

Online Deduplication for Distributed Databases

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

 in

Electrical & Computer Engineering

Lianghong Xu

B.S., Automation, Tsinghua University

Carnegie Mellon University
Pittsburgh, PA

September, 2016

Copyright © 2016 Lianghong Xu

For my parents and wife.

Keywords: deduplication, databases, delta compression

Abstract
The rate of data growth outpaces the decline of hardware costs, and

there has been an ever-increasing demand in reducing the storage and
network overhead for online database management systems (DBMSs).
The most widely used approach for data reduction in DBMSs is block-
level compression. Although this method is simple and effective, it fails
to address redundancy across blocks and therefore leaves significant
room for improvement for many applications.

This dissertation proposes a systematic approach, termed similarity-
based deduplication, which reduces the amount of data stored on disk
and transmitted over the network beyond the benefits provided by tra-
ditional compression schemes. To demonstrate the approach, we de-
signed and implemented dbDedup, a lightweight record-level similarity-
based deduplication engine for online DBMSs. The design of dbDedup
exploits key observations we find in database workloads, including small
item sizes, temporal locality, and the incremental nature of record up-
dates. The proposed approach differs from traditional chunk-based
deduplication approaches in that, instead of finding identical chunks
anywhere else in the data corpus, similarity-based deduplication identi-
fies a single similar data-item and performs differential compression to
remove the redundant parts for greater savings.

To achieve high efficiency, dbDedup introduces novel encoding,
caching and similarity selection techniques that significantly mitigate
the deduplication overhead with minimal loss of compression ratio. For
evaluation, we integrated dbDedup into the storage and replication com-
ponents of a distributed NoSQL DBMS and analyzed its properties us-
ing four real datasets. Our results show that dbDedup achieves up to
37⇥ reduction in the storage size and replication traffic of the database
on its own and up to 61⇥ reduction when paired with the DBMS’s
block-level compression. dbDedup provides both benefits with negligi-
ble effect on DBMS throughput or client latency (average and tail).

vi

Acknowledgments
First and foremost, I would like to thank my PhD advisor Greg

Ganger for his persistant guidance, support and encouragement through-
out my graduate life. Greg has always been inspiring me with his rig-
orous attitude of science, commitment to good research, and optimistic
personality. During the past several years, Greg has taught me a number
of things, from technical to behavioral, but the most important lesson I
learnt from him is to be confident. When I first entered Carnegie Mel-
lon, I hardly had any experience in systems research, struggling with
classes and losing research directions. Greg guided me through this
stretch with firm support and his confidence in me greatly boosts my
own. His encouragement made me decide to switch to a more chal-
lenging research topic in my fourth year that eventually leads to this
dissertation. Without Greg, I would not have been where I am, and I
feel so fortunate and grateful to have him as my advisor.

I would also like to give my special thanks to Andy Pavlo, who has
been collaborating with me on my thesis project since the very early
stage. Andy is energetic, diligent, and most of all, fun to work with.
He regularly attended our weekly meetings and kept a close track of the
project progress. He suggested expanding the scope of this research to
distributed document-oriented databases and to online DBMSs in gen-
eral, helped gather more datasets for evaluation, and set up connections
with MongoDB when I needed help on implementation issues—not to
mention that he actively helped with paper writing and slides polishing.
Both Greg and Andy have been critical to make this dissertation come
off.

This thesis work originates from the internship project I worked
on at Microsoft Research Redmond back in 2013. The internship was
a wonderful experience and I greatly appreciate the guidance and help
from the researchers in the Cloud Computing and Storage group. Specif-
ically, my mentor Sudipta Sengupta helped me to develop the research

ideas, quickly get my hands dirty, and continued to collaborate on the
project after the internship. Jin Li and Sanjeev Mehrotra gave detailed
explanation on the data chunking portion of the prototype system and
provided useful feedbacks when I encountered problems. I thank An-
drei Marinescu for suggesting a motivating scenario from Microsoft
Exchange cloud deployment and for providing the Exchange dataset.
In addition, I would also like to thank all the friends I met during the
internship who made the three months full of joy and excitement.

My research and study at CMU has been helped by a number of
other faculty members, including Garth Gibson, Dave Andersen, Michael
Kozuch, Onur Mutlu, Christos Faloutsos, Peter Steenkiste, Daniel P.
Siewiorek, and David O’Hallaron. Thank you all for the insightful dis-
cussions and feedbacks at various seminars, PDL retreats and my Qual
exam. Special thanks go to Garth, for kindly serving as my thesis com-
mittee, sharing his extensive experience in both academia and industry,
and guiding me during my two teaching assistantships for the gradu-
ate storage systems class. I also want to thank a number of friends
at PDL for the technical discussions or random chats: Ben Blum, Lei
Cao, Jim Cipar, Henggang Cui, Bin Fan, Bin Fu, Aaron Harlap, Jesse
Haber-Kucharsky, Rajat Kateja, Jin Kyu Kim, Elie Krevat, Likun Liu,
Hyeotaek Lim, Yixin Luo, Junwoo Park, Kai Ren, Raja Sambasivan,
Ilari Shafer, Alexey Tumanov, Matthew Wachs, Jinliang Wei, Lin Xiao,
and Qing Zheng.

My life at CMU was made much easier with the help of an amazing
group of administrative and technical staff in PDL. I would like to thank
Karen Lindenfelser for various help on all kinds of miscellaneous stuff,
and Joan Digney for helping polish my presentations and posters. I also
want to thank Jason Boles, Chad Dougherty, Mitch Franzos, Michael
Stroucken and Charlene Zang for providing reliable support when I
need help with experiment setups.

I am especially grateful to my parents and my wife, for their uncon-

viii

ditional support and unwavering confidence in me throughout my life.
They provided me with enormous encouragement and help along this
journey and I am greatly indebted to them for all their efforts.

Finally, I would like to thank the members and companies of the
PDL Consortium (including Broadcom, Citadel, EMC, Facebook, Google,
Hewlett-Packard Labs, Hitachi, Intel, Microsoft Research, MongoDB,
NetApp, Oracle, Samsung Information Systems America, Seagate Tech-
nology, Tintri, Two Sigma, Uber, Veritas and Western Digital) for their
interest, insights, feedback, and support. This dissertation was spon-
sored in part by Intel as part of the Intel Science and Technology Cen-
ter for Cloud Computing (ISTC-CC) and by MongoDB Incorporated.
Experiments were enabled by generous hardware donations from Intel
and NetApp.

ix

Contents

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Contributions . 3
1.3 Outline . 5

2 Background and Related Work 7
2.1 Need for Data Reduction in DBMSs 7

2.1.1 Database Storage Usage 7
2.1.2 Replication for Distributed DBMSs 8
2.1.3 Network Bandwidth for Replication 9

2.2 Why Dedup for Database Applications? 9
2.2.1 Compression Alone is Insufficient 10
2.2.2 Sources of Redundancy . 11

2.3 Similarity-based Dedup vs. Exact Dedup 12
2.3.1 Chunk-based Dedup . 13
2.3.2 Better Compression with Similarity-based Dedup 15

2.4 Categorizing Dedup Systems . 15
2.5 Additional Related Work . 17

2.5.1 Deduplication . 17
2.5.2 Database Compression . 18
2.5.3 Delta Compression . 19
2.5.4 Similarity Detection . 20

xi

2.5.5 My Other Work . 20

3 Deduplication Workflow in dbDedup 23
3.1 Feature Extraction . 23
3.2 Index Lookup . 26
3.3 Source Selection . 28
3.4 Delta Compression . 29

4 Mitigating Deduplication Overhead 31
4.1 Encoding for Online Storage . 31

4.1.1 Two-way Encoding . 32
4.1.2 Hop Encoding . 33

4.2 Caching for Delta-encoded Storage 36
4.2.1 Source Record Cache . 36
4.2.2 Lossy Write-back Delta Cache 38

4.3 Avoiding Unproductive Dedup Work 39
4.3.1 Automatic Deduplication Governor 39
4.3.2 Adaptive Size-based Filter 39

5 Implementation 41
5.1 Integration into DBMSs . 41

5.1.1 Integration into Storage and Replication Components 42
5.1.2 Integration into Replication Component 44

5.2 Indexing Records by Features . 47
5.3 Delta Compression . 49

6 Evaluation 55
6.1 Workloads . 55
6.2 Compression Ratio and Index Memory 57
6.3 Runtime Performance Impact . 60
6.4 Dedup Time Breakdown . 61

6.4.1 Performance with limited bandwidth: 62

xii

6.5 Effects of Caching . 63
6.5.1 Source Record Cache . 64
6.5.2 Lossy Write-back Cache 65

6.6 Failure Recovery . 66
6.7 Tuning Parameters . 68

6.7.1 Sketch Size . 68
6.7.2 Hop Distance . 69
6.7.3 Anchor Interval . 70

6.8 Sharding . 71

7 Conclusion and Future Directions 73
7.1 Conclusion . 73
7.2 Future Directions . 74

7.2.1 Client-side Deduplication 74
7.2.2 Similarity-informed Sharding 75
7.2.3 Field Name Compression in Document Databases 75

Bibliography 77

xiii

List of Figures

2.1 Distribution of record modifications for Wikipedia. 14

2.2 Comparison between chunk-based deduplication and similarity-based
deduplication using delta compression for typical database work-
loads with small and dispersed modifications. 15

3.1 An overview of dbDedup Workflow – (1) Feature Extraction, (2)
Index Lookup, (3) Source Selection, and (4) Delta Compression. . . 24

3.2 Detailed Workflow and Data Structures – A new record is con-
verted to a delta-encoded form in four steps. On the left are the
two disk-resident data stores involved in this process: the dedup
metadata container (see Section 5.2) and the original database. The
remainder of the structures shown are memory resident. 25

