
STOVE: Strict, Observable, Verifiable Data and
Execution Models for Untrusted Applications

Jiaqi Tan, Rajeev Gandhi, Priya Narasimhan
Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Email: tanjiaqi@cmu.edu, rgandhi@ece.cmu.edu, priya@cs.cmu.edu

Abstract—The massive growth in mobile devices is likely to
give rise to the leasing out of compute and data resources on
mobile devices to third-parties to enable applications to be run
across multiple mobile devices. However, users who lease their
mobile devices out need to run applications from unknown third-
parties, and these untrusted applications may harm their devices
or access unauthorized personal data. We propose STOVE, a data
and execution model for structuring untrusted applications to be
secure by construction, to achieve strict and verifiable execution
isolation, and observable access control for data. STOVE uses
formal logic to verify that untrusted code meets isolation proper-
ties which imply that hosts running the code cannot be harmed,
and that untrusted code cannot directly access host data. STOVE
performs all data accesses on behalf of untrusted code, allowing
all access control decisions to be reliably performed in one place.
Thus, users can run untrusted applications structured using the
STOVE model on their systems, with strong guarantees, based on
formal proofs, that these applications will not harm their system
nor access unauthorized data.

I. INTRODUCTION

There has been massive growth in the number and ca-
pabilities of personal mobile devices in use in recent years.
More than 2 billion mobile devices (tablets and smartphones)
were sold in 2014 alone [1]. Just as the massive increase
in the availability of enterprise-level compute resources, such
as servers, gave rise to cloud computing and the leasing out
of enterprise compute resources to third-parties, this massive
availability of personal mobile devices will inevitably lead to
the leasing out of the compute and data resources on personal
mobile devices to third-parties. In fact, systems for mobile
leasing to allow third-parties to harness both the compute and
data resources of mobile devices have been proposed ([2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13]). However, the
leasing out of mobile devices is very different from the leasing
out of enterprise compute resources in cloud computing, as
mobile devices are inherently personal. Hence, third-party code
and applications from unknown entities running on personal
mobile devices can alter or modify these devices, and they
may make unauthorized accesses to privacy-sensitive personal
data belonging to users on these devices. Current security
models for cloud computing focus on enterprise concerns,
such as securely running trusted applications on untrusted
hosts [14], [15], [16]. Hence, the existing security models
for cloud computing are inadequate for addressing the threats
posed to personal data on mobile devices with mobile resource
leasing. Security models for mobile resource leasing must both
provide protection for executing untrusted application code
from unknown developers, and provide privacy controls for
allowing untrusted applications to access only authorized data
on the mobile device.

Traditionally, software applications are assumed to be
written by reputable software developers. These applications
are able to use the full functionality of the interface provided
by the operating system to user applications, hence, these
applications are implicitly trusted. Although modern OSes pro-
vide isolation between the OS and applications, and between
different applications, user applications are still allowed to
access most OS facilities via system calls, and applications
are free to access user data. However, this “reputable de-
veloper” trust model does not hold for recent emerging or
even existing classes of applications. In particular, users may
not want to trust applications which have been developed by
unknown entities. Users need to run untrusted applications
which have been developed by unknown entities when they
lease their compute resources out to third-parties, such as in
cloud computing. This problem is made worse in the emerging
trend of mobile resource leasing, because the systems leased
out to third-parties are mobile devices belonging to individuals
which contain personal data, as compared to enterprise-level
servers in cloud computing, and these third-party applications
may need to make use of the user’s personal data. Thus,
any malicious actions by untrusted applications can lead to
significant personal data loss and damage to personal devices.
Hence, strong guarantees are needed for applications devel-
oped by unknown entities which are untrusted, so that users
can be confident that they can run these applications on their
personal devices without other applications, or the OS, being
harmed, and that these untrusted applications cannot access
any unauthorized data.

