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Abstract

We show how untrusted computers can be used to facili-
tate secure mobile data access. We discuss a novel archi-
tecture, data staging, that improves the performance of
distributed file systems running on small, storage-limited
pervasive computing devices. Data staging opportunis-
tically prefetches files and caches them on nearby sur-
rogate machines. Surrogates are untrusted and unman-
aged: we use end-to-end encryption and secure hashes
to provide privacy and authenticity of data and have de-
signed our system so that surrogates are as reliable and
easy to manage as possible. Our results show that data
staging reduces average file operation latency for inter-
active applications running on the Compaq iPAQ hand-
held by up to 54%.

1 Introduction

Can an untrusted and unmanaged computer facilitate se-
cure mobile file access? Surprisingly, the answer is
“yes.” In this paper, we show how such a computer can
be used as a data staging node to improve the perfor-
mance of cache miss handling in an Internet-wide dis-
tributed file system. The untrusted computer, called a
surrogate, plays the role of a second-level file cache for
a mobile client. By prefetching files and staging them on
the surrogate, cache misses from a nearby mobile client
can be serviced at low latency (typically one wireless
hop) instead of full Internet latency.

The use of surrogates for data staging can bridge a grow-
ing mismatch between the desires and expectations of
users. On the one hand, users want the lightest and
smallest wearable or handheld computer—for example,
a wristwatch running Linux is no longer a fantasy [23].
On the other hand, users expect productivity improve-
ments from mobile computing; ubiquitous access to per-
sonal and project data is a key part of this expectation.
A distributed file system can provide such ubiquitous
access, but requires crisp handling of cache misses to
achieve good interactive performance. For a small file,
network latency to a distant file server on the Internet is
typically the dominant component of cache miss service

time. This can be reduced by redirecting cache misses to
data staged on a nearby surrogate while still maintaining
the consistency guarantees of the underlying file system.
The alternative of totally avoiding cache misses through
hoarding [15, 18] is not viable because of limited cache
space and the need to view recent updates by other users.
Further, it is usually not possible to perfectly predict the
set of files that will be accessed when mobile; the work-
ing set of files may change unexpectedly in response to
real-world events such as phone calls. Consequently, the
set of data that may possibly be accessed is much larger
than the set of data that is actually accessed.

What is the likelihood of a mobile computer finding a
nearby surrogate? Although the chances are low to-
day, we predict that continuing decline in mass-market
hardware prices will improve these chances in the fu-
ture. Desktop computers at discount stores already sell
for a few hundred dollars, with prices continuing to
drop. In the foreseeable future, we envision public
spaces such as airport lounges and coffee shops being
equipped with surrogates for the benefit of customers,
much as comfortable chairs and table lamps are pro-
vided today. These will be connected to the wired In-
ternet through high-bandwidth networks, and to mobile
clients in their neighborhood through wireless technolo-
gies such as 802.11 [13] or Bluetooth [12].

Since hardware cost is only a small part of the total cost
of ownership of a system, it is essential that surrogates
require virtually no maintenance or system administra-
tion. Like a chair or table lamp, they should require
negligible attention after initial setup. Only then will
they be cheap enough for widespread deployment. This
leads to two important assumptions about surrogates in
our work: they are unmanaged and untrusted. In partic-
ular, we make surrogates as reliable and easy to manage
as possible by maintaining no hard-state on surrogates,
building as much as possible on commodity software,
and pushing functionality from surrogates to client and
server machines.

We rely on the concept of caching trust to guard against
malicious surrogates [26]. This end-to-end approach en-
sures privacy through encryption, and integrity through

Joan Digney
Proceedings 2nd USENIX Conference on File and Storage Technologies (FAST03), Mar31-Apr2, 2003, San Francisco, CA.



verification of secure hashes. Even the most resource-
challenged mobile client typically has enough disk or
flash storage to cache hashes and encryption keys of all
files of potential interest to the user. Hence, data never
has to be stored in the clear on a surrogate—it is en-
crypted before transmission to the surrogate and remains
encrypted there. When servicing a cache miss, the client
decrypts file data received from the surrogate, calcu-
lates the hash, and verifies the computed hash against
its cached copy. A compromised surrogate could, of
course, still cause mischief through denial of service.
The client’s only recourse is to contact servers directly.
Even in this case, performance is no worse than in the
absence of data staging, except for an initial disruption
while the client detects that a surrogate is misbehaving
and abandons it.

We report on the feasibility of data staging on untrusted
surrogates. Our prototype implementation is based on
the Coda file system [28], but is structured for easy use
with other distributed file systems. Measurements from
this prototype confirm the performance benefits of data
staging. For bursty, short-term workloads, data staging
reduces the cumulative delay due to file operations by
up to 54%. We have confirmed these results by replay-
ing long-term traces of file-system activity—these ex-
periments show reductions in file operation latency of
up to 49%.

We focus on the file system aspects of data staging. Top-
ics such as surrogate discovery (possibly through mech-
anisms such as Jini [36] or UPnP [20]) and load balanc-
ing across multiple surrogates are part of our plans for
future work. We begin, in Section 2, by describing the
design and implementation of data staging. The follow-
ing section describes additional scenarios under which
data staging can be profitably employed. We evaluate
the benefit of data staging for storage-limited clients in
Section 4. The final three sections discuss related work,
describe our plans for future work, and summarize our
results.

2 Design and implementation

2.1 Overview

Figure 1(a) shows a typical scenario that motivates the
need for data staging. An interactive application running
on a storage-limited client accesses files stored in a dis-
tributed file system. The file system attempts to reduce
access time by caching files on the client machine, but
limited space and imperfect prediction prevent it from
caching all but a portion of the files that the user might
potentially read. Consequently, many files needed by the
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Figure 1: Data staging architecture

application are not cached and must be fetched from the
distant file server. The user experiences many frustrat-
ing delays because the application reads multiple files
sequentially and reading each file incurs multiple net-
work round-trips.

