
PIPEFILL: USING GPUS DURING BUBBLES IN PIPELINE-PARALLEL LLM
TRAINING

Daiyaan Arfeen 1 * Zhen Zhang 2 Xinwei Fu 2 Gregory R. Ganger 1 Yida Wang 2

ABSTRACT
Training Deep Neural Networks (DNNs) with billions of parameters generally involves pipeline-parallel (PP)
execution. Unfortunately, PP model training can use GPUs inefficiently, especially at large scale, due to idle GPU
time caused by pipeline bubbles, which are often 15–30% and can exceed 60% of the training job’s GPU allocation.
To improve the GPU utilization of PP model training, this paper describes PIPEFILL, which fills pipeline bubbles
with execution of other pending jobs. By leveraging bubble GPU time, PIPEFILL reduces the GPU utilization
sacrifice associated with scaling-up of large-model training. To context-switch between fill jobs and the main
training job with minimal overhead to the main job, and maximize fill job efficiency, PIPEFILL carefully fits
fill job work to measured bubble durations and GPU memory availability, introduces explicit pipeline-bubble
instructions, and orchestrates placement and execution of fill jobs in pipeline bubbles. Experiments show that
PIPEFILL can increase overall utilization by up to 63% for GPUs used in large-scale LLM training, with <2%
slowdown of the training job, and 5–15% even for low-scale LLM training. For large-scale LLM training on 8K
GPUs, the 63% increase translates to up to 2.6K additional GPUs worth of work completed.

1 INTRODUCTION

DNN models with billions of parameters have exploded in
popularity with the emergence of generative AI applications.
For example, popular large-language models (LLMs), such
as GPT (Brown et al., 2020) and LLaMA (Touvron et al.,
2023a;b), are creating disruptive change in many domains.
But training such models can take several weeks or months
even using thousands of GPUs1.

A common approach (Narayanan et al., 2021; Zheng et al.,
2022) of training on thousands of GPUs is to employ a com-
bination of parallelization techniques. Pipeline-parallelism
(PP) (Narayanan et al., 2019; Huang et al., 2019) is used
to partition the model across multiple nodes, creating a
pipeline of stages. The full pipeline is then replicated using
data-parallelism, allowing for parallel processing of multiple
data samples. Within each pipeline stage, tensor-parallelism
is applied to partition the model weights, enabling parallel
computation. Pipeline parallelism operates by partitioning a
model into pipeline stages, typically assigning one stage per
node or per GPU. Each minibatch of data is further divided
into smaller subsets called microbatches. The forward and

*Work done during internship at Amazon Web Services.
1Carnegie Mellon University 2Amazon Web Services.

1This paper uses “GPU” or “device” to refer to any computation
accelerator for deep learning jobs, such as GPUs, TPUs (Jouppi
et al., 2017), or AWS Trainium.

backward passes for each microbatch are then executed in a
pipelined manner across the stages.

Unfortunately, such highly-parallelized training can use
GPUs inefficiently especially at large scale, because too
much GPU time may be wasted on pipeline bubbles.
Pipeline bubbles occur because the pipeline must be fully
drained and then restarted for each minibatch, leading to
idle time on each of the GPUs. The greater the paralleliza-
tion is, whether from longer pipelines (taking longer to fill
and drain) or more pipeline replicas (reducing the number
of microbatches per replica as the global minibatch size
needs to be fixed), the greater the inefficiency becomes
due to bubbles. For example, Figure 1 shows that a 40B-
parameter auto-regressive-transformer LLM, parallelized
over 8K GPUs achieves 60% lower TFLOPS-per-GPU than
using just 1K GPUs because of pipeline bubbles—but using
only 1K GPUs would make LLM training take over 3×
longer (26 days vs. 82 days; shown in Figure 4a). The over-
all consequence is a major tension between LLM training
time and GPU cluster efficiency.

PIPEFILL is a new GPU management system that mitigates
this tension by filling large training jobs’ pipeline bubbles
with other jobs, which we call fill jobs. The GPUs for any
given pipeline stage switch to a fill job at the start of a bub-
ble and switch back at the end of that bubble. By doing so,
PIPEFILL recaptures otherwise wasted GPU time to accom-
plish pending inference and training jobs, which can enable
scaling-up large-model training with much less sacrifice in

ar
X

iv
:2

41
0.

07
19

2v
1 

 [
cs

.D
C

] 
 2

3 
Se

p 
20

24



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

0 4K 8K
GPU Count

0

10

20

30

40

50
TF

LO
PS

/G
PU

Traditional PP (LLM only)
PipeFill (LLM + Fill Jobs)

Figure 1. Utilization of LLM training GPUs. The lines correspond
to scaling out training of a 40B-parameter LLM from 1K GPUs
to 8K GPUs to reduce training time from 82 days (1K) to 34 days
(4K) to 26 days (8K). Traditionally, the increasing pipeline bubbles
when scaling out leads to over 60% lower GPU utilization at 8K.
PIPEFILL is able to fill much of that bubble GPU time with useful
work, without slowing the LLM training. Section 5 details the
experimental setup.

GPU utilization. Figure 1 shows how, with bubble filling,
PIPEFILL mitigates the GPU utilization penalty as LLM
training scales out. At 8K GPUs, for example, PIPEFILL
increases GPU utilization by over 45% with a mix of train-
ing and inference fill jobs. If using just less GPU memory
intensive batch inference jobs, the GPU utilization increase
grows to 63% (see Figure 4c).

Filling pipeline bubbles effectively requires overcoming a
number of challenges. First, fill job execution needs to be
configured to fit within bubble constraints, including bubble
length (to minimize inter-bubble context) and available GPU
memory. PIPEFILL introduces a Pipeline Bubble Instruc-
tion to collect bubble constraints, and a Fill Job Execution
Plan Algorithm to partition a fill job into chunks prior to
bubble filling as necessary. Second, the right fill jobs need
to be matched to the right GPUs, given that pipeline bubbles
exhibits heterogeneous characteristics and users may have
different optimization objectives. PIPEFILL uses a Fill Job
Scheduler, which accepts user-defined scheduling policies.
Our Fill Job Scheduler orchestrates the assignment of fill
jobs to GPUs by synergizing the user-defined policy with
the characterization of the main job’s pipeline bubbles.

Experiments (real system and simulation) confirm that
PIPEFILL can recapture significant GPU utilization lost
to pipeline bubbles, allowing huge DNNs (like LLMs) to
be scaled out without much lower GPU efficiency conse-
quences. At each scale, aggregated TFLOPS/GPU (fill jobs
plus LLM) is higher with PIPEFILL, from 5–15% at (slow)
low-scale LLM training to over 63% for scaled-out training,
with <2% slowdown of the LLM training. Detailed analysis

of different fill jobs options shows that, as expected, the
limited memory and intermittent time available for fill job
execution in bubbles reduces their efficiency differently–the
data in Figure 1 is for a fill job mix derived from an ML job
trace, but using just bubble-efficient batch inference jobs
increases the gains by ≈50%. Additional results confirm
that PIPEFILL’s benefits are realized for both GPipe (Huang
et al., 2019) and 1F1B (Narayanan et al., 2019) pipeline
schedules, with moderate reduction (17%) in benefits for
1F1B at low-scale and minimal difference (< 5%) at large-
scale, and show fill job efficiency sensitivity to changes in
bubble durations, available memory during bubbles, and
fill-job scheduling policy.

Contributions. This paper makes four main contributions:

1. It introduces the concept of filling pipeline bubbles in
PP model training with execution of other ML jobs;

2. It describes a system (PIPEFILL) that realizes this con-
cept and can recover idle GPU-time lost to pipeline
bubbles;

3. It introduces approaches for assigning fill jobs to
pipeline bubbles, and for configuring fill job execu-
tion within its assigned bubble, to maximize efficiency
of recovered GPU time.

