
Helix: Serving Large Language Models over
Heterogeneous GPUs and Network via Max-Flow

Yixuan Mei
yixuanm@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Yonghao Zhuang
yzhuang2@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Xupeng Miao
xupeng@cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Juncheng Yang
juncheny@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Zhihao Jia
zhihao@cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Rashmi Vinayak
rvinayak@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Abstract
This paper introduces Helix, a distributed system for high-
throughput, low-latency large languagemodel (LLM) serving
in heterogeneous GPU clusters. The key idea behind Helix is
to formulate inference computation of LLMs over heteroge-
neous GPUs and network connections as amax-flow problem
on directed, weighted graphs, whose nodes represent GPU
instances and edges capture both GPU and network hetero-
geneity through their capacities. Helix then uses amixed inte-
ger linear programming (MILP) algorithm to discover highly
optimized strategies to serve LLMs on heterogeneous GPUs.
This approach allows Helix to jointly optimize model place-
ment and request scheduling, two highly entangled tasks in
heterogeneous LLM serving. Our evaluation on several het-
erogeneous clusters ranging from 24 to 42 GPU nodes shows
that Helix improves serving throughput by up to 3.3× and
reduces prompting and decoding latency by up to 66% and
24%, respectively, compared to existing approaches. Helix is
available at https://github.com/Thesys-lab/Helix-ASPLOS25.

CCS Concepts: • Computer systems organization →
Cloud computing; • Computing methodologies → Arti-
ficial intelligence; Parallel computing methodologies.

Keywords: large language model serving, system for ML,
distributed systems, cloud computing

ACM Reference Format:
Yixuan Mei, Yonghao Zhuang, Xupeng Miao, Juncheng Yang, Zhi-
hao Jia, and Rashmi Vinayak. 2025. Helix: Serving Large Language
Models over Heterogeneous GPUs and Network via Max-Flow. In
Proceedings of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707215

Table 1.Minimum numbers of GPUs required to serve LLMs
in existing homogeneous serving systems. We use half of
GPU memory to store model parameters and the other half
for key-value cache.

Num. of Num. of Num. of Num. of
LLMs Parameters L4s A100s H100s

LLaMA-2 [56] 70 billion 12 7 4
GPT-3 [1] 175 billion 30 18 9
Grok-1 [59] 314 billion 53 32 16
LLaMA-3 [10] 405 billion 68 41 21

Table 2. Availability of different GPU instances in 6 regions
on Google Compute Engine [11].

GPU Type
Region H100 A100 80GB A100 40GB L4 T4 V100

us-central-1 ✓ ✓ ✓ ✓ ✓ ✓
us-east-4 ✓ ✓ × ✓ ✓ ×
us-east-1 × × ✓ ✓ ✓ ✓
eu-west-3 ✓ × × ✓ ✓ ×
asia-ne-1 ✓ × ✓ ✓ ✓ ×
asia-ne-3 × × ✓ ✓ ✓ ×

Volume 1 (ASPLOS ’25), March 30–April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3669940.3707215

1 Introduction
Generative large language models (LLMs) such as GPT-4 [1]
and LLaMA-3 [28] have demonstrated exceptional capabil-
ities of creating natural language texts across a spectrum
of application domains, including chatbot [38], coding as-
sistant [26, 44], and task automation [15]. However, the in-
creasingly large model sizes and high computational require-
ments of modern LLMs make it challenging to serve them
cheaply and efficiently on modern cloud platforms. In par-
ticular, most of today’s LLM serving systems (e.g., Orca [61]
and vLLM [22]) target homogeneousGPU clusters [29], where
all GPUs are of the same type and have identical memory
capacity and compute resources. Due to increasing model

586

https://orcid.org/0009-0003-5781-9164
https://orcid.org/0009-0001-8969-7478
https://orcid.org/0000-0002-9371-8358
https://orcid.org/0000-0002-0412-1139
https://orcid.org/0000-0002-1270-5185
https://orcid.org/0000-0002-2227-7460
https://github.com/Thesys-lab/Helix-ASPLOS25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707215
https://doi.org/10.1145/3669940.3707215
https://doi.org/10.1145/3669940.3707215
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3669940.3707215&domain=pdf&date_stamp=2025-03-30

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yixuan Mei et al.

Table 3. Properties of GPUs deployed in today’s data centers.
We report SXM version for H100 and A100. Data collected
from NVIDIA data sheet [32–35].

FP16 Memory Bandwidth Power Price
GPU (TFLOPs) (GB) (GB/s) (W) (USD)

H100 [33] 1979 80 3350 700 25k ∼40k
A100 [32] 312 40 1555 400 10k ∼15k
L4 [34] 242 24 300 72 ∼3k
T4 [35] 65 16 300 70 ∼1k

sizes, serving LLMs using homogeneous GPUs requires an
increasing number of GPUs, as shown in Table 1. In addi-
tion, serving state-of-the-art LLMs used in industry requires
even more resources. Recent works have identified that it
is increasingly difficult to allocate GPUs of this magnitude
within a single cloud region [50, 60].

Due to advances in GPU architectural designs and the
incremental deployment of them over time, modern cloud
platforms increasingly consist of a mix of GPU types. Ta-
ble 2 illustrates the heterogeneousGPU deployment in Google
Compute Engine [11], where datacenters are equipped with
various NVIDIA GPUs including H100, A100, V100, L4, and
T4. These heterogeneous GPU instances are spread across
datacenters around the world and collectively offer signifi-
cantly larger memory capacity and more compute resources
than individual GPU types, enabling a more accessible and
scalable approach to LLM serving. As Table 3 shows, eight
NVIDIA L4 GPUs can offer comparable FP16 compute per-
formance to a single NVIDIA H100 GPU, while providing
greater memory capacity, lower power consumption, and a
more cost-effective price point. Moreover, the availability
of these GPUs vary significantly across regions. We empir-
ically find that obtaining higher quotas and securing GPU
instances is much easier in some regions than others on
Google Cloud Engine, and the availability of different GPUs
vary a lot (see Table 4).

Geo-distributed LLM serving with heterogeneous GPUs
enables the aggregation of available GPUs from multiple
regions. This approach not only enhances resource utiliza-
tion but also minimizes LLM serving costs by strategically
leveraging the most cost-effective GPU instances across vari-
ous geographical locations. Similarly, there is also a trend of
using volunteer consumer GPUs to address the GPU scarcity
problem [9, 46, 62]. However, in contrast to homogeneous
GPU instances, deploying LLMs on geo-distributed hetero-
geneous instances necessitates accommodating various GPU
devices and network conditions.
Prior work has introduced several systems for running

machine learning computation over heterogeneous devices
or geo-distributed environments. However, prior attempts
either focus on long-running training workloads [16, 27,
39, 45, 64], which cannot adapt to LLM serving scenarios
with real-time inference requests, or focus on decentralized

Table 4. GPU quotas and deployment limits in us-east and
asia-southeast during our evaluation of Helix. We measure
deployment limits at two distinct time periods.

Quota Max Deployed
Region A100 40GB L4 T4 A100 40GB L4 T4

us-east 8 8 16 0 0 16
asia-southeast 8 24 32 4 12 >20

serving with volunteer computing [5, 6], which lack the
global coordination necessary to efficiently use GPU and
network resources in clusters.
To efficiently serve LLMs over heterogeneous GPUs and

network, we propose Helix, a distributed system for high-
throughput, low-latency LLM serving. Helix’s key idea is
to formulate the execution of LLM serving over heteroge-
neous GPUs and network as a data flow problem under the
constraints of diverse GPU computing capabilities, memory
capacities, as well as complex inter-GPU connections. Helix
leverages mixed integer linear programming to determine
optimal model placement under these constraints. To accom-
modate heterogeneity, Helix introduces per-request pipelines,
where each request has its own independent pipeline for
scheduling. This combination of flow-based formulation and
per-request pipelines enables Helix to achieve high GPU uti-
lization in heterogeneous and geo-distributed GPU clusters.
We will discuss the challenges and Helix’s solutions in Sec. 3.

We have implemented Helix on top of vLLM [22] and
evaluated it on three heterogeneous clusters ranging from
24 to 42 nodes, with up to 7 different node types. The mod-
els we evaluated include LLaMA-1 30B and LLaMA-2 70B.
Compared to heterogeneity-aware baselines, Helix improves
serving throughput by up to 3.3× while reducing average
prompting and decoding latency by up to 66% and 24%.

In summary, our contributions are:
• A system for LLM serving in heterogeneous and geo-
distributed GPU clusters.

• A max-flow formulation for LLM serving and an MILP-
based algorithm to optimize model placement.

• Flexible flow-based per-request pipelines tomaximize GPU
utilization.

• An implementation of our techniques and an evaluation
on various LLM benchmarks.

2 Background
2.1 LLM Architecture and Serving
Most of today’s LLMs adopt a decoder-only Transformer
architecture [7, 42], which begins by converting a natural
language query into a sequence of tokens. The model then
converts each token into a hidden state vector, whose size
is referred to as the model’s hidden size. A Transformer
model comprises of input and output embeddings and a series
of identical Transformer layers, each consisting of a self-
attention and a feed-forward block. A self-attention block

587

Helix: Serving LLMs over Heterogeneous GPUs and Network via Max-Flow ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

calculates the ‘affinity’ between every pair of tokens and
updates each token’s hidden states based on this contextual
relevance score. Feed-forward blocks independently modify
each token’s hidden state through a non-linear function.

Given an input sequence, a Transformer model computes
the probability distribution for the next token, and samples
from this probability distribution. Thus, the model applies
an auto-regressive paradigm to generate the whole output
sequence: given an input prompt, a model runs multiple it-
erations. At the first iteration, known as the prompt phase,
the model processes all prompt tokens and generates the
first output token. In subsequent iterations, known as the
decode phase, the model incorporates both prompt and pre-
viously generated tokens to predict the next output token.
This iterative process stops when model produces a special
end-of-sentence signal (⟨eos⟩). Since the generation output
is unpredictable, the exact number of iterations remains un-
certain until the sequence is fully generated.
In addition to the unpredictable execution iterations, an-

other feature of LLM serving is the high memory demand.
The self-attention block requires all previous tokens’ hidden
states as inputs. To store the hidden states (known as the
KV-cache) for newly generated tokens, the memory require-
ments keep increasing along the generation process.

To address these challenges, Orca [61] presented iteration-
level scheduling, which updates a batch at every iteration
to avoid resource retention when a request is completed but
others in the same batch need more iterations; vLLM [22]
introduces PagedAttention, managing memory for KV-cache
with identical pages and allocating a new page only when a
request has used up all its pages; multi-query [47] and group-
query attention [3] modifies the self-attention mechanism
to reduce the size of KV-cache stored for each token.