Systems with Untrusted Applications: Apart from resource
leasing in cloud computing and clouds of mobile devices,
there are a number of existing and proposed systems where
users need to run potentially untrusted applications developed
by unknown entities. Volunteer computing systems enable
users to volunteer compute time on their systems to run small
parts of large computations, such as scientific applications (e.g.
SETI@Home [17] and BOINC [18]). Users have to trust the
authors of these large computations, although these projects
are typically sponsored by reputable scientific institutes which
users can plausibly trust. Web browsers allow users to install
browser extensions, which contain executable code, and they
can display rich content, such as executable scripts and mul-
timedia content (e.g. Abode Flash). Web browsers present a
very complex environment, and the rich content and extensions
[19] supported can be exploited to compromise users’ web
browsers. Users must trust the authors of websites they visit
and extensions they install, as web browsers effectively execute
remote content. Cloud computing allows owners of idle
compute resources to lease out idle systems to third-parties to

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.116

644

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.116

644

run applications on them. Cloud computing typically involves
the leasing out of compute resources at an enterprise-scale,
such as in the Amazon EC2 compute cloud. Nonetheless,
resource owners (e.g. Amazon in the case of EC2) need to
trust the tenants of these systems and the applications they
run, as tenants are free to run any application on these leased
resources. Crowd-sourcing applications typically provide a
client which allows users to contribute answers to questions
posed by application owners, either through user responses, or
using the system’s data. Such crowd-sourcing applications typ-
ically have clients on mobile devices (e.g. smartphones), and
they collect or elicit responses such as the users’ locations, to
enable applications such as large-scale urban transit planning
[2], mobile question-answering [12] and video collection [13].
Users need to trust these clients as they receive instructions
from remote servers, and they access data from the users’ sys-
tems. Cooperative mobile computing systems extend crowd-
sourcing systems by enabling clients to communicate not just
with a central server, but also amongst themselves to organize
computation and exchange data. Clients may cooperate to
jointly complete a task, such as sensor data collection [9]. In
such systems, clients need to trust other clients in the system as
well, whose identities are most likely unknown. Hence, there
are many examples of systems where users run applications
from unknown entities, necessitating a secure by construction
approach for untrusted applications.

Proposed System: In this paper, we propose STOVE, a data
and execution model (henceforth the “STOVE model”) for
untrusted applications developed by unknown entities, which
provides strong guarantees that (i) when the code of an
untrusted application runs on a system, it will not be able
to harm or interfere with the OS or other applications on the
system, and that (ii) the untrusted application can only access
data authorized by the user. STOVE represents a secure by
construction approach to security for untrusted apps, requiring
that untrusted apps be constructed so that they can be run
securely without harm to their host systems. Thus, users can
run untrusted applications which are built using the STOVE
model on their system, with the confidence that the untrusted
application will not harm the user’s system, nor make unautho-
rized access to the user’s data. The STOVE model consists of
two parts. First, STOVE strictly limits untrusted applications,
and requires its code to be fully isolated from the system it
runs on, preventing the code from directly accessing any data.
This strict isolation of application code is verified by STOVE
using formal logic. The execution of untrusted application code
is strictly separated from any access to user data, and we
verify this isolation of the untrusted code formally. Second,
STOVE performs all data accesses on behalf of the untrusted
application, so that all data accessed is observable. The STOVE
model is realized by a verifier which statically proves the
isolation of untrusted code, and a runtime system which
accesses data on behalf of untrusted applications, providing
access control. We note that while mobile resource leasing is an
important use-case for the STOVE model, the STOVE model
is general and applies to any untrusted application. To the best
of our knowledge, STOVE is the first model which allows the
automatic proving of safety properties in unmodified machine-
code binaries without a prior safe rewriting step, and is the
first model which uses execution isolation to provide strict and
observable access control for data accesses.

II. RELATED WORK

Security for Untrusted Code Execution: There are two
main classes of techniques for ensuring that untrusted code is
securely executed without the executing host coming to harm.
First, the untrusted code can be isolated to limit or prevent
damage due to its execution. Virtualization [20] can be used to
run untrusted applications in an environment which is isolated
from trusted applications, but this will prevent the untrusted
application from accessing any data from the host, whereas
untrusted applications may need access to host data. Software
Fault Isolation (SFI) [21] and XFI [22] provide protection from
untrusted code modules by rewriting them to render potentially
dangerous operations (e.g. memory writes and jumps) safe.
XFI improves on SFI by providing a verifier which verifies
that the rewritten module meets the desired safety properties.
The isolation properties which the STOVE model requires of
untrusted application code are similar to the safety properties
which SFI and XFI aim to provide, and like XFI, STOVE
verifies that security properties are met using a formal logic.
However, STOVE does not rewrite untrusted code, unlike
XFI. Second, guarantees can be established to ensure that the
untrusted code conforms to particular desired security policies.
Proof-carrying code [23] (PCC) allows a code consumer to
formally validate that a piece of untrusted code meets a desired
security policy; PCC requires the code producer to prove that
the code meets the security policy. Like PCC, STOVE also
requires untrusted code to meet a security policy, but unlike
PCC, consumers of untrusted code in STOVE perform the
proof for themselves. PCC [23] does not specify how the proof
for untrusted code is obtained, and allows for manual proofs.
In STOVE, we aim to reduce the burden on code developers,
and we aim to automatically prove that the untrusted code
meets the desired security policy. Like the initial version of
PCC [23], STOVE proves that untrusted code meets desired
security policies at the machine code level.

