
 9
vQuery: a pLatforM for connectIng
confIguratIon anD perforMance

Abstract
Discovering the causes of performance problems in virtualized
systems is often more difficult than without virtualization, because
they can be caused by changes in infrastructure configuration
rather than the user’s application. vQuery is a system that collects,
archives, and exposes configuration changes alongside fine-grained
performance data, so the two can be correlated. It gathers
configuration change data without modifying the systems it
collects from and copes with platform-specific details within a
general, graph-based model of Infrastructure-as-a-Service (IaaS)
infrastructures. Configuration data collected from two VMware®
vSphere™ environments reveals that configuration changes are
frequent and involved, opening interesting new directions for
configuration-aware performance diagnosis techniques.

1. Introduction
Consolidating computing activities onto shared infrastructures,
such as in cloud computing and other virtualized data centers,
offers substantial efficiency benefits for providers and consumers
alike. But, it also introduces complexities when trying to understand
the performance behavior of any given activity, since it can depend
on many factors not present when using dedicated infrastructure.
For example, the VMs used for the activity can migrate or be resized,
or new VMs for other activities can be instantiated on shared
hardware. As on-demand resource allocation (as in cloud computing)
and automated configuration optimization (e.g., via VMware DRS1)
grow more common, such factors increasingly create potentially
confusing performance effects.

Traditionally, to understand application performance and diagnose
performance problems, administrators and application engineers
rely on resource usage instrumentation data from infrastructure
runtime systems, such as time-sampled CPU utilization, memory
allocated, and network packets sent/received. In VM-based
infrastructures, the same data types can be captured for each VM
as well. But, while such data exposes how resource usage changed
at a given point in time, it offers little insight into why. Deducing
why, so that one can decide what (if any) reactive steps to take,
often is left entirely to the intuitions and experience of those
involved in the diagnosis.

We believe an invaluable additional source of information should
be captured and explicitly correlated with resource utilization data:
the configuration history. Of course, any runtime infrastructure
maintains its current configuration, and many log at least some
configuration changes. Since configuration changes often cause
performance changes, purposefully or otherwise, correlating the
two should make it possible to highlight root causes of many
problems automatically. In addition, the combination of the
two offers the ability to expose powerful insights for system
management and automation, such as which configuration
changes usually improve performance and how particular
problems were overcome in the past.

This paper describes our prototype system (called vQuery) for
configuration change tracking and mining, together with initial
experiences. vQuery collects time-evolving configuration state
alongside fine-grained resource usage data from a VMware
vCloud™-based infrastructure, stores it, and allows it to be queried.
Configuration changes are captured by listening to vSphere’s API
and vCloud’s internal update notifications. They are stored as a
time-evolving graph of entities (e.g., VMs and physical hosts) as
vertices and relationships as edges. This general approach avoids
changes to the infrastructure software, accommodates a range of
IaaS systems, and allows a range of configuration history queries.

We deployed vQuery on a local VMware software based private
cloud (referred to as Carnegie Mellon’s vCloud) as well as a VMware
testbed, with positive initial results. We illustrate some of the power
of configuration change history with interesting anecdotes and
data from these deployments, and discuss challenges still ahead
on this line of research.

The remainder of this paper is organized as follows. Section 2
explains what we mean by “configuration data” and configuration
changes in more detail, including examples from VMware systems.
Section 3 describes the design and current implementation of
vQuery, focusing on how configuration data is captured, stored,
and queried. Section 4 presents some data, early experiences,
and anecdotes from vQuery deployments. Section 5 discusses our
ongoing research on vQuery and exploiting configuration change
data. Section 6 discusses related work.

vQuery: A Platform for Connecting
Configuration and Performance
Ilari Shafer
Carnegie Mellon University

Snorri Gylfason
VMware, Inc.

Gregory R. Ganger
Carnegie Mellon University

1 0
vQuery: a pLatforM for connectIng

confIguratIon anD perforMance

A key aspect of configuration on which we focus is that much
of it changes over time. Some configuration properties may
change very slowly (e.g., the amount of RAM on a physical host
is seldom adjusted), while others are increasingly dynamic (e.g.,
the placement of a VM on a physical host is adapted by DRS).
In tracking configuration as it relates to performance, we focus
on recording changes in order to ask questions such as “was there
a relevant configuration change around the same time as a given
performance change?” and “what were all the configuration changes
associated with a given VM?” Beyond diagnosis, maintaining a change
history can also help us understand how and why systems evolve2.

