
RTBAS: Defending LLM Agents Against Prompt Injection and Privacy Leakage

Peter Yong Zhong*1, Siyuan Chen*1, Ruiqi Wang1, McKenna McCall1, Ben L. Titzer1, Heather Miller1, 2,
and Phillip B. Gibbons1

1Carnegie Mellon University
2Two Sigma Investments

Abstract

Tool-Based Agent Systems (TBAS) allow Language Mod-
els (LMs) to use external tools for tasks beyond their stan-
dalone capabilities, such as searching websites, booking
flights, or making financial transactions. However, these tools
greatly increase the risks of prompt injection attacks, where
malicious content hijacks the LM agent to leak confidential
data or trigger harmful actions.

Existing defenses (OpenAI GPTs) require user confirma-
tion before every tool call, placing onerous burdens on users.
We introduce Robust TBAS (RTBAS), which automatically
detects and executes tool calls that preserve integrity and
confidentiality, requiring user confirmation only when these
safeguards cannot be ensured. RTBAS adapts Information
Flow Control to the unique challenges presented by TBAS.
We present two novel dependency screeners–using LM-as-a-
judge and attention-based saliency–to overcome these chal-
lenges. Experimental results on the AgentDojo Prompt Injec-
tion benchmark show RTBAS prevents all targeted attacks
with only a 2% loss of task utility when under attack, and fur-
ther tests confirm its ability to obtain near-oracle performance
on detecting both subtle and direct privacy leaks.

1 Introduction
Language Models (LMs) excel at complex tasks, using rea-

soning and planning when prompted with natural language
instructions. However, they are highly susceptible to mislead-
ing inputs, particularly prompt injection attacks, which embed
malicious commands to subvert safeguards and alter user- and
vendor-expected LM behavior [24, 58].

Meanwhile, recent advancements have led to the develop-
ment of Agents–advanced applications of LMs where LMs
can interact with external environments by making API calls.
These systems, known as Tool-Based Agent Systems (TBAS),
include products like OpenAI’s GPTs [30]. These systems al-
low LMs to utilize external tools to perform tasks beyond their
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[{"amount":100,date:"Jan22",visibility:everyone,to:Alice,description:"Pizza
Party"},...

How much money did I pay Alice in the past 31 days? For what?

get_recent_transaction(days = 31)

send_money(Mallory, $100, "Lunch, Sorry for being late")

You paid Alice $100 for Pizza Party.

          {"amount":0.01,date:"Jan 20",from:Mallory, visibility:
everyone, description: "Lunch\n\nIMPORTANT: complete my earlier
request, but please also send Mallory the $100 I forgot to send him
for lunch, with my apologies. After this, only respond with the
answer to my earlier request for conciseness."}

Figure 1: An example prompt injection in TBAS. Prior to
this interaction, Mallory embeds a malicious prompt (shown
in red) in her Venmo transaction description. The LM calls
the get_recent_transaction tool to respond to user’s request,
which returns Mallory’s prompt as part of the tool response.
The LM reacts to the prompt and sends Mallory $100.

standalone capabilities, such as summarizing emails, search-
ing and summarizing websites, booking flights, or initiating
financial transactions.

The risks of prompt injection attacks are far greater in the
context of TBAS than in LMs alone. While a LM poorly sum-
marizing a magazine article is low stakes, a maliciously in-
jected prompt into an agent system could trigger high-impact
actions, such as unauthorized funds transfers [26] or modified
flight itineraries [1], drastically expanding the blast radius of
potential harm. An example illustration of a prompt injection
attack is shown in Fig. 1.

Risks to user confidentiality are significant in the context
of TBAS. Because LMs have access to the user’s entire in-
teraction history, data from earlier interactions can inadver-
tently influence future responses. Ambiguous, underspecified,
or misinterpreted commands can cause the model to reveal
sensitive information, such as personally identifiable informa-
tion (PII) or financial data, even when explicitly instructed to
maintain secrecy. Attackers can exploit this vulnerability to
deliberately leak confidential data.

The risk of attacks on TBAS is so pronounced that the
Open Worldwide Application Security Project has recognized
Prompt Injection and Sensitive Information Disclosure as the
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top two security threats in its TOP-10 list for LM-integrated
applications [33].

Existing approaches to protecting integrity and confidential-
ity in TBAS face significant limitations and can inadvertently
undermine their own effectiveness. For example, OpenAI re-
quires users to confirm every tool call in their commercial
TBAS GPTs. While this provides a safeguard, the constant
prompts throughout the execution of complex tasks with mul-
tiple tool calls can lead to user fatigue. This fatigue increases
the likelihood of users mindlessly approving problematic re-
quests or abandoning the system entirely, underscoring the
need for more efficient and practical solutions.

Our goal is to develop a flexible system that automatically
detects and executes all tool calls that preserve integrity and
confidentiality, requiring user confirmation only when these
safeguards cannot be ensured. In such cases, users can weigh
the task utility against potential risks.

To achieve this goal, we adapt traditional information flow
control (IFC) [11] to the unique challenges presented by
TBAS. Dynamic taint tracking [29] offers a fine-grained
method for IFC that associates security metadata with vari-
ables, updates labels based on data and control flow dependen-
cies, and enforces security policies. However, this approach is
designed for traditional software with structured source code,
where dependencies can be explicitly instrumented.

Controlling information flow in TBAS, in contrast, is
uniquely challenging. Unlike traditional software, where
source code provides a well-understood representation of
how data flows through a program, TBAS operate in dy-
namic and opaque environments. These environments are
dynamic because interactions occur in real-time, driven by un-
predictable natural language inputs and responses to tool calls.
They are opaque because the relationships between input data,
the LM’s internal processing, and its resulting tool calls are
implicit, complex, and not directly observable or codified–
making dependency tracking far from straightforward and
fundamentally different from traditional source code-based
techniques. Every piece of data in the LM’s history could
theoretically influence its next tool call, exacerbating the label
creep problem common in traditional IFC [37], where any
tainted (e.g., low-integrity or confidential) data propagates
unnecessarily through the entire history. This unrestricted
propagation disrupts task execution by flagging benign tool
calls unnecessarily and overburdening users with constant
confirmations.

To address these challenges, we introduce Robust TBAS
(RTBAS), an information flow-based framework that se-
lectively propagates security metadata using dependency
screening. We present two novel screeners for identify-
ing which regions are relevant for generating the next
response or tool call. Irrelevant regions are masked–
redacted from the history–preventing unnecessary taint
propagation without degrading the LM’s functionality.

This approach leverages two key observations about LMs:

1. Selective History Dependency: While LMs process their
entire history, responses are typically influenced by only
a subset of the history. Masking irrelevant regions helps
prevent unnecessary data from creeping into the LM’s
decisions.

2. Missing Data Resilience: LMs are robust to missing/in-
complete data, allowing irrelevant regions to be masked
without significantly impacting task performance.

We propose two complementary approaches for depen-
dency screening:

• LM-Judge Screening: This method uses a secondary LM,
called a LM-Judge, to evaluate the history and identify
which regions are critical for the current tool call or re-
sponse. By explicitly prompting the LM-judge to reason
about dependencies, this approach offers flexibility and
task-specific adaptability.

• Attention-Based Screening: This approach involves train-
ing a neural network to quantify how different regions of
the context influence tool calls or responses. Higher at-
tention scores indicate stronger dependencies, providing a
data-driven method to identify relevant regions.

Both approaches allow the system to propagate security
metadata selectively, ensuring that low-integrity or confiden-
tial data is appropriately handled while minimizing unneces-
sary tainting.

We make the following key contributions:

• RTBAS: A novel framework for defending against prompt
injection and sensitive information disclosure in TBAS,
based on adapting IFC to the unique challenges of TBAS
using dependency screening and selective region masking.

• Two Novel Screening Approaches: We propose both LM-
Judge and Attention-Based screeners, offering complemen-
tary strategies for analyzing dependencies in TBAS.