4. It experimentally shows that PIPEFILL can signifi-
cantly increase GPU utilization for scale-out LLM
training without significantly harming LLM training
efficiency.

2 LARGE MODEL TRAINING
BACKGROUND

2.1 Distributed Training

Training Deep Neural Network (DNN) models consumes
large amounts of GPU time and of on-device memory, ex-
ceeding the memory capacity of a single device for large
DNNs. This is especially true, as the model training pro-
cedure requires memory space for multiple components,
including optimizer states, model parameters, gradients, ac-
tivation buffers, etc. For a 100-billion parameter model,
holding the model instance requires at least 1.6TB of device
memory (Rajbhandari et al., 2020). Example accelerator
devices used to train DNNs are GPUs, TPUs, and AWS
Trainium. The on-device memory of these devices ranges
from 16GB to 80GB of HBM (high-bandwidth memory).
This necessitates partitioning the model instance, across
potentially 100s of devices, in order for training to be pos-
sible. Partitioning the model instances means distributing
the computation and memory footprints to multiple devices,
and there are several existing methods (tensor parallelism
and pipeline parallelism) for this with different tradeoffs.
In addition, to further scale out the training, a training job
replicates multiple model instances for computing different



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

part of a dataset (i.e., data parallelism). We cover these
techniques in the following.

Tensor parallelism. The tensor parallelism solu-
tion (Narayanan et al., 2021) distributes the computation
onto multiple devices, and introduces communication op-
erations to resolve the data dependencies. Due to the re-
quired communication operations introducing non-trivial
overhead (Narayanan et al., 2021), the tensor parallelism is
typically used within a computing node. A computing node
with multiple accelerators is equipped with high-bandwidth
intra-node connections like NVLink. Applying tensor par-
allelism within a computing node makes the overhead of
communication operation relatively low (Zheng et al., 2022).
However, using tensor parallelism within a node limits the
size of a model, as the memory footprint of training a model
instance must fit in the on-device memory of a single com-
puting node.

Pipeline parallelism. To further scale training across multi-
ple computing nodes without introducing large communica-
tion overhead of tensor parallelism, the pipeline parallelism
solution is used (Narayanan et al., 2021). Pipeline paral-
lelism partitions the DNN model across its layers. Each
partition contains a set of model layers. Each partition is
called a pipeline stage. The input minibatch data to the
model is split into multiple microbatches. Computations
of microbatches are executed in a pipelined fashion across
pipeline stages. For example, when the second pipeline
stage is doing the computation of the first microbatch, the
first stage can start the computation of the second micro-
batch. To not change the training semantics (e.g., parameter
staleness, minibatch size), the pipeline parallelism has a
synchronization before processing the next minibatch.

There is resource idling in the pipeline parallelism due to
data dependencies and synchronizations. As noted above,
to let the second pipeline stage start the computation of the
first microbatch, the first pipeline stage must complete the
computation of first microbatch and send the result to the
second stage. And at the synchronization of the boundary of
two minibatches, the other stages must wait until the slowest
pipeline stage completes its work. For unidirectional, syn-
chronous pipeline schedules (such as GPipe and 1F1B), the
fraction of idling time is quantified as (p− 1)/(m+ p− 1),
where p is the number of pipeline stages, and m is the num-
ber of microbatches that splits from minibatch (Narayanan
et al., 2021). When scaling the training job over a cluster
with thousands of devices, the fraction of idling hurts the
resource utilization significantly (Section 3.1).

Data parallelism. The tensor parallelism and pipeline par-
allelism are mainly for fitting the training of a single model
instance in device memory. Once the partition strategy (i.e.,
the number of devices used for tensor parallelism, and the
number of pipeline stages of pipeline parallelism) is decided,

43214321
43214321

43214321
43214321

Double 
#pipelines

2121
2121

2121
2121

4 micro batches

S1 S2 S3 S4

A model divided into 4 pipeline stages

2121
2121

2121
2121

2 micro batches

2 micro batches

S1

S3

S2

S4

S1

S3

S2

S4

S1

S3

S2

S4

Idle/bubble time Forward compute Backward compute

Overall computation is reduced; aggregated idle time is increased

Figure 2. Pipeline parallelism combined with data parallelism.
Replicating the pipeline (double the number of GPUs) with the
overall minibatch size fixed (at 4 microbatches) leads to shorter
per-minibatch execution time but also a larger fraction of GPU
time lost to pipeline bubbles.

the model instance is replicated using data parallelism to
scale the training job to more devices. Each of the model
instances of a training job takes a disjoint part of the training
dataset for the computation. To make all model instance
replicas synchronized, collective all-reduce communication
across replicas is required at the end of every minibatch
execution.

2.2 Combined Parallelism for LLM Training

For training large DNNs, such as LLMs, it is common
to combine all three parallelization techniques. Figure 2
illustrates an 8-layer model (upper left) partitioned into
4 pipeline stages for execution. The per-minibatch execu-
tion timeline is illustrated below the model, when there are
four microbatches, with time flowing left-to-right and each
rectangle indicating what the compute node for a given stage
is doing during that time. The light-gray pipeline bubbles
occur when a stage is waiting for input from other pipeline
stages in order to utilize the assigned GPUs.

To scale up with a fixed total computation workload per
model updating, users usually augment the data parallelism
degree while reducing the number of microbatches per
pipeline replica, to ensure their product remains constant.
The right side of Figure 2 gives an example of doubling
the number of compute nodes using data parallelism. As
shown in the figure, the number of the microbatches for
each pipeline to process is reduced from 4 to 2 (half for
each). There are also more advanced methods like automat-
ically explore the best possible sharding strategies (Zheng
et al., 2022) which may achieve better training throughput
than manual decisions. However, all of them are inherently
bound by the total computation workload per model updat-
ing, hence getting diminishing return while increasing the



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

compute resource. This paper introduces an orthogonal way
to recollect the waste GPU resource at large-scale training
by introducing independent fill jobs.

As discussed earlier, the fraction of execution time of each
model update spent in pipeline bubbles is (p−1)/(m+p−1),
where p is the number of pipeline stages and m is the number
of microbatches. In the figure, the bubble fraction increases
by about 40%.

3 MOTIVATION AND OUR SOLUTION

3.1 Pipeline Bubbles Lower GPU Utilization

In pipeline parallelism, pipeline bubbles arise from data
dependencies and synchronizations, resulting in inefficient
GPU utilization during periods of resource idleness. The
fraction of idle GPU time of each model update spent in
pipeline bubbles is (p − 1)/(m + p − 1), where p is the
number of pipeline stages and m is the number of micro-
batches. The issue of inefficient GPU utilization due to
pipeline bubbles becomes particularly apparent when scal-
ing up the training of larger models across more computing
nodes. This is because the scale-up usually leads to a higher
number of pipeline groups and a decrease in the number of
microbatches for each pipeline group.

When applying combined parallelism, the training of larger
models necessitates a larger number of pipeline stages.
Since tensor parallelism is applied within each computing
node to mitigate communication overhead, the maximum
degree of tensor parallelism is constrained by the number
of GPUs within a single computing node. Once the tensor
parallelism degree reaches its maximum, users can only
increase the number of pipeline stages to partition larger
models, ensuring that each partition fits within the GPU
memory capacity.