2.2 Distributed Model Serving
Open source LLMs now feature up to hundreds of billions of
parameters, far exceeding the memory capacity of a single
GPU. Consequently, serving an LLM requires multiple GPUs
operating in parallel. Tensor Parallelism (TP) [49] partitions
the weight of each operator among GPUs, gathering the par-
tial results on each device via an AllReduce/AllGather opera-
tion. However, TP is highly sensitive to network conditions.
For every Transformer layer, it needs two communications.
As a result, TP has a significant overhead in high-latency
networks, and is only used among GPUs within a node.

Conversely, Pipeline Parallelism (PP) [17] assigns different
operators (typically multiple layers) across GPUs to create
multiple pipeline stages. It then splits inputs into micro-
batches, running them through the pipeline. PP only trans-
mits the activation tensor at the boundary of pipeline stages.
Hence, PP is much less network-sensitive. However, it is chal-
lenging to perfectly partition both the model and input batch,
which results in pipeline bubbles. As a result, PP suffers from

the device idle at pipeline bubbles, and necessitating careful
schedule to be performant [2].
Traditional data center setups typically assume homoge-

neous clusters: uniform nodes with a uniform bandwidth. As
a result, models are evenly partitioned into pipeline stages
and assigned to each devices. As LLMs grow in size and the
latest generation GPUs remain scarce, deploying these mod-
els across heterogeneous computing devices has become a
critical necessity, a challenge that previous research has not
adequately addressed.
Deploying LLMs across geo-distributed, heterogeneous

GPU clusters requires careful consideration of both hard-
ware capabilities and network characteristics. Simple equal
distribution of model layers across devices fails to maxi-
mize the potential of more powerful hardware. Moreover,
the significant bandwidth differences between intra- and
inter-regional network connections must inform both model
placement and request scheduling decisions, particularly
when infrastructure spans multiple geographical regions.

No prior work has focused on LLM serving on hetero-
geneous GPU clusters. The most related work is Petals [5],
which performs decentralized LLM serving with volunteer
computing. Users contribute GPUs to form a decentralized
swarm and newly joinedmachines greedily serve the pipeline
stages with least compute capacity. For request scheduling,
users greedily choose the server with lowest latency to them.
Petals is effective for volunteer computing, but the lack of
global coordination makes it unable to fully utilize the GPUs
and network when the cluster is a known priori. Another
relevant work is SWARM [45], which performs DNN training
in heterogeneous clusters. It evenly partitions the model into
pipeline stages. When routing a request to the next pipeline
stage, it selects the replica based on real-time throughput of
candidates. Our evaluation shows that such simple heuris-
tics are not enough to achieve good performance in geo-
distributed clusters with heterogeneous GPUs and network.

3 Opportunities and Challenges
Using heterogeneous and geo-distributed GPUs presents
new opportunities for LLM serving. As shown in Table 3,
multiple commodity GPUs (L4, T4) can match the compute
capacity of high-end GPUs (H100, A100) while offering ad-
vantages in memory capacity, energy efficiency, and cost.
Furthermore, Tables 4 and 7 demonstrate that GPU avail-
ability varies significantly across regions, yet inter-region
network conditions remain suitable for LLM serving, mo-
tivating a geo-distributed approach. However, leveraging
heterogeneous and geo-distributed GPUs poses several key
challenges.

3.1 Challenge 1: Model Placement
Due to the increasing size of LLMs, serving them on modern
GPUs requires employing tensor [49] and pipeline [17, 39]

588

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yixuan Mei et al.

A100

Region 1

Region 2

L4 T4

T4

T4
Low BW
High BW

(a) Five nodes in two clusters.

A100

Layer 3

L4

T4T4

T4

Under-utilization

Layer 1 Layer 2

(b) Uniform model partition.

A100

Layer 2 & 3

L4

T4
T4
T4

Congestion: low bandwidth

Layer 1

(c) Balanced FLOPs.

A100

Layer 3

L4

T4T4T4

Balanced and No Congestion

Layer 1 Layer 2

(d) Network aware placement.

Figure 1. Examples of sub-optimal model placement and request schedule. 1a) all GPUs and network condition in this example.
The order of compute capacity is: A100 > L4 > T4; 1b) Model placement by uniformly partition the model, then allocate devices
by a balanced compute capacity; 1c) Co-optimizing model partition and device placement to make the compute capacity more
balanced; 1d) Co-optimizing model partition, device placement, and request scheduling in a network-aware way.

model parallelism to partition an LLM into stages and place
those stages on different GPUs, a task we term model place-
ment. Homogeneous serving systems (e.g., Orca [61]) par-
tition an LLM into equal-sized stages and assign them to
GPUs. This approach results in sub-optimal utilization of
high-performance GPUs as it accommodates the memory
and computational limitations of less powerful GPUs. Ex-
isting heterogeneity-aware serving systems (e.g., Petals [5])
rely on different heuristics to partition a model into stages
and assign them to GPUs. Existing heuristics do not simulta-
neously consider both GPU and network heterogeneity.
Helix’s solution:Helix exploits the flexibility of token-level
scheduling in LLM serving and formulates model placement
as a max-flow problem of a directed, weighted graph, whose
nodes represent GPU instances and edges capture both GPU
and network heterogeneity through their capacities in the
max-flow problem. Helix then uses a mixed integer linear
programming (MILP) algorithm to discover highly optimized
model placement strategies, which largely outperform the
heuristic methods used in prior work [5, 45]. Leveraging the
data dependencies and homogeneity of LLM layers, Helix
expresses the MILP problem with linear number of variables
and constraints relative to the number of compute nodes and
network connections, resulting in a tractable problem size.

3.2 Challenge 2: Request Scheduling
A second challenge Helix must address is request scheduling.
To serve an LLM request, Helix needs to select a pipeline of
GPU instances to compute all layers of the LLM. Existing
systems generally employ a group of fixed pipelines and
assign requests to these pipelines in a round-robin fashion.
Using fixed pipelines is not flexible enough to accommodate
the heterogeneous compute and network conditions and
often causes under-utilization.
Helix’s solution: Helix introduces per-request pipelines,
where each request is assigned its own pipeline. As a re-
sult, the total number of potential pipelines is equal to the
number of paths from source to sink in the graph representa-
tion of the cluster, which offers sufficient flexibility for Helix
to maximally utilize the full capacity of GPU instances and
network connections between them.

Coord.

A100

T4-280
40
20

60

50

90

T4-1

Unit: mbps Holding
Layer 1 & 2A100

Layer 1T4-1
Layer 3T4-2

Token size: 4 Byte
Activation size: 16 KB

Id
𝑐1
𝑐2
𝑐3

(a) A 3-node cluster with model placement. Network connections
between the coordinator and compute nodes transmit tokens (4
Byte) while others transmit intermediate activations (16 KB)

source
sink

𝑐1
𝑖𝑛 𝑐1

𝑜𝑢𝑡

1500

𝑐2
𝑖𝑛 𝑐2

𝑜𝑢𝑡

1000
𝑐3
𝑜𝑢𝑡

1000
𝑐3
𝑖𝑛

4582.5M
687

62
5K

A100

T4-1 T4-2

1.25M

(b) Graph abstraction of the cluster.

Figure 2. Graph abstraction of a 3-node cluster with given
model placement. Numbers on the edges in Fig. 2b represent
their capacity, which is the number of tokens that can pass
through the edges per second. Max flow between source and
sink equals the max serving throughput of the cluster.

4 Optimization Formulation in Helix
This section first provides a mathematical abstraction for
LLM serving systems. Based on this formulation, we model
heterogeneous LLM serving as a Max-Flow problem. Finally,
we applymixed-integer linear programming (MILP) to search
for a model placement strategy with the highest max flow.

4.1 Formulation of LLM Serving
A cluster to serve LLMs generally contains one coordinator
node ℎ and a group of compute nodes C. Each compute node
𝑐𝑖 ∈ C has a compute capacity and GPU VRAM size. Com-
pute nodes with multiple GPUs can be abstracted as a single
logical node, aggregating GPUs’ combined computational
capacity and GPU VRAM resources. Throughput and latency
of network connections between nodes in the cluster are
also given. Based on the cluster information, LLM serving re-
quires finding a placement of model layers to compute nodes
to maximize a serving performance metric that will be defined
below. The model placement function Ψ : C ↦→ P(M) takes

589

Helix: Serving LLMs over Heterogeneous GPUs and Network via Max-Flow ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

as input a compute node and returns a (usually continuous)
subset of the modelM. Here, we assume pipeline parallelism
for inter-node parallelization and tensor parallelism for intra-
node parallelization across GPUs, as tensor parallelism de-
mands extensive communication and may be constrained by
network. One widely used metric [5, 45] to assess a model
placement is the performance of the pipeline stage with the
lowest compute capacitymin𝑖

∑
𝑗 capacity(𝑗) ·1𝑖∈Ψ(𝑗) , where

capacity(𝑗) is the compute capacity of the 𝑗𝑡ℎ node. As we
will show below, only considering compute capacity yields
sub-optimal model placements for heterogeneous clusters.

Based onmodel placement, LLM serving requires a request
scheduling strategy that can efficiently serve requests in the
cluster. The request scheduling strategy 𝜙 : R ↦→ C𝑘 inputs
a request and outputs a sequence of compute nodes that form
a complete pipeline for executing all layers of the LLM.

4.2 Necessity of Joint Optimization
Before diving into our Max-Flow formulation of heteroge-
neous LLM serving, we first use an example to show why we
need to co-optimize model partition, device placement, and
request scheduling as a Max-Flow problem. In this example,
the clusters are shown in Fig. 1a. There are two regions with
a low bandwidth between them. Region 1 has a powerful
A100 GPU, while Region 2 has a less powerful L4 GPU and
three T4 GPUs, but has a high bandwidth within the region.
The pairwise bandwidths are independent. If we follow the
common approach, which statically partitions the model and
then assigns devices to each partition, the placement plan
will be as Fig. 1b. In this plan, although the last pipeline
stage has a T4 and an L4 GPU, its throughput is bound by
the previous stage’s output throughput, which only has 2 T4
GPUs. This indicates a necessity to co-optimize the pipeline
partition plan and placement of pipeline stages.

However, even with a perfectly balanced compute capacity
at each pipeline stage, as shown in Fig. 1c, the solution can
still be sub-optimal. In this solution, it assigns the powerful
A100 to individually serve some layers, while other GPUs run
in a data parallel manner for the rest of the layers. However,
communications from one pipeline stage to another become
a bottleneck. For every request, its intermediate state is sent
from Region 1 to Region 2 via low bandwidth. This eventually
creates congestion on the A100’s send side. Instead, Fig. 1d
assigns two T4 GPUs running in parallel with the A100. This
divides the workload between the A100 GPU and the two T4
GPUs, reducing communication on the slow link.