Security Measures for Cloud Computing: SecureMR [14],
Sedic [15] and Airavat [24] provide security for MapReduce
[25], a popular distributed computing framework for cloud
computing. SecureMR [14] tackles the threat of untrusted
nodes, Sedic [15] provides privacy-aware scheduling for en-
suring private data is not processed on untrusted nodes, while
Airavat [24] provides security measures to protect a trusted
MapReduce cluster which is executing untrusted jobs. STOVE
tackles the problem of running untrusted third-party appli-
cations on a trusted system, whereas Sedic and SecureMR
address the running of trusted code on untrusted systems.
Similarly to Sedic and SecureMR, Juels [26] and Gennaro
[16] propose cryptographic solutions to tackle the problems of
untrustworthy cloud storage services and untrustworthy cloud
compute services by providing provable data retrieval and
computation. Only Airavat addresses the same threat model
as STOVE of untrusted code running on trusted systems,
but requires operating system-level modifications by using
SELinux to impose Mandatory Access Control.

Security Measures for Mobile Resource Leasing: Most
security mechanisms proposed for mobile resource leasing
focus on preserving the integrity and privacy of data exchanged
between users and application owners (e.g. in a crowd-sourcing
system). Proposed privacy and reliability measures include
privacy-preserving tasking [27] and data collection [4], [3],

645645

[28], and the collection of accurate data [27]. Such techniques
are orthogonal to STOVE: they provide system-level privacy
and integrity for applications which lease mobile resources,
whereas STOVE protects the local security and privacy of
mobile devices when they lease their resources to other,
unknown entities. PRISM [10] and RACE [8] address the
local security of mobile devices running code from unknown
entities, but they use a sandbox to restrict the behaviors of un-
trusted code. Software sandboxes need to restrict all behaviors
which may be dangerous, and they must be correctly designed
and implemented to fully prevent all dangerous behaviors. It
is challenging to prevent all dangerous behaviors, whereas
STOVE provides strict isolation of untrusted code which is
verified using formal logic, providing a stronger guarantee.

III. OVERALL APPROACH

A. Definitions, Assumptions and Threat Model

In this paper, we consider the scenario where a user
executes an application from an entity unknown to the user,
on a system (which can be a full computer or a mobile device)
owned by the user. We call this system the “host” of the
application, and because the user owns the host, the host
contains personal data belonging to the user, which the user
may consider privacy-sensitive. As the user does not know
the entity which developed the application, we assume that
the user does not trust the application. We call the application
the “untrusted application”, or “untrusted app”. Nonetheless,
we assume that the user wishes to run the untrusted app
on the host he owns because the user receives utility from
running the untrusted app (e.g. contributing compute cycles to
a volunteer computing project, or contributing data to a crowd-
sourcing system to receive results from other participants; we
do not consider how to incentivize users to participate in
such systems). We also assume that the untrusted app will
require access to some of the user’s potentially private data
stored on the host, and that the user is willing to share some,
but not all, of his data with the untrusted app. Finally, we
assume that the untrusted app does not require a user interface,
and performs only computation on data. This is due to the
restrictions imposed by the STOVE model (limits on system
call invocations) on untrusted apps.

We consider arbitrarily malicious and powerful attackers,
i.e. untrusted apps may contain arbitrarily malicious code
which may crash or alter the hosts they run on. We assume
that hosts faithfully execute untrusted apps as provided by
developers and return correct results (i.e. we do not concern
ourselves with the correctness of results provided by poten-
tially dishonest hosts). Instead, we focus on protecting hosts
from the arbitrary code they receive in untrusted apps.