3.3 Consistent sampling versus random selection – Sorting before
selection improves the probability of similarity detection. In both
cases, one shared chunk hash is selected from each of the record.
Consistent sampling ensures that the shared hashes correspond to
the same chunk in the two records. 26

3.4 Example of Source Record Selection – The top two (K = 2)
hashes of the new record are used as the features of its sketch (41, 32).
The numbers in the records’ chunks are the MurmurHash values.
Records with each feature are identified and initially ranked by their
numbers of matching features. The ranking increases if the candi-
date is in dbDedup’s source record cache. 30

xv

4.1 Illustration of two-way encoding – dbDedup uses forward encod-
ing to reduce the network bandwidth for replica synchronization
while using backward encoding to compress database storage. . . . 33

4.2 Overlapped encoding – Backward encoding may lead to compres-
sion loss when an older record is selected as the source. In this
example, when R0 is selected as the source for R2, backward en-
coding leaves R1 and R2 both unencoded. 34

4.3 Hop encoding – A comparison of hop encoding and version jump-
ing with an encoding chain of 17 records. Shaded records (R0, R4,
etc.) are hop bases (reference versions), with a hop distance (cluster
size) of 4. Hop encoding provides comparable decoding speed as
version jumping while achieving a compression ratio close to stan-
dard backward encoding. 35

4.4 Size-based deduplication filter. 40

5.1 Integration of dbDedup into a DBMS. – An overview of how dbDedup
fits into the storage and replication mechanisms of an example database
system and the components that it interacts with. dbDedup dedu-
plicates data to be stored and sent when a secondary requests new
oplog entries. It checks each oplog entry before it is sent to the
secondary and then again on the replica to reconstruct the original
entries. 42

5.2 Integration of dbDedup into a DBMS’s replication component. –
An overview of how dbDedup fits into the replication mechanism
of an example database system. Oplog entries containing insertions
and updates are deduplicated before sent to the remote replicas. All
records are stored in entirety on disk so there is no need for a write-
back record cache buffering encoded data. 45

5.3 Illustration of delta compression in dbDedup. 49

xvi

6.1 Compression Ratio and Index Memory – The compression ratio
and index memory usage for dbDedup (1 KB chunks or 64 byte
chunks), trad-dedup (4 KB and 64 byte), and Snappy. The upper
portion of each dedup bar represents the added benefit of compress-
ing after dedup. 58

6.2 Storage and Network Bandwidth Savings – Relative compression
ratios achieved by dbDedup (with 64-byte chunk size) for local stor-
age and network transfer, for each of the datasets, normalized to the
absolute storage compression ratios shown in Fig. 6.1 (for dbDedup
with 64-byte chunks). 60

6.3 Performance Impact – Runtime measurements of MongoDB’s through-
put and latency for the different workloads and configurations. . . . 61

6.4 Deduplication Time Breakdown – Time breakdown of deduplica-
tion steps as individual refinements are applied. 62

6.5 Insertion Throughput under Limited Bandwidth. – A evaluation
of MongoDB’s insertion throughput with and without dbDedup for
various network bandwidth configurations. 63

6.6 Source Record Cache Size – The efficacy of the source record
cache and the cache-aware selection optimization. 64

6.7 Reward Score – An evaluation of the normalized compression ratio
and cache miss ratio as a function of the reward score for records
residing in the source record cache. 65

6.8 Write-back Cache – Runtime throughput of the DBMS with and
without the write-back cache. Using the cache avoids DBMS slow-
down during workload bursts. 66

6.9 Failure Recovery – Measuring how quickly dbDedup recovers after
the primary fails. 67

6.10 Sketch Size – The impact of the sketch size on the compression
ratio for the Wikipedia dataset. 68

xvii

6.11 Hop Encoding vs. Version Jumping – For the Wikipedia workload
and moderate hop distances, hop encoding provides much higher
compression ratios with small increases in worst-case source re-
trievals and number of write-backs. 69

6.12 Anchor Interval – The impact of the anchor interval on the delta
compression throughput and compression ratio for the Wikipedia
dataset. 70

xviii

List of Tables

2.1 Categorization of related work . 17

4.1 Summary of the different encoding schemes – Hop encoding largely
eliminates the painful tradeoff between space savings and decoding
speed. N is the length of the encoding chain, and H denotes the
hop distance (cluster size for version jumping). Sb and Sd refer to
the size of a base record and a delta respectively, where Sb � Sd in
most cases. These sizes obviously vary for different records. Here
we use the general notation for ease of reasoning. 35

6.1 Average characteristics of four datasets. 56
6.2 Compression ratio with sharding – dbDedup provides consistent

compression benefits in sharded environments. 71

xix

Chapter 1

Introduction

With the prevalence of Web-based applications, more of today’s data is stored in
various forms of databases. Despite declining prices of hard drives, the hardware
and maintanance cost for morden database management systems (DBMSs) keeps
increasing due to exponential data explosion.

Database compression is one solution to this problem. For database storage, in
addition to space saving, compression helps reduce the number of disk I/Os and
improve performance, because queried data fits in fewer pages, leading to improved
overall throughput for write-heavy workloads. For distributed databases replicated
across geographical regions for high availability, there is also a strong need to reduce
the amount of data transfer used to keep replicas in sync. Such replication requires
significant network bandwidth, which becomes increasingly scarce and expensive
the farther away the replicas are located from their primary DBMS nodes. It not
only imposes additional cost on maintaining replicas, but can also become the bot-
tleneck for the DBMS’s performance if the application cannot tolerate significant
divergence across replicas. This problem is especially onerous in geo-replication
scenarios, where WAN bandwidth is expensive and capacity grows relatively slowly
across infrastructure upgrades over time.

The most widely used approach for data reduction in DBMSs is block-level
compression [3, 18, 31, 40, 49, 52] on individual database pages or operation log
batches. In this thesis, we argue that, although this method is simple and effective,

1

it fails to address redundancy across blocks and therefore leaves significant room
for improvement for many applications (e.g., due to app-level versioning in wikis
or partial record copying in message boards). On the other hand, deduplication
(dedup) has become popular in backup systems for eliminating duplicate content
across an entire data corpus, often achieving much higher compression ratios. Un-
fortunately, traditional chunk-based dedup schemes are unsuitable for operational
DBMSs, where many update queries modify a single record. The duplicate data in
records is too fine-grained unless the system uses small chunk sizes. But, relatively
large chunk sizes (e.g., 4–8 KB) are the norm to avoid huge in-memory indices and
large numbers of disk reads.

1.1 Thesis Statement

Thesis Statement: For many database applications, greater reduction in stor-
age usage and network bandwidth can be realized with similarity-based dedu-
plication, which performs byte-level differential compression against a similar
record already in the corpus.

This dissertation supports this thesis statement by describing an implementation
of similarity-based dedup in a real database system (demonstrating its viability) and
evaluating it with various real workloads (demonstrating its effectiveness). Specif-
ically, we designed and implemented dbDedup, a lightweight scheme for online
database systems that uses similarity-based dedup to compress individual records
stored on disk and sent to remote replicas over network. Instead of indexing every
chunk hash, dbDedup samples a small subset of chunk hashes for each new database
record and then uses this sample to identify a similar record in the database. It then
uses byte-level delta compression on the two records to reduce both online storage
used and remote replication bandwidth. dbDedup provides higher compression ra-
tios with lower memory overhead than chunk-based dedup and combines well with
block-level compression.

We implemented dbDedup in the MongoDB DBMS [6] and evaluate its efficacy
using four real-world datasets. Our results show that it achieves upto 37⇥ reduction

2

(61⇥ when combined with block-level compression) in storage size and replication
traffic, significantly outperforming chunk-based dedup, while imposing negligible
impact on the DBMS’s runtime performance.

1.2 Contributions

This dissertation makes the following key contributions:

1. To our knowledge, it describes the first dedup system for operational DBMSs
that reduces both database storage and replication bandwidth usage. It is also
the first database dedup system that uses similarity-based dedup. It reveals
the key observations of database workload characteristics including small item
size, slight but distributed modifications, similar but uncorrelated records, as
well as temporal locality and incremental nature of database updates. Based
on these observations, it shows the limitation of block-level compression due
to constrainted scope, demonstrates why tradidtional chunk-based dedup is a
poor match for databases, and argues and proves that similarity-based dedup is
a promising and effective approach.

2. It introduces several novel techniques that are critical to achieving acceptable
dedup efficiency, enabling use for online database storage: It uses novel two-
way encoding to efficiently transfer encoded new records (forward encoding)
to remote replicas, while storing unencoded new records with encoded forms
of selected source records (backward encoding). As a result, no decode is re-
quired for the common case of accessing the most recent record in an encoding
chain. dbDedup uses a new technique called hop encoding to minimize the
worst-case number of decode steps required to access a specific record in a
long encoding chain. It uses a small yet effective source record cache to avoid
most disk reads for similar records. During similarity selection, it uses a novel
cache-aware selection techinque that greatly reduces the I/O overhead to fetch
source records from the database by giving preference to candidate records
that are present in the source record cache. In addition, it retains only the latest

3

copy of a record in the cache to reduce the memory overhead. To avoid per-
formance overhead from updating source records, dbDedup introduces a lossy
write-back delta cache tuned to maximize compression ratio while avoiding
I/O contention. It also adaptively skips dedup effort for databases and records
where little savings are expected. Finally, dbDedup uses an optimized delta
compression algorithm to minimize the CPU and I/O overhead in delta com-
pressing similar records.