Scaling up training across a larger number of computing
nodes results in a reduction in the number of microbatches.
Once the degrees of tensor and pipeline parallelism are
determined, users augment the data parallelism degree to
distribute training across more GPUs, thereby enhancing
training throughput. However, when training large language
models (LLMs), the total computation workload for each
round of model updating is usually set by machine learning
experts and remains constant, regardless of the size of the
computing cluster. For example, both LLaMA-1 (Touvron
et al., 2023a) and LLaMA-2 (Touvron et al., 2023b) training
use 4 million tokens for each model update. People are reluc-
tant to increase the number of tokens for each model update,
as it can hurt model quality at the end of training (McCan-
dlish et al., 2018). With a fixed total computation workload
for each round of model updating, increasing the data paral-
lelism degree results in a smaller number of microbatches.

In summary, inefficient GPU utilization caused by pipeline
bubbles is inevitable when employing pipeline parallelism,
and it becomes particularly noticeable when scaling up the
training of large models.

3.2 Solution: Fill Bubbles w/ Independent Jobs

How can idle GPU time resulting from pipeline bub-
bles be utilized to improve GPU utilization? Existing
works fill dependent jobs of the training job running with
pipeline parallelism into the pipeline bubbles. For instance,
PipeFisher (Osawa et al., 2023) accelerates convergence by
utilizing the pipeline bubbles to execute K-FAC, a second-
order optimization method based on the Fisher information
matrix. Similarly, Bamboo (Thorpe et al., 2023) enhances
training resilience at a minimal cost by filling redundant
computations, where one node performs computations not
only on its own layers but also on some layers in its neigh-
bor, into the pipeline bubbles. However, the jobs filled into
the pipeline bubbles by existing works are dependent on
the training job running with pipeline parallelism providing
extra work (second-order computation in the case of PipeFis-
cher, redundant computation in the case of Bamboo). As a
result, tailored scheduling for each fill job is needed to avoid
performance penalties. Additionally, these prior works are
only applicable to specific types of training jobs (training
jobs optimized using K-FAC in the case of PipeFischer, jobs
running on faulty/spot machines in the case of Bamboo).
Fundamentally, pipeline bubbles exist due to data dependen-
cies within the computation of pipeline parallelism. Our key
insight is that, rather than directly addressing the data de-
pendency issue within a training job pattern or introducing
other dependencies by filling dependent jobs, we leverage
independent jobs, unrelated to the training job running with
pipeline parallelism, to fill the pipeline bubbles. Specifically,
we remove the constraint that the training job must execute
exclusively on the GPUs during the entirety of the job. One
can context-switch to a different job during the bubbles to
reduce the amount of idle time of GPUs, and context-switch
back to the main training job in time for the training job to
experience no overhead from sharing the GPU during the
pipeline bubbles.

To fill independent jobs into pipeline bubbles, we need to
address the following challenges:

• Memory Management. How can one fill independent
jobs into the pipeline bubbles when the GPU memory is
primarily occupied by the main training job? Even during
pipeline bubbles, the main training job dominates the GPU
memory. Naively filling independent jobs into pipeline
bubbles without careful memory management may result
in GPU OOM errors or sub-optimal performance of fill
jobs. Effective memory management is crucial not only to
mitigate OOM risks but also to optimize available memory



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

for fill jobs.

• Context Switching. How can one ensure that filling inde-
pendent jobs into the pipeline bubbles does not incur per-
formance penalties for the main training job? To maintain
the performance of the main training job, only pipeline
bubbles can be utilized for running fill jobs. However, it’s
not guaranteed that a fill job can be completed within one
bubble. Therefore, filling independent jobs into pipeline
bubbles without carefully crafted context switching may
introduce performance penalties to the main training job.

• Fill Job Scheduling. When faced with numerous pipeline
bubbles exhibiting heterogeneous characteristics, how can
one effectively schedule the filling process to align with
user-specific objectives? Pipeline bubbles across various
pipeline stages or employing different scheduling algo-
rithms exhibit distinct characteristics, such as duration and
HBM availability. Additionally, users may harbor unique
optimization goals; for instance, some prioritize GPU uti-
lization, while others emphasize meeting job deadlines
promptly. Naively scheduling the filling process without
accounting for bubble characteristics and users’ optimiza-
tion objectives risks compromising the performance of fill
jobs and falling short of users’ expectations.

Several existing works, such as Muri (Zhao et al., 2022)
and Antman (Xiao et al., 2020), explore interleaving mul-
tiple jobs on shared GPUs. However, these works do not
specifically address scheduling alongside a main job run-
ning with pipeline parallelism, thus failing to leverage the
unique characteristics for optimization. Muri only considers
job duration of each job as a constraint and assumes all
jobs fit together in GPU memory. Thus, Muri lacks sup-
port for guaranteeing the main job performance and also
falls short in memory management and fill job scheduling.
Antman utilizes device statistics to assign memory caps to
jobs based on priority and fills idle GPU cycles with op-
portunistic kernels. However, when a main job is running
with pipeline parallelism, pipeline bubbles often appear as
long-running communication kernels, causing Antman to
struggle in determining context switches between the main
job and fill jobs. Moreover, the main job typically consumes
the majority of the memory, making simply setting memory
caps insufficient for memory management.

To address the challenges of memory management and con-
text switch, PIPEFILL introduces a Pipeline Bubble Instruc-
tion and a Fill Job Execution Plan Algorithm. The Pipeline
Bubble Instruction serves to pinpoint the start and end of a
bubble, while also capturing the information about available
memory during its duration. The Fill Job Execution Plan
Algorithm then utilizes this information to determine the
feasibility and methodology of partitioning a fill job into
chunks prior to bubble filling. Additionally, the algorithm

Device %

FJ-Exec %
Fill-Job 

Partitioning
Memory-
Capping

Bubble duration, 
memory

…

Instrumented
Pipeline Engine %
Bubble Profiling

FJ-Sched

Job Scoring

! Fill Jobx

Free-Memory
Claiming

Main Job 
Offloading

Bubble
synchronization

Bubble Info,
Job Completion 

Job Placement

Figure 3. System overview

determines when to offload the memory of the main job to
free up space for the fill job when necessary. To address
the challenge of fill job scheduling, PIPEFILL leverages a
Fill Job Scheduler, which accepts user-defined scheduling
policies. This feature grants users the flexibility to craft
policies aligned with their optimization goals. Our Fill Job
Scheduler orchestrates the assignment of fill jobs to GPUs
by synergizing the user-defined policy with the characteri-
zation of the main job’s pipeline bubbles.

4 PIPEFILL DESIGN AND
IMPLEMENTATION

4.1 PIPEFILL Overview

As shown in Figure 3, PIPEFILL consists of three major
components: Instrumented Pipeline Engine, Fill Job Ex-
ecutor, and Fill Job Scheduler. The Instrumented Pipeline
Engine uses the pipeline bubble instruction to measure when
a pipeline bubble begins and ends, and the available mem-
ory during a pipeline bubble. The Fill Job Executor then
leverage those information to decide the strategy of filling
a job into bubbles, including whether and how to partition
a filled job into chunks and whether to offload the mem-
ory of the main job to free up space for the filled job. The
Fill Job Scheduler accepts user-defined scheduling policies
and schedules filled jobs onto device pipeline-bubbles to
optimize the chosen policy.

Putting together. Fill jobs are initially received by the
Scheduler, which makes scheduling decisions about which
device’s pipeline bubbles to execute a fill-job on. Scheduling
policies can be defined to modify the behavior of the Sched-
uler. Each device has a fill-job Executor process. Once a
fill-job arrives at a device, the Executor uses profiling data
to construct an execution plan for the job. The plan max-
imizes the throughput of the job by choosing a batch size
and creating partitions of the job’s computational graph that
maximize the amount of work completed during the pipeline
bubbles without violating bubble duration or free-memory
constraints. The Executor uses synchronization primitives
to decide when to begin execution of the next fill-job graph
partition. The pipeline engine runs on every device worker.