Additionally, infrastructure configuration is not a collection of
unrelated facts. Configuration properties are associated with
entities, whether physical (hosts and physical networks) or virtual
(VMs and users), and these entities are meaningfully related. For
example, VMs are placed on physical hosts, and users own vApps,
which contain VMs. Examples of these “relational” properties are
shown in italic in Table 1. We believe maintaining information about
the relational structure of configuration—and how it changes—is
important for diagnosis. It is intuitively important to be able to ask
questions, such as “which VMs were on a given host when there
was a performance problem?” Additionally, a variety of diagnosis
approaches have taken advantage of the fact that the effects of
changes often propagate through causal dependencies among
the components of a distributed system3 4 5, many of which are
directed along these relations.

3. vQuery: Design
vQuery is designed to track fine-grained configuration data in a
way that maintains the features described above. At a high level,
the problems we need to solve are the same as those for performance
monitoring: how to collect, store, and access configuration data.
A simplified overview of our approach is shown in Figure 1, and
this section describes each component in turn.

3.1 Configuration Collection
Changes to configuration occur from both human and automated
sources, and they clearly do not happen only at a fixed interval. It
is insufficient for just the current configuration to be exposed by
infrastructure APIs. For the collection process to be more efficient

2. Configuration Data and Changes
In a distributed computing infrastructure, various types of
configuration are spread across files, databases, and within
software. The word “configuration” often is used for concepts
that include command-line flags to programs, OS-level settings,
and the layout of virtual machines across computing resources. In
this work, we focus on the last type: infrastructure-level properties
that affect how virtualized environments, such as vSphere and
vCloud, function and that reflect their current state.

Even this type of configuration is very heterogeneous. Some data
are as simple as key-value pairs, but other data encodes lists, objects,
and hierarchies. Some is controlled by end users (e.g., the choice of
guest operating system for a VM), some is primarily automated by the
computing infrastructure (e.g., which IP address a VM is assigned),
and some can be managed by both (e.g., the choice of physical
resources that back a VM). More concretely, Table 1 shows a selection
of configuration properties in a VMware-based environment, ranging
from simple descriptive properties to relationships with other entities.

EntIty tyPE ConfIguRAtIon PRoPERtIES

VM vSphere: host system, networks, datastore,
name, annotation, memory, vCPUs, CPU allocation
(reservation/limit/shares), memory allocation
(reservation/limit/shares), virtual disk layout (chain
length), power state, guest OS type, guest OS state,
guest OS screen dimensions, guest NIC (IPs, network,
state), guest disk (capacity, free space, path), IP address,
VMware tools state + version
vCloud: vApp, networks, name, vCPUs, memory,
guest OS, status, storage

vApp vCloud: owner, vDC, networks, status

User vCloud: name, VM quota

Host vSphere: network, CPU (frequency, number of cores and
packages), memory size, power state

Network vSphere: name
vCloud: fence mode, parent, DNS (addresses, suffix),
netmask, IP ranges

Datastore vSphere: name, capacity, free space, type, url

Table 1: selected configuration properties in vSphere and vCloud. The properties that
represent other entities are shown in italic.

Modeling configuration consistently is one focus of vQuery. In
addition to the different types and meanings of configuration
within vSphere and vCloud, different virtualized infrastructures
expose different configuration properties. For example, where
vSphere has a platform-independent datastore abstraction, the
OpenStack infrastructure platform separates storage into block
storage, local storage, and a separate VM image service. We would
like to represent configuration in a sufficiently general way to model
such different environments.

Figure 1: high-level overview of the vQuery configuration tracking system. It collects
data from vSphere and vCloud, stores them in separate logs, and ingests them into a
graph database to be queried.

 1 1
vQuery: a pLatforM for connectIng
confIguratIon anD perforMance

3.2 Configuration Storage
A primary challenge in storing configuration is how to represent it.
Here, we describe a time-evolving representation of configuration
information that is designed to support historical and relational
queries using a general model. The representation is a graph with
a loose schema—formally a typed, directed, attributed multigraph
that also tracks time.