3. It describes the design and implementation of similarity-based dedup in a dis-
tributed NoSQL DBMS (MongoDB), including a general-purpose end-to-end
dedup workflow, full integration into the storage and replication components
of DBMSs, as well as design choices and optimizations that are important for
using deduplication in online DBMSs. It evaluates the system using four real-
world datasets, quantifying the efficacy of dbDedup’s approach.

Generality: This dissertation focuses on deduplication for databases because
the applications are emblematic of the type of workloads (small objects with dis-
persed, fine-grained updates) for which dbDedup provides the most benefits. It is
important to note, however, that our approach is applicable to other types of data
stores (such as file systems and key-value stores) as well. The proposed dedupli-
cation framework and most of the techniques do not depend on implementation of
a specific system backend. For instance, the notion of a “database record” used
throughout this dissertation can be extended to any logical object, e.g., a file in the
context of file systems, a document in document-oriented databases, a binary large
object (BLOB), or even a chunk in the context of chunk-based deduplication sys-
tems.

The key design trade-off in dbDedup is to achieve higher compression ratio with
delta compression at the cost of some I/O and computation overhead. The tech-
niques proposed to alleviate this overhead, such as the encoding and caching mech-
anisms, are also generally applicable to other data stores, similar to the discussion
above. Nevertheless, whether or not to perform delta compression largely depends
on the characteristics of the target workloads. While delta compression is a good

4

choice for relatively small data (like text) with dispersed modifications, it might not
be best for large BLOBs with sparse changes due to the greater I/O and computation
overheads that could be involved. In this scenario, the chunk-based deduplication
approach may suffice to provide a reasonably good compression ratio.

1.3 Outline

The rest of this dissertation is organized as follows. Chapter 2 motivates use of
similarity-based dedup for database applications, categorizes dbDedup relative to
other dedup systems, and discusses related work. Chapter 3 describes dbDedup’s
dedup workflow and mechanisms. Chapter 5 details dbDedup’s implementation,
including its integration into the storage and replication frameworks of a DBMS.
We evaluate dbDedup in Chapter 6, conclude and discuss about future directions in
Chapter 7.

5

Chapter 2

Background and Related Work

This chapter discusses why reducing storage usage and network bandwidth for
DBMSs is desirable, motivates the potential value of deduplication in DBMSs, ex-
plains the two primary categories (exact match and similarity-based) of dedup ap-
proaches and why similarity-based is a better fit for dedup in DBMSs, puts dbDedup
into context by categorizing previous dedup systems, and presents a survey of addi-
tional related work.

2.1 Need for Data Reduction in DBMSs

The rate of data growth outpaces the decline of hardware costs, and the demand has
been increasing in reducing the storage and network overhead for online database
management systems (DBMSs).

2.1.1 Database Storage Usage

There are several reasons for the strong need of reduction in database storage usage.
While the price for commodity disks drops over years, data size grows at an even
higher rate, not to mention that high-end disks are still not cheap. In addtion, modern
DBMSs typically employ some levels of replication to ensure high data availability

7

in face of failures. These systems also usually keep backups of data for long-term
data recovery. All these factors add up to the total storage capacity.

Another important reason is to reduce the cost of data management, which has
a strong correlation with the data size [12]. Reducing the size of the database helps
shorten the time for administrative tasks, such as rebuilding indexes, backup, recov-
ery, and bulk import/export.

The third reason is performance. When compressed, queried data could fit into
fewer pages. In many cases, the benefits from the reduced I/O overhead largely
offsets the computation work required for compression/decompression, leading to
improved overall throughput for I/O intensive workloads.

2.1.2 Replication for Distributed DBMSs

Distributed DBMSs exploit replication to enhance data availability, just like other
distributed storage systems. The design and implementation details of the repli-
cation mechanisms vary for different systems; Depending on the application’s de-
sired trade-off between the complexity of conflict resolution and the peak write
throughput, there can be a single or multiple primary nodes that receive user up-
dates. Replica synchronization can be initiated by either the primary (push) or the
secondary nodes (pull). How often this synchronization should occur depends on the
application’s “freshness” requirement of the reads that the secondary nodes serve,
and/or how up-to-date the replica should be upon failover, and is specified by the
consistency model. Application of updates to secondary nodes can happen either in
real-time with the user update (sync), or be delayed by some amount (async).

Database replication involves propagating replication data from the primary to
the secondary nodes in the form of updates. A common way of doing this is by
sending over the database’s write-ahead log, also sometimes referred to as its op-
eration log (oplog), from the primary to the secondary. The secondary node then
replays the log to update the state of its copy of the database.

8

2.1.3 Network Bandwidth for Replication

The network bandwidth needed for replica synchronization is directly proportional
to the volume and rate of updates happening at the primary. When the network
bandwidth is not sufficient, it can become the bottleneck for replication performance
and even end-to-end client performance for write-heavy workloads.

The data center hierarchy provides increasingly diverse levels of uncorrelated
failures, from different racks and clusters within a data center to different data cen-
ters. Placing replicas at different locations is desirable for increasing the availability
of cloud services. But network bandwidth is more restricted going up the network
hierarchy, with WAN bandwidth across regional data centers being the most costly,
limited, and slow-growing over time. Reducing the cross-replica network band-
width usage allows services to use more diverse replicas at comparable performance
without needing to upgrade the network.

All major cloud service providers have to deal with WAN bandwidth bottle-
necks. Some real-world examples include the MongoDB Management Service
(MMS) [5] that provides continuous on-line backups using oplog replication and
Google’s B4 Software Defined Network system [42]. More generally, there are
many applications that replicate email, message board, and social networking ap-
plication data sets. All of these systems have massive bandwidth requirements that
would significantly benefit from lower network bandwidth usage.

2.2 Why Dedup for Database Applications?

Deduplication is a specialized compression technique that identifies and eliminates
duplicate content across a data corpus. It has some distinct advantages over sim-
ple compression techniques, but suffers from high maintenance costs. For example,
the “dictionary" in traditional deduplication schemes can get large and thus require
specialized indexing methods to organize and access it. Each indexed item in the
dictionary is a relatively large byte block (KBs), whereas for simple compression it
is usually a short string (bytes). While dedup is widely used in file systems, it has

9

not been fully explored in databases—most data reduction in DBMSs is based on
block-level compression of individual database pages. There are three reasons for
this: first, database objects are small compared to files or backup streams. Thus,
deduplication may not provide a good compression ratio without maintaining ex-
cessively large indexes. Second, for relational DBMSs, especially for those using
column-based data stores, simple compression algorithms are good enough to pro-
vide a satisfactory compression ratio. Third, the limitation of network bandwidth
had not been a critical issue before the advent of replicated services in the cloud
(especially geo-replication).

We contend that the emergence of hierarchical data center infrastructures, the
need to provide increased levels of reliability on commodity hardware in the cloud,
and the growing diversity of database management systems has changed the opera-
tional landscape. A record update typically involves reading the current version and
writing back a highly similar record. Newly created records may also be similar to
earlier records with only a small fraction of the content changed. Such redundancy
creates great opportunity in data reduction for both database storage and replication
bandwidth.

2.2.1 Compression Alone is Insufficient

The most common way that operational DBMSs reduce the storage size of data
is through block-level compression on individual database pages. For example,
MySQL’s InnoDB can compress pages when they are evicted from memory and
written to disk [3]. When these pages are brought back into memory, the system can
keep the pages compressed as long as no query tries to read its contents. Since the
scope of the compression algorithm is only a single page, the amount of reduction
that the system can achieve is low.

Analytical DBMSs use more aggressive schemes (e.g., dictionary compression,
run-length encoding) that significantly reduce the size of a database [20]. This is
because these systems compress individual columns, and thus there is higher likeli-
hood of duplicate data. And unlike in the above MySQL example, they also support

10

query processing directly on compressed data.
This type of compression is not practical in an operational DBMS. These sys-

tems are designed for highly concurrent workloads that execute queries that retrieve
a small number of records at a time. If the DBMS had to compress each attribute ev-
ery time a new record was inserted, then they would be too slow to support on-line,
Web-based applications.

We find that block-level compression alone is insufficient for data reduction in
DBMSs. The size of a single database page is usually small (on the order of KBs) to
amortize the disk I/O overhead on accessing records. Likewise, updates in replicated
databases are sent in small batches (typically on the order of several MBs) to keep
the secondary nodes reasonably up-to-date so that they can serve client read requests
for applications that require bounded-staleness guarantees. At this small size, the
database page or oplog batch mostly consists of updates to unrelated records, thus
intra-batch compression yields only a marginal reduction.

To demonstrate this point, we loaded a Wikipedia dataset (see Section 6.1) into
a modified version of MongoDB that compresses the oplog with Snappy [11]. We
defer the discussion of our experimental setup until Chapter 6. We observe that
compression only reduces the amount of data stored on disk as well as transferred
from the primary to the replicas by around 2⇥.

In our experience, however, many database applications could benefit from dedup
due to resemblance between un-collocated records whose relationship is not known
to the underlying DBMSs. In addition, we find that the benefits from dedup are
complementary to those of compression—combining deduplication and compres-
sion yields greater data reduction than either alone.

2.2.2 Sources of Redundancy

For many applications, a major source of duplicate data is application-level version-
ing of records. While multi-version concurrency control (MVCC) DBMSs maintain
historical versions to support concurrent transactions, they typically clean up older
versions once they are no longer visible to any active transaction. As a result, few

11

applications take advantage of versioning support provided by the DBMS to perform
“time-travel queries”. Instead, most applications implement versioning on their own
when necessary. A common feature of these applications is that different revisions
of one data item are written to the DBMS as completely unrelated records, leading
to considerable redundancy that is not captured by simple page compression. Ex-
amples of such applications include websites powered by WordPress, which com-
prise 25% of the entire web [15], as well as collaborative wiki platforms such as
Wikipedia [17] and Baidu Baike [1].