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

The pipeline engine uses the pipeline bubble instruction to
know when a pipeline bubble is beginning so it can signal
the Executor (using the aforementioned synchronization
primitives) to begin execution. Before the pipeline engine
signals the Executor, it tells the device memory allocator
to release all transient/unused memory buffers to increase
the free-memory available to the Executor and waits for any
main-job offloading operations to complete.

Fill Jobs. In this work, we use deep learning training and
batch-inference jobs as fill jobs. Deep learning jobs can
be classified as training or inference. Training is typically
not latency sensitive and is often long-running. Inference
can be broken down into real-time/online inference and
batch/offline inference; the former is latency sensitive, with
SLOs being on the order of milliseconds, while the later is
often not latency sensitive. Batch inference is not uncom-
mon, often being used for content recommendations, data an-
alytics, and other back-end services. Due to the intermittent
property of pipeline bubbles, latency-sensitive jobs are not
suitable for use as fill-jobs. Therefore, PIPEFILL supports
training and batch-inference jobs as fill-jobs. PIPEFILL
takes as input the model used for the fill-job, as well as valid
batch-sizes; given the job configuration, it will attempt to
execute the fill-job with maximum throughput.

4.2 Pipeline Engine Instrumentation

In order to not impact the main job, we must keep the con-
text switching and execution of fill jobs completely within
the duration of the pipeline bubbles. We must also know ex-
actly how much GPU memory the fill job can use during its
execution so that the main job does not experience an OOM
error. In order to achieve this, PIPEFILL augments exist-
ing pipeline engines with a new pipeline bubble instruction.
Existing pipeline engines execute a sequence of pipeline
instructions. These instructions include sending/receiving
activations and gradients, executing forward/backward com-
putations on specific microbatches, and synchronizing pa-
rameters. Taken together as a periodically repeating se-
quence, these instructions constitute a pipeline schedule,
which can have multiple pipeline bubbles which appear as
instructions that wait on some event (e.g. activation data
to arrive from the previous stage). PIPEFILL’s bubble in-
struction is inserted into the schedule to indicate where large
bubbles are expected to occur.

Bubble characterization. Before doing any bubble filling,
the pipeline engine must determine the time duration of
each pipeline bubble in the pipeline schedule and how much
memory is available for the fill jobs to use. To this end, at
the beginning of the main training job the pipeline engine
does profiling. For each bubble instruction, the pipeline
engine will wait certain amount of time (e.g. 100 ms) before
proceeding to execute the next instruction. It will then ob-

serve the main job’s throughput, if it is unaffected then
on the next minibatch iteration it will wait 2× amount
of time. This will continue until the pipeline engine ob-
serves a drop in the main job’s throughput, at which point
it will know the duration of the pipeline bubble. To pro-
file the amount of memory available for the engine to use
for the fill job during a pipeline bubble, the engine relies
on PyTorch’s torch.cuda.memory_allocated()
function to know how much memory is held by the main
training job during the bubble; the remaining device mem-
ory is considered free, but to ensure there are no out-of-
memory errors PIPEFILL may opt only to allocate some
fraction of the free memory. Additionally, to ensure tran-
sient/temporary memory buffers are not counted as allocated
by the main job (and instead can be used by the fill-jobs),
the engine will tell the memory allocator to free all such
buffers (by calling torch.cuda.empty cache()). The bubble
duration and free-memory capacity is later passed to the
Executor so it can avoid violating those constraints.
Bubble signaling. Once the engine has characterized the
pipeline bubbles they can start to be filled. The engine starts
a new Executor process (with a shared synchronization prim-
itive) and passes the bubble information to it. When a new
fill-job is sent by the Scheduler, the engine passes the job de-
scription (as well as the necessary profiles) to the Executor.
Every time the pipeline engine reaches a bubble instruction,
it 1) tells the memory allocator to free all unused memory
2) waits for any main job offloading operations to complete
3) signals the Executor to begin running its fill-job.
Main job offloading. In some cases, it may be beneficial
to increase the amount of free-memory available to the fill-
jobs. To achieve this, PIPEFILL enables offloading of main
job data from the device to the CPU memory. In order
to do this in a way that is transparent to the main job and
does not sacrifice its performance, which data is offloaded
must be carefully chosen and the offloading and onload-
ing of the data must be coordinated so that the main job
is never blocked on these operations. PIPEFILL enables
offloading of the main job optimizer states (e.g. moment es-
timates for Adam(Kingma and Ba, 2015)) because this data
is only required by the main job during the optimizer up-
dates. The offloading of the main job data is overlapped with
the forward-pass execution, and the onloading is overlapped
with the gradient-synchronization; a significant amount of
data can be offloaded in this fashion with no impact to the
main job. The pipeline engine forward-pass and gradient-
synchronization instructions are augmented to launch these
operations on a separate CUDA stream.

4.3 Executor

The Executor is a process that executes a fill-job on a de-
vice’s pipeline bubbles with maximum throughput without
violating the bubble duration or free-memory constraints,



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

ensuring that the fill-job execution has no impact on the
main job performance. It does this by creating an execution
plan for the fill job that chooses a batch size and partitions
the job’s computational graph, and it relies on signals from
the pipeline engine to know when to execute the graph par-
titions.

Execution plan. When created, the Executor is passed
a sequence of bubble durations and free-memory capaci-
ties from the pipeline engine. This sequence describes the
pipeline bubbles, the resources and durations that they each
make available as well as their order. This sequence of
bubbles is a cycle of bubbles that repeats every minibatch
iteration of the main job. When a fill-job is passed to the
Executor, it is accompanied with a set of profiles. Each pro-
file contains the execution time and memory requirement
of each node in the computational graph under a specific
configuration. Configurations can be different batch sizes
and different execution techniques (e.g. CPU-offloading or
NVMe-offloading of parameters/gradients/optimizer states,
activation checkpointing/offloading). The Executor lin-
earizes the computational graph and its profiles, turning
it into a sequence of nodes with sequential dependency. For
each configuration, the Executor packs the computational
graph into as few bubble cycles as possible (without vio-
lating duration and free-memory constraints). As shown in
Algorithm 1, the Executor runs a greedy algorithm that does
the following: 1) replicate the graph enough times (each
replica represents an iteration) that the total execution time
is as high as possible without exceeding the total bubble
time (lines 1-5), 2) iteratively packs as many source nodes
of the remainder of the computational graph as possible into
the next bubble (lines 9-15) without exceeding its duration
or memory limits (line 10). This sequence of computational
graph partitions represents the Executor’s plan for the fill-
job.

Bubble synchronization and memory capping. When
executing the fill-job plan, the Executor waits for
signals from the pipeline engine to know when the
main job has entered a pipeline bubble. When it re-
ceives a signal, it first sets a cap on the amount of
device memory that it can use (by using PyTorch’s
cuda.set_per_process_memory_fraction
function) to the amount of free-memory available in the
bubble; if the Executor somehow exceeds this memory
capacity, it will experience an OOM error, but this error
will be isolated to the Executor process and will not affect
the main job. The Executor will execute the current graph
partition on the current bubble, and then wait for the next
signal from the pipeline engine.