Figure 1(b) shows how data staging improves this sce-
nario. On the client machine, we interpose a proxy that
intercepts file system traffic. When the proxy observes
that remote file accesses are incurring high latency, it
finds a surrogate in the nearby network environment that
is willing to provide extra storage capacity (currently,
this process is manual). The proxy registers with the
surrogate and stages the set of files that the user is most
likely to access in the future. Since the surrogate has
much greater storage capacity than the mobile device, it
can store many more files.

Staging is expedited by a data pump that typically exe-
cutes on a user’s idle desktop computer located near the
file server. When the client proxy wishes to stage a file,
it sends a message to the pump through a secure chan-
nel. The pump authenticates the message, reads the file
from the file system, encrypts the file, and generates a
cryptographic hash of the data. The pump transmits the
encrypted file to the surrogate and sends the file key and
hash to the client through the secure channel. When a



staged file is read by the application, the proxy fetches
the file from the nearby surrogate, decrypts it, and uses
the hash to verify that the file has not been modified.
Prefetching files to the surrogate decreases the number
of high-latency, blocking file accesses and dramatically
reduces the number of long delays experienced by the
user.

Reads of unstaged data are serviced using the base file
system protocol. The prefetching of files to the surro-
gate proceeds concurrently with file system traffic. After
each file is staged on the surrogate, it becomes immedi-
ately available for client use. Thus, as the number of
staged files grows, the percentage of cache misses that
need to be serviced by the distant file server decreases,
leading to significant improvement in interactive appli-
cation performance. Additionally, the proxy sends all
update traffic directly to the file server (although trickle
reintegration in Coda may delay updates for a short pe-
riod of time to improve performance [21]). The client
proxy maintains consistency by marking modified files
invalid. For workloads with a mixture of read and update
traffic, this design improves read performance without
compromising security, relaxing consistency guarantees,
or significantly delaying updates.

The proxy-based architecture allows us to achieve a
great deal of independence from the underlying dis-
tributed file system. Data staging requires no modifica-
tion to file system source code; we use gray-box tech-
niques [3] where necessary to infer file system state.
Further, almost all file-system specific code is encapsu-
lated within the client proxy. Thus, while our current
system uses Coda, the changes needed to support addi-
tional file systems such as NFS and AFS would be min-
imal.

We first describe the threat model for data staging. In
the subsequent three subsections, we describe the design
and implementation of the surrogate, client proxy, and
data pump in more detail.

2.2 Trust and threat model

Data staging defends against attacks that involve ma-
licious or faulty surrogates. Since we propose that
clients opportunistically discover and use third-party
surrogates, we place no trust in any surrogate computer.
Data staging must defend against attacks that attempt to
read private data stored on a surrogate, as well as attacks
that corrupt staged data or provide stale data through re-
play attacks. We also must defend against attacks that at-
tempt to eavesdrop or modify network communication.

Data staging does not explicitly defend against denial-
of-service attacks that render surrogates unavailable.

Also, a malicious surrogate may periodically refuse to
provide requested files to a client. However, if a sur-
rogate performs significantly worse than expected, the
client proxy may abandon use of the surrogate without
further cost.

Data staging does not defend against attacks that com-
promise a user’s client or desktop machine, or attacks
that compromise a file server. We assume that these ma-
chines belong to a common administrative domain that
enables secure distribution of public keys. Further, we
assume that the network communication of the underly-
ing distributed file system is secure. Finally, our protocol
assumes that the cryptographic algorithms we employ
are sufficiently strong to withstand brute-force attacks.

2.3 Surrogate

2.3.1 Design principles

We are convinced that widespread deployment of surro-
gates hinges on ease of management. As mentioned pre-
viously, surrogates should be as easy to manage as table
lamps—they should not need a system administrator or
a complex user manual. We have identified three design
principles that improve ease of management:

• Exploit commodity software. We build as much as
possible upon widespread commodity software, so
as to leverage the improved reliability that comes
through the extensive testing provided by a large
user community. To this end, we use the Apache
Web server as the base system for our surrogates.
We have identified the minimum set of additional
functionality that must be located on the surrogate,
and provide this functionality with CGI scripts. All
other functionality is pushed to the client proxy and
data pump in order to keep the custom code base on
the surrogate as simple and reliable as possible.

• Avoid long-term state. We maintain only soft state
on the surrogate so that no critical information is
lost if the surrogate is disrupted by power fail-
ure or a system crash. For example, we do not
buffer client modifications to file data on surro-
gates. Thus, clients need not guard against mali-
cious or faulty surrogates that might lose modifica-
tions. Further, surrogates do not need to run poten-
tially complex reconciliation protocols.

• Allow file system diversity. Our surrogate imple-
mentation is completely independent of the under-
lying file system employed by the user. This means
that surrogates need not be updated to reflect new
file system versions. Further, a single surrogate
can simultaneously service users who are employ-
ing different underlying file systems.



SurrogateRegister (IN surrogate, IN pubkey, OUT clientid, OUT quota,

OUT sesskey, OUT expire);

SurrogateRenew (IN surrogate, IN clientid, OUT expire);

SurrogateDeregister (IN surrogate, IN clientid);

SurrogateStage (IN surrogate, IN clientid, IN fileid, IN buf, IN buflen);

SurrogateUnstage (IN surrogate, IN clientid, IN fileid);

SurrogateGet (IN surrogate, IN clientid, IN fileid, IN buf, IN buflen,

IN key, IN hash);

The surrogate API is implemented as Perl CGI scripts. In total, these scripts consist of 643 lines of source code.