Another source of duplication in database applications is inclusion relationships
between records. For instance, an email reply or forwarding usually includes the
content of the previous message in its message body. Another example is on-line
message boards, where users often quote each other’s comments in their posts. Like
versioning, this copying is an artifact of the application that cannot be easily exposed
to the underlying DBMS. As a result, effective redundancy removal also requires a
dedup technique that identifies and eliminates redundancies across the entire data
corpus.

It is important to note that there are also many database applications that would
not benefit from dedup. For example, some do not have enough inherent redun-
dancy, and thus the overhead of finding opportunities to remove redundant data is
not worth it. Typical examples include most OLTP workloads, where many records
fit into one database page and most redundancies among fields can be eliminated
by block-level compression schemes. For applications that do not benefit, dbDedup
automatically disables dedup functionalities to reduce its impact on system perfor-
mance.

2.3 Similarity-based Dedup vs. Exact Dedup

Dedup approaches can be broadly divided into two categories. The first and most
common (“exact dedup”) looks for exact matches on the unit of deduplication (e.g.,
chunk) [29, 35, 36, 45, 76]. The second (“similarity-based dedup”) looks for sim-
ilar units (chunks or files) and applies delta compression to them [24, 59, 69]. For

12

those database applications that do benefit from dedup, we find that similarity-based
dedup outperforms chunk-based dedup in terms of compression ratio and mem-
ory usage, though it can involve extra I/O and computation overhead. This section
briefly describes chunk-based dedup, why it does not work well for DBMSs, and
why similarity-based dedup does.

2.3.1 Chunk-based Dedup

A traditional file dedup scheme based on exact matches of data chunks (“chunk-
based dedup”) [50, 55, 76] works as follows. An incoming file (corresponding to
a new record in the context of DBMS) is first divided into chunks using Rabin-
fingerprinting [56]; Rabin hashes are calculated for each sliding window on the data
stream, and a chunk boundary is declared if the lower bits of the hash value match
a pre-defined pattern. The average chunk size can be controlled by the number of
bits used in the pattern. Generally, a match pattern of n bits leads to an average
chunk size of 2n B. For each chunk, the system calculates a unique identifier using a
collision-resistant hash (e.g., SHA-1). It then checks a global index to see whether
it has seen this hash before. If a match is found, then the chunk is declared a dupli-
cate. Otherwise, the chunk is considered unique and is added to the index and the
underlying data store.

While chunk-based dedup generally works well for backup storage workloads,
it is rarely suitable for database workloads. There are two key aspects of databases
that distinguish them from traditional backup or primary storage workloads. First,
most duplication exists among predominantly small records. These smaller data
items have a great impact on the choice of chunk size in a deduplication system.
For primary or backup storage workloads, where most deduplication benefits come
from large files ranging from 10s of MBs to 100s of GBs [36, 48, 71], using a chunk
size of 8–64 KB usually strikes a good balance between deduplication quality and
the size of chunk metadata indexes. This does not work well for database applica-
tions, where object sizes are mostly small (KBs). Using a large chunk size may lead
to a significant reduction in deduplication quality. On the other hand, using a small

13

Figure 2.1: Distribution of record modifications for Wikipedia.

chunk size and building indexes for all the unique chunks imposes significant mem-
ory and storage overhead, which is infeasible for an inline deduplication system.
dbDedup uses a small (configurable) chunk size of 256 B or less, and indexes only
a subset of the chunks that mostly represent the record for purposes of detecting
similarity. As a result, it is able to achieve more efficient memory usage with small
chunk sizes, while still providing a high compression ratio.

The second observation is that updates to databases are usually small (10s of
bytes) but dispersed throughout the record. Fig. 2.1 illustrates this behavior by
showing the distribution of modification offsets in the Wikipedia dataset. For the
chunk-based approach, when the modifications are spread over the entire record,
chunks with even slight modifications are declared as unique. Decreasing the chunk
size alleviates this problem, but incurs higher indexing overhead.

While our approach employs delta compression based on the above observations
of database workloads, it is important to note that whether or not to use it largely
depends on the characteristics of the target workloads. While delta compression
is a good choice for relatively small semi-structured data (like text) with dispersed
modifications, it might not be best for large BLOBs with sparse changes due to the
greater I/O and computation overheads that could be involved. In this scenario, as
discussed above, the chunk-based deduplication approach may suffice to provide a
reasonably good compression ratio.

14

Incoming
record

1 2 4 5 3
Original
record

Output

Modified Region Chunk Boundary Duplicate chunk ID Encoding metadata

Chunk-based deduplication Delta compression

Figure 2.2: Comparison between chunk-based deduplication and similarity-based
deduplication using delta compression for typical database workloads with small
and dispersed modifications.

2.3.2 Better Compression with Similarity-based Dedup

dbDedup, in contrast, is able to identify all duplicate regions with the same chunk
size. It utilizes a fast and memory-efficient similarity index to identify similar doc-
uments, and uses a byte-by-byte delta compression scheme on similar record pairs
to find the duplicate byte segments. Fig. 2.2 illustrates the effect of this behavior on
the duplicated regions identified for the chunk-based and similarity-based dedupli-
cation approaches , given the update patterns. With byte-level delta compression,
dbDedup is able to identify much more fine-grained duplicates and thus provide
greater compression ratio than chunk-based dedup.

2.4 Categorizing Dedup Systems

Table 2.1 illustrates one view of how dbDedup relates to other systems using dedup,
based on two axes: dedup approach (exact match vs. similarity-based) and dedup
target (primary storage vs. secondary/backup data). To our knowledge, dbDedup
is the first similarity-based dedup system for primary data storage, as well as be-
ing the first dedup system for on-line DBMSs addressing both primary storage and
secondary data (the oplog).

15

Much prior work in data deduplication [22, 45, 59, 60, 76] was done in the con-
text of backup data (as opposed to primary storage) where dedup does not need to
keep up with primary data ingestion nor does it need to run on the primary (data-
serving) node. Moreover, such backup workloads often run in appliances on pre-
mium hardware. dbDedup, being in the context of operational DBMSs, must run
on primary data-serving nodes on commodity hardware and be frugal in its usage of
CPU, memory, and I/O resources.

There has been recent interest in primary data dedup on the primary (data-
serving) server but the solutions are mostly at the storage layer (and not at the
data management layer, as in our work). In such systems, depending on the im-
plementation, dedup can happen either inline with new data (Sun’s ZFS [19], Linux
SDFS [4], iDedup [62]) or in the background as post-processing on the stored data
(Windows Server 2012 [36]), or provide both options (NetApp [21], Ocarina [9],
Permabit [10]).

Systems in the lower middle column use a combination of exact and similarity-
based dedup techniques at different granularities, but are in essence chunk-based
dedup systems because they store hashes for every chunk. To the best of our knowl-
edge, dbDedup is the first similarity-based dedup system for primary storage work-
loads that achieves data reduction on storage and network bandwidth requirement at
the same time. This is because byte-level delta compression is traditionally consid-
ered expensive for on-line databases, due to the extra I/O and computation overhead
relative to hash comparisons. As a result, previous systems either completely avoid
it or use it when disk I/O is not a major concern. For example, SIDC [59] uses
delta compression for network-level deduplication of replication streams; SDS [22]
applies delta compression to large 16 MB chunks in backup streams retrieved by se-
quential disk reads. While dbDedup takes advantage of delta compression to achieve
superior compression ratio, it uses a number of techniques to reduce the overhead
involved, making it a practical dedup engine for on-line DBMSs.

16

Exact Dedup Similarity-based Dedup

Primary

iDedup [62]

dbDedup

ZFS [19]
SDFS [4]

Windows server 2012 [7]
NetApp ASIS [21]

Ocarina [9]
Permabit [10]

Secondary

DDFS [76] Extreme binning [24]

SDS [22]
Venti [55] Sparse Indexing [45]

ChunkStash [32] Silo [73]
DEDE [29] SIDC [59]

HydraStor [34] DeepStore [75]

Table 2.1: Categorization of related work

2.5 Additional Related Work

Much of previous dedup work is discussed in Chapter 2. This section discusses
some additional related work.

2.5.1 Deduplication

Chunk-based dedup systems differ in the granularity at which they detect dupli-
cate data. Microsoft’s Single Instance Storage (SIS) [7] and EMC’s Centera [37]
use file level duplication, LBFS [50] and Windows Server 2012 [36] use variable-
sized data chunks obtained using Rabin fingerprinting [56], and Venti [55] uses
individual fixed size disk blocks. Among content-dependent data chunking meth-
ods, Two-Threshold Two-Divisor (TTTD) [38], bimodal chunking algorithm [45],
and regression chunking [36] produce variable-sized chunks.

dbDedup’s target workload differs significantly from that of previous dedupli-
cation systems focused on backup [35, 45, 76] or primary storage [4, 9, 10, 19, 21,
36, 62]. For these workloads, more than 90% of duplication savings come from un-
modified data chunks in large files on the order of MBs to GBs [48, 71], so typical

17

chunk sizes of 4-8 KB work well. For user files, even whole-file deduplication may
eliminate more than 50% of redundancy [36, 48]. dbDedup is optimized for small
documents with dispersed changes, for which chunk-based deduplication does not
yield satisfactory compression ratios unless using small chunk sizes. However, as
shown in Section 6.2, this incurs significant indexing memory overhead. Instead,
dbDedup finds a similar document and uses document-level delta compression to
remove duplication with low memory and computation costs.