4.3 Heterogeneous LLM Serving as Max-Flow
To optimize model placement, Helix needs a way to deter-
mine the max serving throughput of different model place-
ments. To achieve this, we transform a cluster of compute
nodes with assigned model layers into a directed graph with
edge capacity. The edge capacity denotes the number of

Table 5. Variables used in MILP.

Symbol Type Num. Description

𝑠𝑖 int 𝑂 (|C|) index of 𝑐𝑖 ’s first layer
𝑏
𝑗

𝑖
binary 𝑂 (|C|) whether 𝑐𝑖 holds 𝑗 layers

𝑓𝑖, 𝑗 real 𝑂 (|E |) flow from 𝑐𝑖 to 𝑐 𝑗
𝑑𝑖, 𝑗 binary 𝑂 (|E |) whether (𝑐𝑖 , 𝑐 𝑗) is valid

𝑐𝑜𝑛𝑑1𝑖, 𝑗 binary 𝑂 (|E |) aux. variable in constraint-4
𝑐𝑜𝑛𝑑2𝑖, 𝑗 binary 𝑂 (|E |) aux. variable in constraint-4

tokens compute nodes and network connections can pro-
cess/transmit per second. Max flow between source and sink
vertices in the graph, which represent the coordinator node,
gives us the max serving throughput of the cluster with the
current model placement. The following shows the formal
construction.

For a given cluster with coordinator node ℎ, a set of com-
pute nodes C, and a model placement Ψ, we can transform
entities in the cluster into elements of its graph abstraction as
follows. An example of such a graph abstraction of a cluster
with given model placement is shown in Fig. 2
Compute and coordinator nodes. For each compute node
𝑐𝑖 ∈ C, we represent it with two connected vertices in the
graph. We name the two vertices 𝑐𝑖𝑛𝑖 and 𝑐𝑜𝑢𝑡𝑖 . The capacity
of the directed edge (𝑐𝑖𝑛𝑖 , 𝑐𝑜𝑢𝑡𝑖) represents the max number
of tokens this node can process in one second. It is the mini-
mum of the node’s compute and network throughput. Helix
performs a one-time profiling to measure the throughput of
all compute nodes. For the coordinator node, we represent it
as source and sink vertices in the graph.
Network connections. In a given cluster, a node may com-
municate with any other nodes, creating 𝑂 (|C|2) possible
directed network connections between different nodes. How-
ever, only a subset of those connections are valid based on
the model placement as described below. A valid connection
should satisfy one of the following three criteria: (1) the con-
nection is from coordinator node ℎ to compute node 𝑐𝑖 and
𝑐𝑖 holds the first layer of the model; (2) the connection is
from a compute node 𝑐 𝑗 to coordinator node ℎ and 𝑐 𝑗 holds
the last layer of the model; (3) the connection is from one
compute node 𝑐𝑖 to another compute node 𝑐 𝑗 and 𝑐 𝑗 holds
model layers immediately needed after inference on 𝑐𝑖 . For
the first and second case, we represent the connection with
directed edge (𝑠𝑜𝑢𝑟𝑐𝑒, 𝑐𝑖𝑛𝑖) and (𝑐𝑜𝑢𝑡𝑗 , 𝑠𝑖𝑛𝑘) respectively, with
capacity equal to the connection bandwidth divided by the
transmission size of a token (a few bytes). For the third case,
we represent the connection with a directed edge (𝑐𝑜𝑢𝑡𝑖 , 𝑐𝑖𝑛𝑗),
and the capacity equals the connection bandwidth divided
by the transmission size of an activation (tens of kilobytes).
Helix performs a one-time profiling and uses the average
bandwidth as the connection bandwidth. The capacity of
the edges models the throughput constraint imposed by the
speed of network connection between different nodes. We
denote the full set of possible network connections by E.

590

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yixuan Mei et al.

Table 6. Constraints used in MILP.

Group Num. Constraint

Model placement 𝑂 (|C|) ∑𝑘
𝑗=1 𝑏

𝑗

𝑖
= 1

𝑂 (|C|) 0 ≤ 𝑠𝑖 < 𝐿 and 𝑒𝑖 ≤ 𝐿

Flow conservation 𝑂 (|C|) ∑
𝑢 𝑓𝑢,𝑖 =

∑
𝑣 𝑓𝑖,𝑣

Infer. throughput 𝑂 (|C|) ∑
𝑢 𝑓𝑢𝑖 ≤

∑𝑘
𝑗=1 𝑏

𝑗

𝑖
·𝑇𝑗

Connection validity

𝑂 (|C|) 𝑠𝑖 ≤ 𝐿 · (1 − 𝑑𝑠𝑜𝑢𝑟𝑐𝑒,𝑖)
𝑂 (|C|) 𝐿 · 𝑑𝑖,𝑠𝑖𝑛𝑘 ≤ 𝑒𝑖
𝑂 (|E |) (𝐿 + 1) (1 − 𝑐𝑜𝑛𝑑1𝑖, 𝑗) ≥ 𝑠 𝑗 − 𝑒𝑖

𝑂 (|E |) 𝑒 𝑗 − 𝑒𝑖 ≥ 1 − (𝐿 + 1) (1 − 𝑐𝑜𝑛𝑑2𝑖, 𝑗)
𝑂 (|E |) 𝑑𝑖, 𝑗 ≤ 0.5 ∗ 𝑐𝑜𝑛𝑑1𝑖, 𝑗 + 0.5 ∗ 𝑐𝑜𝑛𝑑2𝑖, 𝑗

Trans. throughput 𝑂 (|E |) 𝑓𝑖, 𝑗 ≤ 𝑑𝑖, 𝑗 · 𝑆𝑖, 𝑗

After constructing the equivalent graph abstraction of a
cluster, we run the preflow-push algorithm [8] to get the
max flow between source and sink node. One unit of flow
here represents one token that can pass through a compute
node or network connection in one second. Therefore, the
max flow gives us the max possible serving throughput of
the cluster with current model placement.

4.4 Optimal Model Placement with MILP
The previous section presented an approach for obtaining the
max serving throughput of a cluster for a given model place-
ment. In this section, we introduce a mixed-integer linear
programming (MILP)-based method to find a model place-
ment that maximizes the max flow, thus maximizing serving
throughput. The MILP formulation has a linear number of
variables and constraints with respect to the number of com-
pute nodes and network connections. The key challenges
addressed include (1) formulation of system-level constraints
as linear number of conditions to satisfy, (2) expression of
these conditions with linear number of variables, and (3) lin-
earization of each condition using auxiliary variables, specif-
ically, each constraint is expressed as at most three linear
constraints with the help of at most two auxiliary variables.
An overview of the variables and constraints is shown in
Table 5 and 6.
Node variables. To represent the model placement on each
compute node, we introduce two groups of variables in our
MILP formulation. Suppose that the model has a total of
𝐿 layers and each compute node holds a continuous sub-
set of the model. For each compute node 𝑐𝑖 , we introduce
an integer variable 𝑠𝑖 to represent the first layer 𝑐𝑖 holds.
Suppose compute node 𝑐𝑖 can hold at most 𝑘 layers on its
GPU, we further introduce 𝑘 binary variables 𝑏1𝑖 , 𝑏

2
𝑖 , ..., 𝑏

𝑘
𝑖

to indicate the number of layers node 𝑐𝑖 holds (𝑏 𝑗

𝑖
= 1 if 𝑐𝑖

holds 𝑗 layers). We choose to express model placement with
𝑘 binary variables (instead of one integer for the number of
layers) because this formulation facilitates the expression of
inference throughput constraints as discussed below. The

end layer index of 𝑐𝑖 can be expressed as 𝑒𝑖 = 𝑠𝑖 +
∑𝑘

𝑗=1 𝑗 · 𝑏
𝑗

𝑖
.

Therefore, 𝑐𝑖 holds layers in range [𝑠𝑖 , 𝑒𝑖).
Connection variables. We introduce two groups of vari-
ables to constrain the number of inference requests that
can go through each network connection. For network con-
nection between compute node 𝑐𝑖 and 𝑐 𝑗 , we introduce a
real variable 𝑓𝑖, 𝑗 to denote the amount of flow from 𝑐𝑜𝑢𝑡𝑖 to
𝑐𝑖𝑛𝑗 in the graph abstraction. We further introduce a binary
variable 𝑑𝑖, 𝑗 to denote whether the network connection is
valid (as defined in Sec. 4.3). The constraints we introduce
below will use 𝑑𝑖, 𝑗 to ensure that requests can only be trans-
mitted through valid connections. For network connections
between coordinator node and compute nodes, we similarly
introduce two variables similar to above, but replace 𝑖/ 𝑗 with
source/sink.
Constraint-1: model placement. To ensure that the model
placement found by the MILP solver is valid, we need the
following two constraints for each compute node 𝑐𝑖 . First, 𝑐𝑖
should have only one valid model placement, meaning that∑𝑘

𝑗=1 𝑏
𝑗

𝑖
= 1. Moreover, the first and last layer 𝑐𝑖 holds must

be within the range of 𝐿 layers, meaning that 0 ≤ 𝑠𝑖 < 𝐿 and
𝑒𝑖 ≤ 𝐿. (𝑐𝑖 holds layers in range [𝑠𝑖 , 𝑒𝑖))
Constraint-2: flow conservation. For each compute node
𝑐𝑖 , the sum of flow that goes in to 𝑐𝑖𝑛𝑖 must be equal to that
goes out of 𝑐𝑜𝑢𝑡𝑖 because of flow conservation. This constraint
can be expressed as

∑
𝑢 𝑓𝑢,𝑖 =

∑
𝑣 𝑓𝑖,𝑣 , where 𝑢 and 𝑣 enumer-

ate through all nodes except 𝑖 .
Constraint-3: inference throughput. For compute node
𝑐𝑖 , the amount of flow that passes through (𝑐𝑖𝑛𝑖 , 𝑐𝑜𝑢𝑡𝑖) should
not exceed its maximum inference throughput. We can im-
pose this constraint with