Infrastructure entities (VMs, physical hosts, storage nodes, networks,
and so on) are vertices of this graph. Each vertex is associated with
three mandatory fields: a unique identifier (id), a type (VM, host, and
so on), and a valid-time interval9. Infrastructure entities can be created
and removed over time (as in Figure 3, VMs can be allocated and
deleted), but their historical presence must be remembered to
support retrospective analytics. Each vertex also has a map of
attribute names to a list of time-changing values ordered by time.
The intuition behind this format is that each infrastructure attribute
can change over time (e.g, a user changing the allocation of a VM,
as shown as vRAM in Figure 3). The after-image of each value
is appended to the list. Our implementation currently supports
primitive types (strings, integers, floating-point numbers) and
arrays thereof.

Edges between entities have two mandatory fields: a type of
relationship and a valid-time interval. Similar to entities, such
a relationship often exists only for a given time interval. For
instance, in Figure 3, vm-1 moved from host-a to host-b at
time t3 and was removed at time t4. In this way, the graph
captures events such as VM migration not simply as events
but as changes that relate entities. These edges—akin to foreign
keys—are the schema of the configuration graph. Administrators
must specify which configuration attributes have semantic meaning
as dependencies (and must contain identifiers as values).

and accurate than polling, there must be some way of obtaining
updates. Ideally, the mechanism should require minimal, if any,
modification of the infrastructure. We built our prototype without
modifying code in vSphere or vCloud.

For vSphere, we build on the existing interface for subscribing
to update notifications. Specifically, we use a PropertyCollector
and its WaitForUpdates method to receive changes to a set of
configuration properties of interest.

Although vCloud does not currently offer such an interface, we
collect configuration from vCloud by listening to internal messages
as a signal for when to query its configuration API. As an example,
vCloud sends a message to start an action (e.g, start a VM,
(1) in Figure 2), which results in a message sent to an AMQP
message bus (1) and actions in vSphere (2). When the task is
finished, a completion message is posted to the message bus.
Our configuration collector listens to the same AMQP message
bus (3), filters to listen to only task completion messages, and
queries an appropriate API to find details about configuration
change after a task completes (4).

This design pattern is not restricted to vCloud. The recently popular
OpenStack IaaS also uses an AMQP message bus for inter-node
communication6. We built enough of a collector for OpenStack to
confirm that messages can be intercepted for configuration event
notification. The same technique is not limited to message bus
transports. For example, systems based on bare Remote Procedure
Calls (RPC) could be instrumented similarly, albeit with a lower-level
interceptor. In addition to vSphere, we have started collecting
limited configuration data from an instance of the Tashi cluster
management system7.

In an ideal world, we would capture changes to all types of
configuration that might affect performance, including those
from the application layer. For example, recent research describes
mechanisms for capturing changes to configuration files within
guest VMs without modifying guest software8. Integrating such
changes with those accessible from vCloud and vSphere is a
direction for future work.

Figure 2: Configuration collection strategy for vCloud and OpenStack. The configuration
collector listens to messages on the vCloud message bus and polls an appropriate API
upon intercepting a task completion message.

Figure 3: property graph of changing configuration. Each entity (VM, host, etc.) is
associated with a number of time-evolving properties, in addition to time-evolving
relationships with other entities. A unique identifier (id) and type of entity (type) are
the only two required properties. The properties that track relationships (e.g. host)
are specified by a user.

1 2
vQuery: a pLatforM for connectIng

confIguratIon anD perforMance

Maintaining configuration in this format also allows for the use of
existing graph databases as an underlying persistence layer—in
particular, those that store property graphs and have the ability
to build indexes on properties.

Updating the graph, while relatively straightforward in principle,
requires care in practice. The principle of the algorithm is reminiscent
of that used to update a transaction-time state table in a temporal
database10, as applied to a property graph. Unfortunately, when
receiving configuration updates from different layers of infrastructure,
dependencies can be reported before the entities to which they
refer. Consider the following ordered sequence of observations,
similar to events observed in practice:

1. The VLAN network-1 is created

2. vCloud reports that vm-1 is connected to network-1

3. vSphere reports the existence of network-1

The final desired graph should contain a has-network edge from
vm-1 to network-1. If updates are applied in the given order, the
graph will contain an invalid edge after step #2, since the existence
of network-1 is not yet known. We maintain a set of these “pending
edges,” which are scanned as new updates arrive. If one matches a
newly-created entity the dependency is added with the original
valid-time. As a beneficial side effect, this technique allows the
update algorithm to operate with insertion batches atop the
transactional graph database used (Neo4j11).