Figure 2: Surrogate API

2.3.2 Surrogate API

Figure 2 shows the surrogate API. Wrapper libraries on
the client machine and data pump implement these func-
tions as HTTP/1.1 operations. When SurrogateGet is
called, the wrapper library issues a HTTP GET request;
the remaining functions are implemented as POST oper-
ations that invoke CGI scripts on the surrogate.

A client proxy calls SurrogateRegister to start
using a surrogate. The proxy provides its public
key, which is used for authentication. If the sur-
rogate is willing to provide storage space, it assigns
the proxy a unique identifier and specifies a storage
quota. The surrogate also generates a shared session
key, encrypts it with the proxy’s public key, and re-
turns it to the proxy. The session key is used to au-
thenticate all subsequent messages that modify surro-
gate state. SurrogateRenew, SurrogateDeregister,
SurrogateStage, and SurrogateUnstage each send
the surrogate a token encrypted with the session key
that represents the command being executed; nonces are
used to guard against replay attacks. When a proxy
successfully registers, it is granted a lease to use the
surrogate. The time duration of the lease is returned
by SurrogateRegister. Before the lease expires, the
proxy may renew it using SurrogateRenew.

The SurrogateStage function places files on the sur-
rogate. The surrogate treats each file as a binary chunk
of data with an identifier unique to the proxy. The CGI
script for SurrogateStage stores the file data and up-
dates the amount of storage currently used by the proxy.
However, if storing the file would cause the proxy to ex-
ceed its quota, an error is returned. If a file with the same
identifier already exists on the surrogate, the previous
data is replaced and the quota updated appropriately.

Once a file is staged, it may be retrieved by the proxy
using the SurrogateGet function. Alternatively, the
proxy may delete the staged file to free up storage ca-
pacity with the SurrogateUnstage function. The final

function, SurrogateDeregister, explicitly releases
surrogate resources. After a proxy deregisters or its lease
expires, the surrogate deletes all files stored on behalf of
the proxy.

2.4 Client proxy

The client proxy performs three primary tasks, described
further in the next three sections. These tasks are:

• Redirecting file requests to surrogates

• Controlling which files are staged

• Preserving consistency

2.4.1 Redirecting file requests

The client proxy intercepts all traffic bound for a speci-
fied set of servers. It masquerades as a local file server;
thus, the file system client believes it is connected to
a file server running on the local machine. When the
proxy receives a request from the file system client, it ei-
ther transparently forwards it to the distant file server for
which it is masquerading, or it retrieves staged data from
a nearby surrogate and responds to the request itself. In
the presence of multiple file servers, our design allows
us to interpose proxies only for high-latency servers—
traffic to nearby servers need not incur the additional la-
tency of passing through the proxy.

The proxy maintains a hash table of all files stored on the
surrogate. When it intercepts a request to read data from
a Coda server, it checks whether a valid copy of the file
is currently staged on the surrogate. If the file is staged
and valid, it calls SurrogateGet to retrieve the data, de-
crypts the file, computes a secure hash, and verifies that
the hash matches its cached value. The file retrieval, de-
cryption, and hash computation are pipelined to reduce
access latency. If a valid copy of the file is not staged,
the proxy forwards the request to the distant file server.

All modifications to file data on the client machine are
sent directly to the file server. If a copy of the modi-
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fied file is staged, the proxy marks the copy invalid—this
process is described further in Section 2.4.3.

2.4.2 Controlling which files are staged

The client proxy predicts which files are most likely to
be accessed in the future and arranges for them to be
staged on nearby surrogates. In order to accurately pre-
dict future file accesses, it observes all file system traffic.
Currently, the proxy takes advantage of Coda’s codacon
interface [27], which reports the name of each file upon
invocation of the open system call. If the underlying file
system did not provide this type of interface, other mech-
anisms such as the the Sysinternals Filemon tool [32] are
available.

Prediction is implemented through a modular interface;
whenever a file is opened, the client proxy passes the
prediction module the file name, size, and access time.
By avoiding a tight integration of the prediction al-
gorithm and the staging implementation, we are able
to more easily explore alternative prediction strategies.
Figure 3 lists several possibilities, characterizing them
by how transparent they are to the user. At one end
are completely manual methods, such as explicit copy-
ing of files. These methods generate the most distrac-
tion; users must specify which files will be needed and
must perform the prefetching themselves. The advan-
tage of such methods is better user control of staging. At
the other end of the spectrum are completely automated
algorithms such as those proposed by Amer [2], Grif-
fioen [11], Kroeger [16], and Kuenning [18]. For exam-
ple, Kuenning’s SEER observes file access patterns and
creates clusters of files that are often accessed together.
Once a file system determines that some files in a cluster
will be accessed, it can prefetch all related files in that
cluster.

To date, we have explored two prediction algorithms
that lie between manual copy and fully-automated al-
gorithms on the scale of user transparency. Both al-
gorithms use the concept of roles; a role is an explicit
grouping of files that is associated with a high-level task
commonly performed by a user. For example, a graduate
student may create roles such as thesis, coursework,
and personal. Conceptually, roles are quite similar to
SEER’s clusters, except that they are externally visible
to the user. Roles could potentially be integrated with

Figure 4: User interface for roles specification

higher-level abstractions such as Aura tasks [10, 29] or
Lifestreams [9].