B. Goals and Non-goals

The main objective of STOVE is to protect hosts when
they execute potentially malicious code in untrusted apps. We
aim to meet the following goals in our design and imple-
mentation: (1) be transparent to underlying operating systems
and platforms (e.g. smartphone platforms such as Android),
and not require any changes to them; (2) not require access
to the source-code of the untrusted app; (3) provide strong,
provable guarantees of execution isolation, to provably ensure

STOVE
Execution Model

STOVE
Data Model

STOVE Execution
Verification Layer

(EVL)

STOVE Data
Access Layer

(DAL)

Realized by

Provides execution
isolation:
• Untrusted code

cannot alter/modify/
affect OS or other
apps on host

• Untrusted code
cannot access host
data directly

Relies on execution isolation.

Provides observable,
controllable data access for
untrusted code:
• No direct access to host data
• All desired data must be

requested, and is supplied at
runtime

• Access control performed
before data supplied to code

Untrusted
app code Verify/Prove isolation

properties are met by
code

Execute the verified code,
supplying requested data;
Check access is granted to

requested data

Output from
untrusted code

STOVE Data and Execution Model

Fig. 1. Overview of the STOVE Data and Execution Model, and our approach.

that untrusted apps cannot circumvent or affect the execution
of any other applications or the operating system of the host;
(4) not need to trust any runtime mechanisms (e.g. sandboxes)
for code isolation; (5) ensure that all data accessed by untrusted
apps is observable; (6) provide hosts with fine-grained and un-
circumventable access control over data provided to untrusted
apps; (7) minimize the Trusted Computing Base (TCB) of our
system, by minimizing the system components which we must
trust for the isolated execution of untrusted apps.

We focus on the security and privacy issues facing hosts
when they run code from, and provide data to untrusted apps.
We do not address the security and privacy challenges that
face application authors whose applications rely on outputs
from individual device owners. For instance, we do not address
the challenge of ensuring that participating hosts in volunteer
computing or crowd-sourced systems return correct results
and supply timely and correct data [27]. These challenges are
orthogonal to the challenges facing hosts. Network attackers
who may spoof, alter, or destroy network traffic are not relevant
to our threat model as we consider only local threats facing
the hosts when they run untrusted apps.

C. Overview of the STOVE model

The STOVE Data and Execution Model is a two-layered
architecture to allow code from untrusted apps to be securely
executed on a trusted host, while still allowing untrusted
apps to access potentially private data on the host, without
unauthorized data accesses. The key idea of STOVE is to
isolate untrusted code as it runs on the host, to both (i) prevent
the untrusted code from affecting (modifying or tampering
with) the OS and other running applications, and (ii) prevent
the untrusted code from accessing any data on the host directly.
Thus, all data accesses are made on behalf of the untrusted app,
which allows for all accessed data to be directly observable.
This provides a single point to easily enforce access control
policies on data accesses by the untrusted app. Figure 1
illustrates the properties provided by the STOVE Data and
Execution Models, how they are realized by the Execution
Verification Layer (EVL) and Data Access Layer (DAL), and
the relationship between the Data and Execution Models.
First, the Execution Model specifies the isolation requirements
for code in untrusted apps. STOVE requires developers of
untrusted apps to ensure that their code meets the isolation
requirements specified by STOVE before their app is allowed

646646

to be executed on a host. Code which meets these isolation
requirements specified by STOVE will (i) not be able to modify
or affect the execution of the OS or any other application,
and (ii) not be able to directly access any data on the host.
Second, the Data Model requires that untrusted apps cannot
directly access any host data (this is ensured by our execution
model), and that untrusted apps must request desired host
data. Then, this data will be retrieved from the host on behalf
of the untrusted app and supplied to it. The STOVE model
is realized via: (i) the STOVE Execution Verification Layer
(EVL), which statically proves that untrusted code meets the
required isolation requirements, and (ii) the STOVE Data
Access Layer (DAL), which is a runtime layer that accesses
data on behalf of the untrusted code, supplying that data to
untrusted apps, while providing access control for host data.
The STOVE EVL provides the basis for the strong security and
privacy guarantees of the STOVE Execution Model, while the
STOVE Data Model relies on the STOVE Execution Model
to guarantee that the only host data which untrusted apps can
access is the data provided to the app by the STOVE DAL,
while providing access control for host data.