One drawback of storing configuration so generally is that we
push the problem of forming meaningful queries to the querier.
For example, retrieving a list of VMs requires selecting entities
with the VM type rather than scanning a table named “VMs.”
Also, we assume loosely synchronized timestamps across
different reporters of entity information, a property provided
by the underlying VMware infrastructure.

3.3 Configuration Query
To ask questions about configuration history, we build a few
abstractions on top of the graph database to supplement its query
language12. Here, we focus on a few that align with our primary
goals of historical queries that provide the history of an entity or
the system, and relational queries that discover entities that likely
depend on or influence each other.

•	Historical:	get-backlog(tstart, tend): obtain all configuration changes
to any entity between times tstart and tend.

•	Historical:	get-property-names(E): get a list of properties
associated with entity E, followed by get-property (E, name) to
get a time-ordered list of changes to the property with name n.

•	Relational:	get-subgraph	(E, d): do a breadth-first traversal of
entities connected to entity E, up to a maximum depth d (or, with
get-subgraph(E, n), up to a maximum number of entities n).

3.4 Performance Collection
In addition to the technique for storing configuration data
described above, a source of performance data is necessary to
connect configuration with performance. The performance data
we consider consists of time series streams of metrics reported
by the hypervisor and aggregated by management software. In
contrast to configuration data, many mature systems exist for
collecting and archiving this data at the infrastructure level13 14 15.

For performance data collection, we use the StatsFeeder prototype
described in more detail in the first issue of the VMware technical
journal16. We collect nine metrics from each virtual machine and
15 metrics from each physical host every 20 seconds. These
performance metrics are described briefly in Table 2.

VIRtuAL MAChInE

CPU usage: time used by this VM
system: time spent in the VMkernel
wait: time spent waiting for hardware/kernel locks
ready: time spent waiting for a CPU
(e.g., on an oversubscribed host)
guaranteed: time used of the total guaranteed
to the VM
extra: time used beyond what
the VM was originally assigned

Memory swapped: amount of VM memory swapped out to disk
swaptarget: amount of memory the VMkernel
is aiming to swap
vmmemctl: size of the memory balloon

hoSt

CPU usage: aggregated time the CPU was used
idle: time the CPU was idle

Disk usage: average disk throughput
read: average read throughput
write: average write throughput
commands: disk commands issued
commandsAborted: disk commands aborted
busResets: SCSI bus reset commands
numberRead: number of disk reads
numberWrite: number of disk writes

Network packetsRx: packets received
packetsTx: packets transmitted
usage: average transmit + receive KB/s
received: average receive KB/s
transmit: average transmit KB/s

Table 2: collected performance data. All metrics are times, averages, or sums over a
sample period (20s).

 1 3
vQuery: a pLatforM for connectIng
confIguratIon anD perforMance

4. Early experiences with vQuery
A full evaluation of the vQuery framework would assess whether
it can answer real diagnosis and monitoring queries. Although the
project is still in the preliminary stage, this section provides some
early experiences with configuration data collection and synthetic
relational queries.

4.1 Historical
A functional configuration monitor collects and stores configuration
changes over extended periods. This section describes some of the
output from the two vSphere instances to which vQuery has been
connected. The Virtual SE Lab (vSEL)17 is an environment at VMware
that is used for events at VMworld, training, and demos. We collected
configuration changes from it a month prior to VMworld 2011. The
vCloud at Carnegie Mellon (CMU) is a cloud we deployed to support
academic workloads from courses, individual researchers, and
groups with large research computing demands submitted via
batch schedulers. Table 3 lists a few basic metrics of configuration
change for each environment.

The last row of Table 3 highlights the diversity of configuration—and
the need to be somewhat selective in what is collected and retained.
One of the configuration properties exposed by vSphere and collected
in the CMU dataset was datastore free space, a frequently updated
property that accounted for over 63% of the configuration changes
we observed. Although free space changes can be important to
monitor, either collecting them infrequently or treating them as
time series metrics (rather than as configuration changes) is
more appropriate.

vSEL CMu

Collection period 12 days, starting
21 July 2011

75 days, starting
12 July 2012

Number of physical hosts 100 15

Number of changes 27888 63820

Number of configuration
properties gathered

11 36

Number of changes,
less free space changes

27888 23466

Table 3: Basic metrics of configuration change from two vSphere instances.