∑
𝑢 𝑓𝑢𝑖 ≤

∑𝑘
𝑗=1 𝑏

𝑗

𝑖
· 𝑇𝑗 . Here, 𝑇𝑗 is

a constant that represents the maximum number of tokens
node 𝑐𝑖 can process in one second when holding 𝑗 layers,
which is obtained through a one-time profiling process.
Constraint-4: connection validity. We need to determine
the validity of network connections to know if requests can
be transmitted through them. For a network connection from
the coordinator node to the compute node 𝑐𝑖 , it is valid only if
𝑐𝑖 holds the first layer of the model. To express this constraint
with MILP, we need to linearize it into the following form:
𝑠𝑖 ≤ 𝐿 · (1−𝑑𝑠𝑜𝑢𝑟𝑐𝑒,𝑖). Similarly, for network connection from
compute node 𝑐𝑖 to coordinator, we constrain its validity with
𝐿 · 𝑑𝑖,𝑠𝑖𝑛𝑘 ≤ 𝑒𝑖 . For network connection from compute node
𝑐𝑖 to 𝑐 𝑗 , its validity 𝑑𝑖, 𝑗 is determined by whether 𝑠 𝑗 ≤ 𝑒𝑖 <

𝑒 𝑗 holds. To linearize this condition, we need to introduce
two binary auxiliary variables 𝑐𝑜𝑛𝑑1𝑖, 𝑗 and 𝑐𝑜𝑛𝑑2𝑖, 𝑗 . 𝑐𝑜𝑛𝑑

1
𝑖, 𝑗

takes value 1 only if 𝑠 𝑗 ≤ 𝑒𝑖 , which can be linearized as
(𝐿 + 1) (1 − 𝑐𝑜𝑛𝑑1𝑖, 𝑗) ≥ 𝑠 𝑗 − 𝑒𝑖 . 𝑐𝑜𝑛𝑑2𝑖, 𝑗 takes value 1 only
if 𝑒𝑖 < 𝑒 𝑗 , which can be linearized as 𝑒 𝑗 − 𝑒𝑖 ≥ 1 − (𝐿 +
1) (1 − 𝑐𝑜𝑛𝑑2𝑖, 𝑗). The network connection is valid only if both
binary auxiliary variables are true, which can be expressed
as 𝑑𝑖, 𝑗 ≤ 0.5 ∗ 𝑐𝑜𝑛𝑑1𝑖, 𝑗 + 0.5 ∗ 𝑐𝑜𝑛𝑑2𝑖, 𝑗 .

591

Helix: Serving LLMs over Heterogeneous GPUs and Network via Max-Flow ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Profiler

Model Placement
Planner

Scheduler

Cluster Info

Placement

Init
Worker

Coordinator

Worker
Exec

C
oordinator

Worker FinishedNew Request

Compute Node

Q
ueue 2

L
ayer 1

L
ayer 2

Q
ueue 1

Q
ueue 3

L
ayer 3

Request
Tensor

Type-1 Type-2 Type-3 Model Layer

Figure 3. Helix overview. In Helix, the coordinator plans model placement as described in Sec. 4.4. We only need to run
model placement once for each cluster. When a new request arrives, the coordinator node runs Helix scheduler to assign it a
per-request pipeline and sends it to the first node in the pipeline. Each compute node in the pipeline performs inference on the
request on the layers it is responsible for and sends the (output for the) request to the next node in the pipeline. When the last
node in the pipeline finishes performing inference on its layers, it will send the output token for the request to the coordinator
(Worker Finished). The coordinator schedules generation of the next token for the request using the same pipeline.

We remark that if 𝑠 𝑗 < 𝑒𝑖 < 𝑒 𝑗 , then requests coming from
𝑐𝑖 will only infer layers [𝑒𝑖 , 𝑒 𝑗) on 𝑐 𝑗 . We call this partial
inference. If partial inference is not allowed, then the connec-
tion validity constraints can be simplified to 𝑑𝑖, 𝑗 = 1 only if
𝑒𝑖 = 𝑠 𝑗 , which linearizes to two constraints 𝐿 ·𝑑𝑖, 𝑗 ≤ 𝐿+𝑠 𝑗 −𝑒𝑖
and 𝐿 · 𝑑𝑖, 𝑗 ≥ 𝐿 − 𝑠 𝑗 + 𝑒𝑖 .
Constraint-5: transmission throughput.We only allow
flow to pass through valid network connections, and the
flow should not be larger than the connection’s maximum
transmission throughput. To enforce this constraint, we add
𝑓𝑖, 𝑗 ≤ 𝑑𝑖, 𝑗 · 𝑆𝑖, 𝑗 as a constraint into the MILP problem. 𝑆𝑖, 𝑗
is the maximum number of tokens that can be transmitted
through the network connection, which can be calculated
via profiling and using methods mentioned in Sec. 4.3.
Optimization target. The MILP problem aims to find a
model placement that satisfies all constraints and yields the
highest max flow for the cluster. This optimization target
can be expressed as maximizing the sum of flow from source,
i.e. maximizing

∑
𝑖 𝑓𝑠𝑜𝑢𝑟𝑐𝑒,𝑖 .

MILP solution orchestration. After the MILP solver finds
a solution that satisfies all constraints, we can orchestrate
it into a model placement plan and construct the graph ab-
straction of the cluster. For compute node 𝑐𝑖 , 𝑠𝑖 and 𝑒𝑖 give
us the model layers 𝑐𝑖 should load into its GPU.

4.5 Analyzing and Speeding up MILP
As Table 5 and 6 show, the number of variables and con-
straints in the MILP problem scales linearly with the number
of compute nodes and network connections. For large clus-
ters with more than 40 nodes, it may still take hours before
the MILP solver gives a reasonably good solution. To expe-
dite the MILP solving process for large clusters, we introduce
three optimizations. First, we prune some of the slow net-
work connections in the cluster. Evaluation in Sec. 6.8 shows
that this effectively reduces the problem size without sacri-
ficing much performance. Second, we hint the MILP solver
with solutions found by heuristic methods. Since the problem

has an exponential solution space, the MILP solver can only
cover a small portion within a limited solving time budget.
Using solutions from heuristic methods as starting points
for the MILP problem expedites the optimization process,
especially for large clusters. Sec. 6.8 shows the necessity of
starting from heuristic solutions for large clusters. Finally,
we notice that the max serving throughput of a cluster is
always bounded by the sum of compute throughput of all
compute nodes averaged by the total number of layers. The
MILP solver uses this as an early stop criterion and stops
when it finds a solution that is very close to this upper bound.
We remark that, for further scaling of Helix to hundreds or
even thousands of nodes, one viable approach is to first parti-
tion the nodes into multiple smaller clusters using heuristics
and then apply Helix independently.

4.6 Replacing MILP with LP or Heuristics?
A common approach for speeding up MILP problems is to
relax them to a linear program (LP) by relaxing the integer
variables to be linear variables and obtaining a valid solution
to the original problem via methods such as rounding the
resulting linear variables. We remark that this approach is
not viable for the MILP problem above. This is because the
resulting solution from the LP cannot be easily converted
to a valid solution of the original problem. The variables for
model placement (𝑠𝑖 and𝑏 𝑗

𝑖
) decide the edge validity variables

𝑑𝑖, 𝑗 , which in turn decides the flow variables 𝑓𝑖, 𝑗 . Rounding
the non-integral values of model placement variables in the
relaxed solution may invalidate some or all network connec-
tions and thus drastically changing the max flow.

Our preliminary exploration also indicates that using sim-
pler heuristics cannot guarantee good performance across
various cluster setups, because of the exponential solution
space of this problem. Sec. 6.6 shows that the model place-
ment found by Helix with MILP is much better than that of
the heuristic baselines.

592

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yixuan Mei et al.

C
oordinator

1

2

4

3

30

70

20

6

5
7

40

30

30
20

5
Interleaved
Weighted

Round-Robin

Request Scheduler Pipeline
1→5→9
2→6→8

9

8
New
Req.

1

2

20

10

30

10

Figure 4. Topology graph of a cluster, where each vertex is a
compute node, and each edge is a valid network connection.
Numbers over edges represent the flow over the network
connection in the max flow solution. The pipelines used to
schedule requests 1 and 2 are shown on the right.

5 Helix Runtime
This section discusses the runtime scheduling of requests in
Helix. When the coordinator node receives a new request, it
runs Helix’s request scheduler to assign the request a per-
request pipeline, which we will introduce in Sec. 5.1. Then the
coordinator node sends the request to the first compute node
in the pipeline. When a compute node receives a requests,
it performs inference on the request using the layers it is
responsible for in that pipeline and sends the request to the
following compute node. Fig. 3 shows the overview of Helix.

5.1 Scheduler Design: Per-Request Pipelines
To infer a request in the cluster, the scheduler needs to assign
a pipeline for the request. The pipeline contains a sequence
of stages, where each stage specifies a compute node and
the layers to infer on the compute node. A valid pipeline
must infer each layer of the model exactly-once and in cor-
rect order when running the stages sequentially. Existing
works [5, 19] use fixed pipelines, in which each pipeline
contains a disjoint set of machines, and assign requests to
those pipelines. In Helix, instead of using fixed-pipelines, we
propose a per-request pipeline assignment approach, wherein
each request will have its own pipeline and the pipelines
may intersect with each other. The total number of possible
pipelines equals the number of possible paths from source
to sink in the graph abstraction of the cluster. The abundant
number of pipelines allows the scheduling to better fit the ca-
pacity of the compute nodes and network connections. Our
Max-Flow formulation enables us to create the per-request
pipelines.

The Helix request scheduler performs scheduling based on
the cluster’s topology graph (Fig. 4). In the topology graph,
vertices correspond to the nodes in the cluster. Directed
edges correspond to the valid network connections (under
the model placement found by solving the MILP in Sec. 4).
We bind an interleaved weighted round-robin (IWRR) [51]
scheduler to each vertex. The IWRR scheduler takes as input
a list of candidates and their weights. To schedule a request, it
selects a candidate with frequency proportional to its weight.
For each vertex 𝑢, the IWRR scheduler’s candidates contain
all vertices 𝑣 such that directed edge (𝑢, 𝑣) exists (i.e. (𝑢, 𝑣)

(a) Length distribution. (b) Arrival rate.

Figure 5. Statistics of Azure Conversation dataset.

represents a valid network connection). The weight of 𝑣
equals the flow over the network connection of (𝑢, 𝑣) in
the max flow solution. Using IWRR allows us to schedule
requests following the max flow without creating bursts.
Helix’s request scheduler runs on the coordinator node.

When a new request arrives, it first uses the IWRR scheduler
of the vertex representing the coordinator node to determine
the compute node 𝑐1 for the first pipeline stage. Then, it uses
the IWRR scheduler of the vertex representing 𝑐1 to deter-
mine the compute node 𝑐2 for the second stage, and repeats
this process until a valid pipeline is established. Fig. 4 shows
the scheduling of two requests. After setting the request’s
pipeline, the coordinator node sends the request to the first
compute node in the pipeline to begin inference. During
inference, Helix adopts a dynamic batching strategy where
each node includes all requests received during the process-
ing of the previous batch to form a new one. This best-effort
batching occurs without additional waiting periods.