2.5.2 Database Compression

A number of database compression schemes haven been proposed during the past
few decades. Most operational DBMSs that compress the database contents use
page or block-level compression [3, 18, 31, 40, 49, 52]. Some use prefix compres-
sion, which looks for common sequences in the beginning of field values for a given
column across all rows on each page. Just as with our dbDedup approach, such
compression requires the DBMS to decompress tuples before they can be processed
during query execution.

There are schemes in some OLAP systems that allow the DBMS to process data
in its compressed format. For example, dictionary compression replaces recurring
long domain values with short fixed-length integer codes. This approach is com-
monly used in column-oriented data stores [20, 39, 57, 78]. These systems typically
focus on attributes with relatively small domain size and explore the skew in value
frequencies to constrain the resulting dictionary to a manageable size [25]. The au-
thors in [63] propose a delta encoding scheme where every value in a sorted column
is represented by the delta from the previous value. Although this approach works
well for numeric values, it is unsuitable for strings.

None of these techniques detect and eliminate redundant data with a granularity
smaller than a single field, thus losing potential compression benefits for many ap-
plications that inherently contain such redundancy. dbDedup, in contrast, is able to
remove much more fine-grained duplicates with byte-level delta compression. Un-
like other inline compression schemes, dbDedup is not in the critical write path for

18

queries, and hence, it has minimal impact on the DBMS’s runtime performance. In
addition to this, because dbDedup compresses data at record level, it only performs
the dedup steps once, and uses the encoded result for both database storage and net-
work transfer. In contrast, the same record would be compressed twice (in database
page and oplog batch), for page compression schemes to achieve data reduction at
both layers.

2.5.3 Delta Compression

There has been much previous work on delta compression, including several general-
purpose algorithms based on the Lempel-Ziv approach [77], such as vcdiff [23],
xDelta [46], and zdelta [68]. Specialized schemes can be used for specific data
formats (e.g., XML) to improve compression quality [30, 44, 58, 72]. The delta
compression algorithm used in dbDedup is adapted from xDelta, to which the rela-
tionship is discussed in Section 3.4.

Delta compression has been used to reduce network traffic for file transfer and
synchronization protocols. Most systems assume that previous versions of the same
file are explicitly identified by the application, and duplication only exists among
prior versions of the same file [64, 69]. On exception is TAPER [41], which reduces
network transfer for synchronizing file system replicas by sending delta-encoded
files; it identifies similar files by computing the number of matching bits on the
Bloom filters generated with the files’ chunk hashes. dbDedup identifies a similar
record from the data corpus without application guidance and therefore is a more
generic approach than most of these previous systems.

The backward-encoding technique used in dbDedup is inspired by versioned
storage systems such as RCS [66] and XDFS [46]. While these systems explicitly
maintain versioning lineage for all the files, dbDedup builds the encoding chain
purely based on similarity relationships between records, and thus does not re-
quire system-level support for versioning. [60] uses delta encoding for deduplicated
backup storage. It uses forward encoding and only supports a longest encoding

19

chain length of two. dbDedup uses hop encoding on top of backward encoding to
reduce the worst-case source retrievals for read requests. In addition, it uses several
novel caching mechanisms to further mitigate the I/O overhead involved in reading
and updating encoded records.

2.5.4 Similarity Detection

There has been much previous work in finding similar objects in large repositories.
The basic technique of identifying similar files by maximizing Jaccard coefficient
of two sets of polynomial-based fingerprints is pioneered by Manber [47]. Spring
et al. [61] use this technique to identify repeated byte ranges on cached network
packets to reduce the redundant network traffic. Broder [26, 27] extends this ap-
proach to group multiple fingerprints into super-fingerprints. A super-fingerprint
match indicates high probability of similarity between objects, so that the algorithm
may scale to very large files. Kulkarni et al. [43] adapt this method and combine
it with compression and delta encoding to improve efficiency. Several other sys-
tems [24, 45, 53] take an alternative approach using a representative subset of chunk
hashes (IDs) as the feature set. dbDedup uses a similar approach to extract features
by sampling first-K chunk IDs, but only uses them to identify similar records rather
than for chunk-level deduplication.

2.5.5 My Other Work

Before this dissertation work, my research was focused on elastic storage systems.
These systems can be expanded or contracted to meet current demand, allowing
servers to be turned off or used for other tasks. However, the usefulness of an elas-
tic distributed storage system is limited by its agility: how quickly it can increase
or decrease its number of servers. Due to the large amount of data they must mi-
grate during elastic resizing, state-of-the-art designs usually have to make painful
tradeoffs among performance, elasticity and agility.

We proposed a new elastic storage system, called SpringFS [74], that can quickly

20

change its number of active servers, while retaining elasticity and performance
goals. SpringFS uses a novel technique, termed bounded write offloading, that re-
stricts the set of servers where writes to overloaded servers are redirected. This
technique, combined with the read offloading and passive migration policies used in
SpringFS, minimizes the work needed before deactivation or activation of servers.
Analysis of real-world traces from Hadoop deployments at Facebook and various
Cloudera customers and experiments with the SpringFS prototype confirm SpringFS’s
agility, show that it reduces the amount of data migrated for elastic resizing by up
to two orders of magnitude, and show that it cuts the percentage of active servers
required by 67-82%, outdoing state-of-the-art designs by 6-120%.

21

Chapter 3

Deduplication Workflow in dbDedup

dbDedup uses similarity-based dedup to achieve good compression ratio and low
memory usage simultaneously. It differs from traditional chunk-based deduplica-
tion systems that break input data-item into chunks and find identical chunks stored
anywhere else in the data corpus (e.g., the original database). Fig. 3.1 shows the
overview of the dedup workflow used when preparing updated record data for local
storage and remote replication. Fig. 3.2 illustrates the workflow with further details
including data structures and actions involved in transforming each new record into
a delta-encoded representation. During insert or update queries, new records are
written to the local oplog, and dbDedup encodes them in the background, off the
critical path. Four key steps are (1) extracting similarity features from a new record,
(2) looking in the deduplication index to find a list of candidate similar records in the
database corpus, (3) selecting one best record from the candidates, and (4) perform-
ing delta compression between the new and the similar record to compute encoded
forms for local storage and replica synchronization.

3.1 Feature Extraction

As a first step in finding similar records in the database, dbDedup extracts simi-
larity features from the new record using a content-dependent approach. dbDedup

23

Sketch
(top-K features) New record

➀ Feature
extraction Candidate

similar records

➁ Index
lookup

Source record

➂ Source
selection

➃ Delta
compression

Encoded record

Database
update

Database

Source
record cache

Feature
index

Lossy
delta cache

Δ

(From local oplog)
Remote

replication

Figure 3.1: An overview of dbDedup Workflow – (1) Feature Extraction, (2)
Index Lookup, (3) Source Selection, and (4) Delta Compression.

divides the new record into several variable-sized data chunks using the Rabin Fin-
gerprinting algorithm [56] that is widely used in many chunk-based dedup systems.
Unlike these systems that index a collision-resistant hash (e.g., SHA-1) for every
unique chunk, dbDedup calculates a (weaker, but computationally cheaper) Mur-
murHash [8] for each chunk and only indexes a representative subset of the chunk
hashes. dbDedup adapts a technique called consistent sampling [53] to select repre-
sentative chunk hashes, which provides better similarity characterization than ran-
dom sampling. It sorts the hash values in a consistent way (e.g., by magnitude from
high to low), and chooses the first-K1 hashes as the similarity sketch for the record.
Each chunk hash in the sketch is called a feature—if two records have one or more
common features, they are considered to be similar.

By indexing only the sampled chunk hashes, dbDedup bounds the memory over-
head of its dedup index to be at most K index entries per record. This important
property allows dbDedup to use small chunk sizes for better similarity detection
while not consuming excessive RAM like in chunk-based dedup. Moreover, be-
cause dbDedup does not rely on exact match of chunk hashes for deduplication, it is
more tolerant of hash collisions. This is why it can use the MurmurHash algorithm
instead of SHA-1 to reduce the computation overhead in chunk hash calculation.
While this may lead to a slight decease in compression rate due to more false pos-
itives, using a weaker hash does not impact correctness since dbDedup performs
delta compression in the final step.

1For records with less than K chunks, the sketch size is less than K.

24

New record

Data chunks

Consistent sampling

Sketch
(top-K features)

Feature index table

Empty? Unique
record

(No) Score and rank.
Fetch highest-ranked record

List of similar records

(Yes)

Dedup
metadata

cache

Dedup
metadata
container

Highest-ranked
similar record

Database

Source
record
cache

Delta compress with
target record

Encoded
record

Disk Memory

Rabin chunking
Step 1:
Feature

extraction

Step 3:
Source

selection

Step 4:
Delta

compression

Step 2:
Index

lookup

Figure 3.2: Detailed Workflow and Data Structures – A new record is converted
to a delta-encoded form in four steps. On the left are the two disk-resident data
stores involved in this process: the dedup metadata container (see Section 5.2) and
the original database. The remainder of the structures shown are memory resident.

First-K featuers versus random sampling: The idea of sorting chunk hashes
before selection is borrowed from handprint [53]. This technique significantly in-
creases the probability of finding similarities between records as compared to a
naïve random sampling algorithm. After sorting, shared chunk hashes from two
records, if any, would be in the same order. As a result, if the sketches of two
records A and B contain shared features, these features would corresponds to the
same chunks. In contrast, with random selection, even if the selected chunk hashes
belong to the intersection, they may be different chunks.