IV. STOVE EXECUTION VERIFICATION LAYER (EVL)

The STOVE Execution Verification Layer (EVL) realizes
the isolation requirements of the STOVE Execution Model
for code from untrusted apps. The EVL requires untrusted
apps to provide code which meets a set of predetermined
isolation properties (specifically, memory and control-flow
safety, §IV-A). When these safety properties are met by the
untrusted code, the code will not be able to alter, modify or
affect the execution of the OS nor other applications on the
host it runs on, ensuring that the host is secure even when
it runs the untrusted code. The EVL statically verifies that
the code from the untrusted app meets these safety properties
by automatically proving safety theorems on the code. These
safety theorems are a formal statement that the untrusted code
meets the required safety properties. The EVL proves that the
safety theorems hold on the code before executing it, and if the
proof process fails, the code is rejected and is not executed.

A. Isolation: Memory and Control-flow Safety

Concretely, to ensure that hosts are safe and will not
be affected by running untrusted code, the EVL requires
that all untrusted code must meet memory and control-flow
safety properties. Specifically, memory safety requires that all
memory read and write instructions in the untrusted code must
have target addresses restricted to user-addressable parts of
virtual memory, while control-flow safety requires that all jump
targets are restricted to addresses in the text section of the
binary. The EVL also requires that all untrusted app code is
statically compiled, and that no external library code is called.
Thus, the memory and control-flow safety properties ensure
that the host is isolated from the execution of the untrusted
code, and the untrusted code will not be able to affect the
execution of any other process on the host. Additionally, we
restrict the system calls that can be made by the code, and
we allow the code only the write system call, and with only
file descriptor 1 (i.e. standard output). Later, the Data Access
Layer (DAL) runtime supplies the code with any required input
via standard input. The restriction on system calls strengthens

the isolation of the untrusted code, and ensures that the code
is not able to use system calls to directly access any host data,
providing the isolation guarantee required by the Data Access
Layer to ensure that the DAL can effectively provide access
control for host data at a single point.

B. Proof Process and Automation

The STOVE EVL requires untrusted app code to be sup-
plied as machine code programs, and the proof of the code
possessing the required isolation properties is carried out on
machine code programs. By proving our desired isolation
properties on the machine code, we can exclude any compilers
used to compile the code (as compared to proofs on high-
level languages), and we can exclude any intermediate virtual
machines (as compared to proofs on intermediate byte-code,
e.g. Dalvik or Java byte-code), from our TCB. Hence, the
TCB which we must trust for isolated execution of untrusted
code consists only of the formalization of the machine code
in logic [29], the HOL4 proof assistant [30], and the correct
implementation of the processor in hardware.

The EVL formally proves the isolation of the untrusted
code using a Hoare logic over machine code [29] and program
analysis. We first decompile the machine code programs to a
formalization of machine code instructions for the particular
architecture (e.g. Intel x86, x86-64, ARM) of the machine
code instructions in the logic of the HOL4 proof assistant
[30]. While the machine code Hoare logic which we use [29]
supports the 3 above architectures, we are currently developing
automated proof techniques for the ARM architecture because
of the widespread use of ARM processors in mobile devices,
and because the ARM machine model formalization in [29]
has been thoroughly validated [31]. Then, we automatically
instantiate the desired memory and control-flow safety prop-
erties in the logic to obtain a theorem specific to the code
being verified which asserts that the code meets our desired
safety properties. Finally, the EVL automatically proves that
the safety theorem holds, by mechanizing the proof steps, and
using program analysis. We have described details of our initial
work on the proof automation and mechanization for safety
properties in [32]. The proof process of the EVL is static,
and does not require executing the code being verified. As our
proof process works on machine code, we do not require the
source code of the untrusted app.

C. Developer Assistance

As the STOVE EVL requires untrusted apps to have code
which meets our specified isolation properties, we intend that
the STOVE EVL can also be used as a development tool to
help developers write code which meets our required proper-
ties. The static verification process in the STOVE EVL can
be used on the machine code of programs under development.
Then, information from proof failures for non-conforming code
can be used to suggest to developers changes at the source-
code level, such as adding safety checks, to help their code
meet our isolation properties. Note that the EVL does not need
the source-code for proving safety properties on the machine-
code, but the source-code can be used with information from
proof failures to help developers write safe code. [32] describes
some of our planned work in developer assistance.