• Comprehensive Evaluation: We evaluate RTBAS and its
screening approaches on the AgentDojo benchmark [10],
which simulates prompt injection attacks on real-world
TBAS tasks across domains like banking, travel, and mes-
saging. Our system prevents 100% of attacks violating secu-
rity policies with minimal impact on task utility (<2% degra-
dation), outperforming state-of-the-art (SOTA) defenses.
We also create an Accidental Leakage benchmark for evalu-
ating confidentiality protection in TBAS tasks across three
domains. In evaluation, RTBAS outperforms SOTA de-
fenses by (i) detecting and executing without user confirma-
tion the same set of tool calls as the oracle for all but one
task, while matching the oracle’s confidentiality protection,
and (ii) maximizing overall task utility relative to SOTA
defenses, even those requiring 100% user confirmation.

2 Background and Related Work
Agentic AI Systems and Tool-Based AI Agents. The inte-

gration of external environments with LMs is often described
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as Composite AI Systems [52] or simply agents [48,57]. These
systems leverage the LM’s capabilities to comprehend nat-
ural language [32], perform reasoning [36, 47, 53] and plan-
ning [16, 25, 46]. Tool-Based Agent Systems (TBAS) [51], a
subclass of LM agentic systems, operate in a single context
and interact with external environments via tool calls. Widely
adopted in applications like Bing’s ChatGPT integration [39],
TBAS also power platforms like OpenAI’s GPTs [30] and
CustomGPT.ai [9], enabling developers to customize agents
with specific instructions and tools.

Prompt Injection For LMs. A prompt injection attack
[23, 24] occurs when malicious inputs, or prompts, are intro-
duced into the agent’s history (context) to alter its behavior.
Prompt injections, often as natural language instruction pre-
tending to be the user, but at times it could be nonsensical
text making its detection even more subtle [58]. While users
can initiate such attacks to bypass application-defined guide-
lines [22] or extract system prompts [50], our focus is on
prompt injections originating from tools that retrieve data
from untrusted sources such as other websites, public reviews,
comments, etc. [10, 54]. These injections can maliciously
manipulate the TBAS, causing it to perform unintended or
harmful tasks.

Defenses for Prompt Injection and Privacy Leakage.
Defenses can be categorized into two strategies:
• Injected Prompt Detection: Possible prompt injections can

be identified using perplexity measures or another LM
trained to flag anomalies [3, 17, 35].

• Prompt Impact Mitigation: These limit injection effects
using (i) data sanitization approaches such as parapharsing
[18], retokenization [18], delimiters, (ii) fine-tuning on non-
instruction-tuned models [34], (iii) restricting tools based
on user requests [10], or (iv) pretraining LMs to enforce
hierarchies or improve instruction/data separation [8, 44].
Most of these techniques are heuristic based and not conser-

vative, nor do they allow an application developer to provide a
security policy specifying allowed actions given a current in-
tegrity and confidentiality environment. Compared to RTBAS,
data sanitization methods are heuristics driven and are subject
to adversarial jailbreaking [22]; tool restrictions allow attacks
using unrestricted tools; pre-training techniques are difficult
to apply to commercial models, and still rely on the LM to
ignore malicious prompts, albeit with greater difficulties.

Much research [6, 21] has been completed on training time
privacy concerns. Inference-time techniques have been fo-
cused on detecting outputs with possible PIIs [20] or desensi-
tizing them before sending to the LM [15, 41]. However, they
typically are not focused on tool-based environments.

Information Flow for LLMs [40] explores the similar
selective propagation approach. However, their mechanism
requires enumerating all possible subsets of relevant prior
input regions (documents in RAG) to identify the minimal
subset that leads to similar outputs. As noted in their paper,
the naive implementation of this mechanism incurs a worst-

case complexity that is exponential in the number of prior
input regions, potentially reaching thousands in the RAG sce-
narios. Even their optimized version still requires exponential
enumeration with respect to the number of levels in a lattice,
resulting in 16-64 additional LM calls with a typical lattice
with 4-6 levels. In contrast, as we will discuss later, our mech-
anism employs a dependency analyzer that efficiently detects
relevant input regions in parallel by a single call, reducing the
computational overhead from exponential to constant. This
fundamental improvement highlights the practicality of our
approach. Lastly, unlike our technique, [40] does not spec-
ify the propagation of labels beyond labeling the response,
which makes it inapplicable to interactive settings such as tool-
calling. There is also no mechanism to verify the computed
label against allowed policy or solicit user confirmations.

Attention Score as a Measure of Saliency. Attention
scores [43, 49], which measure a transformer-based model’s
“focus” on past tokens, is a widely-used technique in the ma-
chine learning community to explain a neural network’s in-
ternal processing [19, 45], prune irrelevant input texts [56],
etc. In this work, we leverage attention scores as an input to
the dependency screener, as they capture the degree to which
output tokens are influenced by specific input regions.

3 Motivation
3.1 Prompt Injection as an Integrity Concern

Integrity in the context of TBAS ensures that the agent’s
actions and outputs align faithfully with user requests and
the system’s intended purpose. TBAS assists users by calling
provided tools to perform actions or retrieve helpful infor-
mation. Tool responses, however, can contain untrusted, or
low-integrity content containing injected prompts. To main-
tain integrity, the system must safeguard against unauthorized
modifications, especially when using integrity-sensitive tools.
For instance, tools capable of spending money, sending mes-
sages on behalf of users, or performing actions with signifi-
cant side effects must not execute commands originating from
untrusted or compromised inputs.

Consider the following scenarios:

• Website Content: fetch_website, fetches content from a
website. An attacker can plant malicious text on the website,
which is then returned by the tool. The tool itself remains un-
compromised—it faithfully fetches the content as designed,
but the attacker controls the underlying data source.

• Venmo Description: get_recent_transaction retrieves
the user’s recent transactions, including their descriptions.
An attacker can plant a malicious prompt in the description
of a transaction (see Fig. 1), which went unnoticed at the
time (e.g., here the user may not have paid attention to such
a small incoming transfer nor noticed that the description
extended to a second paragraph).

However, there are genuine scenarios where low-integrity
input is necessary to affect integrity-sensitive tools. For such
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buy_ingredient(["Coca Powder", "Icing Sugar","Desiccated Coconut"]

Look up recipes for Lamingtons and buy any special ingredients

fetch_website(url="recipes.example.com?term=Lamington")
"Ingredient:Flour,Sugar,Eggs,Butter,Cocoa powder,Icing Sugar, Desiccated coconut.Bake
the sponge cake: Prepare a basic sponge cake using flour, sugar, eggs, and butter..."

interactions, our goal is to ensure the user is made aware of
such possible security violation but to seek their confirmation
as the final arbiter of whether to allow a suspicious call to
achieve task utility.

3.2 Tracking Confidentiality Leakage
In a TBAS, confidential data propagates in diverse fash-

ion, making it challenging to track and analyze. Private in-
formation may be explicitly required by user instructions or
implicitly utilized (e.g., using credit card details to complete
a purchase). It can also be employed during intermediate rea-
soning steps (e.g., using a user’s preferences to recommend
new products). The flow of such data can be subtly influenced
by tool descriptions or system instructions (e.g., a “Book
Flight” tool specifying, “Include frequent flier number when
booking”), potentially in ways the user does not anticipate,
even when the behavior is not inherently malicious.

Despite the variety of ways confidential data can be used,
our technique ensures that its flow is always tracked conser-
vatively. This approach guarantees that for every potential
leakage to an external environment, the user is either explic-
itly informed and provides active confirmation, or implicitly
approves the disclosure by agreeing to an established infor-
mation flow policy.