25

87	 13	 5	 23	 55	 10	 34	16	64	2	

41	 55	 73	 20	 87	 61	 10	19	

2	 5	 10	 13	 16	 23	 87	64	55	34	

10	 19	 20	 41	 55	 61	 87	73	

Record A

Record B Sort

Random selection of K (= 4) chunk hashes Consistent sampling of the first-K chunk hashes

Figure 3.3: Consistent sampling versus random selection – Sorting before se-
lection improves the probability of similarity detection. In both cases, one shared
chunk hash is selected from each of the record. Consistent sampling ensures that
the shared hashes correspond to the same chunk in the two records.

Fig. 3.3 illustrates the efficacy of the first-K approach in an intuitive way.2 Given
two records A and B with several shared chunks (shown as shaded). With random
selection, even if some of the selected chunks are shared among the two records,
they do not correspond to the same chunks and thus records A and B will not be
identified as similar. On the other hand, after sorting, as long as the first-K chunk
hashes contain at least one shared hash in both records, the shared ones would match
to the same chunk.

3.2 Index Lookup

dbDedup’s approach to finding similar records in the corpus (combining feature ex-
traction and index lookup) is illustrated in Algorithm 1. For each extracted feature,
dbDedup checks its internal feature index to find existing records that share that
feature with the new record. After each search, dbDedup inserts the corresponding
feature to the index for future lookup. Since dbDedup is an online dedup system, it
is imperative that this index lookup process is fast and efficient. dbDedup achieves
this by building an in-memory feature index (see Section 5.2) that uses a variant
of Cuckoo hashing [32, 51] to map features to records. If a record has at least one
feature in common with the new record, it is added to the list of candidate sources.
The feature index stores at most K entries for each record in the corpus (one for
each feature). As a result, the size of this index is smaller than the correspond-

2A more detailed quatitative analysis of the probability of similarity detection is described in
[53].

26

Algorithm 1 Feature Extraction + Index Lookup
1: procedure FINDSIMILARDOCS(newRecord)
2: i 0

3: sketch empty
4: candidates empty
5:
6: dataChunks RABINFINGERPRINT(newRecord)
7: chunkHashes MURMURHASH(dataChunks)
8: uniqueHashes UNIQUE(chunkHashes)
9: sortedHashes SORT(uniqueHashes)

10: sketchSize MIN(K, sortedHashes.size())
11: while i < sketchSize do
12: feature sortedHashes[i]
13: sketch.append(feature)
14: simRecord INDEXLOOKUP(feature)
15: candidates.append(simRecord)
16: i i+ 1

17: end while
18: for each feature in sketch do
19: INDEXINSERT(feature, newRecord)
20: end for
21: return candidates
22: end procedure

ing index for traditional deduplication systems, which must have an entry for every
unique chunk in the system. The value of K is a configurable parameter that trades
off resource usage for similarity metric quality. Generally, a larger K yields better
similarity coverage, but leads to more index lookups and memory usage. In prac-
tice, a small value of K is good enough to identify moderately similar pairs with a
high probability [53]. For our experimental analysis, we found K = 8 is sufficient
to identify similar records with reasonable memory overhead, and we use it as a
default value for all experiments unless otherwise noted. dbDedup combines the
lookup results for all first-K features and generates a list of existing similar records
as input for the next step.

27

Algorithm 2 Source Selection
1: function SOURCESELECTION(candidates)
2: scores empty
3: maxScore 0

4: bestMatch NULL
5: for each cand in candidates do
6: if scores[cand] exists then
7: scores[cand] scores[cand] + 1

8: else
9: scores[cand] 1

10: end if
11: end for
12: for each cand in scores.keys() do
13: if cand in srcDocCache then
14: scores[cand] scores[cand] + reward
15: end if
16: if scores[cand] > maxScore then
17: maxScore scores[cand]
18: bestMatch cand
19: end if
20: end for
21: return bestMatch
22: end function

3.3 Source Selection

After dbDedup identifies a list of candidate source records, it next selects one of
them to use. If no similar records are found, then the new record is declared unique
and thus is not eligible for encoding. The index lookup results from the previous
may contain multiple candidate similar records, yet dbDedup only chooses one of
them to delta compress the new record in order to minimize the overhead involved.
While most previous similarity selection algorithms make such decisions purely
based on the similarity metrics of the inputs, dbDedup adds consideration of system
performance, giving preference to candidate records that are present in the source
record cache (see Section 4.2). We refer to this selection technique as cache-aware
selection.

28

Algorithm 2 describes the mechanism dbDedup uses to choose the best source
record out of a number of similar records. Fig. 3.4 provides an example of this
selection process. dbDedup first assigns an initial score for each candidate similar
record based on the number of features it has in common with the new record. Then,
dbDedup increases that score by a reward if the candidate record already resides in
the cache. The candidate with the highest score is then selected as the input for
delta compression. While cache-aware selection may end up choosing a record that
is sub-optimal in terms of similarity, we find it greatly reduces the I/O overhead
to fetch source records from the database. We evaluate the effectiveness of cache-
aware selection and its sensitivity to the reward score in Section 6.5.

3.4 Delta Compression

The last step in dbDedup workflow is to perform delta compression between the
new record and the selected similar record. The system first checks its internal
record cache for the source record; on miss, it retrieves the record from the database.
dbDedup uses only one source record for delta compression. We found that using
more than one is not only unnecessary (i.e., it does not produce a better compres-
sion), but also greatly increases the overhead. In particular, we found that fetching
the source record from the corpus is the dominating factor in this step, especially
for the databases with small records. This is the same reasoning that underscores
the benefits of dbDedup over chunk-based deduplication: our approach only re-
quires one fetch per new record to reproduce the original record, versus one fetch
per chunk. We describe the details of the encoding techniques in Section 4.1 and
the compression algorithms in Section 5.3.

29

32 17 25 41 12

32 41

Top-2 hashes (features)

22 32 15 19

32 25 38 41 12

32 25 38 41 12

32 17 38 41 12

New record (41, 32)

Similar candidate sources

R1 (32, 19)

32 17 38 41 12

Rank% Candidates% Score%
1" R2" 2"
1" R3" 2"
2" R1" 1"

Initial ranking

Rank% Candidates% In%cache?%(reward:%2)% Score%
1" R3" Yes" 4"
2" R2" No" 2"
3" R1" No" 1"

Final ranking

R2 (41, 32)

R3 (41, 32)

R2 (41,32)

R3 (41,32)

Sketches

Figure 3.4: Example of Source Record Selection – The top two (K = 2) hashes
of the new record are used as the features of its sketch (41, 32). The numbers in
the records’ chunks are the MurmurHash values. Records with each feature are
identified and initially ranked by their numbers of matching features. The ranking
increases if the candidate is in dbDedup’s source record cache.

30

Chapter 4

Mitigating Deduplication Overhead

This chapter describes dbDedup’s mechanisms to mitigate the dedup overhead, in-
cluding its encoding and caching schemes to alleviate overhead from delta compres-
sion, and approaches to avoiding wasted effort on low-benefit dedup actions.

4.1 Encoding for Online Storage

Efficient access of delta-encoded storage is a long-standing challenge due to the I/O
and computation overhead involved in the encoding and decoding steps. In partic-
ular, reconstructing encoded data may require reading all the deltas along a long
encoding chain until reaching an unencoded (raw) data-item. To provide reasonable
performance guarantees, most online systems use delta encoding only to reduce net-
work transmission (leaving storage unencoded) or use it to a very limited extent in
the storage components (e.g., by constraining the maximum length of the encod-
ing chain to a small value). But, doing so significantly under-exploits the potential
space savings that could be achieved.

dbDedup greatly alleviates the painful tradeoff between compression gains and
access speed in delta encoded storage with two new encoding schemes. It uses a
two-way encoding technique that reduces both remote replication bandwidth and
database storage, while optimizing for common case queries. In addition, it uses

31

hop encoding to reduce worst-case source retrievals for reading encoded records,
while largely preserving the compression benefits.

4.1.1 Two-way Encoding

After a candidate record is selected from the data corpus, dbDedup generates the
byte-level difference between the candidate and the new record in dual directions,
using a technique that we call two-way encoding. For network transmission, dbDedup
performs forward encoding (Fig. 4.1a), which uses the older (i.e., the selected can-
didate) record as the source and the new record as the target. After the encoding, the
source remains in its original form, while the target is encoded as a reference to the
source plus the delta from the source to the target. dbDedup sends the encoded data,
instead of the original new record, to remote replicas. Using forward-encoding for
network-level deduplication is a natural design choice, because it allows the replicas
to easily decode the target record using the locally stored source record.

dbDedup could simply use the same encoded form for local database storage.
Doing so, however, would lead to significant performance degradation for read
queries to the newest record in the encoding chain, which we observe to be the
common case with app-level versioning and inclusions. Because the intermediate
records in a forward chain are all stored in the encoded form using the previous one
as the source, decoding the latest record requires retrieving all the deltas along the
chain, all the way back to the first record, which is stored unencoded.