647647

V. STOVE DATA ACCESS LAYER (DAL)

The STOVE Data Access Layer (DAL) serves as the single
point through which all host data that untrusted apps wish to
access must pass. The STOVE Execution Model ensures that
untrusted apps are not able to directly access any host data,
thus ensuring that the DAL is the only way that the untrusted
app can access any host data. Untrusted apps specify the host
data which they wish to access in a high-level description
separate from their executable code. Then, the DAL runtime
provides access control for host data, and the DAL runtime
retrieves the host data requested by the untrusted app (if it is
allowed) on behalf of the code, and the runtime supplies this
data as input to the untrusted app. Thus, all accesses to host
data by the untrusted app are made explicit, and the DAL does
not have to control how the untrusted code may access host
data (as compared to a sandbox approach).

A. Data Specification Language

We envision that untrusted apps specify the data they wish
to access from the host using a high-level description. This is a
logical description of the data source, such as sensor data from
mobile devices (e.g. GPS or location data, accelerometer data),
or photos and videos stored locally, or the address book or
calendar of the host owner. The untrusted app can also specify
the rate at which the data should be sampled, and the number
of samples, for certain data sources, such as sensors. The DAL
will also allow for untrusted code to receive remote inputs, for
instance, in the case of volunteer computing projects, where
untrusted apps may need to process data received from the
volunteer project (e.g. receiving radio signal data to process
for SETI@Home).

B. Fine-grained Access Control

The DAL also provides the host with an interface for
specifying access control policies for host data, and for en-
forcing these access control policies when supplying data to
untrusted apps. Since the DAL is able to observe all host data
accessed by the untrusted app (because the DAL retrieves all
data on behalf of the untrusted app), the DAL can enforce
sophisticated access control policies which can be based on
the actual data content. For instance, the DAL can enforce
access control policies which allow host owners to limit the
sampling rate and number of samples accessed by untrusted
apps, which the DAL can enforce without having to monitor
the execution of the untrusted app. Also, as the DAL retrieves
all data for the untrusted app, the DAL can also transform
the data before supplying it to the app. Thus, the DAL can
perform data sanitization or anonymization, such as adding
noise to GPS data, or pixelating photos. Other content-based
fine-grained access control mechanisms, such as using face
recognition and other image processing algorithms to identify
privacy-sensitive photos [33], can also be used.

C. Logic-based Authorization

To further improve user confidence in the access control
for user data by our DAL runtime, we intend to use access
control logics to express access control policies, so that our
runtime can justify based on user-specified preferences why
each access control decision is allowed.

VI. EXAMPLE APPLICATIONS

Volunteer Computing: To recap, we illustrate how the
STOVE model can be realized in a volunteer computing system
such as BOINC [18]. Currently, some volunteer computing
systems provide users with clients which download or receive
executable programs from the volunteer computing project’s
servers. These programs are then run on the user’s host to
perform the volunteered task. Users who wish to participate in
such volunteer computing system must trust that the authors
mean no harm, and that their executable programs will not
harm their host systems.

A volunteer computing platform which is developed using
the STOVE model would comprise of code which meets the
isolation requirements of the STOVE Execution Model. The
authors of the volunteer task would first use the STOVE EVL
to verify that their code meets the isolation requirements of
the STOVE model, and they have to ensure that their code
does not make use of any system calls (except for the write
system call to return output to stdout), and that their code
essentially performs only computation with no external com-
munication. They can make use of our planned developer tools
(§IV-C) to help them write code which meets our isolation
requirements. Then, the authors of the volunteer task will use
the high-level data specification language of the STOVE DAL
to specify what inputs the untrusted code requires. Thus, the
code of the app, together with the data request of the app, make
up the STOVE-compliant app. Next, the volunteer computing
project will make available their STOVE-compliant app to
users. Then, on each user’s host system, the STOVE EVL
will first prove that the code of the untrusted app possesses
the required isolation properties. Once the proof succeeds, the
code can be executed. The STOVE DAL runtime executes
the verified code, supplies the code with its requested inputs
(as allowed by the user’s access control policy), and collects
the code’s output at the end of the execution to return to the
project’s servers.