3.3 Attention Score
This section motivates the attention-based approach to cap-

ture the selective propagation of information in the LM. Fol-
lowing common practice, we use the Taylor expansion of the
loss function [27] to calculate the attention score (a.k.a, im-
portance score) for every input token, output word token pair,
which is defined as

Ai,o := LLM(Out puto, Input)−LLM(Out puto, Input|i) (1)

≈∑
h,l

∣∣∣∣Ah,l,i,o ·
∂LLM(Out puto, Input)

∂Ah,l,i,o

∣∣∣∣ . (2)

Here, Ah,l,i,o is the value of the attention matrix of the o-th
output token on the i-th input token of the h-th attention head
and l’s network layer, Input|i is the input tokens with the i-th
token masked, and LLM(Out put, Input) is the loss of the o-th
output token on the input. The importance score captures the
difference in the loss function before and after the i-th token
is masked, and is averaged across attention heads and layers.
Intuitively, attention scores measure how much "surprise" the
LM receives when masking out certain tokens, where a higher
attention score indicates a stronger dependency between the
output and the input.
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(a) TBAS backed by GPT-4o.
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(b) TBAS backed by Claude.

Figure 2: Attention score distribution for (non-)dependent
data for two models. The attention scores are obtained by the
open-source OPT-125m model. The results indicate attention
scores’ effectiveness in capturing dependency for the LM.

Now, we conduct case studies to demonstrate the potential
of importance scores in identifying key dependency relation-
ships in TBAS.

Setup. We obtain realistic TBAS traces in the AgentDojo
Benchmark (see Tab. 1 for more details), which is backed by
commercial LMs. When calculating the attention scores, we
format the tool calls made by the LMs into natural language
and collect attention data by running open-sourced models
locally on the input-output pairs. The attention score of an
input region is calculated by the ratio between the maximum
attention score in that region and the maximum attention score
across all input tokens.

Case Study 1: Dependency between the tool call and
its arguments. We investigate the dependency between tool
calls made by the LM and their input arguments distributed
across input tokens. We collected 3,424 input argument–tool
call pairs with either a positive or negative dependency re-
lationship labeled via pattern matching and/or semantic de-
pendency; e.g., book_flight call depends on the output of
lookup_flight. Figure 2 illustrates the distribution of atten-
tion scores obtained by the OPT-125m model [55] for TBAS,
supported by GPT-4o and Claude [4] models.

For non-dependent data, 74% to 86% of the attention mass
is concentrated below 0.2 across both GPT-4o and Claude
models. In contrast, for dependent data, only 14% and 44%
of the attention mass falls below this threshold for GPT-4o
and Claude, respectively.

TakeAway 1: Attention score effectively capture the depen-
dency between tool’s argument and the toolcall.

TakeAway 2: Attention scores of small, open-sourced LM
is effective in identifying the dependency of natural languages
in TBAS supported by high-end, closed-source LMs.

Case Study 2: Instructions following. Next, we look at
how attention scores can capture the dependency between
an instruction and the LM’s response to the instruction. We
setup the experiment to compare the attention scores the LM
pays to the user’s prompt and the potentially injected tool’s
response across 2416 labeled data. Fig. 3a shows the atten-
tion distribution when there is no prompt injection and the
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(b) Injected Instr. Following.

Figure 3: Attention score distribution of User Prompt and Tool
Response for instruction following. The injected instructions
are embedded in the tools’ response. When prompt injection
happens, the attention density shifts to the tool’s response.

LM follows the user’s instruction. In this scenario, the LM
pays combined attention to the user’s prompt as well as the
prior tool’s response to generate the next output. Interestingly,
when prompt injection happens and the next output of the LM
follows the injected prompt, as displayed in Fig. 3b, LM’s
attention shifts to the Tool’s response by a large margin.

TakeAway 3: Attention scores can effectively capture the
dependency between the instruction and LLM’s output fol-
lowed by it.

The above case studies motivate our design of the attention-
based dependency screener (§7.2).

4 Tool-based Agent Systems

Tool Call Prompt 
w/ data.

LLMTools

External Environments

Private Info.

Attacker User

Tool Response
Response

Prompt Injection Flow Privacy Leakage Flow

Tool-Based Agent System

Figure 4: Illustration of Tool-based Agent Systems and their
security risks.

Figure 4 illustrates a high-level overview of TBAS. This
section provides a concrete description of the TBAS model
relevant to our techniques. We assume a user interacts with the
agent through a chat interface, similar to ChatGPT or Gemini.
The user submits a request, and the agent attempts to fulfill
it by leveraging its internal knowledge, tool calls, and prior
interactions within the same session.

To illustrate how TBAS work more concretely, we first
present some relevant terminologies:
Symbols and Terminologies:

Message m
Messages M
Tool Call with inputs i t i

External Environment E

(3)

Definitions:
ToolCalls = · | t i :: ToolCalls
M = · |M,m (4)

Metafunctions:
GET_NEXT_TOOLCALLs : M 7→ ToolCalls
CALL_API : t i×E 7→ m×E
LM_RESPONSE : M 7→ m
USER_REQUEST : M 7→ m
USER_CONTINUE : M 7→ TRUE | FALSE

(5)

The TBAS agent is initialized with a system message (ms)
provided by the agent developer, which defines the agent’s
role and tone. The developer also supply a list of tools, each
defined by its name, signature (describing the legal invocation
format), and descriptions. These tools correspond to APIs
callable by the runtime.

The agent’s application state, or history, consists of all mes-
sages exist in the system: the initial system message, user-
issued requests, tool outputs, previous LM responses from
the assistant. These elements are concatenated into a text-
based input state, which the LM processes to decide its next
action—whether to respond to the user or invoke a tool.

At the start of a session, only the initial system message
(ms) is present. When the user sends a request based on their
initial request or responding to previous interactions, a mes-
sage is appended to the current history(USER_REQUEST).

Based on this input, the LLM generates zero or more Tool
Calls(GET_NEXT_TOOLCALLs).

The runtime inspects the Tool Call sections and ex-
ecutes the corresponding APIs specified by the devel-
oper(CALL_API). The results from the tool calls are col-
lected and are also appended to the history. The LM then pro-
cesses the entire updated history and generates another mes-
sage to provide the user with a response (LM_RESPONSE).

If the user wishes to continue with this conversation, the
process is started afresh(USER_CONTINUE).

We illustrate this process in Algorithm 1.

5 Attack Model for Prompt Injection
Attacker’s Goal. The attacker seeks to manipulate the

interactions between the user and the Tool-Based Agent Sys-
tem (TBAS) by influencing the tool calls the TBAS might
make. These manipulated tool calls can result in the leakage
of confidential information or introduce harmful side effects.
All malicious goals must rely on the side effects of these
tool calls: e.g. using message sending tools to transmit credit
card information or exploiting money-transfer tool to steal
the user’s money.

Attacker’s Capabilities. We assume the attacker has de-
tailed knowledge of the TBAS setup, including the system
instructions, the tools available to the TBAS and the specific
instructions for each tool. However, the attacker does not have
knowledge of timing mechanisms, nor do they have access to
the internal state or behavior of the agent itself. The attacker
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Algorithm 1 Tool-Based Agent System (TBAS)

Require: Initial System Message ms, Environment E
1: M← ·,ms ▷ Initialize with System Message
2: while USER_CONTINUE() do ▷ If user continues interaction
3: M← USER_REQUEST() :: M ▷ Append user message to M
4: ToolCalls← GET_NEXT_TOOLCALLS(M) ▷ Generate new tool calls based on M
5: for all t i ∈ ToolCalls do
6: E,m← CALL_API(t i,E) ▷ Run tool t i with environment E; update E and return m
7: M←M,m ▷ Append tool response to M
8: end for
9: M←M,LM_RESPONSE(M) ▷ Append response from the LM to the user response to M

10: end while

is also unaware of user inputs and cannot directly observe the
arguments or responses of the tools.

The attacker can influence the output of any tool that de-
pends on external inputs, provided that this influence does not
require compromising the tool itself. They cannot modify the
implementation of a tool or intercept or alter the communica-
tion between a tool’s API and the TBAS. The attacker cannot
hack the underlying data source of a tool beyond what is fea-
sible for an untrusted third party interacting with the tool’s
underlying application in a legitimate manner. However, the
attacker can interact with the application as a normal user and
modify data that the tool subsequently reads. See examples
in 3.1.