Instead, dbDedup uses backward encoding (Fig. 4.1b) for local storage to op-
timize for read queries to recent records. That is, for local storage, dbDedup per-
forms delta compression in the reverse temporal order, using the new record as the
source and the similar candidate record as the target. As a result, the most recent
record in an encoding chain is always stored unencoded. Read queries to the latest
version thus incur no decoding overhead at all. Although backward encoding is op-
timized for reads, it creates two potential issues. First, it amplifies the number of
write operations, since an older record selected as a source needs to be updated to
the encoded form. To mitigate the write amplification, dbDedup caches backward-

32

W
ri

te
 o

rd
er

 R0

R1

R2

R0

Δ0,1

Δ1,2

(a) Forward encoding

R2

Δ1,0

Δ2,1

R0

R1

(b) Backward encoding

Figure 4.1: Illustration of two-way encoding – dbDedup uses forward encoding
to reduce the network bandwidth for replica synchronization while using backward
encoding to compress database storage.

encoded records to be written back to the database and delays the updates until
system I/O is relatively idle, which we discuss in more detail in Section 4.2. A sec-
ond issue arises when an older record is selected as the source. The existing data
(a delta from its current base record) is replaced by the delta from the new record.
Since backward encoding realizes space savings by updating delta sources, such
overlapped encoding (Fig. 4.2) on the same source records can lead to some com-
pression loss. Forward encoding, in contrast, naturally avoids this problem since no
writeback is required. Fortunately, we find overlapped encoding is not common in
real-world applications—most (> 95%) updates are incremental based on the latest
version (see Section 6.2).

dbDedup performs delta encoding between new and candidate records in two
directions, yet it only incurs the computation overhead of one encoding pass. It
achieves this by first generating the forward-encoded data and then efficiently trans-
forming it into the backward delta at memory speed. We call this process re-
encoding and detail the algorithm in Section 5.3.

4.1.2 Hop Encoding

As discussed above, using backward encoding minimizes the decoding overhead for
reading recent records, but it may still incur excessive source retrieval time for occa-

33

R2

Δ1,0

Δ2,0

R0

R1

W
ri

te
 o

rd
er

 R0

R1

R2

R0

Δ0,1

Δ0,2

Forward encoding Backward encoding

Figure 4.2: Overlapped encoding – Backward encoding may lead to compression
loss when an older record is selected as the source. In this example, when R0 is
selected as the source for R2, backward encoding leaves R1 and R2 both unencoded.

sional queries to older records (e.g., a specific version of a Wikipedia article). Prior
work on delta encoded storage [28, 46] used a technique called version jumping to
cope with this problem, by bounding the worst-case number of source retrievals at
the cost of lower compression benefits. The idea is to divide the encoding chain into
fixed-size clusters, where the last record in each cluster, termed reference version,
is stored in its original form and the other records are stored as backward-encoded
deltas. Doing so bounds the worst-case retrieval times to the cluster size but results
in lower compression ratio, because the reference versions are not compressed. As
the encoding cluster size decreases, the compression loss can increase significantly,
since deltas are usually much smaller than base records.

dbDedup uses a novel technique that we call hop encoding, which preserves the
compression ratio close to standard backward encoding, while achieving compara-
ble worst-case retrieval times to the version jumping approach. As illustrated in
Fig. 4.3, extra deltas are computed between particular records and others some dis-
tance back in the chain, in a fashion similar to skip lists [54]. We call these records
hop bases and the minimum interval between them hop distance, noted as H . Hop
encoding employs multiple levels of indirection to speed up the decoding process,
with the interval on level L being HL. Decoding a record involves first tracing back
to the nearest hop base in logarithmic time and then following the encoding chain
starting with it.

34

R16
Δ16,0 Δ2,1 Δ3,2 Δ4,3 Δ8,4 Δ6,5 Δ7,6 Δ8,7 Δ12,8 …

Δ2,1 Δ3,2 Δ4,3 R4 Δ6,5 Δ7,6 Δ8,7 R8 … Version jumping

Hop encoding

R0 R16

Figure 4.3: Hop encoding – A comparison of hop encoding and version jumping
with an encoding chain of 17 records. Shaded records (R0, R4, etc.) are hop bases
(reference versions), with a hop distance (cluster size) of 4. Hop encoding provides
comparable decoding speed as version jumping while achieving a compression ratio
close to standard backward encoding.

Storage #Worst-case
usage retrievals #Writebacks

Backward encoding Sb + (N � 1) · Sd N N
Version jumping N

H · Sb + (N � N
H) · Sd H N � N

H

Hop encoding Sb + (N � 1) · Sd H + logH N N +N · H
(H�1)2

Table 4.1: Summary of the different encoding schemes – Hop encoding largely
eliminates the painful tradeoff between space savings and decoding speed. N is
the length of the encoding chain, and H denotes the hop distance (cluster size for
version jumping). Sb and Sd refer to the size of a base record and a delta respectively,
where Sb � Sd in most cases. These sizes obviously vary for different records. Here
we use the general notation for ease of reasoning.

Table 4.1 summarizes the trade-offs among three encoding techniques in terms
of storage usage, worst-case number of retrievals, and the extra number of write-
backs. For hop encoding, the number of worst-case source retrievals is close to that
of version jumping (H). But because hop bases are stored in an encoded form, the
compression ratio achieved is much higher than version jumping and comparable
to standard backward encoding. All three encoding schemes incur some amount of
write amplification, but the difference becomes negligible as hop distance increases.
We present a more detailed comparison in Chapter 6.

35

4.2 Caching for Delta-encoded Storage

Delta encoded storage, due to its “chained” property, merits specialized caching
mechanisms. Exploiting this property, dbDedup only caches a few key nodes in a
given encoding chain, maximizing memory efficiency while eliminating most I/O
overhead for accessing encoded records. It uses two specialized caches: a source
record cache that reduces the number of database reads during encode and a lossy
write-back delta cache that mitigates write amplification caused by backward en-
coding.

4.2.1 Source Record Cache

A key challenge in delta-encoded storage is the I/O overhead to read the base data
from the disk as input for delta compression or decompression. Unlike chunk-based
deduplication systems, dbDedup does not rely on having a deduplicated chunk store,
either of its own or as the database implementation. Instead, it directly uses a source
record from the database and fetches it whenever needed in delta compression and
decompression. Querying the database to retrieve records, however, is problematic
for both deduplication and real clients. The latency of a database query, even with
indexing, could be higher than that of a direct disk read, such as is used in some
traditional dedup systems. Worse, dbDedup’s queries to retrieve source records will
compete for resources with normal database queries and impact the performance of
client applications.

dbDedup uses a small record cache to eliminate most of its database queries. The
design of the record cache exploits the high degree of temporal locality in record
updates of workloads that dedup well. For instance, updates to a Wikipedia article,
forum posts to a specific topic, or email exchanges in the same thread usually occur
within a short time frame. So, the probability of finding a recent similar record in
the cache is high, even with a relatively small cache size. Another key observation is
that the updates are usually incremental (based on the immediate previous update),
meaning that two records tend to be more similar if they are closer in creation time.

36

Algorithm 3 Source Record Cache Replacement
1: procedure UPDATERECORDCACHE(srcRecord, tgtRecord)
2: if srcRecord in srcRecordCache then
3: srcRecordCache.remove(srcRecord)
4: end if
5: if srcRecordCache.size() � cacheSize then
6: srcRecordCache.LRURemove(1)
7: end if
8: srcRecordCache.LRUAdd(tgtRecord)
9: end procedure

Based on the observations above, the source record cache retains the latest
record of an encoding chain in the cache. To accelerate backward encoding of hop
bases, dbDedup additionally caches the latest hop bases in each hop level.1 When a
new record arrives, if dbDedup identifies a similar record in the cache (which is the
normal case due to the cache-aware selection technique described in Section 3.3),
it replaces the existing record with the new one. If the new record is a hop base,
dbDedup replaces its adjacent bases accordingly. When no similar source is found,
dbDedup simply adds the new record to the cache, and evicts the oldest record in a
LRU manner if the cache becomes full.

Algorithm 3 describes the cache replacement process that occurs when dbDedup
looks for a source record in its cache. Upon a hit, the record is directly fetched from
the record cache, and its cache entry is replaced by the target record. Otherwise,
dbDedup retrieves the source record using a database query and insert the target
record into the cache. In either case, the source record is not added to the cache
because it is older and expected to be no more similar to future records than the
target record. When the size of the cache is reached, the oldest entry is evicted in a
LRU manner.

dbDedup also uses a source record cache on each secondary node to reduce the
number of database queries during delta decompression. Because the primary and
secondary nodes process record updates in the same order, as specified in the oplog,

1In our experience, the number of hop levels is usually small (3), so the cache only
needs to store very few records for each encoding chain.

37

their cache replacement process and cache hit ratio are almost identical.

4.2.2 Lossy Write-back Delta Cache

As discussed in Section 4.1, backward encoding optimizes for read queries, but
introduces some write amplification—record insertion triggers the source record to
be delta compressed and updated on disk. The problem is exacerbated somewhat
with hop encoding, where inserting a hop base causes writeback not only to the
source record, but also to the adjacent bases on each hop level. For heavy insertion
bursts, this could significantly increase the number of disk writes, leading to visible
performance degradation.

dbDedup uses a lossy write-back cache to address this problem. The key ob-
servation is that write-backs are not strictly required for backward-encoded storage.
Failure or delay in applying such write-back operations does not impair data con-
sistency or integrity—updated records remain intact and the only consequence is
potential compression loss. This unique “lossy” property provides natural fault tol-
erance and allows dbDedup great flexibility in scheduling when and in which order
writebacks are applied.

On record insertion, dbDedup writes the new record to the database as normal,
and stores the delta of the source record in the cache. It delays the actual write-back
operation until the system I/O becomes relatively idle. The idleness metric can vary,
but we use the I/O queue length as an indication in our current implementation.

To preserve maximum compression with constrained memory, dbDedup sorts
deltas in the cache by the absolute amount of space saving they contribute and pri-
oritizes the order of writebacks accordingly. When I/O becomes idle, more valuable
deltas are written out first. When the cache becomes full before the system gets idle
enough, the entry with the least compression gain is discarded without impacting
correctness. By prioritizing the update and eviction orders, dbDedup more effec-
tively reaps the compression benefits from cached deltas.

