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ABSTRACT
Many heuristics have been developed for adapting on-disk data lay-
outs to expected and observed workload characteristics. This paper
describes a two-tiered software architecture for cleanly and extensi-
bly combining such heuristics. In this architecture, each heuristic is
implemented independently and an adaptive combiner merges their
suggestions based on how well they work in the given environment.
The result is a simpler and more robust system for automated tun-
ing of disk layouts, and a useful blueprint for other complex tuning
problems such as cache management, scheduling, data migration,
and so forth.

1. INTRODUCTION
Internal system policies, such as on-disk layout and disk prefetch-
ing, have been the subject of decades of research. Researchers try
to identify algorithms that work well for different workload mixes,
developers try to decide which to use and how to configure them,
and administrators must decide on values for tunable parameters
(e.g., run lengths and prefetch horizons). Unfortunately, this pro-
cess places significant burden on developers and administrators, yet
still may not perform well in the face of new and changing work-
loads.

To address this, researchers now strive for automated algorithms
that learn the right settings for a given deployed system. Of course,
different policy+parameter configurations work best for different
workloads meaning that any particular setup will work well for one
workload and poorly for others. Worse, most deployed systems
support many workloads simultaneously, potentially making any
single decision suboptimal for the aggregate. Devising a compos-
ite algorithm for such circumstances can be a daunting task, and
updating such an algorithm even more so.

This paper describes a two-tiered architecture for such automated
self-tuning software, using on-disk data layout as a concrete ex-
ample. Instead of a single monolithic algorithm, as illustrated in
Figure 1a, the decision-making software consists of a set of inde-
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Figure 1: Two-tiered vs. traditional architecture for adaptive
layout software. The traditional architecture combines differ-
ent heuristics in an ad-hoc fashion, usually using a complicated
mesh of if-then-else logic. The two-tiered architecture separates
the heuristics from the combiner and uses feedback to refine its
decisions and utilize the best parts of each heuristic.

pendent heuristics and an adaptive combiner, used for merging the
heuristics’ suggested solutions as shown in Figure 1b. Each heuris-
tic implements a single policy that hopefully works well in some
circumstances but not necessarily in all. Heuristics provide sug-
gested constraints on the end layout, such as placing a given block
in a given region or allocating a set of blocks sequentially. The
adaptive combiner uses prediction models and on-line observations
to balance and merge conflicting constraints.
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This two-tiered architecture provides three benefits. First, heuristic
implementations can focus on particular workload characteristics,
making local decisions without concern for global consequences.
Second, new heuristics can be added easily, without changing the
rest of the software; in fact, bad (or misimplemented) heuristics
can even be handled, because their constraints will be identified as
less desirable and ignored. Third, the adaptive combiner can bal-
ance constraints without knowledge of or concern for how they are
generated. The overall result is a simpler and more robust software
structure.

This paper describes an instance of this two-tiered architecture and
its role in an automated system for on-disk layout reorganization.
Promising initial results are presented and questions being explored
in ongoing work are discussed.

2. RELATED WORK
The AI community continues to develop and extend the capabilities
of automated learning systems. The systems community is adopt-
ing these automated approaches to address hard problems in sys-
tems management. This section briefly discusses relevant related
work, both from the AI and systems perspectives.

Related AI Work: The AI community has long recognized the
need for self-managing systems. In fact, a whole branch of AI re-
search, machine learning, exists especially to solve real-life prob-
lems where human involvement is not practical [14].

One general AI problem of relevance is the n-experts problem, in
which a system must choose between the outputs of n different ex-
perts. The n-experts problem is not an exact match to our problem,
because we are merging experts’ suggestions rather than picking
one. Nonetheless, solutions such as the weighted majority algo-
rithm [9] provide valuable guidance.

Another general challenge for the AI community is the exploration
of a state space (i.e., the set of all possible solutions to an optimiza-
tion problem). For example, our current prototype explores its state
space using a guided hill-climbing algorithm and a method similar
to simulated annealing to avoid local maxima.

Adaptive Disk Layout Techniques: A disk layout is the mapping
between a system’s logical view of storage and physical disk lo-
cations. Useful heuristics have been devised based on block-level
access patterns and file-level information.

Block-based heuristics arrange the layout of commonly accessed
blocks to minimize access latency. For example, Ruemmler and
Wilkes [19] explored putting frequently used data in the middle
of the disk to minimize seek time. Wang and Hu [25] tuned a
log-structured file system [17] by putting active segments on the
high bandwidth areas of the disk. Several researchers [1, 10, 15,
26] have explored replication of disk blocks to minimize seek and
rotational latencies.