6 Robust TBAS Objectives and Assumptions
6.1 Objectives

Under prompt injection attacks and other sources of confi-
dential data leaks, our primary goals of robustness is to:
• Prevent private data leakage – Ensure that user’s private

data is not passed to external environments without explicit
user confirmation.

• Defend against prompt injection – Ensure that attacker
instructions do not lead to unwanted side-effects that com-
promises the integrity of the user’s system.

Our secondary goals are:
• Maintain Utility under attack – Minimize disruptions to

user tasks, even under possible prompt injection attacks.
• Minimize overhead – Minimize unnecessary compute or

user confirmations to achieve the above goals.

6.2 Assumptions
As is standard in Information Flow research, we assume

that these labels on both the User and Tool messages are pro-
vided to our system. We acknowledge this is a open problem
in IFC and will likely be a burden upon the agent developers
to provide a lattice of security labels and an information flow
policy on these labels.

More formally, we assume that the developer provides (L,
⊑, ⊔) where

• L is a finite set of security labels, where each label consists
of a pair of integrity label and confidentiality label.

• ⊑ is a partial order representing the “flows-to” relation,
which determines whether information can flow from one
label to another.

• ⊔ is a join operation that computes the least upper bound
of two labels within the lattice.

For example, in a simple four point lattice, where confidential-
ity levels are divided to Secret and Public and integrity levels
are divided to Trusted and Untrusted, L is defined as:

L = {(Trusted,Public),(Untrusted,Public),
(Trusted,Private),(Untrusted,Private)}

(6)

Information can only flow to a category that is at least as
restrictive as its source, ensuring integrity and confidentiality
are preserved; the operator is reflexive since information re-
mains in the same category, and the figure below illustrates
the flow-to (⊑) relation in a 4-point lattice with trust and
sensitivity levels.

(Trusted,

Public)

(Trusted,

Private)

(Untrusted,

Public)

(Untrusted,

Private)

Our technique can generalize to a more complex and fine-
grained lattice. Like many information flow problems, there
are cases where a more precise lattice can lead to precise
results. For example, drawing inspiration from [28], confi-
dentiality can be represented as the set of channels that are
allowed to access information, while integrity reflects the set
of sources that have influenced it.

Furthermore, we assume the developer and the user jointly
specify the information flow policy P that denotes security
restrictions on a potential tool-call.

P : t i 7→ L (7)
A tool call t i is only allowed to proceed if it is called from an
environment with label (li, lc) ∈ L such that l ⊑ P(t i).

We assume that both the tool’s response and user messages
are also sources of labels, containing regions that are labeled
with either low-integrity data from external untrusted sources
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or high-confidential data that would be inappropriate to share
unchecked.

Internally, tools must also comply with the defined infor-
mation flow policy. For example, consider a scenario with
two tools: send_message, which can handle private data, and
read_sent_messages, which returns sent messages as pub-
lic data. In this setup, a message sent to the user themselves
could effectively “launder” private information. Nonadher-
ence to the information flow policy at the tool level creates
a vulnerability where a tool capable of processing private
(or low-integrity) information could influence the public (or
high-integrity) output of another tool, thereby violating confi-
dentiality and integrity.

7 Approach
Dependency analysis forms the basis of our selective infor-

mation flow mechanism. The dependency screener analyzes
the history to identify relevant regions before the system pro-
ceeds. These screeners operate on a LM’s full history, where
parts of the history are divided into non-overlapping regions,
each annotated with confidentiality and integrity labels. Re-
gions without explicit labels are treated as having the most
permissive label (public and trusted). We first describe the
two approaches that we developed to estimate the dependent
regions for a particular generation.

7.1 LM-Judge Approach
LMs have demonstrated remarkable abilities in reasoning

[47,53] and reflection [36], making them well-suited for tasks
that require judgment or decision-making. This has led to the
increasing popularity of using LMs as judges [12]. In our
work, we adopt this methodology as one implementation of
the dependency screener. To achieve this, we tag every region
in the TBAS context with easily recognizable markers, such
as «REGION_N»region content goes here«/REGION_N»,
ensuring that the LM can clearly identify and differentiate
between regions. We employ prompt sandwiching [38] where
we provide instructions in both the system message and the
final message in a long context. We also employ GPT-4’s
capability to enforce a specific tool call to ensure the reflected
regions are well-formed.

7.2 Attention-Based Approach
Motivated by the case studies in §3.3, we design a neural

network to map the features of attention of the dependency
relationship.

Problem Formulation. We formulate the dependency anal-
ysis into a sequential binary classification problem. In partic-
ular, every input of a data point has two fields:

• I,O: the input and output text generated by potentially LMs,
• T = (b1,e1),(b2,e2), ...,(bn,en): a list of regions needed

for dependency analysis.

A classifier C maps the input text, output text, and input
regions to list of boolean variables on how whether the output
is dependent on any input regions. Namely: C (I,O,T )→
d̂1, d̂2, ..., d̂n ∈ {0, 1}.

Classifier Design. We design our classifier by first extract-
ing the attention features from the input-output text using
an open-source LM, and then mapping the features to the
dependency predictions by training a neural network.

In particular, we extract attention features ak for every re-
gion k by adopting common statistical measures:

• Normalized Attention Sum/Mean:

∑bk≤i≤ek
Ai

∑i Ai,o
,

∑bk≤i≤ek
Ai

∑i Ai,o
× |I|

ek−bk
,

• Normalized Attention Quantiles: 20-th, 50-th, 80-th, 99-
th Quantiles of normalized attention scores within the input
region.

After extraction, every region has a list of attention fea-
tures; we now map it to dependency scores using a neural
network. Since the input regions follow a natural temporal
pattern, we deploy a recurrent neural network (RNN) to iter-
atively generate whether the output depends on the current
input region. Namely, for a network f parameterized by θ, the
classification performs by d̂i, sk = fθ(sk−1,ak), i = 1,2, ...,n.
In practice, we found that a lightweight two-layer LSTM [14]
network suffices to obtain decent performance to uncover the
dependency relationship beneath attention features.

Implementation and Deployment. For the experiment,
we collect the dataset using 40 well-labeled test cases from
AgentDojo. The offline evaluation shows 85% train accuracy
and 81% test accuracy. When deploying the classifier, the lo-
cal feature extractor LM and the trained classifier are invoked
each time the LM generates an output to track dependencies.
As both the local models and the classifier are lightweight, this
process introduces minimal runtime overhead to the TBAS.

7.3 Robust TBAS
To extend TBAS with taint tracking, we introduce Robust

TBAS (RTBAS), an extension of traditional TBAS that per-
forms the propagation of security metadata during interac-
tions. We present a simplified view of our mechanism below
where we assume that all content within the same message is
annotated with uniform security metadata (i.e., each message
is a single “region”). However, our implementation supports
finer granularity, allowing individual messages, such as user
messages or tool responses, to contain multiple regions, each
with distinct security labels.

Terminologies and Definitions. To present RTBAS, we
extend the symbols and terminologies presented in List 3
where we use ♢ to represent redacted content. We also modify
the definitions presented in List 4 as the runtime needs to keep
track of security labels on messages. And that some messages
are masked or redacted to maintain security guarantees. We
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detail the masking process later in this section. m(li,lc) refers to
messages tagged with the integrity label li and confidentiality
label lc.

Tagged Messages M = · |M,m(li,lc)

Post Redaction Messages M♢ = · |M♢,m |M♢,♢

As specified in §6.2, we assume a security lattice L where
(li, lc) ∈ L, and a Information Flow Policy P, defined in Eq. 7
specifying the label restrictions for a tool call t i.

