a valid θi, which
in practice bounds the number of generated threads. Pre-
liminary tests showed that summing over wallclock time
rather than CPU time can overestimate ImageNet/ResNet
pipeline’s utilization by 2.5×, with error starting to grow

when cores are oversubscribed. Second, Datasets that
use significant wallclock time but not much CPU time are
accounted correctly—examples include Datasets that
sleep or read from files. There is a cost associated with
using this different timer. This overhead, in the order of
tens to hundreds of nanoseconds, becomes visible when
work is so small that the overhead is not amortized out, typ-
ically when CPU utilization is low. While this price is only
paid during the tracing stage, we can reduce the overhead
via subsampling, adding vDSO plugins, or using wallclock
timers.

Graph Rewrites. Applying Graph (a TensorFlow
tf.data program in our application) rewrites requires
a compiler-like approach. Because a Graph is instantiable,
Plumber takes as input a serialized Graph representation
of the input pipeline and outputs a modified Graph repre-
sentation. Plumber builds an in-memory representation
of Datasets to make decisions, such as what node to par-
allelize or cache. To connect the internal representations
with the Graph, Plumber uses the Dataset name as the
key. To be effective, the graph-rewriting utility must imple-
ment mechanisms to 1) get a node’s performance parameter
(prefetching, parallelism), 2) set a node’s parallelism pa-
rameter, and 3) insert a new node after the selected node
(caching, prefetching)—each of which is a standard graph
operation.

Automatic Optimizer Tool. On top of the same graph-
rewriting code-base, we built a user-friendly pipeline opti-
mizer tool, which optimizes over parallelism, prefetching,
and caching by rewriting the Graph. The pipeline opti-
mizer is not only more extensive in its automatic optimiza-
tions, but is meant to be faster than interactively finding
bottlenecks. For the pipeline-optimizer tool, there are three
logical passes: LP-parallelism optimization, prefetching in-
sertion, and caching insertion. Each of these logical passes
can be executed independently or fused; by default Plum-
ber does 2 iterations of the passes, so that the estimated
rates more closely reflect the final pipeline’s performance
(recall that the empirical rates shift slightly as parallelism is
changed).

Tracing Time. Plumber’s tracing is able to return any-
time, but longer tracing covers a larger fraction of the (pos-
sibly resampled) dataset. As slower pipelines generally re-
quire more tracing time to converge, Plumber provides an
option which stops when the difference between successive
throughput estimates drops below a small threshold—less
than 5 minutes for 1% threshold in the pipelines we observe.

Pick Best Queries. There are cases where two query al-
gorithms implement the same logical goal, with different
performance characteristics. For example, JPEG files can
be decoded then randomly cropped, or the two can be fused.
The tradeoff is the former is amenable to caching (after



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

1 @plumber.optimizer(
2 pick_best={"cache": [True, False]})
3 def loader_fn(data_dir, cache):
4 ds = my_dataset(data_dir)
5 if cache:
6 return ds.map(decode).map(crop)
7 else:
8 return ds.map(fused_decode_crop)

Figure 11: Python pseudo-code for optimizing a pipeline
via annotations. Plumber will trace both caching paths
and pick the one best suited for runtime conditions (e.g.,
memory allows caching). We note that the cached-path
will typically have user-defined caching, though Plumber
discards such performance-optimizations as suggestions and
inserts them itself, if possible, for each of the different code-
paths—avoiding memory errors and duplicate caches.

decode), while the latter is faster to decode—therefore,
the optimal implementation depends on runtime conditions
(namely, memory capacity). To get around Plumber’s lack
of a logical query system, Plumber allows users to specify
multiple pipelines, each with the same signature. In practice,
this is on the order of two pipelines (keeping the choice fast),
and Plumber will automatically trace both and apply any
optimizations it can before picking the fastest pipeline. The
optimization shown in Figure 11 is a difficult optimization to
perform for an online tuner, like AUTOTUNE, because, even
with both pipelines to inspect, the effect of caching does
not kick in until a whole epoch into the training. Plumber,
knowing that cache cold-start is a factor, can simulate the
steady-state effects of caching by truncating the cached data
with advanced rewriting, yet still return the normal dataset.
We use these annotations for our end-to-end ResNet experi-
ments, which feature the fused decode and crop example in
the figure.

B.1 Detecting Random UDFs for Caching

For caching operators, Plumber must reason about both
size and correctness constraints. In addition to size con-
straints (§4), an operation may not be cacheable if it is
randomized; thus, Plumber performs additional analysis
to see if the transitive closure of the UDFs defined in an
operation is random. Specifically, we are interested in the
relation: if a function, f , accesses a random seed, s: f −→ s.
The transitive closure, f +−→ s, measures if any child func-
tions of f touch a random seed. If f +−→ s is true, then we
cannot cache f or any operations following it. This simple
relation can be computed via a graph traversal and holds
nearly always, as random seeds are necessary in implemen-
tations that enable determinism for reproducibility.