5.2 KV-Cache Estimation
When serving LLMs, each GPU has a limited amount of
VRAM to store the KV-cache of requests during inference.
If the requests running concurrently on the GPU require
more KV-cache than this limit, the execution engine has to
offload some requests to main memory, which significantly
harms throughput. However, we do not know exactly how
much KV-cache each request will use because the length of
the output is unknown before inference finishes. Therefore,
in the scheduler we maintain an estimation of KV-cache
usage of all compute nodes using average output length, and
mask out compute nodes that exceed the high water mark
when running IWRR. We can schedule more requests to the
compute nodes only after some requests currently running
on those nodes have finished. This mask ensures that we do
not oversubscribe the GPU’s KV-cache.

6 Evaluation
In this section, we aim to answer the following questions.
• Can Helix provide higher throughput for heterogeneous
GPUs in a single cluster? (Sec. 6.3)

• Does Helix sacrifice latency for throughput? (Sec. 6.3)
• Can Helix provide higher throughput for heterogeneous
GPUs in geo-distributed clusters? (Sec. 6.4)

593

Helix: Serving LLMs over Heterogeneous GPUs and Network via Max-Flow ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

(a) LLaMA-30B - Offline (b) LLaMA-30B - Online (c) LLaMA-70B - Offline (d) LLaMA-70B - Online

(e) LLaMA-30B - Prompt (f) LLaMA-30B - Decode (g) LLaMA-70B - Prompt (h) LLaMA-70B - Decode

Figure 6. Single cluster results: (a - d) decode throughput, (e - h) prompt and decode latency for online serving. The box
shows the 25 and 75 percentile. The whisker shows the 5 and 95 percentile. The red line shows median.

Table 7. Network bandwidth between machines in asia-east,
us-central, europe-west and australia-southeast. Measured
with iperf3 on Google Compute Engine.

Receiver Sender
asia-east2-a us-central1-f eu-west3-c au-se1-c

asia-east2-a / 123 Mbps 67 Mbps 175 Mbps
us-central1-f 122 Mbps / 204 Mbps 123 Mbps
eu-west3-c 61 Mbps 196 Mbps / 54 Mbps
au-se1-c 159 Mbps 118 Mbps 63 Mbps /

• Can Helix provide consistently high throughput when the
degree of GPU heterogeneity increases? (Sec. 6.5)

• Why does Helix achieve better performance compared to
existing systems (Sec. 6.6 and 6.7)?

6.1 Implementation
Helix prototype. We implemented a multi-replica pipeline
parallel system with 1.5k LoC in Python and 1.7k LoC in C++.
For model execution, we adopt the latest release of vLLM [22]
(0.4.0post1) to avoid re-implementing basic LLM inference
optimizations. We implemented a unified page pool atop
vLLM to support partial inference. We use ZeroMQ [52] for
inter-node communication and Gurobi [14] as MILP solver.
Simulator.We also implemented a simulator for distributed
LLM inference with 14k LoC in Python. It supports sim-
ulation for heterogeneous GPUs and network conditions.
It gives us the flexibility to explore more diverse settings
for network, GPU heterogeneity and cluster scale. Sec. 6.3
evaluates the fidelity of the simulator and shows that the
simulation errors are less than 5% for all metrics.

6.2 Experiment Setup
Models.We evaluate Helix on LLaMA [55, 56], a represen-
tative and popular open-source Transformer model family.

Specifically, we use LLaMA-1 30B and LLaMA-2 70B to study
the system performance on models of different sizes. We run
model inference with half-precision (FP16). In subsequent
sections, we refer to these two models as LLaMA 30B and
LLaMA 70B.
Cluster setup. We evaluate with three cluster setups: (1)
single cluster (Sec. 6.3), (2) geo-distributed clusters (Sec. 6.4),
and (3) high GPU heterogeneity cluster (Sec. 6.5). First, the
single cluster setup contains 4 A100 nodes, 8 L4 nodes and
12 T4 nodes connected by 10Gb/s network. We configure
the network bandwidth to 10 Gb/s, as this rate is sufficient
to ensure that LLM serving is limited by GPU throughput
rather than network capacity. We allocate the nodes within
one region on the Google Cloud. Second, the geo-distributed
clusters contain three clusters with (i) 4 A100 nodes, (ii) 2
L4 nodes + 8 T4 nodes, and (iii) 6 L4 nodes + 4 T4 nodes.
Inter-cluster communication has an average bandwidth of
100 Mb/s and an average latency of 50 ms. We configure the
bandwidth to 100 Mb/s to simulate cross-region network lim-
itations, based on our profiling results in Table 7. Finally, the
high GPU heterogeneity cluster contains 4 A100 nodes, 6 V100
nodes, 8 L4 nodes, 10 T4 nodes, 4 2×L4 nodes, 6 2×T4 nodes
and 4 4×T4 nodes. The latter two setups are performed in
simulation. Our evaluation of the prototype system focuses
on single-GPU nodes, as multi-GPU nodes are much more
difficult to allocate in the cloud [53]. Our implementation
also works for multi-GPU nodes by leveraging tensor model
parallelism across GPUs on the same node as supported by
vLLM [22].
Traces. The traces we use come from Azure Conversation
dataset [40]. Fig. 5 shows the length distribution and ar-
rival rate of this dataset. We remove requests with input
lengths larger than 2048 or output lengths larger than 1024
to maintain reasonable runtime memory usage for vLLM.

594

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yixuan Mei et al.

(a) LLaMA-30B (b) LLaMA-70B (c) LLaMA-30B (d) LLaMA-30B (e) LLaMA-70B (f) LLaMA-70B

Figure 7. Geo-distributed clusters: (a - b) decode throughput, (c - f) prompt and decode latency for online serving. "H"
stands for Helix, "S" stands for Swarm. Box: 25 and 75 percentile. Whisker: 5 and 95 percentile. Red line: median.

The pruned dataset contains 16657 requests with an average
input length of 763 and an average output length of 232. We
remark that this dataset is more challenging than the ones
used by prior work [22] due to longer request length. We
have two settings for arrival rates. For online setting, we
use real arrival rates from Azure Conversation dataset. We
scale the average arrival rate to 75% of the cluster’s peak
throughput to avoid bursts of requests leading to OOM in
the system. For offline setting, we allow requests to arrive
at the rate needed to fully utilize the cluster. This mimics
running offline inference on a dataset. We refer to the two
settings as online and offline serving.
Experiment duration. For online setting, we warm up the
cluster for 30s and test for 30 minutes. For offline setting, we
warm up the cluster for 1 minute and test for 10 minutes.
This amount of time is sufficient for our evaluations and we
do not run longer to reduce unnecessary experimental cost.
Helix setup. We allow the MILP solver to search w/ and
w/o partial inference and cluster pruning. We also hint the
MILP solver with solutions from Petals / Swarm / separate
pipelines. Solving times out when the MILP solver does not
find better solutions in 10 minutes. The max search budget
for each cluster setup is 4 hours on a 14-core CPU.
Baselines. To the best of our knowledge, there are no het-
erogeneous LLM serving systems with model placement
and scheduling applicable to our settings. Therefore, we
adopt ideas from a heterogeneous LLM training system,
Swarm [45], to build a competitive heterogeneous baseline.
We also build another baseline that handles GPU hetero-
geneity by serving one model replica with each type of ma-
chine. We refer to the two baselines as Swarm and separate
pipelines (SP). To ensure a fair comparison, we implemented
the SP baseline within our system rather than utilizing other
systems. We further compare with the model placement of
Petals [5] in Sec. 6.6, which is a decentralized LLM serving
system for volunteer computing. We do not compare with
Petals in end-to-end serving as it lacks centralized request
scheduling. For Swarm, we implemented their model place-
ment and scheduling algorithm in our system, since their
original system can not be used for inference. We set the
number of pipeline stages to the minimum that allows the
weakest GPU to hold one stage with half its VRAM. This

(a) LLaMA-70B (b) LLaMA-70B (c) LLaMA-70B

Figure 8. High GPU-heterogeneity clusters setup: (a)
decode throughput, (b - c) prompt and decode latency for
online serving. "H" stands for Helix, "S" stands for Swarm.

minimizes the pipeline depth and leaves enough VRAM for
KV-cache, both of which are crucial to performance.
Metrics. For offline serving, we report average decode through-
put, which is the number of tokens generated per second.
For online serving, we further report average prompt latency
and decode latency, which is the average latency for parsing
user input and generating new tokens, respectively.

6.3 Single Cluster
This section evaluates Helixwith online and offline serving of
LLaMA 30B and 70B in the single cluster setup. Fig. 6 shows
the results. For LLaMA 30B, each GPU type has enough nodes
to serve at least one individual pipeline. The best model
placement discovered by Helix serves three replicas of the
model, each with one type of GPU. As a result, Helix and SP
achieve similar performance: Helix has 4% and 14% higher
decode throughput for offline and online serving because of
its better KV-cache utilization; the prompt latency is 2% lower
and decode latency is 10% higher. Compared with Swarm,
Helix achieves 2.14× and 2.07× higher decode throughput
for offline and online serving. Helix also reduces prompt and
decode latency by 32% and 12% for online serving. We find
that Swarm’s model placement introduces a bottleneck and
under-utilizes the A100 nodes, which we discuss in more
detail in Sec. 6.6. We note that the comparatively higher
latency observed in our experiments, relative to other LLM
serving systems [22, 40], can be attributed to our use of less
powerful GPUs (T4 and L4) in contrast to the A100 and H100
GPUs utilized in other studies.

595

Helix: Serving LLMs over Heterogeneous GPUs and Network via Max-Flow ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

(a) Decode throughput.

Petals

under-utilized

under-utilized

4 7 7 7
4

4
4 412 12

4
4 7

7

4

7

7
4 4 7

4

412
12

under-utilized bottleneck

Swarm
4 4 4 4 4 4 4 4

4

4

4

4

4

4

4

4

4 4 4 4
4 4 4 4

Helix

43 4 3 3
7

4 4 4

4
9 4

4

7 4

7
7

7

7

398
12

GPU Compute Utilization

Low High
L4 T4 A100

(b) Model placement case study. Numbers on each node represent the number of layers the node holds.

Figure 9. (a) Comparing different model placement methods with offline serving of LLaMA 70B. (b) The case study shows
model placements for serving LLaMA 70B on the single cluster setup.