File-based heuristics use information about file inter- and intra-
relationships to co-locate related blocks. For example, most file
systems try to allocate blocks of a file sequentially. C-FFS allocates
adjacently the data blocks that belong to multiple small files named
by the same directory [5]. Hummingbird and Cheetah perform sim-
ilar grouping for related web objects (e.g., an HTML document and

its embedded images) [8, 23].

Other system management policies: Relevant research has also
been done on storage system policies, such as caching and prefetch-
ing [2, 7, 16]. Most notably, Madhyastha and Reed [12] explore a
system for choosing one of several file caching policies based on
access patterns. Unlike our system, however, their system works
to determine which single heuristic to use for the particular work-
load, rather than combining the suggestions of multiple heuristics.
Similar schemes have been used in other domains as well, such as
branch prediction in modern processors [13, 24].

3. TWO-TIERED LEARNING FOR LAYOUT
This work focuses on the problem of identifying a disk layout that
improves performance for a given workload. At the most general
level, this is a learning problem that takes as input a workload and
outputs a new layout. However, due to the size of the state space,
solving this problem using a monolithic learning algorithm is in-
tractable; a typical disk has millions of blocks, and workloads often
contain millions of requests.

The two-tiered learning architecture addresses this problem by us-
ing heuristics to build up a smaller, more directed state space. The
system then searches for better performing disk layouts within this
smaller space.

3.1 Overview
Figure 2 illustrates the two-tiered learning architecture. The con-
straint generation layer consists of a collection of independent heuris-
tics. Each of these heuristics generates a set of constraints based on
the workload. The adaptive combiner consists of three parts: the
learner, the layout manager, and the performance analyzer.

The learner assigns weights to each of the constraints based on the
performance of previous disk layouts. It then uses the weights to
resolve any conflicts between constraints, creating a single set of
consistent constraints.

The layout manager takes the constraint set from the learner and
builds a new disk layout.

The performance analyzer takes each candidate layout and deter-
mines its success based on the target performance metrics and the
given workload. The results of the performance analyzer are then
passed to the learner for use in updating the constraint weights.

In order to search the state space for the maximum allowed time,
the adaptive combiner holds the best observed layout. If at any time
the adaptive combiner must be stopped (e.g., due to computation
constraints or diminishing returns), it can immediately output the
best observed layout.

The remainder of this section discusses the constraint language,
how example heuristics map to this language, conflict resolution
between weighted constraints, and how weights are generated.

3.2 Common Constraint Language
The learner uses constraints as the common language of disk orga-
nization heuristics. A constraint is an invariant on the disk layout
that a heuristic considers important. A constraint may be specified
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Figure 2: The two-tiered learning architecture. This figure il-
lustrates the two components of a two-tiered architecture for
refining disk layout. The constraint generation layer consists
of the individual heuristics and their constraints. The adaptive
combiner layer merges the constraints and refines the resulting
data layout.

on a single disk block or a set of blocks. The learner combines
heuristics by selectively applying their constraints.

Table 1 shows three example constraints. Place-in-region con-
straints specify in which region of the disk a set of blocks should be
placed.1 Place-seq constraints specify a set of blocks that should be
placed sequentially. Place-as-set constraints specify a set of blocks
that should be placed adjacent and fetched as a single unit. These
three constraint types have been sufficient for many heuristics, but
additions are expected for some future heuristics. For example,
heuristics that exploit replication and low-level device characteris-
tics (e.g. track-aligned extents [22]) may require additions.

3.3 Heuristics
For illustration, this section describes five heuristics currently used
in the prototype constraint generation layer.

Disk Shuffling: The disk shuffling heuristic generates place-in-
region constraints to place frequently accessed data near the middle
of the disk and less frequently accessed data towards the edges [19].
Such an arrangement reduces the average seek distance of requests.

Sequentiality: The sequentiality heuristic generates place-seq con-
straints for sets of blocks usually accessed in a sequential manner.
Doing so exploits the efficiency of disk streaming.

Streaming: The streaming heuristic generates place-in-region con-
straints to place blocks fetched in large sequential requests on the

1The system currently divides the disk into 24 regions to simplify
placement constraints.

Constraint Type Description

place-in-region place blocks into a specific region
place-seq place blocks sequentially
place-as-set place blocks adjacent and fetch as a unit

Table 1: Common Constraint Language. This table shows
three example constraints we use in our implementation.

outside tracks of the disk. This utilizes the higher streaming band-
width of the outer disk tracks.