To better understand configuration changes that have occurred,
visualization is crucial. As one example view, Figure 4 shows the
configuration changes that occurred in the 75-day CMU dataset.
Since there are so many types of configuration changes, we only show
the top 10 types of change in the legend (by number of changes).
A number of noteworthy events are visible from temporal and
spatial groups on the chart. (See the caption for detail.)

An additional observation we make about the snapshot of
configuration in Figure 4 is that many configuration changes
co-occur. For example, when VMs are restarted (e.g., the events
marked as (c)), their power state changes along with the status
of VMware tools in the guest OS and the status of its connection
to a virtual network. Together, these changes represent the event
“VM restart”. Attributing its performance effects to a single one of
these changes (particularly a change such as the state of VMware
tools) would be misleading. Together with the observation in Table 3
that some configuration events are less meaningful than others,
distilling semantically meaningful changes from the noise in
configuration will be an important step forward.

4.2 Relational
One important aspect of vQuery is providing query access to related
entities, which builds on database support for rapid neighborhood
queries in the spatio-temporal configuration graph. We use a graph
database (Neo4j); these databases are typically optimized for fast
constant-time adjacency lookup18. This feature is one key way to
manage queries across large graphs: the entities that are closer
through dependency traversal are those that are more likely related.

For example, when performing a diagnosis query involving the
performance of VM v, likely culprits include configuration changes
to its resources (e.g., compute, networking, storage), which are within
a traversal distance of 1. Furthermore, other VMs contending for those
resources are also of interest, and are within a distance of 2. Although
infrequent, relationships with a distance of 3 also arise: VMs in vCloud
are modeled as abstract entities that are backed by VMs in vSphere.

Figure 4: Configuration changes to a small datacenter.
Dots represent configuration events to VMs, hosts, and
datastores (spread on the vertical axis) across the
horizontal time axis. The labeled periods are:

a) changes to many hosts and datastores around
the time of a switch outage (first event) and
switch replacement (second event) in another
virtual datacenter

b) a user adding 30 VMs to an existing set of VMs
to run experiments

c) the same user restarting the entire set of VMs
when they became unresponsive

d) a user setting up a Windows VM, including
many restarts

e) many points in this region (and between (b) and (c)) are VM migrations

f) this row of changes is primarily changes to datastore free space.
(The VM disk free space changes shown in Table 3 are filtered out of this image.)

1 4
vQuery: a pLatforM for connectIng

confIguratIon anD perforMance

a host, datastore, or network can be a source of performance
variation for VMs sharing that resource. The configuration
changes we measure include migrations and power state
changes, which we hope to correlate with performance
monitoring data of contending entities. We believe relational
queries will be necessary to identify configuration changes that
occur to “neighbors,” which are potential sources of contention.

•	Explaining parameters. simply understanding which performance
metrics are influenced by a configuration change can be a valuable
source of guidance when identifying configuration-related
problems, since the impact of configuration parameters often
is unclear from name or documentation alone. Identifying
performance changes related to configuration could allow
us to annotate configuration parameters with the metrics
they affect, providing guidance towards how they behave.

6. Related Work
6.1 Configuration Management
Recognition of the complexity of deploying and managing
applications across clusters has spurred many configuration
management efforts. Tools that have received recent attention
include Chef19 and Puppet20, which focus on automated application
deployment and configuration. CFengine21 was among the first such
tools, designed to reduce the burden of manually scripting policies
and configurations across Unix workstations. It has since added
support for deploying policies across the cloud computing
environments we consider.

These tools primarily facilitate the creation of configuration rather
than monitoring changes over time. That is, most focus on actuating
configuration rather than monitoring what exists. CFengine is notable
among the examples above for also incorporating a familiar-sounding
notion of “knowledge management,” which is a collection of facts
about infrastructure and the relationships between them.

6.2 Correlating Configuration with Performance
Much work on understanding the connection between configuration
and performance is focused on tuning configuration to optimize
application performance. At least a few techniques, though, focus
on our primary motivating use case: finding configuration changes
that are the root cause of performance changes.