Algorithm 1 Partition fill job onto bubbles

1: Input: A list B of the bubble durations, a list M of
bubble free-memory capacities, a list F of the graph-
node durations and memory requirements

2: Output: List P of graph partitions where duration of
P [i] ≤ B[i mod len(B)] and memory of P [i] ≤M [i
mod len(M)]

3: F ′ ← F
4: while dur(F ′) + dur(F ) <

∑
B do

5: F ′ ← F ′ + F
6: end while
7: F ← F ′

8: P ← []
9: i← 0

10: while len(F ) > 0 do
11: P ′ ← []
12: while len(F ) > 0 and dur(P ′)+dur(F [0]) < B[i]

and mem(F [0]) ≤M [i] do
13: P ′ ← P ′ + F [0]
14: F ← F [1 :]
15: end while
16: P ← P + P ′

17: i← (i+ 1) mod len(B)
18: end while
19: return P

4.4 Scheduler

The Scheduler is the interface between the pipeline bub-
bles of the main job and any outside higher-level cluster
schedulers, making the bubbles available as additional re-
sources. The Scheduler is also responsible for scheduling
the fill-jobs onto the pipeline bubbles. The Scheduler has
access to the fill-job profiles, partitioning algorithm, and
bubble descriptions of every device. Using this information,
the Scheduler is able to precisely calculate any fill-job’s
throughput/processing-time on any device. The Scheduler
exposes the scheduling policy by defining a function that
takes as input a job’s information (arrival time, processing-
time on every possible device, and deadline) as well as the
current state of all the Executors in the system, and outputs
a score. When a device completes a fill-job, the Sched-
uler chooses which job to submit to the device by choosing
the job which maximizes the score. This allows specify-
ing a variety of different scheduling policies. For example,
to specify a Shortest-Job-First policy the function can be
defined as:

f(j, s, i) =
1

min(j.proc times)

where j.proc times is a list containing the job’s processing
times on all devices, s is the current state of all Executors,
and i is the index of the Executor which is to be filled.
A more complex example is a policy that minimizes the



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

makespan, which can be specified with the function:

f(j, s, i) =
1

max(j.proc times[i], s.rem times)

where s.rem times is a list containing the remaining
amount of time each Executor will be busy. This policy
will minimize the maximum busy time across all Executors,
thereby minimizing makespan. By defining the policy using
weighted compositions of multiple functions, hierarchical
policies can be defined that behave differently under differ-
ent circumstances. For example, policies can be defined that
prioritize proximity-to-deadline as a feature, but default to
more standard policies (e.g. SJF, FIFO) when there are no
jobs with deadlines.

Since the Scheduler knows how long the currently executing
fill-jobs will take to complete, as well as the order in which
the queued fill-jobs will be executed, users can query the
Scheduler to know when a currently submitted fill-job is
expected to complete or whether a fill-job’s deadline can be
met under current conditions. This can be used by a higher-
level scheduler, which manages other resources in addition
to the pipeline bubbles, to make scheduling decisions about
which of its jobs can be submitted to the Scheduler.

4.5 Implementation

Our implementation is based on DeepSpeed. We augment
the DeepSpeed pipeline engine with the instrumentation for
bubble filling and main job offloading. The Executor is im-
plemented as a python process, and it also uses DeepSpeed
to execute the fill jobs. To support large-model fill-jobs
with limited GPU free-memory, the Executor is enabled
with fill-job configurations that use CPU-offloading and
activation checkpointing. In particular, the Executor will
consider using ZeRO-Offload(Ren et al., 2021) and ZeRO-
Infinity(Rajbhandari et al., 2021) to offload optimizer states,
gradients, activations, and parameters of the fill-job.

Main job pipeline schedule. We consider GPipe(Huang
et al., 2019) and 1F1B(Narayanan et al., 2019) schedules
for the main job. Both schedules exhibit two-phase bubble
behavior: one bubble occurs between the drain of the pre-
vious minibatch iteration and the fill of the next iteration
(fill-drain), and the other bubble occurs between the forward-
pass pipeline saturation and the backward pass (fwd-bwd).
The fill-drain bubble of both schedules is the same, but the
fwd-bwd bubbles can be different. For GPipe, the fwd-bwd
bubble duration is (num stages− stage id− 1) ∗ (tfwd +
tbwd) whereas for 1F1B its duration is (num stages −
stage id− 1) ∗ tbwd +max(0, num stages− stage id−
m) ∗ tfwd. 1F1B additionally has some non-contiguous
bubbles (which PIPEFILL does not fill), which makes the
total bubble time the same for both schedules.

size model # parameters job type
S EfficientNet(Tan and Le, 2019) 117M CV
S Bert-base(Devlin et al., 2019) 109M NLP
M Bert-large(Devlin et al., 2019) 334M NLP
M Swin-large(Liu et al., 2021) 779M CV
L XLM-Roberta-XL(Goyal et al., 2021) 2.8B NLP

S: small M: medium L: large

Table 1. Fill job category.

5 EXPERIMENTAL SETUP

5.1 Hardware and Simulator

In our experiments, we use a cluster of 16 AWS EC2
p3.16xlarge instances to run small-scale experiments and to
collect traces for large-scale simulation experiments. Each
p3.16xlarge instance contains 8 NVIDIA Tesla V100 GPUs,
each of which is equipped with 16GB HBM and has 125
TFLOPS of peak compute. GPUs on the same machine are
connected in a hybrid cube-mesh topology with NVLink
2.0 300GBps interconnects, and separate machines are con-
nected with 25 Gbps network bandwidth.

In order to evaluate our system on multiple large-scale set-
tings, we create an event-driven simulator. Deep learning
jobs have repetitive patterns, so an accurate simulator only
needs to profile a pattern once and can simulate the time and
resources it takes to repeat that pattern. Our simulator relies
on profiles of the main training jobs’ pipeline instructions
and the fill jobs’ layers (under different configurations). The
events in our simulator are the arrivals and completions of
fill-jobs (since these are when the state of the system can
change), and we simulate the time in between these events
using the profiled execution times and the job arrivals from
the trace. We validate the accuracy of the simulator against
the physical cluster experiments.

5.2 Main Jobs

Our physical cluster experiments use a 5B parameter LLM
training job as the main job, and are executed on 16 GPUs
on separate machines; this main job uses 16-stage pipeline-
parallelism (no tensor-parallelism). We also collect profiles
of a 40B parameter LLM training job executed using 8-
way tensor-parallelism (8 GPUs per machine) and 16-stage
pipeline-parallelism (16 machines). The simulator main job
has almost the same settings as the physical cluster job, only
scaled up using tensor-parallelism; consequently the bubble
sizes are almost identical. We use the profiles of the 40B
model training job to seed our simulator, which we use for
sensitivity studies done in simulation.

Both main jobs use sequence length of 2048 tokens per sam-
ple, and use the Adam(Kingma and Ba, 2015) optimizer.
Both jobs also use a microbatch size of 2 and a total mini-
batch size of 1024 (across all data-parallel replicas). We use
the GPipe schedule by default, unless otherwise specified.



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

Data-parallel execution has been shown to be predictable(Li
et al., 2020), so we run only one data-parallel replica across
all our experiments, varying the number of microbatches
according to different data-parallel configurations.

5.3 Fill Jobs

We create our fill-job traces in two steps. First, we con-
struct a fill-job model distribution. To do this, we extract
all model sizes and model types from the HuggingFace
Model Hub(Hugging Face Inc., 2024); we filter for models
uploaded in the last year with over 100K downloads. We
find that among these models, 71% of them have less than
3B parameters, so we filter out all models that have greater
than 3B parameters. Among the remaining models, we find
that 10.4% are CNNs (with the remainder being transformer
models). We choose a representative set of models shown
in Table 1, and we set sampling probabilities to each model
to match the distribution of model sizes and types from the
HuggingFace Model Hub.