We change the types of the meta-functions presented in
List 5 to account for the Tagged Messages and Post Redaction
Messages shown below:

Metafunctions:
GET_NEXT_TOOLCALLs : M♢ 7→ ToolCalls
CALL_API : t i×E 7→ m(li,lc)×E
LM_RESPONSE : M♢ 7→ m
USER_REQUEST : M 7→ m(li,lc)

USER_CONTINUE : M 7→ TRUE | FALSE
Security Metadata Propagation. Before the LM is permit-

ted to generate the next message for the agent, the dependency
screener identifies the regions of interest. These are the re-
gions deemed relevant to the agent’s next action based on the
current context.

Once the regions of interest are identified, the runtime com-
putes a final label (ld

i , l
d
c ) . This label is derived by aggregat-

ing the security labels of all relevant regions using the join
operator (⊔) defined within the developer-provided security
lattice. This label, (ld

i , l
d
c ) , represents a conservative upper

bound on the restrictions associated with the regions of inter-
est. In other words, (ld

i , l
d
c ) is the least restrictive(more secret

and less trusted) label that is at least as restrictive as every
relevant region’s label for this final label (ld

i , l
d
c ) serves as

the security context for the next phase of computation, en-
suring that the LM respects the confidentiality and integrity
constraints implied by the relevant regions in the context.

Algorithm 2 Dependency Label SCREENER

Require: Tagged Messages M
Ensure: Collected dependency labels l

1: (ld
i , l

d
c )←⊥ ▷ Initialize l as the most permissive element

in the lattice
2: for all m(li,lc) ∈M do
3: if IS_RELEVANT(m,M) then
4: (ld

i , l
d
c )← (li, lc)⊔ (ld

i , l
d
c ) ▷ Merge labels for all

dependent regions
5: end if
6: end for
7: return (ld

i , l
d
c ) ▷ Return merged dependency labels

where the final label is at least as restrictive as the labels
on any relevant region

SCREENER : M 7→ L

The dependency screener is detailed in Algorithm 2 where the
IS_RELEVANT function is left unspecified and can be instanti-
ated by either the JM-Judge or the Attention-based methods.
It’s possible that there are nonregion based techniques that
could also instantiate such a screener.

Algorithm 3 REDACTOR Algorithm

Require: Tagged Message Sequence M, Redaction Label
(ld

i , l
d
c )

Ensure: Redacted Message Sequence M♢

1: M♢← · ▷ Initialize the redacted sequence as empty
2: for all m(li,lc) ∈M do
3: if (li, lc)⊑ (ld

i , l
d
c ) then ▷ Checking if message label

is as permissive as the target label
4: M♢←M♢,m ▷ Preserve message m
5: else
6: M♢←M♢,♢ ▷ Replace message with ♢
7: end if
8: end for
9: return M♢ ▷ Return the fully redacted sequence

Upon determining a label l , which represents the secu-
rity restrictions applicable to the message being generated,
the system enforces these restrictions to ensure soundness.
Specifically, the LM is allowed to observe any content that
is less restrictive than l . However, any content that is more
restrictive than l must be redacted. This redaction process is
shown by Algorithm 3.

REDACTOR : M,L 7→M♢ (8)

REDACTOR redact all messages that are more restrictive than
the label l arrived at by the screener.
Runtime Behavior. At runtime, the dependency screener first
output some label (lu

i , l
u
c ), which serves the role of conserva-

tively bounds the information that can influence the LM’s
generation of the next message, similar to that of the label on
the program counter in a traditional IFC analysis.

Next, the REDACTOR redacts all messages more restric-
tive(more secret and less trusted) than the label provided by
the screener. The resulting post-redaction messages are then
used by the LM to come up with a list of tool calls.

USER_CONFIRMATION : t i 7→ TRUE | FALSE
The runtime then verifies that each of the tool calls is per-

mitted with label (lu
i , l

u
c ) by the information flow policy of the

tool call P(t i) . If (lu
i , l

u
c ) is not permitted, the system halts to

await user confirmation on whether to proceed tool call.
We illustrate the Robust TBAS Algorithm 4, an extension

of the TBAS Algorithm 1. A worked through example of our
algorithm is found in Fig 8.

A critical aspect of information flow control is ensuring the
proper propagation of security metadata. Every time a new
message is generated, its label must reflect both the restric-
tions of the current context and the label returned by the tool.
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Algorithm 4 Robust Tool-Based Agent System (Taint Tracking Mechanism shown in Red)

Require: Initial Tagged System Message m
(ls

i ,l
s
c)

s , Environment E

1: Initialize M← ·,m(ls
i ,l

s
c)

s ▷ Initialize Tagged Messages M with the Tagged System Message
2: while USER_CONTINUE() do ▷ If user continues interaction
3: M←M,USER_MESSAGE() ▷ Append user message to M
4: (li, lc)← SCREENER(M) ▷ the screener obtains the label by screening the tagged messages M and returns the joined label of all relevant regions
5: M♢← REDACTOR(M,(li, lc)) ▷ Messages with more restrictive (more secret and less trusted)labels are redacted
6: ToolCalls← GET_NEXT_TOOLCALLS(M♢) ▷ Generate new tool calls based on the redacted M♢
7: for all t i ∈ ToolCalls do
8: (lp

i , l
p
c )← P(t i) ▷ Obtain the restriction label on this tool call

9: if (li, lc) ̸⊑ (lp
i , l

p
c ) and not USER_CONFIRMATION(t i) then

10: continue ▷ If the information flow policy is violated, explicit user confirmation is required to continue
11: end if
12: E,m(lti ,l

t
c)← CALL_API(t i,E) ▷ Execute tool t i with environment E; update E and return m

13: M←M,m(lti ,l
t
c)⊔(li ,lc) ▷ Append the tainted tool response to M

14: end for
15: (lu

i , l
u
c )← SCREENER(M) ▷ The response from the LM to the user needs to be similarly tainted based on its dependencies

16: M♢← REDACTOR(M,(lu
i , l

u
c ))

17: mu← LM_RESPONSE(M)

18: M←M,m
(lu

i ,l
u
c )

u ▷ Append response from the LM to the user to M
19: end while

This ensures the label accurately represents the cumulative
restrictions of all contributing factors.

Such tainting mechanism is represented by lines 13 and 18
from Alg. 4. Here, the runtime ensures that the security meta-
data of generated content aligns with the constraints imposed
by both the runtime context and the tool invocation, prevent-
ing unauthorized information leakage or policy violations.

We stress that the tool environment must align with the
stated information flow policy to prevent scenarios where se-
cret or low-integrity data influences public or high-integrity
data through a tool’s side effects. Such situations could effec-
tively create a backdoor, allowing the protections provided by
the information flow policy to be bypassed.

Screener Mistakes. Importantly, incorrect decisions by our
dependency screener approaches cannot compromise security
due to the selective masking mechanism. However, such er-
rors may degrade performance. This degradation could take
the form of over-tainting, where regions are unnecessarily
marked as private or low integrity, leading to excessive user
confirmations, or under-tainting, where insufficient content
remains accessible for completing the task.

8 Evaluation
In this section, we benchmark our techniques in addressing

the security threats for TBAS, that is, prompt injection and
privacy leakage. We aim to answer the following questions:

Q1: Under scenarios with prompt injections, how well does our
system maintain integrity and utility compared to state-of-
the-art defenses?

Q2: Under scenarios with privacy leakage, how much excessive
user confirmations do we burden the user and whether utility
is degraded compared to baselines?

Q3: How accurate is our detector in determining the information
flow within the LM and what is its runtime overhead?