ResNet18
ResNetLinear

MultiBoxSSD
MultiBoxSSD (48) RCNN

Transformer
TransformerSmall GNMT

0

2000

4000

6000

8000

10000

12000

14000

R
at

e

32
5

30
9

13
9

13
9

14

85
9

22
0

55
98

93
65

92
30

23
77

20
75

81

86
0

97
9

56
00

10
30

6

96
00

24
34

20
19

82

86
0

98
3

56
05

12
74

0

14
72

8

32
68

33
23

66

85
9

27
00

56
06

Type
Naive
Autotune
Heuristic
Plumber

Figure 12: Absolute throughputs in samples per second of
the end-to-end model training experiments on TPUv3-8.

0 5 10 15 20 25 30
Step

50

100

150

200

250

Th
ro

ug
hp

ut
 (m

in
ib

at
ch

/s
)

Plumber
Autotune
Heuristic

(a) MultiBoxSSD (Setup A)

0 5 10 15 20 25 30
Step

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (m

in
ib

at
ch

/s
)

Plumber
Autotune
Heuristic

(b) MultiBoxSSD (Setup B)

Figure 13: MultiBoxSSD with local perturbations. Plum-
ber is able to find optimal Dataset choices when
Datasets are different with respect to performance.
MultiBoxSSD exhibits two bottlenecks alternating every
4 steps, resulting in confusion at the steps. There are di-
minishing returns to pursuing an existing bottleneck, which
slightly lag behind the rates measured.

C ADDITIONAL EXPERIMENTAL DETAILS.
We provide additional experiments probing local behavior
in this section, the cost of profiling, and absolute speedup
graphs of the end-to-end results provided in the main text.

C.1 End-to-End.

The absolute end-to-end results are shown in Figure 12. We
include a MultiBoxSSD experiment, MultiBoxSSD (48),
with only half of the cores enabled for scheduling, demon-
strating additional gains for Plumber when less resources
are available. As mentioned in the main text, ResNetLinear
is compared to conservatively because AUTOTUNE some-
times allocates only 1 parallelism to reading I/O, which
results in only 6012 images/second rather than the 9230
images/second provided by using the suggested pipeline
parameters for file I/O.

C.2 Local Behavior.

While Plumbermay be able to converge to a good solution
2–3× faster than an uninformed user, it is worth knowing
how optimal are Plumber’s predictions. While we can-
not enumerate all possible convergence paths, we can test



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

if there was a better Dataset selection to be made by
Plumber. To test this, we sample three one-step devia-
tions from Plumber’s recommended action. We highlight
MultiBoxSSD in Figure 13, which exhibits many transi-
tions between bottlenecks. For MultiBoxSSD, we observe
similar bottleneck behavior as ResNet; Plumber priori-
tizes the image processing operation and alternates to the
TFRecord parsing operation every 4 steps (nearly twice
as often as ResNet cycles). For ResNet, we observe lo-
cal optimality except at the bottleneck transitions (once
every 8 steps). For the other datasets, we don’t observe
any significant mispredictions before convergence. Across
the datasets, we observe that both transition regions and
resource saturation cause measured rates to become corre-
lated—the rates begin spiking/oscillating together, which
makes ranking Datasets unpredictable On ResNet, for
example, we observe oscillations begin at 90% of peak per-
formance. Therefore, choosing the bottleneck node among
similarly bottlenecked nodes is ambiguous. For workloads
with larger dynamic ranges between slower nodes, perfor-
mance is nearly always optimal.

C.3 Cost of Profiling

We evaluate the cost of running Plumber compared to an
unmodified TensorFlow 2.4.1 build using the HEURIS-
TIC configuration, which 1) stresses the system and 2)
avoids AUTOTUNE-related overheads. On setup A, the av-
erage slowdown across the 5 pipelines is 5% and is driven
entirely by Transformer/GNMT, which have a slowdown of
19%/21%, respectively. Thus, the tracing overhead grows
with less work per element (motivating a batched execu-
tion engine). On setup B, the story is similar, though the
effect is more pronounced (likely due to increased over-
head from timer system calls); average slowdown is 10%
and is 17%/36% across Transformer/GNMT, respectively.
The overhead is still lower than the TensorFlow Profiler,
which incurs a 7–15% slowdown on vision workloads and
40% slowdown on the text workloads on system A.

D DATASET DETAILS.
We summarize the MLPerf datasets below. ResNet50 (He
et al., 2016) is an image classification task selecting between
1000 categories of the ImageNet (Deng et al., 2009) dataset.
Mask RCNN (Ren et al., 2016) is an object detection and
segmentation task over the MSCOCO (Lin et al., 2014)
dataset. MultiBoxSSD (Liu et al., 2016) is a real-time ob-
ject detection and segmentation task over the MSCOCO
dataset. Transformer (Vaswani et al., 2017) is a neural ma-
chine translation task, which converts a sequence of words
from a source to a target language using the WMT English-
to-German dataset (Second Conference on Machine Trans-
lation, 2017). GNMT (Wu et al., 2016) is a task similar

to Transformer using the WMT 2016 (First Conference on
Machine Translation, 2016) dataset and a different pipeline.
The ImageNet dataset is 148GB, COCO is 20GB for both
MaskRCNN and MultiBoxSSD, the processed WMT data
for Transformer is 1.2 GB, and the processed WMT data for
GNMT is 1.9GB.