For sampling job arrivals, we use public traces from Al-
ibaba(Weng et al., 2023) collected on real GPU clusters.
These traces provide arrival times, GPU quantities requested,
service times, and quality-of-service for each job. We filter
out all jobs that have ”latency-sensitive” quality-of-service,
and we convert GPU quantity requested and service time
to GPU-hours (by multiplying the two). We filter out jobs
that are greater than 9 GPU-minutes for the physical cluster
experiments (leaving 55% of all jobs) and 1 GPU-hour for
the simulation experiments (leaving 81.6% of all jobs), and
we bucket the remaining GPU-hours distribution according
to the sampling probabilities of the models from Table 1 so
that every job arrival in the trace is mapped to a specific
model. For smaller models (¡700M parameters) we set the
job to training or batch-inference with equal probability;
for larger models we always set the job to batch-inference.
To determine how many samples a job should process, we
divide the job-size (in GPU-hours) by the max throughput
that the job-type can achieve when executed in isolation on
one GPU. This yields a trace that contains job arrivals, job
models, job category (training vs batch-inference), and job
samples.

6 EVALUATION

In our evaluation, we first present the amount of GPU utiliza-
tion recovered by PIPEFILL at different scales (Section 6.1);
we then validate the accuracy of the simulator by compar-
ing simulator results against physical cluster results (Sec-
tion 6.1); we discuss how fill job characterization affects
PIPEFILL’s performance (Section 6.2); and we provide sen-
sitive studies of pipeline schedule algorithm, fill-job schedul-
ing policy, bubble duration and free memory (Section 6.3).

6.1 PIPEFILL Recovers GPU Utilization

Simulator Results To evaluate the GPU utilization recov-
ered by PIPEFILL, we scale the 40B parameter LLM train-
ing job trace using data-parallelism up to 8K GPUs in our
simulation. We measure the GPU utilization of filling in-
ference jobs only, and filling both training and inference
jobs. We use the GPU utilization of without using PIPEFILL
as the baseline. To calculate the additional GPU FLOPS
utilization recovered by PIPEFILL, we use the measured to-
tal FLOPs (floating-point operations) executed to complete
the fill-jobs (from PyTorch profiling) and divide this by the
simulated fill-job completion times (wall-clock time); we
average this value across all GPUs across the duration of
the main job.
Figure 4 shows the results of main job training time, pipeline
bubble ratio, and GPU utilization from using 1-8K GPUs.
Even at low-scales (1K-2K GPUs), PIPEFILL improves
GPU utilization by 5-10%. However, it is at higher scales
that PIPEFILL’s potential is shown. Scaling the main job
from 2K to 6K GPUs reduces training time from 50 days
to 29 days; however, this results in a 40% drop in GPU
utilization. With PIPEFILL, we are able to limit the drop in
GPU utilization to <23%. At 4K GPUs (reducing main job
training time by 16 days compared to 2K GPUs), PIPEFILL
is able to get 89% of the GPU utilization of traditional
pipeline-parallelism at 2K GPUs; at 8K GPUs (reducing
main job training time by 9 days compared to 4K GPUs),
PIPEFILL is able to get 92% of the GPU utilization of tradi-
tional pipeline parallelism at 4K GPUs.
PIPEFILL’s performance is even higher with a more bubble-
friendly fill-job workload; in Figure 4 we also plot the GPU
utilization recovered when filling with only BERT infer-
ence jobs. With this workload, PIPEFILL improves GPU
utilization by 7.8-15.6% at low scales (1-2K GPUs). At
4K GPUs, PIPEFILL gets’s 96.7% of the GPU utilization
of traditional pipeline-parallelism at 2K GPUs; and at 8K
GPUs PIPEFILL exceeds the GPU utilization of traditional
pipeline parallelism at 4K GPUs by 6.5%. These results
show that PIPEFILL enables strong-scaling by an additional
binary order of magnitude with virtually no loss in GPU
utilization, and at higher scales can even increase GPU uti-
lization while strong-scaling. Additionally, due to the high
bubble ratios and the relatively modest slowdowns experi-
enced by the fill-jobs, the amount of GPUs worth of work
being done by PIPEFILL using only the pipeline bubbles
is notable. Depending on the workload, PIPEFILL can run
200-300 GPUs worth of fill-job when when the main job is
using 2K GPUs, 600-900 GPUs worth of work when using
4K GPUs, and 1500-2600 GPUs when using 8K GPUs. We
discuss this in detail in section 6.2

Physical cluster results. We confirm PIPEFILL’s effec-
tiveness and validate the fidelity of the simulator results by
evaluating a subset of the settings on a small physical clus-



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

0 4K 8K
GPUs

0

20

40

60

80

Da
ys

 to
 Tr

ai
n

Traditional PP
PipeFill

(a) Main Job Training v.s. # GPUs

0 4K 8K
GPUs

0.0

0.2

0.4

0.6

0.8

1.0

Bu
bb

le
 R

at
io

(b) Bubble Ratio v.s. # GPUs

0 4K 8K
GPU Count

0

10

20

30

40

50

TF
LO

PS
/G

PU

Traditional PP (LLM only)
PipeFill w/ Trace Mix
PipeFill w/ BERT Inf

(c) GPU Utilization v.s. # GPUs

Figure 4. Simulator results of running a 40B LLM training job using 1-8K GPUs.

ter with a 5B parameter LLM training job. We measure the
free-memory quantity in the bubbles to be 4.5GB without
main-job offloading; when we measured the free-memory
of the larger training job, it was also 4.5GB, so we use
this value in our simulator. We run the 5B parameter main
job using 8 microbatches per minibatch per data-parallel
replica; this corresponds to using 64-way data-parallelism
and results in a bubble ratio of 65%, which is comparable
to the 8K GPU setting in Figure 4. We also use the full fill-
job trace distribution for the physical cluster experiments,
unless specified otherwise.

First, we evaluate whether the recovered GPU utilization
and low overhead to the main job predicted by the simulator
is truly observed in a physical environment. In Figure 5, we
vary the percentage of the bubble duration that PIPEFILL’s
Executor’s attempt to fill. We find that the overhead to the
main job is <2% for up to 68% of the bubble duration filled
by the Executor; at higher fill percentages, the overhead
to the main job can be substantial (though the total GPU
FLOPS utilization continues to increase). Also at 68% we
see that the TFLOPS/GPU recovered is around 7.39; this is
within 5% of the TFLOPS predicted by the simulator at the
same bubble ratio. This is because, in our simulator results,
the Fill Job Executors fill the same percentage of the bubble
duration by default.

Next, we evaluate whether the types of fill-jobs being run
affect the main job overhead. In Figure 6, we take two
very different job types from our trace: batch-inference with
XLM (the largest model) and training with EfficientNet (the
smallest model and the only CNN). We fix the percentage of
the bubble duration filled by the Executor at 68%, and vary
the fill-jobs from being all XLM to all EfficientNet; we find
that the overhead to the main job does not vary significantly.
This shows that the overhead to the main job is independent
of the types of fill-jobs being executed; instead it is only
affected by the percentage of the bubble duration being

filled.

Figure 6 plots the fill-job recovered-FLOPS predicted by the
profile-based simulator and observed in physical execution—
the maximum error of the simulator is <2%.

6.2 Fill job characterization

This subsection discusses how fill job characterization af-
fects PIPEFILL’s performance. This study helps understand
the tradeoffs in which workloads are used as fill jobs. In
the experiments, we evaluate training and inference of five
different models as fill jobs. We measure the GPU FLOPS
utilization they are able to achieve during their execution as
fill-jobs and compare to the GPU FLOPS utilization they
achieve when run in isolated resources. Here we divide the
FLOPs (floating-point operations) executed to complete the
fill-jobs by the total duration that they are executed (sum of
all bubble durations used to complete the fill-job). This is
in contrast to dividing by the wall-clock completion time
(which we did in section 6.1 in order to understand the
performance of the fill-jobs when they are executing (as
opposed to the FLOPS utilization they can recover).