Mobile Resource Leasing: Mobile Edge Clouds: Next, we
illustrate how the STOVE model would be realized in a mobile
resource leasing scenario, in a mobile edge-cloud system.
Consider a compute cloud made up entirely of mobile devices,
or edge-devices, which allows an application owner to submit
his application to run across multiple mobile devices belonging
to individuals to make use of, or lease, the compute and data
resources on individual users’ mobile devices [34], [35]. Then,
consider an mobile edge-cloud application which surveys its
users to find out how many hours in a day each user spends
walking or jogging. Owners of mobile devices would consider
such an mobile edge-cloud application to be untrusted, as the
users do not know the identity of the application developer.
Such an untrusted app can be developed using the STOVE
model to gain user confidence that the app is safe to run, and
will not make unauthorized data accesses.

Our example application might request 30-second windows
of accelerometer readings at a 5 Hz frequency at 5-minute
intervals (i.e. every 5 minutes, the app is provided with a
30-second window of data) over a 24-hour period. Next, the
untrusted app code will receive raw accelerometer readings
from the STOVE DAL, and process these readings to deter-
mine if the user was walking, running, or not physically active.
Then, the code will write its output as a time-series of whether

648648

the user was walking, jogging, or not active to its standard
output. Finally, our runtime returns the code’s results to the
app owner which initiated the app. When our runtime receives
the untrusted app, it will first extract the binary code, and the
STOVE EVL will decompile this machine code to logic, and
instantiate the safety theorems specifically for the code. The
STOVE EVL automatically proves that the safety theorem is
met before executing the code; if the proof fails, the untrusted
app is rejected and the code is not executed. Next, the STOVE
DAL runtime extracts the high-level description of the data
requested by the edge-cloud app. If the app is allowed to access
the requested data, the STOVE DAL collects and prepares the
data requested by the app to pass to the untrusted code as input.
Then, the runtime runs the untrusted code as a separate user
process, and it passes the assembled input data to the standard
input of the new process. Finally, after the edge-cloud code has
completed its execution, the runtime collects the data written
to the standard output of the process and returns it to the app
owner.

VII. CONCLUSION AND FUTURE WORK

We have presented the design of our STOVE Data and
Execution Model for untrusted applications. STOVE provides
a ground-up, secure by construction approach to securely exe-
cute and share data with code in untrusted apps by (i) restrict-
ing untrusted code to isolate it, verifying this isolation using
formal logic, and (ii) performing all accesses to system data on
behalf of the untrusted code. We have begun implementing the
STOVE EVL, and we can currently automatically instantiate
safety properties in Hoare logic theorems for ARM machine
code programs. We plan to implement and evaluate the perfor-
mance and security of both our Execution Verification (EVL)
and Data Access (DAL) Layers, and demonstrate their usage
in scenarios such as mobile edge-cloud applications. We also
intend to explore the use of the STOVE model in other
environments, such as crowd-sourcing, cloud computing, and
cooperative mobile computing applications.

REFERENCES

[1] “Gartner Says Worldwide Traditional PC, Tablet, Ultramobile and
Mobile Phone Shipments to Grow 4.2 Percent in 2014,” Jul 2014,
http://www.gartner.com/newsroom/id/2791017.

[2] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-
Yatzi, “Crowdsourcing with Smartphones,” IEEE Internet Computing,
Sep/Oct 2012.

[3] E. Cristofaro and C. Soriente, “Short Paper: PEPSI: Privacy-Enhanced
Participatory Sensing Infrastructure,” in ACM WiSec, 2011.

[4] M. Asghar, A. Gehani, B. Crispo, and G. Russello, “PIDGIN: Privacy-
Preserving Interest and Content Sharing in Opportunistic Networks,” in
ASIACCS, 2014.

[5] N. Lane, E. Miluzzo, H. Lu, D. Peebles, and T. Choudhury, “A Survey
of Mobile Phone Sensing,” IEEE Communications, Sep 2010.

[6] W. Zhang, Y. Wen, J. Wu, and H. Li, “Toward a Unified Elastic
Computing Platform for Smartphones with Cloud Support,” IEEE
Network, Sep/Oct 2013.