For LLaMA 70B, nodes from a single GPU type can not
serve one model replica by themselves while leaving enough
VRAM for KV-cache. In this case, SP’s throughput signifi-
cantly decreases. Compared with SP, Helix achieves 1.86×
and 1.69× higher decode throughput in offline and online
serving. The average latency of Helix is higher than SP be-
cause SP serves majority of requests with A100 nodes and
under-utilizes the L4 and T4 nodes. Compared with Swarm,
Helix achieves 1.94× and 2.00× higher decode throughput
in offline and online serving. Helix’s prompt latency is 15%
lower, but decode latency is 16% higher because of Helix’s
high GPU utilization. Similar to LLaMA 30B, Swarm under-
utilizes A100 nodes because of its model placement.
We also conduct these experiments in the simulator (see

Sec. 6.1) to examine its fidelity. The simulation results are
shown alongside the real system evaluation results in Fig. 6.
The average error of decode throughput is lower than 5%.
The average error of prompt and decode latency is lower
than 5% and 4% respectively. This indicates that our simulator
achieves high fidelity and serves the purpose of comparing
the performance of different methods.

6.4 Geo-Distributed Clusters
This section evaluates Helix for both online and offline serv-
ing of LLaMA 30B and 70B in geo-distributed clusters using
our high-fidelity simulator in Sec. 6.1. Fig. 7 shows the re-
sults. Although this setup involves the same set of GPUs as
the single cluster, the slow inter-cluster network causes all
methods to have lower throughput and higher latency.
For LLaMA 30B, the best model placement found by He-

lix still consists of three pipelines served by three types of
machines separately. Compared with SP, Helix has 7% and
10% higher decode throughput for offline and online serving.
The prompt latency is 14% lower and decode latency is 2%
higher. Compared with Swarm, Helix achieves 2.41× and
2.33× higher decode throughput for both online and offline
serving. Helix also reduces prompt and decode latency by
66% and 24% for online serving.

On the other hand, serving LLaMA 70B is more sensitive
to slow network because of larger activation size and model
depth. Helix reduces network overhead by usingmodel place-
ments with shallower pipeline depth. The model placement

found by Helix reduces pipeline depth by 28% compared to
Swarm. It is also 19% shallower than the one found by He-
lix when network is fast. Helix’s model placement planner
balances network overhead with single node’s GPU utiliza-
tion, achieving high throughput and low latency in geo-
distributed GPU clusters. Compared with SP, Helix achieves
1.61× and 1.79× higher decode throughput for offline and
online serving, respectively. SP has lower average latency
because it serves most requests with fast GPUs, while 12 T4
nodes are under-utilized because of VRAM constraints. Com-
pared with Swarm, Helix achieves 1.92× and 1.97× higher
decode throughput for offline and online serving. Helix also
reduces prompt and decode latency by 21% and 7%. We ob-
serve severe congestion during offline serving with Swarm.
The average prompt latency reaches 71s, which is 7.5× that
of Helix’s. We will discuss more about the congestion of
Swarm with a case study in Sec. 6.7.

6.5 High GPU-Heterogeneity Cluster
This section evaluates Helix on a highly heterogeneous GPU
cluster with 42 compute nodes and 7 types of GPUs. Fig. 8
shows the results. In this cluster, V100, T4, and T4×2 nodes
cannot form serving pipelines by themselves. We report the
throughput without those machines for SP. We also try to
build a mixed pipeline using those machines and report the
number with the mixed pipeline as SP+. Compared with
Swarm, SP and SP+, Helix achieves 1.37×, 2.91×, and 2.24×
throughput for offline serving, and 1.48×, 3.29× and 2.54×
for online serving. Helix also reduces prompt latency by 17%,
1% and 7% respectively. The average decode latency of Helix
is slightly higher, because the baselines under-utilize the
slow GPUs and serve most requests with fast GPUs with
large VRAM. This result indicates that Helix can achieve
consistently high performance when there are many types
of GPUs in the cluster.

6.6 Model Placement Deep Dive
In this section, we analyze the impact of different model
placement methods on the serving throughput of the cluster.
We evaluate Helix’s offline serving performance on both sin-
gle and geo-distributed clusters, and compare Helix’s model
placement method with those used in Swarm and Petals.

596

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yixuan Mei et al.

(a) Decode throughput.

L4 T4A100

C
oordinator

1

1 7

6 4

7

4

3

4 7

4 4

4

6

7

1 4

Congestion

Congestion

Slow Link
Fast Link Cause of

Congestion

Bad
Scheduling

Bad
Scheduling Congestion

Bad Scheduling

11 11 11 10

Numbers represent
the num. of layers

(b) Request scheduling case study.

Figure 10. (a) Comparing different request scheduling methods with offline serving of LLaMA 70B. (b) A case study that
illustrates the congestion in Swarm and random scheduling when serving LLaMA 70B in geo-distributed clusters setup.

Both methods perform model placement using throughput-
based heuristics. To isolate the effect of model placement, we
use Helix’s request scheduler for all methods. Fig. 9a shows
the decode throughput. Compared with Petals and Swarm,
Helix achieves 1.23× and 2.10× higher throughput on the
single cluster, and 1.49× and 2.38× throughput on the geo-
distributed clusters. We perform a case study on LLaMA 70B
to demonstrate why Helix achieves the best performance.
Case study: LLaMA 70B - single cluster. Fig. 9b shows
the model placement and GPU compute utilization for each
method when serving LLaMA 70B on the single cluster.
Swarm’s model placement introduces a bottleneck at the
end of its pipeline, where 4 T4 nodes each serves 4 layers.
This bottleneck causes GPU under-utilization onA100 and L4
nodes, significantly decreasing the serving throughput. For
Petals’ model placement, 8 T4 nodes and 1 L4 node are under-
utilized, which negatively affects the serving throughput. For
Helix’s model placement, almost all nodes are fully-utilized.
The efficient use of GPUs enables Helix to outperform Swarm
and Petals by 2.10× and 1.23× respectively.

6.7 Request Scheduling Deep Dive
This section analyzes the impact of different request sched-
uling methods on the serving throughput of the cluster. We
evaluate Helix’s offline serving performance of LLaMA 70B
on both the single cluster and geo-distributed clusters. We
compare Helix’s request scheduler with (1) Swarm, which
schedules requests based on real-time throughput of each
candidate node, and (2) random scheduling, which randomly
chooses a candidate in scheduling. For the geo-distributed
clusters setup, we further compare with Shortest Queue First
scheduling (SQ), which always assigns requests to the node
with shortest queue. To eliminate the impact of model place-
ment, all methods use the model placement found by He-
lix. Fig. 10a shows the decode throughput. Compared with
Swarm and random scheduling, Helix achieves 30% and 29%
higher throughput on the single cluster, and 22% and 15%
higher throughput on the geo-distributed clusters. Compared
with Shortest Queue First scheduling, Helix achieves 19%
higher decode throughput. Moreover, runtime monitoring

Table 8. Problem size with and without pruning. var means
variables, and cstr means constraints.

Problem size With pruning Without pruning
24-node 876 var 1122 cstr 1376 var 1848 cstr
42-node 2144 var 2772 cstr 4004 var 5502 cstr

(a) Cluster pruning. (b) Initial values.

Figure 11. Ablation study on MILP optimization.

shows that all three baseline scheduling methods introduce
severe congestion. We illustrate this further in the case study.
Case study: LLaMA 70B - distributed clusters. Fig. 10b
shows the model placement plan found by Helix for serving
LLaMA 70B on the geo-distributed clusters. The plan avoids
using slow inter-cluster network connections as much as
possible, but a few compute nodes are still connected with
low-bandwidth connections. When using Swarm or random
scheduling to schedule requests, we observe severe conges-
tion on the three links marked as “congestion” in the figure
– prompt phase requests queue up on those links for an aver-
age of 5s - 16s before they can be transmitted. We root-cause
the nodes responsible for the congestion and mark them
orange in the figure. Surprisingly, we find that one conges-
tion is caused by bad scheduling from a node 3 hops away.
This verifies the necessity of a global scheduling method that
can take both network and compute into account. We also
observe similar congestion when serving LLaMA 70B with
Swarm’s request scheduling on the model placement it finds
for the geo-distributed clusters.

6.8 Ablation Study on Optimization
This section performs an ablation study on the two MILP
optimizations introduced in Sec. 4.5. We evaluate offline
serving of LLaMA 70B on the geo-distributed and highly

597

Helix: Serving LLMs over Heterogeneous GPUs and Network via Max-Flow ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Figure 12. Best solution and best upper bound found by
the MILP solver relative to solving time. The red dotted line
marks the optimal throughput for this cluster.

heterogeneous clusters, referred to as the 24-node and 42-
node settings respectively.
Cluster pruning. When cluster pruning is enabled, we
prune network connections such that the average degree
of each node is 12, which is sufficient for LLM inference sys-
tems as we discuss below. Enabling cluster pruning removes
50% and 72% network connections for 24 and 42-node set-
tings. Table. 8 shows that pruning reduces problem size by
36% and 46% for the two settings. Fig. 11a shows that Helix
achieves 16% and 2% higher decode throughput when using
the model placement found with cluster pruning. We note
that the amount of speed-up achieved would vary depend-
ing on the specific instance of the MILP problem at hand.
Pruning slow network connections does not harm through-
put because network connections used in serving is very
sparse – usually each node only communicates with a few
other nodes. Also, there are many equivalent model place-
ments that can achieve the same throughput. Pruning the
cluster very likely keeps some of these placements still valid.
It makes the search for these placements easier with limited
optimization time, as the problem size (and solution space
size) is reduced.
Initial values. We compare the performance of running
Helix’s model placement planner starting from solutions of
heuristic methods and from default values. Since the best
model placements found are the same, we compare the wall
clock time to find the placement. Fig. 11b shows that run-
ning MILP from heuristic solutions takes 43% and 8% less
time for the 24- and 42-node setup. We note that the speed-
up achieved would vary depending on the specific instance
of the MILP problem at hand. The results show that start-
ing from heuristic solutions accelerates model placement in
Helix.

6.9 Model Placement Quality
This section evaluates the quality of model placements found
by Helix relative to the MILP solving time. In this evaluation,
we run Helix to find the optimal model placement for serving
LLaMA 30B in a cluster with 4 L4 and 6 T4 machines. We
record the best model placement as well as the best upper
bound found by theMILP solver that we used (Gurobi) during

the solving process. The best upper bound represents the
best possible objective value that could be achieved for the
MILP problem andwill gradually become tighter as the solver
explores more nodes and adds cutting planes. Fig. 12 shows
the quality of the best model placement and the best upper
bound relative to the solving time. Results show that Helix
finds the optimal solution in less than 5 minutes, but it takes
the solver more than one hour to enumerate all possible
solutions and confirm the optimality. This indicates that we
can early-stop the solving process, as high-quality solutions
emerge in the early stages of computation.