Many of these techniques have emerged from work on diagnosis
in large-scale networks. MERCURY22 considers an instance of the
problem in ISP networks, and identifies the impact of upgrades
and routing configuration changes on time series performance
indicators, such as CPU utilization and packet loss. Whereas
MERCURY considers mostly long-term changes in performance,
PRISM23 operates in the same setting and focuses instead on shorter
time-scale changes, such as “spikes.” WISE24 also operates on ISP
configuration and performance, but uses it to answer questions
of the form “what would be the performance impact of making
a configuration change?”

Correlating configuration changes from a vCloud VM to a colocated
vSphere VM needs 3 hops. If one needs to connect configuration
changes to another vCloud VM, the distance would be 4 hops.
Most cases involve just 1-2 hops.

To demonstrate that queries in common cases are relatively fast,
Figure 5 shows the time required to run a query starting over the
largest portion of the vSEL configuration graph. We run queries
starting from a random entity in the 1821-entity graph up to a given
depth. One can observe that querying for entities separated by
a distance of 1 is fast (typically less than two milliseconds), and
queries to distance 2 are typically under 10ms.

5. Next Steps
As described above, vQuery forms an infrastructure for collecting,
storing, and querying fine-grained configuration and performance
data. Moving forward, we plan to use these augmented sources of
monitoring data to perform more accurate diagnoses than with
traditional black-box performance data alone. In particular, our
next aim is to find configuration changes that are the root cause
of performance problems. Three concrete examples are:

•	Short-term changes. VM migration performed by DRS
and virtual disk migration performed by storage DRS require
network bandwidth and physical host resources. By monitoring
performance, we hope to observe the short-term impact of these
mechanisms and attribute it to the host and storage configuration
changes we observe. We believe the fine-grained performance
information we collect will be important to distinguish these
performance variations, in addition to recent historical configuration

•	Contention. virtualized workloads contend for resources, and
perfect isolation is not yet a reality across resources, such as
caches and disks. Migrating or starting workloads that use

Figure 5: time taken to retrieve related entities to a random starting entity. 1,000 queries
were performed at each distance, and boxes extend to the interquartile range.

 1 5
vQuery: a pLatforM for connectIng
confIguratIon anD perforMance

4 P. Bahl, R. Chandra, and A. Greenberg, “Towards highly
reliable enterprise network services via inference of multi-level
dependencies,” ACM SIGCOMM 2007.

5 M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A.
Fox, and E. Brewer, “Path-based failure and evolution
management,” NSDI 2004.

6 OpenStack, http://www.openstack.org.

7 M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser, D.
O’Hallaron, J. Cipar, E. Krevat, J. López, M. Stroucken, and
G. R. Ganger, “Tashi: location-aware cluster management,”
ACDC 2009.

8 W. Richter, M. Satyanarayanan, J. Harkes, and B. Gilbert,
“Near-Real-Time Inference of File-Level Mutations from
Virtual Disk Writes,” Technical Report CMU-CS-12-103, 2012.

9 C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and R. T.
Snodgrass, “A Glossary of Temporal Database Concepts,”
ACM SIGMOD Record, vol. 21, no. 3, pp. 35–43, Sep. 1992.

10 R. T. Snodgrass, Developing time-oriented database
applications in SQL. Morgan Kaufmann Publishers Inc., 1999.

11 Neo4j, http://neo4j.org/

12 Neo4j cypher query language,
http://docs.neo4j.org/chunked/stable/cypher-query-
lang.html

13 Nagios, http://www.nagios.org

14 Zenoss, http://www.zenoss.com/

15 IBM Tivoli, http://www.ibm.com/developerworks/tivoli/

16 V. Soundararajan, B. Parimi, and J. Cook, “StatsFeeder: An
Extensible Statistics Collection Framework for Virtualized
Environments,” VMware Technical Journal, vol. 1, no. 1, pp.
32–44, 2012.

17 F. Donald. “cim1436 - Virtual SE Lab (vSEL): Building the
VMware Hybrid Cloud.” VMworld 2011.

18 M. Rodriguez. “MySQL vs. Neo4j on a Large-Scale Graph
Traversal,” http://java.dzone.com/articles/mysql-vs-neo4j-
large-scale

19 Opscode Chef, http://www.opscode.com/

20 Puppet, http://puppetlabs.com/

21 M. Burgess, “A site configuration engine,” Computing systems,
vol. 8, no. 2, pp. 309–337, 1995.

22 A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, and J. Wang,
“Detecting the Performance Impact of Upgrades in Large
Operational Networks,” SIGCOMM 2010.