The first algorithm is based upon Coda file system hoard-
ing [15]. For each role, a user explicitly specifies the
set of file system subtrees that are most likely to be ac-
cessed. The user also orders these subtrees by express-
ing a relative priority for prefetching; higher-priority
subtrees are more likely to be accessed and will therefore
be staged before lower-priority subtrees. Using the inter-
face shown in Figure 4, users specify the set of roles they
are currently performing (these are referred to as active
roles). When the client proxy discovers a surrogate, it
creates a prefetch list that is the union of the files speci-
fied for all active roles. It stages files in order of priority
until its storage quota on the surrogate is exceeded.

The interface in Figure 4 also allows users to cope with
unexpected changes in their working set. For exam-
ple, consider an engineer waiting for a flight in an air-
port lounge with a nearby staging server. The engineer
receives e-mail from a colleague pertaining to a previ-
ous joint project. Since this project has unexpectedly
become important, the engineer does not have the as-
sociated design documents and technical specifications
cached. The engineer uses the interface in Figure 4 to
activate the role associated with the project. The client
proxy then recalculates the priority of files to stage and
prefetches related files to the nearby surrogate. As the
engineer works on the project, application performance
continues to improve as more files are staged.

We call the second algorithm that we explored user-
driven clustering. This algorithm automatically gener-
ates associations between files and roles; the relative pri-
ority of files to prefetch is determined through a simple
LRU strategy. The prediction algorithm maintains sepa-
rate LRU lists for each role. Whenever a file is opened,
that file is placed at the head of the LRU list for all roles
that are currently active. This is a conservative strategy:
all files that are part of a role will be in the LRU list,
but not all files in the LRU list will be part of a role.



When the client proxy prefetches files to a surrogate, it
merges the LRU lists of all active roles, then prefetches
the most recently accessed files until its storage quota
is exceeded. This strategy avoids the need for users to
explicitly specify which files to prefetch, but may poten-
tially be less accurate. Similar to the previous algorithm,
users can use the interface in Figure 4 to specify when
their working set changes.

Our implementation is based upon two important ob-
servations. First, we expect available space on nearby
surrogates to change by several orders of magnitude as
users move: from zero when no surrogate is available, to
gigabytes of storage when a high-capacity surrogate is
nearby. Therefore, the amount of prediction information
maintained should be independent of the current surro-
gate quota. We maintain LRU information sufficient to
populate the allocated quota of any surrogate we may en-
counter in the future. While the storage requirements for
the LRU data are not large (< 1 MB in our experience),
this may still represent a significant portion of the stor-
age capacity of a small handheld. Therefore, we store
LRU data in the distributed file system, allowing it to be
flushed from the client file system cache when additional
storage is needed.

Our second observation is that it is now common for one
person to access the same data on multiple machines;
for example, a single user may own a home computer,
a desktop at work, a laptop, and a handheld device. If
the user has recently accessed a file on one machine, it
is more likely that the user will soon access the file on
other machines. We account for this behavior by stor-
ing per-machine LRU data in the distributed file system.
When the proxy starts, it combines the LRU data from
all machines that the user has recently accessed to gener-
ate a global LRU ordering. This ordering is then used to
select which files are staged. To minimize update traf-
fic, the client proxy reads and writes LRU information
periodically (currently every hour). While this strategy
has the potential to lose some data in the event of a sys-
tem crash, the only effect of such a loss is a decrease in
prediction accuracy.

2.4.3 Preserving consistency

The client proxy is the final arbiter of whether data
staged on a surrogate is valid. It associates a valid bit
with each file in its hash table of staged files. After suc-
cessfully staging a file, this bit is set to valid. When
the proxy intercepts a request that modifies file data, it
searches for the file in the hash table and invalidates the
entry if found. When another Coda client modifies a
staged file, Coda provides a callback notification to all
Coda clients that have accessed the file. The data pump
receives this callback and forwards it to the client proxy.

If the modified file is currently staged, the proxy invali-
dates it.

The proxy periodically rescans the LRU list and recal-
culates which files should be staged. It stages any file
at the head of the LRU list that is marked invalid or
is not currently staged. Files further toward the tail of
the LRU list are unstaged to make room within the al-
located quota. We have chosen to make the set of files
staged on the surrogate inclusive with the client’s Coda
file cache, approximating the stack property. This means
that files evicted from the Coda cache are immediately
available from the surrogate. The performance penalty
of inclusive caching is small, since the surrogate will
typically have storage capacity several orders of mag-
nitude greater than that of the client machine.

An alternate approach would be to stage files immedi-
ately after they are invalidated or newly created. How-
ever, when file modifications are bursty, this alternate
approach would lead to many successive stages and in-
validations, wasting client bandwidth and energy.

2.5 Data pump

The data pump fetches and stages files on behalf of the
client proxy. Although a single data pump could run on
the file server, we favor running a data pump on the desk-
top computer of each user instead. The latter alternative
has the benefit of reducing load on file servers; since the
desktops have large file caches, most requests to stage
data can be serviced without contacting the file server.

Client proxies contact the data pump and establish a se-
cure tunnel for communication. The two parties use
public key cryptography to establish a symmetric ses-
sion key. We use the session key to encrypt all further
traffic because symmetric key encryption is less compu-
tationally demanding than public key encryption. Public
key distribution is simplified since a single user will typ-
ically operate both machines (if the pump is located on
a desktop), or both machines will lie within the same
administrative domain (if the pump is located on a file
server).

When the client proxy needs to stage a file, it sends the
data pump the file pathname and surrogate IP address.
The data pump retrieves the file from the underlying dis-
tributed file system, generates a random symmetric key,
encrypts the file, and generates a cryptographic hash of
the file data. The pump calls SurrogateStage to place
the encrypted file on the surrogate. If successful, the
pump sends the key and hash to the client proxy, which
stores them for later reference. Our current implemen-
tation uses 64 bit DES encryption and generates 128 bit
MD5 digests of file data. The storage requirement of 24



bytes per file is significantly less then the average file
size reported in file system studies [7, 35].