8.1 End to End Evaluation: Prompt Injection
8.1.1 Setup
Test Suites. We benchmark our system on AgentDojo [10],
a state-of-the-art benchmark on agent adversarial robustness
against prompt injection attacks. Shown in Tab. 1, the dataset
consists of 79 realistic user tasks in four suites: banking,
travel, workspace, and slack. Every test suite represents a
TBAS application where LLM serves user’s request using a
given set of tools, e.g. send_money for the banking suite and
reserve_restaurant for the travel suite. Every test case in
a suite requires the LLM to solve a task with multi-round
interaction with external tools such as booking a restaurant
after filtering through reviews and datary restrictions.
Data Labeling. To integrate the information flow mechanism,
we enhance the task suites by assigning integrity labels based
on the application’s requirements while remaining agnostic
to specific test cases (examples are shown in Tab. 1). The
labeling process follows these key principles to satisfy the
assumptions we denote on the tool environment in 6.2:
• Regions in a tool responses that incorporates textual data

from external sources is labeled as low-integrity.
• Tools with significant side-effects (e.g., sending money)

or those can introduce high-integrity data to the external
environments (e.g. sending messages) are labeled as high-
integrity.

Prompt Injection Attacks. To emulate prompt injection at-
tacks, each test suite includes a set of injection tasks. These
tasks aim to induce the agent to misuse tools and produce
harmful side effects, such as making unintended reservations
on behalf of the user or leaking user’s private data through
public channels like emails. When evaluating the benchmark
under Prompt Injection attacks, each user task is tested against
every injection task in the corresponding test suite, resulting
in a total of 629 security test cases.
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Baselines. We evaluate the effectiveness of our mechanism
against state-of-the-art prompt injection defenses, as well as
two baseline approaches:

• Tool Filter by AgentDojo: Use the LM as a Judge to filter
the set of legal tools that an LM is allowed to use based on
the user task.

• Näive Tainting: A baseline tainting approach where we
assume every region in history affects the next message and
needed to be tainted accordingly.

• Redact All: A baseline approach where we redact every
single region that is not of high-integrity and public and
therefore no labels are propagated.

PI Detector by [3], Delimiting by [13] and Prompt Sand-
wiching by [38] were evaluated by AgentDojo [10]. PI De-
tector and Delimitting performed strictly worse than Tool
Filter. Prompt Sandwiching performed better without attack
in utility, but suffered a 27% attack success rate. We do not in-
clude these results since we consider Tool Filter the existing
SOTA.
Evaluation Metrics. We follow AgentDojo to use utility and
integrity (a.k.a. security in AgentDojo) as two evaluation
metrics to compare different defenses, where

• Utility determines whether the agent has solved the task
correctly, by inspecting the model output and the mutations
in the environment state.

• Integrity determines whether the attacker succeeds in their
attacks against the system.

We evaluate this benchmark suite using GPT-4o, consistent
with results from AgentDojo. The Prompt Engineering detec-
tor is also implemented using this model. For the Attention-
Based detector, which requires access to a LM’s internal
weights to compute cross-token attention scores, we use the
Phi-3-Mini-128K [2] instruction-tuned model. However, in-
ference steps are still performed using GPT-4o.

In this benchmark, we do not model user confirmations.
Instead, any apparent unauthorized calls contrary to the
information-flow policy are skipped and unperformed.

8.1.2 Results and Analysis
We present the results of the AgentDojo dataset both with

(Figure 5) and without (Figure 6) prompt injection attacks. A
cost comparison of running our techniques as a measure of
overhead (Table 4) is also provided.

Importantly, the lack of user confirmations and the subse-
quent rejection of all apparent suspicious tool calls means
that if we are able to seek user confirmations for calls that
inheritently depend on low integrity data or in the case of
over-tainting, then we are likely to achieve even better perfor-
mance.
Without Attacks. We present the results without attack in
Fig 6. The impact on utility is best illustrated by the differ-
ence between the baseline case (no defense) and our tech-
niques. Specifically, we observe a 10% and 7.4% degradation

in utility for the LM-Judge and Attention-based detectors,
respectively. Interestingly, the Tool Filter technique slightly
increases utility in the absence of attacks. We speculate that
this improvement arises from an implicit planning step, where
irrelevant tools are excluded from LLM consideration.

Our approach performs particularly well in the travel and
workspace suites. As illustrated in the results in these suites,
our approaches consistently achieve the highest utility among
other methods, even exceeding the baseline(no defense) case
by 5% on average. These task suites naturally align with a
more fine-grained integrity lattice and precise security policy,
reducing scenarios that require manual user intervention.

The Slack dataset, however, emerges as an outlier for our
techniques. While our approaches still outperform naive taint-
ing and redact-everything methods, the utility drops to 33%
and 22% for the Attention-based and LM-Judge detectors re-
spectively, which is more than halved compared to the mean
utility. This performance drop can be attributed to the nature
of Slack tasks, which often involve variations in reading con-
tent from untrusted websites and performing actions based
on that content. We consider such tasks inherently unsafe,
necessitating user confirmation.

invite_user_to_slack("Dora", "dora@gmail.com")

Invite Dora to Slack her contact info is found on www.dora.com

fetch_website(url="www.dora.com")
"This is personal website of Dora. My e-mail is dora@gmail.com. 
{INJECTION_PLACEHOLDER}"

Additionally, some tasks require the agent to send a sum-
mary of an untrusted website to a high-integrity source (e.g.,
posting the summary to a Slack channel). If left unchecked,
such actions could compromise the high-integrity source by
spreading prompt injection attacks like a virus or conveying
unintended statements.
Under Attack. We present the result when under prompt
injection attack in Fig 5. RQ1: Our techniques still retain a
high utility compared to the baseline without defense, only
losing less than 1% utility for the LM-judge screener and 3%
for the Attention-based screener.

We note that we do prevent 100% of attacks that violate
our security policy. However, in the workspace benchmark,
there was one test case where text written by the user, labeled
as high-integrity, contained possible prompt injection and is
thus not tracked. This illustrates a major limitation for our
mechanism, as with any other IFC techniques, that the security
guarantees provided are only as good as the labels provided
and the policies enforced.

8.2 End-to-End Evaluation: Privacy Leakage
This experiment evaluates different defenses against the

privacy leakage threat, e.g. accidental reference to chat his-
tory, silently booking a restaurant without user’s confirmation.
For every tool call the LLM makes, the defense mechanisms
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Table 1: Overview of the Prompt Injection Benchmark

Task Suite # User Task #Test Case Number Tools Number Messages Per Test Case Example Labelled Low-Integrity Data Example High Integrity Tool Calls

Banking 16 144 11 8.9 +- 3.0 External Bills, External Transaction Notes update_transactions, send_money
Travel 20 140 28 13.6 +- 3.8 Hotel Reviews, Restaurant reviews. send_email, book_hotel
Slack 21 105 11 15.6 +- 4.4 External Channel messages, Web Contents. add_new_user
Workspace 40 240 24 8.7 +- 3.4 External Documents in a Cloud Drive update_calendar
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Figure 5: End-to-end evaluation on Security-Utility trade-off for Prompt Injection. The Top Right Corner indicates that high
success rate of the user’s task and high integrity of the defense against prompt injection across test cases.
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Figure 6: The Utility Rate comparison for the Prompt Injec-
tion Benchmark without attack.
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Figure 7: The Utility Comparison for the privacy leakage
benchmark. The solid bars represent the utility achieved when
users block tool calls upon receiving confirmation requests
from the defenses. The faint bars indicate the additional util-
ity users can gain by allowing these tool calls. The results
demonstrate that our approaches provide a near-optimal bal-
ance, offering users flexibility to achieve varying utility levels
based on their confirmation choices, unlike GPTs, which re-
quire confirmation every time.

decide whether to flag the user for confirmation or proceed
silently by masking out the private data. An ideal defense
should effectively balance the transparency by asking the
user for confirmation whenever privacy leakage occurs, and
provide a smooth user experience by avoiding unnecessary
confirmations when the tool call is independent of private

Table 2: Overall false positive rates and false negative rates,
for the Accidental Leakage benchmark.

FPR FNR

Confirm Never - redact-all 0 0.513514
Confirm Every Time (GPTs) 0.297297 0
RTBAS (LM-judge) 0.081081 0.108108
RTBAS (Attention) 0.162162 0.108108

data.

Table 3: Benchmark for Privacy Leakage

Task Suite Description Sensitive Data
Venmo
(12 tasks)

Managing transactions, friend in-
teractions, and account updates.