23 A. Mahimkar, Z. Ge, J. Wang, and J. Yates, “Rapid detection
of maintenance induced changes in service performance,”
CoNEXT 2011.

In the context of distributed applications, although NetMedic25 uses
two known snapshots in time as “good” and “problematic” points
for diagnosing application-level errors, it uses some of the same
concepts discussed here—notably, inference based on system
performance data and an (automatically generated) dependency
graph. ASDF26 also correlates multiple time evolving measurements,
similar to the black-box monitoring data described here, to perform
root-cause diagnosis of performance problems.

6.3 Problem Diagnosis
Our work shares high-level goals with efforts to diagnose problems
in distributed systems using widely available black-box performance
metrics, such as CPU time and network throughput. For instance,
Kasick et al. use statistical comparison across multiple machines
to perform root-cause diagnosis in parallel file systems27. At the
application level, work focused on multi-tier distributed systems
has used time series CPU performance metrics to localize faults to
individual machines28, and domain-specific counters in IP networks29.

By taking advantage of deeply instrumented “white-box” systems, a
broader range of distributed system diagnosis techniques have been
used for finding the sources of performance problems. For example,
end-to-end traces , which track activity as it moves across system
components, can be a rich source of insight30. Spectroscope31 is one
such tool that leverages these traces for root-cause performance
problem diagnosis.

7. Summary
In virtualized environments, such as VMware vSphere, the additional
indirection between workloads and the resources they use can lead
to additional challenges when finding the source of performance
problems. Infrastructure configuration changes can be a hidden
source of performance variation. Identifying such effects requires
configuration change capture and analysis. vQuery is a system for
tracking configuration changes so that we can correlate them with
traditional performance data, and early experiences with it are
promising. Moving forward, we plan to integrate the data we
collect to automatically produce insight about configuration-
related performance problems in virtualized infrastructures.

References
1 A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C.

Waldspurger, and X. Zhu. “VMware distributed resource
management: design, implementation, and lessons learned.”
VMware Technical Journal, vol. 1, no. 1, pp. 47–64, 2012.

2 H. Kim, T. Benson, and A. Akella. “The Evolution of Network
Configuration: A Tale of Two Campuses,” IMC 2011.

3 A. A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang,
J. Yates, Y. Zhang, and J. Emmons, “Detecting the
performance impact of upgrades in large operational
networks.” ACM SIGCOMM Computer Communication Review,
vol. 40, no. 4, pp. 303–314, 2010.

1 6
vQuery: a pLatforM for connectIng

confIguratIon anD perforMance

27 M. Kasick, J. Tan, R. Gandhi, and P. Narasimhan, “Black-box
problem diagnosis in parallel file systems,” FAST 2010.

28 K. A. Bare, S. Kavulya, and P. Narasimhan, “Hardware
performance counter-based problem diagnosis for e-commerce
systems,” NOMS 2010.

29 S. P. Kavulya, S. Daniels, K. Joshi, M. Hiltunen, R. Gandhi,
and P. Narasimhan, “Draco : Statistical Diagnosis of Chronic
Problems in Large Distributed Systems,” DSN 2012.

30 E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek,
J. Lopez, and G. R. Ganger, “Stardust: Tracking activity in a
distributed storage system,” SIGMETRICS 2006.

31 R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat,
S. Whitman, M. Stroucken, W. Wang, L. Xu, and G. R. Ganger,
“Diagnosing performance changes by comparing request
flows,” NSDI 2011.

24 M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M.
Ammar, “Answering what-if deployment and configuration
questions with WISE,” in ACM SIGCOMM Computer
Communication Review, 2008, vol. 38, no. 4, pp. 99–110.

25 S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye,
and P. Bahl, “Detailed diagnosis in enterprise networks,” ACM
SIGCOMM Computer Communication Review, vol. 39, no. 4,
p. 243, Aug. 2009.

26 K. Bare, S. Kavulya, J. Tan, X. Pan, E. Marinelli, M. Kasick,
R. Gandhi, and P. Narasimhan, “ASDF: An Automated, Online
Framework for Diagnosing Performance Problems,” in
Architecting Dependable Systems VII, A. Casimiro, R. de
Lemos, and C. Gacek, Eds. Springer Berlin / Heidelberg, 2010,
pp. 201–226