The client proxy is multi-threaded, allowing it to
overlap computation and network transmission, and
to service multiple concurrent requests. As a per-
formance enhancement, the proxy may batch multi-
ple SurrogateStage requests into a single HTTP/1.1
POST request; this decreases the time needed to stage a
large number of small files.

3 Further benefits of data staging

To date, our work has focused on exploring the bene-
fits of data staging for storage-limited clients in perva-
sive computing environments. Yet, we believe that data
staging will prove desirable in several other important
scenarios.

The use of Infostations [37] or Data Blasters [19]
has been suggested as a solution for overcoming the
bandwidth limitations of wide-area wireless networks.
Clients periodically pass through short-range, high-
bandwidth zones located within the pervasive infrastruc-
ture. For example, such zones may be located near air-
port gates or at highway tollbooths. Data updates such
as file modifications can be burst transmitted to the client
during the short period of high-bandwidth connectivity.
These data staging scenarios are particularly attractive
given advances in ultrawideband (UWB) wireless tech-
nology that promise to deliver up to 500 Mb/s within a
5-10 meter radius with minimal energy cost [19]. To uti-
lize this effective bandwidth fully, data must be staged
in preparation for burst transmission.

Data staging also has large potential benefits for battery-
powered clients. Studies of energy usage show that an
802.11 network interface represents a very large portion
of the total energy budget of small handheld devices [8,
31]. Under periods of high network usage, such devices
quickly run out of battery power.

Our data staging architecture can significantly extend
the battery lifetime of mobile clients in two ways.
First, fetching small files from surrogates is significantly
faster than fetching the equivalent data from distant file
servers. Since the network is active for shorter periods
with data staging, the network interface can be put into
longer and deeper power saving modes. A second, po-
tentially greater, benefit is that the speculative prefetch-
ing of data to clients can be dramatically reduced. With
data staging, the latency of a cache miss is much lower.
Therefore, the client file system can afford to be less ag-
gressive in keeping the cache up-to-date with the files
the user is most likely to fetch. Instead, the client can

stage such files on a nearby surrogate, knowing that the
penalty of a cache miss will be small.

4 Evaluation

How much does data staging improve the performance
of interactive applications running on storage-limited
clients?

We answer this question by measuring the performance
impact of data staging in two different usage scenarios.
In the first scenario, we mirror short-term, bursty activ-
ity. We model a user browsing images from a large im-
age library stored in the Coda file system and examine
the potential performance benefits of data staging. In the
second scenario, we examine the benefits of data staging
over a longer time period. We use recorded traces of
client file system workloads to represent the activities of
a user on a multi-day visit to a distant work location and
examine how data staging reduces file operation latency.

4.1 Experimental setup

We ran a Coda server on a powerful desktop computer
with a 2 GHz Pentium 4 processor. We also chose to
run the data pump on the same machine since scalability
was not a focus of our evaluation. The surrogate ran on
an identical desktop computer—we used NISTnet [5] to
emulate a 30 ms. delay (60 ms. round-trip time) between
the Coda server and surrogate. The 30 ms. delay is typi-
cal of current coast-to-coast delays in the United States.
The client was a Compaq iPAQ 3850 handheld computer
with a 206 MHz StrongArm processor. The iPAQ used
a 11 Mb/s 802.11 wireless network card for communi-
cation. The wireless hub was on the same network seg-
ment as the surrogate; we also emulated a 30 ms. delay
between the client and Coda server. All computers ran
the Linux 2.4 operating system.

4.2 Image browsing

4.2.1 Methodology

Over a roughly one month period, we recorded accesses
to a library of digital photographs stored in the Coda file
system. The typical client activity captured in this trace
first opens a large number of small, thumbnail images in
a directory, then opens a smaller number of large, full-
sized images in the same directory. From the log, we se-
lected the first 10,148 file operations—these operations
read 150 MB of unique file data. However, since many
images are read more than once, the total amount of data
accessed is 401 MB.
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Figure 5: Image trace with 64 MB cache

We replayed the trace as fast as possible using the DFS-
Trace tool [21], which performs file operations identical
to those recorded in the trace. The figure of merit is the
time needed to execute the complete trace—this corre-
sponds to the total delay that the user experiences while
loading images. This is distinct from the total amount
of time the user will take to view the images, which will
include a variable amount of think time. The benefits of
staging would increase with think time since the client
will continue to stage files during such pauses. Without
data staging, think time has no noticeable effect upon
total delay.

Since the initial state of the client Coda cache will have
a large effect on benchmark execution time, we examine
the two extreme ends of the spectrum. In the cold sce-
nario, no data is contained in the Coda cache when we
begin playing a trace; such a scenario will often occur
when there is an unexpected change in a user’s work-
ing set such as the one described in Section 2.4.2. In
the warm scenario, we fill the entire Coda cache with the
set of files initially accessed by the trace; this is the best
possible initial cache state.

For both scenarios, we compare total file access time
with and without data staging. In the cold scenario, the
surrogate initially has no data staged. As the trace be-
gins, the client proxy is notified of the change in work-
ing set; this emulates the activation of a new role through
the interface in Figure 4. Replay of the trace and stag-
ing of the data proceed in parallel. Initially, no bene-
fit is derived from data staging; however, as more files
are staged, a greater percentage of file accesses are ser-
viced by the surrogate, and average file access latency
decreases. Files are staged in random order using a
hoard file that lists all files accessed by the trace—the
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This figure shows the benefits of data staging for the im-
age benchmark with a 16 MB client Coda cache. Each
bar is the mean of three trials; the error bars show mini-
mum and maximum values.