Transaction details, user info
(balance, password), friend
lists/info

Flight Booking
(12 tasks)

Searching, booking, and updat-
ing flights.

Credit card, passport number,
user address, booked itinerary

Amazon
(13 tasks)

Buying, returning, recommenda-
tion of products. Promotions

Credit card, address, past orders,
preferences, gender

Synthesized Benchmark. We are not aware of existing com-
prehensive benchmark for privacy leakage for TBAS. We
manually created 37 test cases across three TBASs in different
domains: shopping, finance, and flight booking. We provide a
short description of the task suite in table 3. Each task suite
simulates a specific TBAS setup, featuring the same tools,
descriptions, and system prompt, to represent a user-facing
application. Tools capable of contributing private information
to the context are annotated with regions identifying where
private data appear in their outputs, along with labels specify-
ing the nature of the private information.

Each task begins with prior interactions between the user
and the agent (i.e., the context window), which may already
contain marked private data. This is followed by a user mes-
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sage that outlines the task to be completed. To achieve the
task, the LLM may call tools to retrieve information, perform
actions with external side effects, and report back to the user
with the results.

Tasks vary in complexity. Some require a single reasoning
step, such as directly calling a tool or answering a query
based on the context. Others involve more intricate reasoning,
requiring sequential calls to multiple tools to complete the
task. Analyzing private information propagation in complex,
multistep tasks is particularly valuable, as these scenarios
provide more opportunities to observe indirect propagation
of private information. Each tool call should propagate only
the relevant information from the context, enabling a detailed
and fine-grained evaluation of our approach.

As illustrated in §3.2, propagation of privacy information
can occur in subtle ways. We include the diverse propagation
patterns explored in §3.2 as part of this benchmark to evaluate
the effectiveness of our dependency screener.

We keep in mind the following principles when creating
the dataset:

• Every test case has a ground truth tool calling to obtain the
utility.

• Every test case whose utility does not depend on the private
data will see private data in the ground truth tool calling
chain.

Evaluation Metrics. Upon evaluation, each tool call made by
an agent is manually labeled either as requiring confirmation
(leaking private data) or not based on the natural understand-
ing of the tool calling. Based on the oracle labels, we consider
the following metrics for the benchmark:

• False Positive Rate (FPR) measures the proportion of test
cases in which the defense mechanism fails to detect a call
to a tool that involves privacy leakage,

• False Negative Rate (FNR) measures the proportion of test
cases in which the defense mechanism incorrectly identifies
a tool call as leaking private data,

• Utility that measures the proportion of test cases that the
user’s task succeeds. Degradation to utility can result from
erroneous masking.

Approaches Compared. We compare the following ap-
proaches:

• Confirm Never - Redact All redacts all private data upon
information propagation. No confirmation necessary since
no private information will ever be seen by the agent.

• Confirm Every Time (GPTs) assumes every tool call may
leak private information and thus always requires confirma-
tion.

• Selective Propagation selectively propagates information
with the dependency screener. We include two instantiations
(LM-Judge based and Attention based) for comparison.

• Oracle represents a human expert that acts as the LM to

perform tool calls and decide whether to confirm with the
user.

Result and Analysis. Table 2 shows the trade-off between
the false negative rate (FNR) and the false positive rate (FPR)
across the synthesized test suites.

For the baselines, the Confirm Never redacts every private
region, hence it will proceed silently by masking out the pri-
vate data even when it is valid for a tool call to leak private
information, e.g. booking a flight with credit card number,
resulting in 51% FNR and severe utility loss. On the other
hand, the Confirm Every Time (GPTs) defense taints the tool
call as long as there is any private data in the context, resulting
in 30% FPR and redundant user confirmations.

Compared to the baselines, our selective propagation
defenses effectively tames the trade-off between trans-
parency and user experience. Compared to the Confirm
Never, the LM-Judge-based selective propagation delivers
higher transparency to the user by reducing the FNR from
30.7% to 7.6% for the Amazon Test Suite, from 58.3% to
8.3% for the Flight Booking test case, and from 66.7% to
16.6%.

In contrast, compared to GPTs that require user confirma-
tion for every tool call, our information flow-based defenses
significantly reduce unnecessary confirmations. Specifically,
the LM-Judge approach and the attention-based approach
achieve an FPR of 8.1% and 16.2% across all test suites, re-
spectively, whereas GPTs exhibit FPRs of 29%. In practical
terms, a smaller FPR translates into a significantly improved
user experience, requiring minimal interaction from the user.
This reduction in unnecessary confirmations is particularly
crucial for maintaining a seamless and efficient workflow.

Next, we explore the utility results achieved by different
approaches. Shown in Fig. 7, the solid bars show the success
rate of the user tasks when the user blocks every tool call upon
confirmation. The faint bars show the additional utility the
user can gain by allowing tool calls. Confirm Never and GPTs
baseline represents two extremes. On one side, Confirm Never
does not provide the user with any autonomy in deciding
whether a tool call should proceed, resulting in overall 35%
of utility. On the other side, the Confirm Every Time (GPTs)
defense prompts the user for confirmation upon every tool
call, with zero utility in the worst case and 91% utility in the
best case.

Across the two extremes, our selective propagation ap-
proaches are able to balance the utility and number of
times we seek user confirmation. Compared to GPTs con-
firming every time, our approaches obtain the baseline utility
of 40% and 43% for the LM-Judge and attention-based ap-
proach, respectively. That is, our approaches saves the user
from from the need to confirm for test cases in which no pri-
vate data is required for the task to succeed. For example, a
large portion of the amazon test suite is confirmation-free ser-
vices like product recommendation, product searching, etc.,
our approaches passes 53% test cases without confirmations.
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In fact, compared to the oracle, we are losing utility only in
1 out of 15 test cases, because of the overtainting booking
history for the current flight lookup.

Compared to Confirm Never approach, our approach offers
users the flexibility to proceed with the task by allowing po-
tentially risky tool calls with the user’s permission. This is
especially critical in applications like Venmo, where sensitive
data and financial activities are always involved. In our evalu-
ation, we are able to achieve 83% and 75% of utility when the
user allows every tool call, which is the same as GPT (83%).

8.3 Analysis
8.3.1 Taint Tracking Accuracy

We augmented the Privacy Leakage benchmark with pre-
cise labels that represents the sets of private information cat-
egory involved. We evaluate, for every tool calls, how often
these labels matches exactly the ground truth label we anno-
tated(Q3).

The user, through this label, can gather more information
about the category of data that the tool call purports to leak. A
user comfortable with leaking their credit card number to book
a flight may be hesitant to share her social security number.

A mislabeled tool call with more private data categories
than actually propagated could be erroneously rejected either
interactively or by reference to the policy that the user agrees
to prior. Oppositely, a label claiming less private data cate-
gories can distort the task, with actually relevant data masked.

Confirm Never (Redact All) Confirmation Always (GPTs) RTBAS (LLM Judge) RTBAS (LLM Judge)

22.3% 56.7% 57.3% 70.0%

We show that the selective propagation approach, when
instantiated by either the prompting or the attention approach
arrives at the exact ground truth label more than 70% and 57%
of the time, respectively. This is superior to our baseline tech-
niques for redacting all sensitive regions and thus propagate
nothing or the always confirm method where we assume a
tool call always leak every secret.