[7] N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland, “Social fMRI:
Investigating and shaping social mechanisms in the real world,” in IEEE
PerCom, 2011.

[8] B. Chandramouli, J. Claessens, S. Nath, I. Santos, and W. Zhou,
“RACE: Real-time Applications over Cloud-Edge,” in SIGMOD, 2012.

[9] Y. Lee, Y. Ju, C. Min, S. Kang, I. Hwang, and J. Song, “CoMon: Co-
operative Ambience Monitoring Platform with Continuity and Benefit
Awareness,” in ACM MobiSys, 2012.

[10] T. Das, P. Mohan, V. Padmanabhan, R. Ramjee, and A. Sharma,
“PRISM: Platform for Remote Sensing using Smartphones,” in ACM
MobiSys, 2010.

[11] C. Shi, V. Lakafosis, M. Ammar, and E. Zegura, “Serendipity: Enabling
Remote Computing among Intermittently Connected Mobile Devices,”
in MobiHoc, 2012.

[12] T. Yan, V. Kumar, and D. Ganesan, “CrowdSearch: Exploiting Crowds
for Accurate Real-time Image Search on Mobile Phones,” in ACM
MobiSys, 2010.

[13] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable Crowd-Sourcing of Video from Mobile Devices,” in ACM
MobiSys, 2013.

[14] W. Wei, J. Du, T. Yu, and X. Gu, “SecureMR: A Service Integrity
Assurance Framework for MapReduce,” in ACSAC, 2009.

[15] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan, “Sedic: Privacy-
Aware Data-Intensive Computing on Hybrid Clouds,” in ACM CCS,
2011.

[16] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in CRYPTO,
2010.

[17] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“SETI@home: An Experiment in Public-Resource Computing,” Com-
munications of the ACM (CACM), Nov 2002.

[18] D. Anderson, “BOINC: A System for Public-Resource Computing and
Storage,” in IEEE/ACM Grid, 2004.

[19] A. Barth, A. Felt, P. Saxena, and A. Boodman, “Protecting Browsers
from Extension Vulnerabilities,” in NDSS, 2009.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
ACM Symposium on Operating Systems Principles (SOSP), 2003.

[21] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient Software-
Based Fault Isolation,” in ACM Symposium on Operating Systems
Principles (SOSP), 1993.

[22] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. Necula, “XFI:
Software Guards for System Address Spaces,” in OSDI, 2006.

[23] G. Necula and P. Lee, “Safe kernel extensions without run-time check-
ing,” in OSDI, Oct 1996.

[24] I. Roy, S. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat:
Security and Privacy for MapReduce,” in NSDI, Apr 2010.

[25] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in OSDI, Oct 2004.

[26] A. Juels and B. Kaliski, “PORs: Proofs of Retrievability for Large
Files,” in ACM CCS, 2007.

[27] A. Kapadia, D. Kotz, and N. Triandopoulos, “Opportunistic sensing:
Security challenges for the new paradigm,” in COMSNETS, 2009.

[28] Q. Li and G. Cao, “Providing Privacy-Aware Incentives for Mobile
Sensing,” in IEEE PerCom, 2013.

[29] M. Myreen, A. Fox, and M. Gordon, “Hoare Logic for ARM Machine
Code,” in Fundamentals of Software Engineering (FSEN), 2007.

[30] K. Slind and M. Norrish, “A Brief Overview of HOL4,” in TPHOLs,
2008.

[31] A. Fox, “Formal specification and verification of ARM6,” in TPHOLs,
2003.

[32] J. Tan, U. Drolia, R. Gandhi, and P. Narasimhan, “Poster: Towards
Secure Execution of Untrusted Code for Mobile Edge-Clouds,” in ACM
WiSec, 2014.

[33] J. Tan, U. Drolia, R. Martins, R. Gandhi, and P. Narasimhan, “Short
Paper: CHIPS: Content-based Heuristics for Improving Photo Privacy
for Smartphones,” in ACM WiSec, 2014.

[34] U. Drolia, R. Gandhi, and P. Narasimhan, “Enabling Edge-clouds,”
Tech. Rep. CMU-PDL-13-114, Oct 2013.

[35] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi,
and P. Narasimhan, “The Case for Mobile Edge Clouds,” in IEEE
Ubiquitous Intelligence and Computing (UIC), Dec 2013.

649649