E ARTIFACT APPENDIX

E.1 Abstract

We provide three logical artifacts: a TensorFlow fork,
an application-layer Python library on top of Tensor-
Flow, and example pipelines used for evaluation. These
artifacts allow a user to use Plumber to diagnose their
own pipelines as well as recreate the main results of the
paper. To validate the functionality of the TensorFlow
and Python library, we provide a simple notebook that
requires minimal resources and can be run quickly. To vali-
date microbenchmark functionality, a machine with 16GiB
RAM and a 4+ core CPU is sufficient, while end-to-end val-
idation requires access to (proprietary) Google Cloud TPUs.
Microbenchmarks and end-to-end runs require running a
data pipeline with optional model attached for a number of
iterations, and the main metric is the rate at which those iter-
ations are processed (discussed in paper). The primary skills
necessary are experience with TensorFlow and JAX and
familiarity with tf.data in addition to TPUs.

E.2 Artifact Check-List (Meta-Information)
• Program: Python, C++

• Compilation: C++, Bazel

• Data set: ImageNet, COCO, WMT16, WMT17

• Hardware: CPU-only server, TPUv3–8 VM

• Metrics: Throughput

• Experiments: Machine Learning Training, Microbench-
marks

• How much disk space required (approximately)?:
250GB

• How much time is needed to prepare workflow (ap-
proximately)?: A few hours to prepare the datasets
(e.g., TFRecord conversion) and a few hours to compile
TensorFlow.

• How much time is needed to complete experiments (ap-
proximately)?: The microbenchmarks complete in a few
hours each, with ResNet/ImageNet being the slowest,
due to the number of optimization steps it takes. The
end-to-end results can finish in a few hours each, ex-
cept for RCNN, which can take about a day due to long
epochs.

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License
2.0



Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines

E.3 Description

E.3.1 How Delivered

We provide two open-source GitHub repositories. The
TensorFlow fork is available at: https://github.c
om/mkuchnik/PlumberTensorflow. The Plum-
ber Python application-level library and experiment files
are available at: https://github.com/mkuchnik/
PlumberApp. The latter repository contains the instruc-
tions for using both the Plumber TensorFlow fork and
the Python application-level library.

E.3.2 Hardware Dependencies

Microbenchmarks should run on any hardware that runs
TensorFlow. However, end-to-end results require the use
of Google Cloud TPU VMs (TPUv3–8).

E.3.3 Software Dependencies

We use JAX, TensorFlow, Python, and a proprietary
but publicly available library for compiling against TPUs.
A non-exhaustive list of open-source Python packages is:
numpy, matplotlib, seaborn, cvxpy, and graph-
surgeon.

E.3.4 Data Sets

We use ImageNet (Deng et al., 2009), COCO (Lin et al.,
2014), WMT16 (EN-DE) (First Conference on Machine
Translation, 2016), and WMT17 (EN-DE) (Second Confer-
ence on Machine Translation, 2017).

E.4 Installation

Build and install TensorFlow using the publicly avail-
able documentation. The Python library’s source code is
packaged to be installed as a Python wheel.

E.5 Experiment Workflow

For microbenchmarks, run an iterative graph-rewriting script
that compares random optimizations to Plumber’s recom-
mendations. The throughput of the pipeline is measured
(e.g., minibatches per second) as well as the estimated
rate according to Plumber and AUTOTUNE. These curves
are then compared to naive and strong baseline methods
(HEURISTIC and AUTOTUNE) of tuning the pipeline. For
end-to-end experiments, run a subset of ML training us-
ing naive, baseline methods, and Plumber’s optimized
pipeline. The throughput of the end-to-end training is mea-
sured (e.g., minibatches per second).

E.6 Evaluation and Expected Result

For microbenchmarks, the throughput curve of random opti-
mizations should be worse than that of Plumber’s recom-
mendations. For throughput, Plumber should beat naive
policies and match strong baselines. For estimated rates,
Plumber’s estimated rates should be bounded, unlike AU-
TOTUNE’s. For end-to-end results, Plumber should match
or exceed strong baselines on most pipelines.

E.7 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20
190109.html

• http://cTuning.org/ae/reviewing-201
90109.html

• https://www.acm.org/publications/p
olicies/artifact-review-badging

https://github.com/mkuchnik/PlumberTensorflow
https://github.com/mkuchnik/PlumberTensorflow
https://github.com/mkuchnik/PlumberApp
https://github.com/mkuchnik/PlumberApp
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