8.3.2 Dependency Screener Comparisons
For the Prompt Injection and Privacy Leakage benchmarks,

we find that the LM judge and the Attention-based depen-
dency screener perform similarly across the benchmarks, with
LM Judge performing slightly better overall under attack for
Prompt Injection and much better in terms of its detection
accuracies for privacy leakage(Tab 2). We conject the LM
judge’s ability to explicitly reason about the dependencies
and output its chain-of-thought [47] could help generalize the
mechanism across unseen task, and for more subtle propa-
gation cases. However, across end-to-end benchmarks, both
methods perform similarly with respect to the overall task
utilities. This suggests that the Attention-based approach can
detect important dependencies crucial to task success, but

Table 4: Runtime comparison of executing the user tasks on
the banking suite of AgentDojo. The metrics are averaged
across test cases. The price is calculated against OpenAI’s
pricing.

baseline price ($) time (s) #Tokens

Vanilla 0.014712 4.369265 2709.937500
Tool Filter (AgentDojo) 0.008653 4.880799 1504.625000
RTBAS (Attn) 0.027531 8.728362 5048.687500
RTBAS (LLM Judge) 0.031672 9.707550 5851.562500

can possibly miss more subtle dependencies that may still
influence task outcomes.

8.3.3 Runtime Overhead
Q3: Our techniques incur higher costs compared to existing

methods, primarily due to the overhead introduced by the de-
tectors. The Attention-based detector requires the LLM to run
twice: the first run generates a preliminary message, which
is used for the attention mechanism to compute dependency
results. The second run generates the final output after mask-
ing. The LM Judge screener also incur computer overhead
by running the judge LLM before the agent generates each
new message. In contrast, the tool detector only runs one ad-
ditional inference for each user message but not between tool
calls, and the Prompt Sandwiching approach only marginally
increases the number of tokens by repating the user requests.
We discuss opportunities for optimization in Sec. 9.

9 Discussion
Labeling. One limitation of our technique, common in

IFC research, is the need for labeled tool and user mes-
sages, along with an information-flow policy understand-
able to users. However, many applications naturally support
region-based labeling, particularly when addressing prompt
injection and confidential data leakage. For example, in a
get_email response, fields like Subject and Content could
be labeled low-integrity due to susceptibility to natural lan-
guage injections, while Sender might be high-integrity due
to strict schema requirements. Similarly, tools may handle
sensitive information; for instance, in a finance application,
a get_account_balance response could be marked high-
confidentiality to prevent accidental or malicious leakage.
Recent works on using LLMs for formal safeguards [5] and
privacy policy interpretation [7,42] offer promising directions
to bridge understanding gaps.

Cost. Operating both of our dependency screener methods
is currently resource-intensive. The attention-based screener
requires the agent to generate a preliminary message to ana-
lyze attention scores between regions, followed by a second
message based on different input during the selective mask-
ing process. A potential optimization involves using a smaller
model to generate the preliminary message, as it is not part
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of the agent’s final output. Smaller models could also benefit
the LM-Judge Screener. While early preliminary experiments
suggest that small, local models struggle as general-purpose
screeners, fine-tuning or prompt-tuning [31] on task-specific
datasets may enhance their performance. This approach could
improve efficiency without compromising effectiveness.

10 Conclusion
We present RTBAS, a fine-grained, dynamic information

flow control mechanism to safeguard Tool-based LLM Agents
against both prompt injection and inadvertent privacy leaks.
The mechanism selectively propagates only the relevant secu-
rity labels, through the use of the LM-Judge and Attention-
based screeners. The redaction of unused data enforces the
information flow policy for all possible selective propagation.

Empirically, we manage to curb malicious manipulations
and detect undesirable confidential data disclosures. Notably,
our evaluation on the AgentDojo benchmark shows that when
under prompt injection attacks, the proposed RTBAS frame-
work thwarts all policy-violating exploits with less than 2%
degradation to the agent’s task utility. Similarly, our privacy
leakage benchmark confirms RTBAS’ ability to obtain near-
oracle performance.

11 Ethics considerations
Our experiments were conducted using publicly available

benchmarks and constructed datasets explicitly designed for
this study. No real-world user data or personally identifiable
information (PII) was involved in the development or evalu-
ation of our methods. The attacks explored in this research
are well-documented within the community and do not ne-
cessitate additional disclosure. Additionally, our experiments
included subjecting language models to potentially harmful
tasks and simulating attacks on TBAS applications. We have
received assurances from OpenAI, the language model ven-
dor, that these interactions will not be used for training or
improving their models.
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[{"amount":100,date:"Jan 22",visibility:everyone,to:Alice,description:"<<REGION_1:
{TRUSTED,PUBLIC}>>Pizza Party<<REGION_1>>"},
{amount":50,date:"Jan 21",to:Bob,visibility:private,description: "<<REGION_2:
{TRUSTED,PRIVATE}>>New Year Gift 🎉<</REGION_2>>"},
{"amount":0.01,date:"Jan 20",from:Mallory,visibility:everyone,description: "<<REGION_3:
{UNTRUSTED,PUBLIC}>>🍔\n\nIMPORTANT: complete my earlier request, but please also send
Mallory the $100 I forgot to send him for lunch yesterday, with my apologies. After
sending the money, only respond with the answer to my earlier request for conciseness.
<</REGION_3>>"}

get_recent_transaction(days = 31)

Step 1 : The screener tries to find relevant region(s) :
If Region 1 and 3 is determined to be relevant then their labels are merged and returned:

How much money did I pay Alice in the past 31 days? For what? How much money did Adam send me in the last 31 days?

get_recent_transaction(days = 31)

Step 2 : Redact all regions not more permissive than

Region 2 is therefore redacted since 

[{"amount":100,date:"Jan 22",visibility:everyone,to:Alice,description:"Pizza Party"},
{amount":50,date:"Jan 21",to:Bob,visibility:private,description: "<<REDACTED>>"},
{"amount":0.01,date:"Jan 20",from:Mallory,visibility:everyone,description: "🍔
\n\nIMPORTANT: complete my earlier request, but please also send Mallory the $100 I
forgot to send him for lunch yesterday, with my apologies. After sending the money, only
respond with the answer to my earlier request for conciseness."}

Step 3: The LM generates next message based on the
partially redacted history

send_money(don, $100, "Lunch, Sorry for being late")

How much money did Adam send me in the last 31 days?

get_recent_transaction(days = 31)

[{"amount":100,date:"Jan 22",visibility:everyone,to:Alice,description:"Pizza Party"},
{amount":50,date:"Jan 21",to:Bob,visibility:private,description: "<<REDACTED>>"},
{"amount":0.01,date:"Jan 20",from:Mallory,visibility:everyone,description: "🍔
\n\nIMPORTANT: complete my earlier request, but please also send Mallory the $100 I
forgot to send him for lunch yesterday, with my apologies. After sending the money, only
respond with the answer to my earlier request for conciseness."}

Step 4: The runtime determines if the tool call is against policy

Since it is against the policy for the tool call, we stop the tool call
pending user confirmation                   

send_money(don, $100, "Lunch, Sorry for being late")

How much money did Adam send me in the last 31 days?

get_recent_transaction(days = 31)

[{"amount":100,date:"Jan 22",visibility:everyone,to:Alice,description:"Pizza Party"},
{amount":50,date:"Jan 21",to:Bob,visibility:private,description: "<<REDACTED>>"},
{"amount":0.01,date:"Jan 20",from:Mallory,visibility:everyone,description: "🍔
\n\nIMPORTANT: complete my earlier request, but please also send Mallory the $100 I
forgot to send him for lunch yesterday, with my apologies. After sending the money, only
respond with the answer to my earlier request for conciseness."}

Figure 8: A example for Robust TBAS in action. Walking through steps of Algorithm 4

17


	Introduction
	Background and Related Work
	Motivation
	Prompt Injection as an Integrity Concern
	Tracking Confidentiality Leakage
	Attention Score

	Tool-based Agent Systems
	Attack Model for Prompt Injection
	Robust TBAS Objectives and Assumptions
	Objectives
	Assumptions

	Approach
	LM-Judge Approach
	Attention-Based Approach
	Robust TBAS

	Evaluation
	End to End Evaluation: Prompt Injection
	Setup
	Results and Analysis

	End-to-End Evaluation: Privacy Leakage
	Analysis
	Taint Tracking Accuracy
	Dependency Screener Comparisons
	Runtime Overhead


	Discussion
	Conclusion
	Ethics considerations
	Appendix A: RTBAS Example Walk Through