Figure 6: Image trace with 16 MB cache

random ordering is a pessimistic assumption, in a pro-
duction system, LRU or user-specified ordering would
cause those files most likely to be accessed to be staged
first. For the warm scenario, in addition to warming the
client Coda cache, we also stage all files referenced by
a trace on the surrogate before executing the trace. This
represents a scenario where the user has given advance
notice of the change in working set sufficient to prefetch
all files.

The effectiveness of staging depends upon how closely
the set of files staged on the surrogate matches the ac-
tual set of files accessed by the client. Inaccuracy is ex-
hibited in two ways. First, the client proxy may stage
files that are never accessed—we refer to this as wastage.
Specifically, we define the wastage ratio to be the ratio
of data staged but never accessed to the total amount of
data staged. Second, the client proxy may decide not to
stage files that it later accesses—we quantify this with a
staging miss ratio. We calculate the staging miss ratio
by dividing the amount of file data accessed by a trace
but never staged by the total amount of data accessed by
the trace. Our approach to handling this variability is
to first choose initial baseline values, specifically a 33%
wastage ratio and a 0% staging miss ratio, and then per-
form sensitivity analysis on each variable.

4.2.2 Results

Figure 5 shows the results of running the image bench-
mark with a 64 MB Coda cache size. In the cold sce-
nario, data staging reduces the total time to execute the
trace by 44% (11:06 minutes). The warm scenario exe-
cutes in less time because the images initially viewed by
the user are already in the Coda cache. In this scenario,
the use of data staging reduces execution time by 54%
(9:07 minutes).
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This figure shows the benefits of data staging for the
image benchmark with a 64 MB client Coda cache and
a wide-area bandwidth cap of 1 Mb/s. Each bar is the
mean of three trials; the error bars show minimum and
maximum values.

Figure 7: Image trace with 1 Mb/s bandwidth cap

Figure 6 shows results for a smaller, 16 MB cache size.
Somewhat surprisingly, the relative benefits of staging
are mostly unaffected by the reduction in cache size. For
this trace, much of the short-term file reference locality
that is captured by the 64 MB cache size is also captured
by the 16 MB cache size. In the cold scenario, staging
reduces execution time by 45% and, in the warm sce-
nario, staging reduces execution time by 48%. However,
the absolute magnitude of the benefit increases to 17:46
minutes in the cold scenario and 17:44 minutes in the
warm scenario.

While our work assumes that network bandwidth is
not a significant limitation, it is interesting to consider
how data staging might perform if wide-area network
throughput is limited. Using NISTnet, we capped the
maximum throughput of the network link between the
pump and surrogate at 1 Mb/s (in addition to imposing a
30 ms. latency). We imposed the same limitation on the
link between the client and file server.

Figure 7 shows results for a 64 MB Coda cache size.
Since many of the digital photographs are quite large,
the bandwidth cap has a significant performance impact.
Without data staging, the cap increases trace execution
time by 51% in the cold scenario and by 46% in the
warm scenario. In the cold scenario, data staging re-
duces trace execution time by 26%. The bandwidth cap
reduces the relative benefit of staging because it takes
longer to stage files at the surrogate; a greater percent-
age of files are accessed directly from the file server. In
the warm scenario, trace execution time is essentially un-
affected by wide-area bandwidth limitations, since all
cache misses are serviced by the surrogate. Therefore,
data staging is more effective; it reduces trace execution

0.0 0.2 0.4 0.6 0.8 1.0

Wastage Ratio

0

500

1000

1500

E
xe

cu
tio

n 
T

im
e 

(s
)

Cold / Staging
Cold / No Staging

This figure shows the effect of different wastage ratios
on the image trace with a 64 MB client Coda cache.
Each data point is the mean of three trials; the error bars
show minimum and maximum values.

Figure 8: Effect of wastage on image trace

time by 64%. Note that these results reflect wide-area
bandwidth limitations. If the bottleneck link is a 1 Mb/s
Internet connection shared by client and surrogate, then
prefetching traffic may significantly degrade file system
performance. Methods that limit prefetching traffic [33]
may prove effective in such scenarios.

We next executed the image benchmark with a 64 MB
client Coda cache and performed a sensitivity analysis
on the wastage ratio. In the cold scenario, wastage
causes the staging of files accessed in the trace to be de-
layed. With enough wastage, a file may not be staged
until after it is accessed during trace replay. After this
point, staging provides no benefit for the file. Wastage
does not affect the warm scenario since all files are
staged before the trace is executed.

As Figure 8 shows, staging reduces the execution time
of the image benchmark by 47% in the optimal case
where there is no wastage. As wastage increases, the
benefits of staging are gradually reduced. With a 91%
wastage ratio, staging reduces execution time by only
11%. The effect of wastage may be overstated due to
our assumption that files are staged in random order; we
expect that if files more likely to be accessed were staged
first, wastage would have less effect.

We also examined the effect of different staging miss ra-
tios. We executed the image benchmark with a 64 MB
client Coda cache and varied the percentage of files that
are contained in the image trace but not staged. We held
the wastage ratio constant at 33%. As Figure 9 shows,
the benefits of staging decrease as the staging miss ra-
tio grows. With a staging miss ratio of 80%, staging
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This figure shows the effect of different staging miss ra-
tios on the image trace with a 64 MB client Coda cache.
Each data point is the mean of three trials; the error bars
show minimum and maximum values.

Figure 9: Effect of staging miss ratio

achieves only a minimal 1% benefit. With a staging miss
ratio of 100%, no data is staged. The resulting 11% over-
head is the cost of our proxy implementation. Detailed
analysis reveals that almost all of this overhead is caused
by local remote procedure calls between the client proxy
and Coda file system client.