Bad: The “Bad” heuristic generates place-in-region constraints to
spread the most frequently accessed blocks across the disk in an
attempt to destroy locality. It exists to test the learner’s ability to
avoid poorly performing constraints.

Default: This heuristic places all blocks in their original locations.

3.4 Conflict Resolution
Because of their independence, different heuristics may generate
conflicting constraints (e.g., the streaming heuristic places blocks
on the outer tracks, while disk shuffling places them near the center
of the disk). The learner must resolve these conflicts, choosing
which constraints to apply and which to ignore.

Intuitively, some constraints will be more effective than others. To
represent this, the learner assigns a weight to each constraint, where
a higher weight implies greater effectiveness. Section 3.5 discusses
weight generation.

To maximize effectiveness of the final layout, conflict resolution
tries to maximize the sum of applied constraints’ weights. The
learner uses a three-step algorithm to do so. First, the learner sorts
the constraints in descending order by weight. Second it randomly
reorders some of the constraints. Third, it greedily applies as many
constraints as possible, starting at the highest weighted constraint.

The randomization in the second step is a standard technique used
to keep the learner from getting stuck in local minima [20]. The
learner starts with a high amount of randomization and decreases
the randomization as it narrows in on a solution.

Although the above approach has worked reasonably during initial
testing, in general this is a constraint satisfaction problem. Ex-
amining the variety of algorithms that provide more accurate solu-
tions [4] is an area of ongoing work.

3.5 Learning Weights
The adaptive combiner uses average block response time as its per-
formance metric. Thus, weights should increase as response time
decreases and increase as the number of requests increases. The
learner uses the following function to compute the weight of each
constraint:
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X
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X
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jBcj
(1)

wc = computed weight of constraint c
Bc = set of blocks in constraint c
Ab = set of accesses to block b
b = a block in constraint c
a = an access to block b
respavg = average response time of the best performing lay-
out
respa = response time for access a

For each block in constraint c, Equation (1) sums the response
time improvement for each access to the block, thus favoring lower
response times and more accesses. It then normalizes this value
across all the blocks in the constraint so that larger constraints are
not favored.

Unfortunately, the weight generated by Equation (1) is not inde-
pendent of the other constraints applied in the layout. For example,
the access time for request n will depend in part on the location ac-
cessed by request n� 1, which may have been placed by a distinct
constraint. Because of such dependencies, the adaptive combiner
iterates on the disk layout, refining the weights toward a more ac-
curate value. At each iteration, it generates a new layout, evaluates
it, and updates the weight of each constraint using the following
equation:

wc;i+1 = (1� �)wc;i + �wc (2)

On each iteration, the learner first calculates wc using Equation (1).
It then combines that result with the weight of the previous iteration
using Equation (2). Over a large number of iterations, the weights
of poorly performing constraints will decrease, but a single instance
of poor performance will not permanently reject a constraint. In-
creasing � may decrease the possibility of converging, while de-
creasing � raises the chance of falling into a local minima.

4. CONTINUOUS REORGANIZATION
The two-tiered learning architecture described in Section 3 is one
part of a system for continuously tuning disk layout. Figure 3
shows the additional infrastructure required to feed the learning ar-
chitecture and make use of its output. This section discusses the
four components of our prototype for continuous reorganization of
disk layouts.

Tracer: On the critical path, the tracer records I/O requests as they
are sent to the disk. Both the heuristics and the performance an-
alyzer use the traced stream of requests as input. In our current
implementation, the heuristics use only block-based requests. Fu-
ture heuristics may utilize file system information as well.

Mapper: Also on the critical path is the mapper. The mapper trans-
lates logical disk locations to physical locations, allowing the disk
layout to be modified transparently to the host.
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Figure 3: Continous Reorganization. This figure illustrates our
prototype, that uses the two-tiered learning architecture to con-
tinously reorganize the on-disk layout.

Planner: The planner is our implementation of the learning archi-
tecture described in Section 3. The planner implements heuristics
as individual C++ objects, allowing it to add or subtract heuristics
easily. To avoid the unsolved problem of workload characteriza-
tion, the performance analyzer feeds I/O traces into DiskSim [3] to
model disk layout performance. The advantage of trace-driven sim-
ulation over analytical models based on workload characterization
is that simulation has been shown to be able to capture all aspects
of a request stream.

Reorganizer: The reorganizer reorganizes the current disk layout
to match the new layout produced by the planner. One goal of the
reorganizer is to minimize the impact on the foreground workload
during the layout rearrangement. Towards that goal, the reorganizer
module exploits idle disk time [6] and freeblock scheduling [11] to
do its block rearrangements.