GPU FLOPS. Different fill jobs are able to utilize the GPU
FLOPS to varying degrees; there are several reasons for this,
some of which are related to the jobs’ fundamental charac-
teristics and some that are related to the bubble constraints.
In Figure 7a we plot the GPU FLOPS that each model and
each job type (i.e., training vs. batch inference) is able to
utilize on average during its execution; for comparison, the
main job is able to utilize 60 TFLOPS when it is executing.
Our first observation is that batch inference jobs are able
to reach higher FLOPS utilization than training jobs; this
is because inference jobs have low memory requirements
and thus can use higher batch sizes under the free memory
constraints of the bubbles than training jobs can. Among
training jobs, large-model training jobs have particularly
poor performance; this is because the much larger activation



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

footprint of these models requires CPU-offloading of the
activations. When comparing models, we see that Swin and
EfficientNet perform particularly poorly. The Swin model is
a non-uniform vision-transfomer model that uses a special-
ized attention operator; the memory-overhead of the larger
layers limit the batch size, which further hurts the GPU uti-
lization of the smaller layers, and the specialized attention
operator is not well-optimized in our implementation. The
EfficientNet model is small compared to the other models,
but since it is a CNN it has particularly large activation sizes;
the low free-memory in the bubbles limits the batch size that
we can use, and since the model is small, the batch sizes
that fit in the bubble free-memory are not large enough to
reach high GPU utilization.

Fill job slowdown. TFLOPS recovered lets us compare
the GPU utilization recovered across fill-job types, but we
would also like to know the slowdown experienced by the
fill jobs relative to their performance if they were run on
separate, exclusive GPUs. This analysis lets us approxi-
mate how many GPUs can be saved during the duration
of the main job by filling its bubbles with certain fill-job
types. In Figure 7b, we again see that the slowdown varies
substantially across fill-job types. As expected, all fill-jobs
experience substantial slowdown due to several factors that
put fill-job execution at a disadvantage compared to exclu-
sive execution: 1) the fill-jobs can only use a fraction of the
GPU memory (about 25%) which often necessitates CPU-
offloading and limits batch-sizes, 2) the fill-job execution is
interrupted every time a bubble ends, introducing unavoid-
able inefficiencies in the Executor’s plan, and 3) because
the fill-job execution can only run for a short period of time,
each bubble, it often can only run a single iteration of a
subset of the model, which is not enough to warmup the
GPU caches. However, we see that these factors affect
different fill-job types to varying degrees. In particular, we
see that although XLM inference recovers similar TFLOPS

Figure 5. GPU TFLOPS of running a 5B LLM on the physical
cluster with varying filled bubble durations.

Figure 6. Simulator and physical cluster results of running a 5B
LLM with varying distributions of fill job types.

as BERT inference, it experiences more slowdown; this
is because XLM requires aggressive CPU-offloading, but
because the model is large it can still submit enough com-
putation work to keep the GPU busy. We hypothesize that
on newer hardware-systems that have higher bandwidth
between CPU and GPU memory (e.g., newer PCIe genera-
tions, NVLink-C2C), the fill-job slowdown from offloading
could be substantially lower. Regardless, most of the fill-job
workloads we evaluate experience around 30% of exclusive
execution.

Generally, for a main job using C GPUs with a bubble
ratio of B and fill-job relative performance of P , we can
approximate the GPUs saved by filling as C ∗ B ∗ P ; for
the 8K GPU main job in Figure 4, PIPEFILL can save over
1500 GPUs for the trace mix and over 2600 GPUs in the
best case.

6.3 Sensitivity studies

Main job pipeline schedule. We compare PIPEFILL with
the main job using a GPipe schedule to using a 1F1B sched-
ule, using the same main job as the simulator in section
6.1 and using the full fill-job trace. We vary the number of
GPUs from 2K (18.9% bubble ratio) to 16K (78.9% bub-
ble ratio). In Figure 8, we see that the at smaller scales
PIPEFILL recovers 20% more GPU utilization when the
main job uses GPipe, but at larger scales the gap closes to
5%. This is because 1F1B contains some non-contiguous
bubbles that are not within the fill-drain bubble or the fwd-
bwd bubble, which PIPEFILL does not fill; at larger scales
these non-contiguous bubbles become a smaller proportion
of the total bubbles.

Fill-job scheduling policy. PIPEFILL allows the scheduling
policy to be configured by the user; this section evaluates
two possible policies. In Figures 9a and 9b, we implement a
Shortest-Job-First policy and a Makespan-Minimizing pol-



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

(a) GPU TFLOPS v.s. fill job types (b) Job slowdown v.s. fill job types

Figure 7. GPU TFLOPS and fill job slowdown for different types of fill jobs.

icy. We see that the SJF policy is able to achieve lower
average JCTs, especially at lower loads where completion
time is not as dominated by queueing time. Conversely, the
Makespan-Minimizing policy is able to reduce makespan,
especially at higher loads where maximizing fill-job effi-
ciency has a larger impact.

Bubble durations and free memory. Main job characteris-
tics affect the pipeline bubble durations and free-memory;
for example, a deeper pipeline or a wider main job model
(with longer forward and backward times) can increase the
bubble durations. Meanwhile, a larger main job model could
also reduce the bubble free-memory. Here we analyze the
effects of these factors on PIPEFILL’s effectiveness.

In Figure 10a, we scale the bubble size by equally scaling
the main job model width and depth. We scale the original
main job from section 6.1, from 50% to 200% of the original
model size; we fix the free memory at 4.5GB. We see little
difference in the recovered TFLOPS, though shrinking the
bubble duration by 50% reduced TFLOPS by 5.3%.

In Figure 10b, we fix the main job model size (and thus
the bubble duration) and vary the free-memory from 2GB
to 8GB. We find free-memory to have larger impact on re-
covered TFLOPS, though with diminishing returns: 4GB
recovers 30% more TFLOPS than 2GB, but 8GB only re-
covers 12.2% more TFLOPS than 4GB.

7 RELATED WORK

Pipeline optimizations. There are many prior works on
increasing pipeline-parallel efficiency. Chimera (Li and
Hoefler, 2021) proposes bidirectional pipelines to reduce
pipeline bubbles at the cost of increasing the memory over-
head on each device. In practice, it is not possible due to lim-
ited GPU memory for large LLM training jobs. Megatron-
3D (Narayanan et al., 2021) proposes interleaved pipelines,
which requires the number of microbatches to be a multiple

Figure 8. Fill job GPU utilization of using GPipe and 1F1B
pipeline schedule algorithms with varying cluster sizes.

(a) Average JCT (b) Makespan

Figure 9. Sensitivity study of fill job schedule policy.

of the number of pipeline stages. It has limited applicability,
since minibatch sizes are fixed, as large-model training is
scaled up using data parallelism the number of microbatches
per stage decreases quickly to be less than the number of
pipeline stages. Alpa (Zheng et al., 2022), FlexFlow (Jia
et al., 2019), Dapple (Fan et al., 2021) aim to search for op-
timal pipeline partition configuration for the training, which
cannot eliminate bubbles. Bamboo (Thorpe et al., 2023)
introduces redundant computations in pipeline bubbles for
distributed training on spot instances. Pipefisher (Osawa



PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

(a) TFLOPS v.s. bubble sizes (b) TFLOPS v.s. free mem

Figure 10. Sensitivity study of bubble size and free memory.

et al., 2023) uses pipeline bubbles for second-order computa-
tions of the training job to accelerate the model convergence.
These proposals are orthogonal to our work.