Comparing Figures 8 and 9, it is interesting to note that
a higher staging miss ratio reduces the benefit of staging
more than the same wastage ratio. Thus, we conclude
that prediction strategies should be liberal—if one is un-
certain whether or not a file will be needed, it is best to
stage it anyway.

4.3 Long-duration file traces

4.3.1 Methodology

To emulate the activity of a user on a multi-day visit
to a distant work location, we replayed four traces of
client file system activity. We selected these traces,
which are summarized in Figure 10, from the set gath-
ered by Mummert et al. [21] at Carnegie Mellon Univer-
sity. Each trace was gathered on a different single-user
desktop computer between 1991 and 1993; their dura-
tions range from 15 to 55 hours of activity.

We used DFSTrace to replay each file trace. We repeated
the methodology of section 4.2.1 by examining perfor-
mance with and without data staging in both the cold

and warm scenarios. In both scenarios, we stage the set
of files that were captured in the trace using a manually-
created hoard file. The order of staging is random in
the cold scenario. The figure of merit is the total time

Number of Length Write Working
Trace Operations (Hours) Ops. Set (MB)

purcell 87739 55.32 6% 254
messiaen 44027 42.54 2% 227

robin 37504 30.92 7% 85
berlioz 17917 15.70 8% 57

This figure shows the file system traces used for our eval-
uation. Since data staging currently uses Coda as the
base file system and Coda uses the open-close seman-
tics of AFS, individual read and write operations are
not included. Hence, “write ops.” refers to activities
such as close after write and mkdir. The working set
is the total size of the files accessed during a trace.

Figure 10: File traces used in evaluation

needed to perform all file operations in the trace; this
is equivalent to the amount of delay the user would ex-
perience during the trace period while waiting for file
operations to complete.

The traces record inter-request delays for file operations.
We replay these delays for the first 15 minutes of each
trace for the cold scenario—during this time, the client
proxy stages data on the surrogate while it concurrently
proxies file operations. After 15 minutes, staging com-
pletes for all traces. From this point on, we eliminate
delays and replay the remainder of the trace as fast as
possible. This allows us to complete the experiments in
a reasonable amount of time. Elimination of delays does
not affect the time to service file operations without data
staging. With data staging the results are somewhat pes-
simistic since the client proxy does not restage data that
has been invalidated due to modifications.

Although we assume here that all file activity is the re-
sult of foreground activity, it is likely that some of the
trace activity was generated by background processes;
however, this information is very difficult to distinguish
from the trace data.

4.3.2 Results

We used an experimental setup identical to the one used
for the image benchmark. We first replayed the traces
assuming a 64 MB client Coda cache—Figure 11 shows
the results. In the cold scenario, data staging provides
significant benefit for all traces. Staging reduces file op-
eration latency a minimum of 30% for the messiaen

trace and a maximum of 49% for the berlioz trace. In
the warm scenario data staging causes the berlioz trace
to take slightly longer to complete. Since the trace’s en-
tire working set fits entirely in the Coda cache, there is
no need to fetch data from the server—hence, staging
provides no benefit. However, staging induces a minimal
amount of overhead on each access in order to maintain
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This figure shows the benefits of data staging for a
64 MB client Coda cache. Each set of bars shows the
cumulative delay due to file system activity for a differ-
ent trace. The first two bars of each data set show the
benefit with cold file and surrogate caches; the remain-
ing two bars show the benefit with warm caches. Each
bar is the mean of three trials; the error bars show the
minimum and maximum values.

Figure 11: File trace results with 64 MB cache

LRU prediction information; this results in the perfor-
mance degradation shown in Figure 11. For the other
traces, the relative benefit of staging ranges from 29%
for the purcell trace to 35% for the messiaen trace.

Figure 12 shows results when we decrease the Coda
cache size to 16 MB. Although the total amount of cu-
mulative delay is larger with a smaller cache size, the
relative benefits of staging do not significantly change.
In the cold scenario, staging reduces cumulative delay
from 32% to 46%. In the warm scenario, the berlioz

trace again shows a slight degradation in performance.
Even though its working set is larger than the cache
size, much of this data is generated during trace replay—
16 MB is sufficient to hold almost all data read by the
trace. For the remaining traces, staging reduces cumula-
tive delay from 40% to 48%.

Figure 13 shows more detailed results for a representa-
tive trace—messiaen with a 64 MB Coda cache. Each
line represents the cumulative fraction of file operations
that complete within a given time period. For this trace,
over 80% of the file operations are reads that hit in the
Coda cache or writes that are buffered on the client for
later reintegration—these incur negligible delay.

The shape of the Cold / No Staging line confirms
one of our assumptions: latency, not bandwidth, is the
real killer in distributed file system performance. Of the
operations that do not complete immediately, the vast
majority take slightly more than the 60 ms. round-trip
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This figure shows the benefits of data staging for a
16 MB client Coda cache. Each set of bars shows the
cumulative delay due to file system activity for a differ-
ent trace. The first two bars of each data set show the
benefit with cold file and surrogate caches; the remain-
ing two bars show the benefit with warm caches. Each
bar is the mean of three trials; the error bars show the
minimum and maximum values.

Figure 12: File trace results with 16 MB cache

delay. Data staging significantly shortens these high la-
tency operations. For interactive applications that incur
the cost of several sequential file operations, this dramat-
ically reduces the frustrating delays experienced by the
user.

Finally, we examined the effect of network latency be-
tween the client and file server. We expected the bene-
fits of staging to decrease as network round-trip time was
reduced. Figure 14 confirms our expectation. When the
round-trip delay between client and file server is reduced
to 30 ms., data staging decreases cumulative file delay
between 5% and 26% in the cold scenario. In the warm
scenario, data staging reduces cumulative file delay by
less than 10% for all traces.