7 Related Work
Machine Learning Model Serving There are a large num-
ber of works for servingmachine learningmodels, discussing
aspects including system implementation [36, 37], model
placement [24, 41, 48, 58], request scheduling [13, 48, 63],
and tail-latency mitigation [20, 21, 31]. However, due to
LLM’s unique auto-regressive execution paradigm, these
approaches fail to efficiently serve LLMs. Instead, many re-
cent LLM-specific systems tackle the unpredictable execu-
tion time and high memory consumption in LLM serving.
Orca [61] proposed iteration level scheduling to release re-
sources once a request is finished. vLLM [22] introduced
PageAttention to further reduce the memory consumption
of each request by allocating exact number of pages it re-
quires. Speculative Inference [23, 30] applies a small model
to predict multiple output tokens, and verify them in a sin-
gle iteration. Splitwise [40] and DistServe [65] found that
disaggregating the prompt and decode phase can improve
the throughput, since the two phases have different work-
load characteristics. Sarathi [2] introduced chunked prefill,
which allocates a budget to the prompt phase to make each
microbatch’s workload balanced, minimizing pipeline bub-
ble. All above works are orthogonal to our work and can be
integrated into our system, since our focus is on the cluster
heterogeneity.
ML workloads on heterogeneous clusters. Several meth-
ods have utilized heterogeneous GPUs for ML tasks. Some of
them [18, 39] co-design the model partition and placement
on a heterogeneous cluster but assume a uniform network
bandwidth. Learninghome [46] and DeDLOC [9] studied
the network-aware routing on a decentralized cluster but
only considers either data or pipeline parallelism individ-
ually. SWARM [45], as discussed in Sec. 2.1, optimized the
pipeline communication in a heterogeneous network. How-
ever, it schedules only by the next stage’s metadata, lacking
a global view. There are also several efforts on using approx-
imations to reduce network communication [57] or synchro-
nization [16]. Most of them focus onmodel training. In model
inference, especially LLMs, serving with heterogeneous and
geo-distributed GPUs is not well studied. SkyPilot [60] and
Mélange [12] select the best type of GPUs for a request, but

598

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yixuan Mei et al.

each request is served by a single GPU type. Petals [5], as
discussed in Sec. 2.1, studies a decentralized pipeline paral-
lel setup. It designs a greedy model allocation and request
scheduling for a dynamical device group, losing optimiz-
ing opportunities for a fixed device group. HexGen [19] is
a concurrent work on LLM serving in heterogeneous clus-
ters. It is based on fixed pipelines (see Sec. 5.1) and adopts
heuristic-based methods to search for the optimal model
placement. In comparison, our Max Flow formulation and
per-request pipeline is more flexible than HexGen and our
MILP formulation can guarantee the optimal solution.
Scheduling for Heterogeneous Resources There exists
extensive research on scheduling algorithms for heteroge-
neous resources. For example, energy-aware scheduling [25]
in the Linux kernel schedules tasks for heterogeneous CPU
topologies. There are also several works [4, 43, 54] that fo-
cus on general scheduling in heterogeneous clusters. Due to
the auto-regressive nature of LLM inference, these methods
cannot be directly used for heterogeneous LLM serving.

8 Conclusion
This paper presents Helix, the first high-throughput, low-
latency LLM serving engine for heterogeneous GPU clusters,
with guaranteed optimal solution that maximizes through-
put. Helix formulates and solves the model placement and
request scheduling as a Max-Flow problem. Compared to
existing solutions, Helix achieves significant improvements
in throughput and latency.

Acknowledgment
We thank the anonymous reviewers and our shepherd Íñigo
Goiri for their valuable feedback and constructive sugges-
tions that helped improve this paper. We also express our
gratitude to the Google Cloud Innovator program for provid-
ing the machines on Google Compute Engine for our exper-
iments. This work was supported in part by a Sloan Foun-
dation Fellowship and a VMware Systems Research Award.
This work was also partially supported by the National Sci-
ence Foundation under grant numbers CNS-2147909, CNS-
2211882, and CNS-2239351, alongwith gift awards fromAma-
zon and Meta.

A Artifact
A.1 Abstract
Our artifacts include Helix’s simulator and prototype sys-
tem for distributed LLM serving in heterogeneous and geo-
distributed clusters. The code implements key algorithms in-
cluding the MaxFlow-based LLM serving formulation, MILP-
based model placement planner, and per-request pipeline
scheduler. We also provide comprehensive documentation
and scripts for environment setup and system execution
from scratch. The artifacts contain the identical simulator

and prototype system used in Helix’s evaluation in the pa-
per. The simulator can run on a single machine, while the
prototype system requires a cluster deployment.

A.2 Artifact check-list (meta-information)
• Algorithm: MaxFlow-based LLM serving formulation; MILP-
based model placement planner; per-request pipeline scheduler

• Compilation: The simulator is implemented in Python. The pro-
totype system’s inter-node communication framework is written
in C++ (recommended to compile with GCC 13.2) and includes an
automated compilation script with CMake, while its remaining
components are implemented in Python.

• Model: We use LLaMa-2 70B as the test workload. The proto-
type system operates with dummy weights, requiring only the
model architecture specification (which is provided in our code
repository).

• Data set: We use the Azure Conversation Dataset as our eval-
uation traces, with a pre-parsed version included in our code
repository.

• Run-time environment: For the simulator, we recommend
using Python 3.10, while it can also support other recent Python
versions. The simulator is not sensitive to OS versions. For the
prototype system, we recommend using Ubuntu 24.04 LTS to
setup the environment. We also recommend using conda to iso-
late the run-time environment for both systems. For detailed
software dependencies, please refer to Sec. A.3.3.

• Hardware: The simulator runs on a single machine without
specific hardware requirements. The prototype system runs on
a cluster of 24 machines with NVIDIA GPUs. Please refer to
Sec. A.3.2 for detailed hardware requirements.

• Metrics: We evaluate using the same metrics as presented in
the paper: decoding throughput, decoding latency, and prompt
processing latency.

• Output: Results are logged to both terminal output and files.
We include expected results in the code repository.

• How much disk space required (approximately)?: The total
size of all log files is around 300 MB.

• How much time is needed to prepare workflow (approxi-
mately)?: The environment setup takes around 1 - 2 hours.

• How much time is needed to complete experiments (ap-
proximately)?: Functionality evaluation takes around 2 hours.
Reproducibility evaluation takes around 16 hours. (The part that
needs the whole 24 machine cluster is around 4 hours. Namely,
the sections that need the whole cluster are part of Sec 6.3,
6.6 and 6.7.)

• Publicly available?: Yes. DOI: 10.5281/zenodo.14037926.
• Code licenses (if publicly available)?: Apache 2.0

A.3 Description
A.3.1 How to access. The artifact is publicly available
at https://github.com/Thesys-lab/Helix-ASPLOS25. It is also
archived as 10.5281/zenodo.14037926. The file size is around
300 MB. Please refer to our Github repository for the latest
version.

A.3.2 Hardware dependencies. The simulator runs on a
single machine without specific hardware requirements. We
recommend at least 32 GB of memory for simulating large

599

https://doi.org/10.5281/zenodo.14037926
https://github.com/Thesys-lab/Helix-ASPLOS25
https://doi.org/10.5281/zenodo.14037926

Helix: Serving LLMs over Heterogeneous GPUs and Network via Max-Flow ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

clusters to prevent out-of-memory issues. The prototype
system requires cluster deployment - our example config-
uration uses 24 machines, consisting of 4 machines with
1×A100-40GB, 8 machines with 1×L4, and 12 machines with
1×T4. We recommend to set up each machine with at least
16 CPU cores and 128 GB memory to avoid out-of-memory
issues. The network connection between machines should
ideally be at least 10 Gbps, with latency of approximately a
few milliseconds. Usually machines in the same region from
common cloud providers canmeet the network requirements.
For functionality test purposes, it is also possible to use ma-
chines from different regions.

A.3.3 Software dependencies. We recommend running
the simulator with Python 3.10. It relies on networkx, mat-
plotlib and gurobipy. The MILP-based model placement plan-
ner uses Gurobi as the MILP solver. Running the exam-
ple in the code base does not require additional licenses.
However, if you want to run model placement for larger
clusters, it is necessary to acquire a Gurobi license that
does not limit problem size. We recommend running the
prototype system on Ubuntu 24.04 LTS and with Python
3.10. To build the inter-node communication framework,
you need to install build-essential, cmake, libzmq, cppzmp
and pybind11. To run the prototype system, you need to
install CUDA 12.6 and vLLM 0.4.0.post1. For a step-by-step
guide to setting up the environment and running the experi-
ments, please refer to https://github.com/Thesys-lab/Helix-
ASPLOS25/blob/master/readme.md.

A.3.4 Data sets. We use the Azure Conversation Dataset
as our evaluation traces, with a pre-parsed version included
in our code repository.

A.3.5 Models. We use LLaMa-2 70B as the test workload.
The prototype system operates with dummy weights, requir-
ing only the model architecture specification.

A.4 Detailed Steps for Reproducing Results
We provide an example to show the functionality of our
system, please refer to https://github.com/Thesys-lab/Helix-
ASPLOS25/blob/master/readme.md. We also provide another
example to reproduce all result we got in the paper, please re-
fer to https://github.com/Thesys-lab/Helix-ASPLOS25/blob/
master/artifact_evaluation/ae_readme.md

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge

Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2] Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra,
Bhargav S Gulavani, and Ramachandran Ramjee. Sarathi: Efficient
llm inference by piggybacking decodes with chunked prefills. arXiv
preprint arXiv:2308.16369, 2023.

[3] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,
Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-
query transformer models frommulti-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

[4] Rashmi Bajaj and Dharma P Agrawal. Improving scheduling of tasks
in a heterogeneous environment. IEEE Transactions on Parallel and
Distributed Systems, 15(2):107–118, 2004.

[5] Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin,
Younes Belkada, Artem Chumachenko, Pavel Samygin, and Colin Raf-
fel. Petals: Collaborative inference and fine-tuning of large models.
arXiv preprint arXiv:2209.01188, 2022.

[6] Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry
Baranchuk, Tim Dettmers, Younes Belkada, Pavel Samygin, and
Colin A Raffel. Distributed inference and fine-tuning of large language
models over the internet. Advances in Neural Information Processing
Systems, 36, 2024.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Joseph Cheriyan and SN Maheshwari. Analysis of preflow push al-
gorithms for maximum network flow. SIAM Journal on Computing,
18(6):1057–1086, 1989.

[9] Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier,
Anton Sinitsin, Dmitry Popov, Dmitry V Pyrkin, Maxim Kashirin,
Alexander Borzunov, Albert Villanova del Moral, et al. Distributed
deep learning in open collaborations. Advances in Neural Information
Processing Systems, 34:7879–7897, 2021.

[10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

[11] Google Cloud. Google cloud compute products. https://cloud.google.
com/products/compute, 2024. Accessed: 2024-03-13.