Resource sharing. Many prior works have identified and
addressed the data-center GPU under-utilization issue by
GPU-sharing. AntMan (Xiao et al., 2020) provides the elas-
ticity for DL training jobs to scale up and down for better
efficiency. Salus (Yu and Chowdhury, 2019) puts multi-
ple DL jobs on the same device to improve the utilization.
PipeSwitch (Bai et al., 2020) allows time-sharing of clusters
for inference jobs with training jobs, when user demands of
inference job is at valley. REEF (Han et al., 2022) enables
kernel-level preemption and concurrent execution for shar-
ing GPUs with multiple inference jobs. PilotFish (Zhang
et al., 2022) exploits the spare resources on Cloud gam-
ing platform for DL training. Muri (Zhao et al., 2022)
interleaves the usages of multiple hardware resources (e.g.,
network, GPU, etc.) among multiple DL jobs. These prior
works do not address the pipeline bubbles of large model
training like LLMs with tens-of-billions parameters.

Efficient kernels. Another common way to improve the
compute utilization is to improve the computation efficiency
with efficient kernels. FlashAttention (Dao et al., 2022;
Dao, 2023) improves the computation efficiency and re-
duces the memory footprints of attention layers by tiling
computations. TVM (Chen et al., 2018), Ansor (Zheng et al.,
2020), NVFuser (nvf, 2023) fuses multiple computations,
like elementwise computation with matrix multiplications,
to improve the computation occupancy. PIPEFILL is or-
thogonal to this line of research. PIPEFILL can take these
techniques to further improve the overall utilization for both
training and filling jobs.

8 CONCLUSION

PIPEFILL fills the pipeline bubbles of huge DNN training
jobs with other jobs, significantly reducing the traditional
GPU utilization penalty associated with extreme scale-out
for such jobs. Experiments confirm that PIPEFILL can in-
crease GPU utilization by up to 63% when LLM training is
scaled-out, with <2% increase in LLM training time, and
even gains 5–15% for low-scale LLM training. Given the
explosion of generative AI and the high training costs for

the underlying DNNs, PIPEFILL provides a critical step
forward.

REFERENCES

A Fusion Code Generator for NVIDIA GPUs. https:
//github.com/NVIDIA/Fuser, 2023.

Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
{PipeSwitch}: Fast pipelined context switching for deep
learning applications. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 499–514, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen,
Eddie Q Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Car-
los Guestrin, and Arvind Krishnamurthy. Tvm: end-to-
end optimization stack for deep learning. arXiv preprint
arXiv:1802.04799, 11(20), 2018.

Tri Dao. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Infor-
mation Processing Systems, 35:16344–16359, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), Minneapolis, Minnesota, 2019. Association for
Computational Linguistics.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and
Wei Lin. Dapple: A pipelined data parallel approach
for training large models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’21, page 431–445,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450382946. doi: 10.1145/
3437801.3441593. URL https://doi.org/10.
1145/3437801.3441593.

https://github.com/NVIDIA/Fuser
https://github.com/NVIDIA/Fuser
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1145/3437801.3441593


PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman,
and Alexis Conneau. Larger-scale transformers for mul-
tilingual masked language modeling. In Proceedings of
the 6th Workshop on Representation Learning for NLP
(RepL4NLP-2021). Association for Computational Lin-
guistics, 2021.

Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
{GPU-accelerated}{DNN} inferences. In 16th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 22), pages 539–558, 2022.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Fi-
rat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen.
GPipe: Efficient Training of Giant Neural Networks Us-
ing Pipeline Parallelism. 2019.

Hugging Face Inc. Hugging face model hub. https://
huggingface.co/models, 2024. Accessed: 2024-
04-20.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and
model parallelism for deep neural networks. Proceedings
of Machine Learning and Systems, 1:1–13, 2019.

Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th annual international
symposium on computer architecture, pages 1–12, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter
Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian
Vaughan, Pritam Damania, and Soumith Chintala. Py-
torch distributed: Experiences on accelerating data par-
allel training. CoRR, abs/2006.15704, 2020. URL
https://arxiv.org/abs/2006.15704.

Shigang Li and Torsten Hoefler. Chimera: Efficiently
training large-scale neural networks with bidirectional
pipelines. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’21, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery. ISBN 9781450384421.
doi: 10.1145/3458817.3476145. URL https://doi.
org/10.1145/3458817.3476145.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2021.

Sam McCandlish, Jared Kaplan, Dario Amodei, and Ope-
nAI Dota Team. An empirical model of large-batch train-
ing. arXiv preprint arXiv:1812.06162, 2018.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19. Association for Computing Ma-
chinery, 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on gpu clus-
ters using megatron-lm. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’21. Association
for Computing Machinery, 2021.

Kazuki Osawa, Shigang Li, and Torsten Hoefler. Pipefisher:
Efficient training of large language models using pipelin-
ing and fisher information matrices. Proceedings of Ma-
chine Learning and Systems, 5, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden
Smith, and Yuxiong He. Zero-infinity: breaking the gpu
memory wall for extreme scale deep learning. In Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
SC ’21. Association for Computing Machinery, 2021.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi,
Olatunji Ruwase, Shuangyan Yang, Minjia Zhang, Dong
Li, and Yuxiong He. ZeRO-Offload: Democratizing
Billion-Scale model training. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Asso-
ciation, 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In Interna-
tional conference on machine learning, pages 6105–6114.
PMLR, 2019.

https://huggingface.co/models
https://huggingface.co/models
https://arxiv.org/abs/2006.15704
https://doi.org/10.1145/3458817.3476145
https://doi.org/10.1145/3458817.3476145


PIPEFILL: Using GPUs During Bubbles in Pipeline-parallel LLM Training

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan
Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali, and
Guoqing Harry Xu. Bamboo: Making preemptible in-
stances resilient for affordable training of large DNNs. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 497–513, Boston,
MA, April 2023. USENIX Association. ISBN 978-1-
939133-33-5. URL https://www.usenix.org/
conference/nsdi23/presentation/thorpe.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Qizhen Weng, Lingyun Yang, Yinghao Yu, Wei Wang, Xi-
aochuan Tang, Guodong Yang, and Liping Zhang. Be-
ware of fragmentation: Scheduling {GPU-Sharing}work-
loads with fragmentation gradient descent. In 2023
USENIX Annual Technical Conference (USENIX ATC
23), pages 995–1008, 2023.

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang
Hou, Zhi Li, Yihui Feng, Wei Lin, and Yangqing Jia.
Antman: Dynamic scaling on gpu clusters for deep learn-
ing. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, OSDI’20.
USENIX Association, 2020.

Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-grained
gpu sharing primitives for deep learning applications.
arXiv preprint arXiv:1902.04610, 2019.

Wei Zhang, Binghao Chen, Zhenhua Han, Quan Chen, Peng
Cheng, Fan Yang, Ran Shu, Yuqing Yang, and Minyi Guo.
{PilotFish}: Harvesting free cycles of cloud gaming with
deep learning training. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pages 217–232, 2022.

Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xu-
anzhe Liu, and Xin Jin. Multi-resource interleaving for
deep learning training. In Proceedings of the ACM SIG-
COMM 2022 Conference, SIGCOMM ’22. Association
for Computing Machinery, 2022.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
{High-Performance} tensor programs for deep learning.
In 14th USENIX symposium on operating systems design
and implementation (OSDI 20), pages 863–879, 2020.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang,
Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong
Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and
Ion Stoica. Alpa: Automating inter- and Intra-Operator
parallelism for distributed deep learning. In 16th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 22). USENIX Association, 2022.

https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/nsdi23/presentation/thorpe