Because these four components are logically disconnected from
both the OS and the disk, they can be implemented wherever is
most appropriate (e.g., in the file system or in disk firmware.)

5. EVALUATION
This section presents early results from our prototype to illustrate
some of the architecture’s features. We compare four configura-
tions to the original, unmodified layout of disk blocks2: disk shuf-
fling alone (shuffling), the sequentiality heuristic in combination
with the streaming heuristic (sequential), the system with the pre-
vious three good heuristics (“cr w/out bad”), and the system with
the three good heuristics and the Bad heuristic (“cr w/ bad”.) We
also evaluated the Bad heuristic on its own, but we do not show the
results because the average response times were consistently orders
of magnitude longer than the original trace.

We present results for these configurations on the first week of

2Each “block” is a disk-level unit 512 bytes in size, identified by
the logical block number (LBN) assigned by the OS.



0

1

1 2 3 4 5 6 7

n
o

rm
a

li
z
e

d
 a

v
g

. 
re

p
o

n
s

e
 t

im
e

shuffling sequential "cr w/ bad" "cr w/out bad"

day

Figure 4: Response time comparison. This figure shows the
average response time of our four configurations normalized to
the unmodified disk layout.

disk 5 of the cello92 trace [18]. For each day of the trace, we
generated a disk layout by running 50 iterations of the planner, and
evaluated the new layout on the next day’s trace. We repeated the
process for each of the 7 days. To simulate the disk, we used the
DiskSim simulator with parameters calibrated for a 9GB Quantum
Atlas10K disk drive extracted using the DIXTrac tool [21].

Figure 4 shows the reduction in response time from the base case
for the four configurations on each of the 7 days. For each day,
the average response time is normalized to the corresponding day’s
performance when using the unmodified disk layout. Four points
are worthy of note. First, throughout the trace, continuous reor-
ganization stays close to the best performing heuristic. Second, no
improvement is seen on day 1, because this is the “training” day be-
fore the first reorganization. Third, merging of heuristics provides
better results than any single heuristic for days 2 and 3, illustrat-
ing one promise of the two-tiered architecture. Fourth, the adaptive
combiner successfully avoids being hurt by the Bad heuristic. In
fact, including the Bad heuristic often provides a slight benefit —
while the Bad heuristic performs poorly in general, a few of its con-
straints turn out to be useful (quite unexpectedly), and the system
finds and implements them.

Although preliminary, these results indicate that continuous reor-
ganization has the potential to merge the best characteristics of a
variety of heuristics while avoiding penalties associated with bad
heuristics.

6. ONGOING WORK
As this work moves forward, we continue to add more heuris-
tics and to refine the different components of the prototype. This
section identifies some challenges facing our two-tiered software
model and discusses possible solutions.

Exploring state space: The heuristics used, although independent
from the point of view of the constraint generator layer, are interde-
pendent from the point of view of the adaptive combiner. To handle
these dependencies, the learner explores the state space by contin-
uously refining the set of weights on the constraints the heuristics
generate. It is not yet clear how big a role the dependencies among
heuristics play. In general, we believe that the more dependent the

heuristics are on each other, the more iterations are needed to de-
termine the right constraint weights.

We could also train a neural network to generate constraint weights
from block statistics gathered from the trace instead of using equa-
tions (1) and (2). This approach would allow us to guess the weight
of a constraint without actually evaluating a layout containing that
constraint. However, it may require a large number of statistics and
many iterations to train a network. Initial experiments with neural
networks showed that, even after hundreds of iterations, the net-
works were not converging on good approximations of the values.

Conflict resolution: A more sophisticated conflict resolution algo-
rithm may provide a better combination of constraints, and could
eliminate the need to normalize weights across constraint length.
Further work will explore different approaches to solving the prob-
lem, and their effect on performance.

Minimizing block movement: The learning architecture presented
in Section 3 does not consider the cost of moving a block as it
attempts to improve the disk layout. A complete system should
take block movement cost into account. Idle time and freeblock
scheduling [11] can be used to do reorganization without impact
on foreground workloads, but at a cost in reorganization time.

Update patterns: Standard file systems overwrite data in place,
while snapshots and other non-overwrite mechanisms require that
new data go to unallocated locations. A complete system should
account for the different update patterns associated with different
workloads.

7. SUMMARY
The two-tiered software architecture cleanly and adaptively com-
bines many disk layout heuristics, achieving the best properties of
each and avoiding the worst. We believe that this same architecture
can be applied successfully to other long-standing policy decisions,
such as cache management and inter-device data placement.
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