[12] Tyler Griggs, Xiaoxuan Liu, Jiaxiang Yu, Doyoung Kim, Wei-Lin Chi-
ang, Alvin Cheung, and Ion Stoica. M\’elange: Cost efficient large
languagemodel serving by exploiting gpu heterogeneity. arXiv preprint
arXiv:2404.14527, 2024.

[13] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. Serving {DNNs} like
clockwork: Performance predictability from the bottom up. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 443–462, 2020.

[14] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.
[15] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, JinlinWang,

Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, et al. Metagpt: Meta programming for multi-agent collaborative
framework. arXiv preprint arXiv:2308.00352, 2023.

[16] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R Ganger, Phillip B Gibbons, and Onur Mutlu. Gaia:{Geo-
Distributed} machine learning approaching {LAN} speeds. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 629–647, 2017.

[17] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[18] Xianyan Jia, Le Jiang, Ang Wang, Wencong Xiao, Ziji Shi, Jie Zhang,
Xinyuan Li, Langshi Chen, Yong Li, Zhen Zheng, et al. Whale: Efficient
giant model training over heterogeneous {GPUs}. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages 673–688, 2022.

[19] Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Bin-
hang Yuan. Hexgen: Generative inference of large languagemodel over

600

https://github.com/Thesys-lab/Helix-ASPLOS25/blob/master/readme.md
https://github.com/Thesys-lab/Helix-ASPLOS25/blob/master/readme.md
https://github.com/Thesys-lab/Helix-ASPLOS25/blob/master/readme.md
https://github.com/Thesys-lab/Helix-ASPLOS25/blob/master/readme.md
https://github.com/Thesys-lab/Helix-ASPLOS25/blob/master/artifact_evaluation/ae_readme.md
https://github.com/Thesys-lab/Helix-ASPLOS25/blob/master/artifact_evaluation/ae_readme.md
https://cloud.google.com/products/compute
https://cloud.google.com/products/compute

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yixuan Mei et al.

heterogeneous environment. In Forty-first International Conference on
Machine Learning, 2024.

[20] Jack Kosaian, KV Rashmi, and Shivaram Venkataraman. Parity models:
erasure-coded resilience for prediction serving systems. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles, pages
30–46, 2019.

[21] Jack Kosaian, KV Rashmi, and Shivaram Venkataraman. Learning-
based coded computation. IEEE Journal on Selected Areas in Information
Theory, 1(1):227–236, 2020.

[22] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with
pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on
Operating Systems Principles, 2023.

[23] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from
transformers via speculative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR, 2023.

[24] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez,
et al. {AlpaServe}: Statistical multiplexing with model parallelism
for deep learning serving. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages 663–679, 2023.

[25] Linux Kernel Documentation. Energy aware scheduling. https:
//docs.kernel.org/scheduler/sched-energy.html, 2024. Linux Kernel
Documentation.

[26] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang
Hu, Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. Wizard-
coder: Empowering code large language models with evol-instruct.
arXiv preprint arXiv:2306.08568, 2023.

[27] Zhiyu Mei, Wei Fu, Kaiwei Li, Guangju Wang, Huanchen Zhang, and
Yi Wu. Realhf: Optimized rlhf training for large language models
through parameter reallocation, 2024.

[28] Meta. Introducing Meta Llama 3: The most capable openly available
LLM to date — ai.meta.com. https://ai.meta.com/blog/meta-llama-3/.
[Accessed 07-05-2024].

[29] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi
Jin, Tianqi Chen, and Zhihao Jia. Towards efficient generative large
language model serving: A survey from algorithms to systems. arXiv
preprint arXiv:2312.15234, 2023.

[30] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu
Wang, Zhengxin Zhang, Rae Ying Yee Wong, Alan Zhu, Lijie Yang,
Xiaoxiang Shi, et al. Specinfer: Accelerating large language model
serving with tree-based speculative inference and verification. In
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
pages 932–949, 2024.

[31] Hema Venkata Krishna Giri Narra, Zhifeng Lin, Ganesh Anantha-
narayanan, Salman Avestimehr, and Murali Annavaram. Collage in-
ference: Using coded redundancy for lowering latency variation in
distributed image classification systems. In 2020 IEEE 40th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages
453–463. IEEE, 2020.

[32] NVIDIA. NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-
datasheet-us-nvidia-1758950-r4-web.pdf. Accessed: 2024-10-28.

[33] NVIDIA. NVIDIA H100 Tensor Core GPU. https://resources.nvidia.
com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet. Accessed:
2024-10-28.

[34] NVIDIA. NVIDIA L4 Tensor Core GPU. https://resources.nvidia.com/
en-us-data-center-overview/l4-gpu-datasheet. Accessed: 2024-10-28.

[35] NVIDIA. NVIDIA T4 Tensor Core GPU. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-
datasheet-951643.pdf. Accessed: 2024-10-28.

[36] NVIDIA. Triton Inference Server.

[37] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen,
Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan
Soyke. Tensorflow-serving: Flexible, high-performance ml serving.
arXiv preprint arXiv:1712.06139, 2017.

[38] OpenAI. ChatGPT, 2023.
[39] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Se-

ungmin Lee, Jaesik Choi, Sam H Noh, and Young-ri Choi. {HetPipe}:
Enabling large {DNN} training on (whimpy) heterogeneous {GPU}
clusters through integration of pipelined model parallelism and data
parallelism. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 307–321, 2020.

[40] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. Splitwise: Efficient genera-
tive llm inference using phase splitting. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA), pages 118–
132. IEEE, 2024.

[41] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin,
James Bradbury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and
Jeff Dean. Efficiently scaling transformer inference. Proceedings of
Machine Learning and Systems, 5, 2023.

[42] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[43] Andrei Radulescu and Arjan JC Van Gemund. Fast and effective task
scheduling in heterogeneous systems. In Proceedings 9th heterogeneous
computing workshop (HCW 2000)(Cat. No. PR00556), pages 229–238.
IEEE, 2000.

[44] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[45] Max Ryabinin, TimDettmers,Michael Diskin, andAlexander Borzunov.
Swarm parallelism: Training large models can be surprisingly
communication-efficient. In International Conference onMachine Learn-
ing, pages 29416–29440. PMLR, 2023.

[46] Max Ryabinin and Anton Gusev. Towards crowdsourced training of
large neural networks using decentralized mixture-of-experts. Ad-
vances in Neural Information Processing Systems, 33:3659–3672, 2020.

[47] Noam Shazeer. Fast transformer decoding: One write-head is all you
need. arXiv preprint arXiv:1911.02150, 2019.

[48] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus:
A gpu cluster engine for accelerating dnn-based video analysis. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
pages 322–337, 2019.

[49] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism. arXiv
preprint arXiv:1909.08053, 2019.

[50] Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic. Ml
training with cloud gpu shortages: Is cross-region the answer? In
Proceedings of the 4th Workshop on Machine Learning and Systems,
pages 107–116, 2024.

[51] Seyed Mohammadhossein Tabatabaee, Jean-Yves Le Boudec, and Marc
Boyer. Interleaved weighted round-robin: A network calculus analysis.
IEICE Transactions on Communications, 104(12):1479–1493, 2021.

[52] The ZeroMQ authors. ZeroMQ An open-source universal messaging
library, 2024.

[53] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. Bamboo:
Making preemptible instances resilient for affordable training of large
DNNs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 497–513, Boston, MA, April 2023.
USENIX Association.

601

https://docs.kernel.org/scheduler/sched-energy.html
https://docs.kernel.org/scheduler/sched-energy.html
https://ai.meta.com/blog/meta-llama-3/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-data-center-overview/l4-gpu-datasheet
https://resources.nvidia.com/en-us-data-center-overview/l4-gpu-datasheet
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf

Helix: Serving LLMs over Heterogeneous GPUs and Network via Max-Flow ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[54] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-
effective and low-complexity task scheduling for heterogeneous com-
puting. IEEE transactions on parallel and distributed systems, 13(3):260–
274, 2002.

[55] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[56] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[57] Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang,
Christopher De Sa, Christopher Re, and Ce Zhang. Cocktailsgd: Fine-
tuning foundation models over 500mbps networks. In International
Conference on Machine Learning, pages 36058–36076. PMLR, 2023.

[58] BingyangWu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. Trans-
parent {GPU} sharing in container clouds for deep learning workloads.
In 20th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 69–85, 2023.

[59] x.ai. Annocing grok.
[60] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil

Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam
Mittal, Scott Shenker, et al. {SkyPilot}: An intercloud broker for sky

computing. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 437–455, 2023.

[61] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim,
and Byung-Gon Chun. Orca: A distributed serving system for
{Transformer-Based} generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 22), pages
521–538, 2022.

[62] Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi
Chen, Percy S Liang, Christopher Re, and Ce Zhang. Decentralized
training of foundation models in heterogeneous environments. Ad-
vances in Neural Information Processing Systems, 35:25464–25477, 2022.

[63] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. {MArk}:
Exploiting cloud services for {Cost-Effective},{SLO-Aware} machine
learning inference serving. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 1049–1062, 2019.

[64] Shiwei Zhang, Lansong Diao, Chuan Wu, Zongyan Cao, Siyu Wang,
and Wei Lin. Hap: Spmd dnn training on heterogeneous gpu clusters
with automated program synthesis. In Proceedings of the Nineteenth
European Conference on Computer Systems, pages 524–541, 2024.

[65] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. {DistServe}: Disaggregating
prefill and decoding for goodput-optimized large language model serv-
ing. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pages 193–210, 2024.

602

	Abstract
	1 Introduction
	2 Background
	2.1 LLM Architecture and Serving
	2.2 Distributed Model Serving

	3 Opportunities and Challenges
	3.1 Challenge 1: Model Placement
	3.2 Challenge 2: Request Scheduling

	4 Optimization Formulation in Helix
	4.1 Formulation of LLM Serving
	4.2 Necessity of Joint Optimization
	4.3 Heterogeneous LLM Serving as Max-Flow
	4.4 Optimal Model Placement with MILP
	4.5 Analyzing and Speeding up MILP
	4.6 Replacing MILP with LP or Heuristics?

	5 Helix Runtime
	5.1 Scheduler Design: Per-Request Pipelines
	5.2 KV-Cache Estimation

	6 Evaluation
	6.1 Implementation
	6.2 Experiment Setup
	6.3 Single Cluster
	6.4 Geo-Distributed Clusters
	6.5 High GPU-Heterogeneity Cluster
	6.6 Model Placement Deep Dive
	6.7 Request Scheduling Deep Dive
	6.8 Ablation Study on Optimization
	6.9 Model Placement Quality

	7 Related Work
	8 Conclusion
	A Artifact
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Detailed Steps for Reproducing Results

	References