5 Future Work

Our current implementation of data staging provides a
solid basis for future research. We plan to investigate
methods that allow clients to discover servers dynam-
ically. For this purpose, we hope to leverage exist-
ing service discovery protocols such as Jini [36] and
UPnP [20]. Architectures such as VERSUDS [4] that
allow clients to access multiple service discovery proto-
cols through a common interface are especially promis-
ing for the heterogeneous environments we support. In
addition, the distance-based discovery mechanism pro-
posed by Noble et al. [24] for Fluid Replication may also
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This figure shows how data staging reduces file operation latency for the messiaen trace with a 64 MB cache. Each
line shows the cumulative fraction of file accesses that finish on or before the indicated time.

Figure 13: Reduction of file operation latency for messiaen trace

prove to be well-suited for data staging.

We hope to investigate how location prediction can in-
crease the effectiveness of data staging. If the client
proxy determines that it will pass near a surrogate in the
future, it could proactively stage data there. This func-
tionality is especially useful in constructing Infostation-
like environments such as the one described in Section 3.

We plan to support additional file systems; a NFS im-
plementation is in progress. This process is expedited
by our encapsulation of file system dependent code in
the client proxy and data pump. However, some new is-
sues arise; for instance, without the whole-file caching
of Coda, reduction of first-byte latency becomes impor-
tant. We also plan to investigate the effectiveness of
prefetching for different file system parameters (whole
file caching vs. block caching, callbacks vs. leases, etc.)
Finally, we plan to explore other prediction strategies,
especially fully-automated ones such as SEER [18].

6 Related Work

This work is one of the first to focus on how untrusted
and unmanaged hardware can improve distributed file
system performance for small, storage-limited clients
without compromising security or consistency. In ef-
fect, data staging applies the well-understood concept
of prefetching [6, 25] to pervasive computing environ-
ments. Instead of prefetching file blocks from the disk,
data staging prefetches whole files from a distant server.

At a conceptual level, data staging shares several goals
with edge computing initiatives such as distributed Web
caching. Companies such as Akamai [1] have developed

content distribution networks that push data toward end
nodes to reduce access latency. However, our focus on
file data creates important differences. Consistency is
a first-class concern for us: data staging preserves the
consistency guarantees of the underlying distributed file
system. This is necessary since file system clients are
far more likely to modify data than Web clients. Addi-
tionally, we provide a mechanism for end-to-end encryp-
tion that avoids the need to trust unknown third parties.
These issues also differentiate surrogates from caching
Web proxies such as Squid [30].

WayStations in Fluid Replication [14] perform a role
similar to that played by our surrogates. Yet, there are
key differences. First, replicas on WayStations accept
file modifications from clients. By transmitting modi-
fications directly to file servers, data staging simplifies
the trust model for surrogates. A second difference is
that WayStations do not speculatively prefetch data, and
thus may underperform in cold-cache scenarios.

OceanStore [17] provides floating replicas of data that
can migrate to nearby servers. OceanStore partitions
servers into those trusted to perform replication pro-
tocols and those not trusted to do so. While the un-
trusted servers may optimistically accept updates, the
client must directly contact the trusted servers in order
to ensure permanence and correctness. Thus, replicas
on untrusted servers perform similar services to our sur-
rogates. One of the primary differences is our focus on
ease of management. We have taken care to place the ab-
solute minimum of functionality on surrogates and have
built on commodity software as much as possible—we
believe that such steps are vital to ubiquitous surrogate
deployment. Another difference is that surrogates are
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This figure shows the benefits of data staging for a
64 MB client Coda cache when the network round-trip
time is reduced to 30 ms. Each set of bars shows the cu-
mulative delay due to file system activity for a different
trace. The first two bars of each data set show the bene-
fit with cold file and surrogate caches; the remaining two
bars show the benefit with warm caches. Each bar is the
mean of three trials; the error bars show the minimum
and maximum values.

Figure 14: File trace results with 30 ms. round-trip time

file-system agnostic. Since all code specific to the un-
derlying file system is isolated in the client proxy and
data pump, a single surrogate may simultaneously ser-
vice clients that employ diverse file systems.

We hope to build on two bodies of related work in the
future. First, we hope to incorporate some of the au-
tomated prefetching algorithms that have been proposed
for file systems [2, 11, 16, 18] and Web distributed cache
placement [34]. Second, we plan to use surrogates to im-
plement Infostations [37] that provide high-bandwidth
access to data in mobile environments as described in
Section 3.

Muntz and Honeyman [22] evaluated the use of interme-
diate caching for the AFS file system and found that it
achieved little benefit. However, their evaluation envi-
ronment is quite different from the target environment
for data staging. Wide-area network latency imposes
substantially greater penalties for cache misses.

7 Conclusion

Untrusted and unmanaged machines can facilitate mo-
bile data access. Data staging uses nearby surrogates
located in the pervasive computing environment to im-
prove distributed file system performance for storage-
limited clients. Clients borrow storage capacity from
surrogates and use it as a second-level file cache to hide
the latency of file operations.

Two important assumptions in our work are that surro-
gates are untrusted and unmanaged. Because surrogates
are untrusted, we use end-to-end encryption to provide

privacy, and secure hashes to ensure authenticity. We
make surrogates as reliable and easy to manage as pos-
sible by maintaining no hard state on them, using com-
modity software, and pushing functionality from surro-
gates to client and server machines. We believe these de-
sign considerations will prove vital in ensuring the wide-
spread deployment of a surrogate infrastructure.
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