38

4.3 Avoiding Unproductive Dedup Work

dbDedup uses two approaches to avoid applying dedup effort with low likelihood of
yielding significant benefit. First, a dedup governor monitors the runtime compres-
sion ratio and automatically disables deduplication for databases that do not benefit
enough. Second, a size-based filter adaptively skips dedup for smaller records that
contribute little to overall compression ratio.

4.3.1 Automatic Deduplication Governor

Database applications exhibit diverse dedup characteristics. For those that do not
benefit much, dbDedup automatically turns off dedup to avoid wasting resources.
In our experience, most duplication exists within the scope of a single database, that
is, deduplicating multiple different databases usually yields little marginal benefits
as compared to deduplicating them individually. Therefore, dbDedup partitions its
in-memory dedup index by database and internally tracks the compression ratio for
each. If the compression rate for a database stays below a certain threshold (e.g.,
1.1⇥) for a long enough period (e.g., 100k record insertions), the dedup governor
disables dedup for it and deletes its corresponding index partition. Future records
belonging to that database are processed as normal, bypassing the deduplication
engine, while already encoded data remains intact. dbDedup does not reactivate
a database for which dedup is already disabled, because we do not notice dramatic
change in compression ratio over time for any particular workload, which we believe
is the norm.

4.3.2 Adaptive Size-based Filter

In our observation of several real-world database datasets (see Section 6.1), we find
that most dedup savings come from a small fraction of the records that are larger in
size. Fig. 4.4 shows the cumulative distribution function (CDF) of record size and
the weighted CDF by contribution to space saving for the four workloads used in our
experiments. For these datasets, the 60% largest records account for approximately

39

Figure 4.4: Size-based deduplication filter.

90–95% of data reduction. In other words, if we only deduplicate records larger
than the 40%-tile record size, we can reduce dedup overhead by 40% while only
losing 5–10% of the compression ratio.

dbDedup exploits this observation, using a size-based dedup filter that bypasses
(treats as unique) records smaller than a certain threshold. Unlike specialized dedup
systems whose workload characteristics are known in advance, dbDedup determines
the cut-off size on a per-database basis using a simple heuristic. For each database,
the dedup threshold is first initialized to zero, meaning that all incoming records are
deduplicated. This value is then periodically updated with the 40%-tile record size
of the database every 1000 record insertions.

40

Chapter 5

Implementation

This chapter describes dbDedup implementation details, including how it fits into
DBMS storage and replication frameworks, its feature indexing mechanisms, and
internals of its delta compression algorithms.

5.1 Integration into DBMSs

While implementation details vary across DBMSs, we illustrate the integration of
dbDedup into a DBMS’s storage and replication frameworks using a simple dis-
tributed setup consisting of one client, one primary node and one secondary node,
as shown in Fig. 5.1. In this example, we use a setting with single-master, push-
based, asynchronous replication that propagates updates in the form of oplogs. The
integration of dbDedup into the storage and replication components is not necessar-
ily coupled. For cases where only the replication bandwidth is the primary concern,
we describe the integration of dbDedup simply into the replication component. We
then describe how such integration is generally applicable to other replication set-
tings with slight modifications.

41

Primary Node

Client

Secondary Node

Inserts
& Updates

Database

Forward
-en

coded

oplog entrie
s

Oplog
syncer

Record
cache

Oplog

Reads

Oplog

Database

Reads

dbDedup
Re-encoder

dbDedup
Decoder

dbDedup
Decoder

Delta
cache

dbDedup
Encoder

Delta
cache

Record
cache

Backward-
encoded
records

Figure 5.1: Integration of dbDedup into a DBMS. – An overview of how dbDedup
fits into the storage and replication mechanisms of an example database system and
the components that it interacts with. dbDedup deduplicates data to be stored and
sent when a secondary requests new oplog entries. It checks each oplog entry before
it is sent to the secondary and then again on the replica to reconstruct the original
entries.

5.1.1 Integration into Storage and Replication Components

Below, we illustrate dbDedup’s integration into the storage and replication compo-
nents of an example DBMS by describing its behavior for primary operations.

Insert: Normally, record insertion works as follows. The primary writes the
new record into its local database and appends the record to its oplog. Each oplog
entry includes a timestamp and a payload that contains the inserted record. When the
size of unsynchronized oplog entries accumulates to a certain amount, the primary
pushes them in a batch to the secondary node. The secondary receives the updates,
appends them to its local oplog, and replays the new oplog entries to update its local
database.

With dbDedup, a new record is first stored in the local oplog. Later, when prepar-
ing to store the record or send it to a replica, it is processed by the dbDedup encoder
following the deduplication steps described in Chapter 3. If dbDedup successfully
selects a similar record from the existing data corpus, it retrieves the content of the

42

similar record by first checking the source record cache. On cache misses, it directly
reads the record from the underlying storage. It then applies bidirectional delta com-
pression to the source and target records to generate the forward-encoded form of
the new record and the backward-encoded form of the similar record. dbDedup
inserts the new record to the primary database in its original form and caches the
backward-encoded similar record in the lossy write-back cache until system I/O be-
comes idle. Then, dbDedup appends the forward-encoded record to the primary
oplog that is transferred to the secondary during replica synchronization.

On the secondary side, an oplog syncer receives and propagates the encoded
oplog entries to the dbDedup re-encoder. The re-encoder first decodes the new
record by reading the base similar record from its local database (or the source
record cache, on hits) and applying the forward-encoded delta. It then delta com-
presses the similar record using the newly reconstructed new record as the source,
like in the primary, and generates the same backward-encoded delta for the simi-
lar record. Finally, dbDedup writes the new record to the secondary database and
updates the similar record to its delta-encoded form. These steps ensures that the
secondary stores the same data as the primary node.

dbDedup internally keeps track of a reference count for each stored record to
indicate the number of records referencing it as a base for decode. Because dbDedup
uses backward encoding for database storage, after insertion, the reference count of
the new record is set to one, while that of the similar record is unchanged. The
reference count of the original base of the similar record, if existing, is reduced by
one.

Update: Upon update, dbDedup first checks the reference count of the queried
record. If the count is zero, meaning no other records refer to it for decoding,
dbDedup directly applies the update as normal. Otherwise, dbDedup keeps the
current record intact and appends the update to it. Doing so ensures that other
records using it as a reference can still be decoded successfully. When the reference
count drops to zero, dbDedup compacts all the updates to the record and replaces it
with the new data.

43

dbDedup uses a write-back cache to delay the update of a delta-encoded source
record. To prevent it from overwriting normal client updates, dbDedup always
checks the cache for each update. If it finds a record with the same ID (to be written
back later), it invalidates the entry and proceeds normally with the client update.

Delete: If the reference count for record to be deleted is zero, then the deletion
proceeds as normal. Otherwise, dbDedup marks it as deleted but retains its content.
Any client reads to a deleted record returns an empty result, but it can still serve as a
decoding base for other records referencing it. When the reference count of a record
drops to zero, dbDedup removes it from the database and decrement the reference
count of its base record by one.

Read:
If the queried record is stored in its raw form, then it is directly sent to the client

just like the normal case. If the record is encoded, then the dbDedup’s decoder re-
turns it back to its original form before it is returned to the client. During decoding,
the decoder fetches the base record from the source record cache (or storage, on
cache miss) and reconstructs the queried record using the stored delta. If the base
record itself is encoded, the decoder repeats the step above iteratively until it finds
a base record stored in its entirety.

Garbage Collection: Each record’s reference count ensures that an encoding
chain will not be corrupted on updates or deletions. To facilitate garbage collection,
dbDedup checks for deleted objects on reads. Specifically, along a decoding path,
if a record is seen as deleted, dbDedup creates a delta between its two neighboring
records, and decrements its reference count by one. When no other records depend
on it for decoding, the record can be safely deleted from the database.

5.1.2 Integration into Replication Component

When the network bandwidth for replication services rather than database storage
usage is the major concern (e.g., for geo-replicated databases with sufficient storage

44

Primary Node

Client

Secondary Node

Inserts
& Updates

Database

Forward
-en

coded

oplog entrie
s

Oplog
syncer

Record
cache

Oplog

Reads

Oplog

Database

Reads

dbDedup
Decoder

dbDedup
Encoder Record

cache

Figure 5.2: Integration of dbDedup into a DBMS’s replication component. –
An overview of how dbDedup fits into the replication mechanism of an example
database system. Oplog entries containing insertions and updates are deduplicated
before sent to the remote replicas. All records are stored in entirety on disk so there
is no need for a write-back record cache buffering encoded data.

capacity), it is reasonable to only integrate dbDedup into the replication component
of the DBMS to completely avoid the overhead of maintaining and accessing delta-
encoded storage.

The simplified integration is shown in Fig. 5.2. With dbDedup, before an oplog
entry is queued up in a batch to be sent, it is first passed to the deduplication sub-
system and goes through the steps described in Chapter 3, but only using forward-
encoding instead of bidirectional delta compression in the last step. If the entry is
marked for deduplication, then it is appended to the batch as a special message the
dbDedup receiver on the secondary knows how to interpret. When the secondary
node receives the encoded data, it reconstructs each entry into the original oplog
entry and appends it to its local oplog. At this point the secondary oplog replayer
applies the entry to its database just as if it was a normal operation. Thus, dbDedup
is not involved in the critical write path of the primary and is only used to reduce
the replication bandwidth instead of the storage overhead of the actual database.

Because dbDedup is not integrated to the storage layer in this example, all
database records are stored in their entirety, eliminating the need to use a write-back

45

cache to store the backward-encoded data. On the other hand, the source record
cache is still needed to reduce the number of database queries to retrieve source
records, and to serve as an input to the cache-aware selection of the optimal source
record.

Our approach differs from previous data reduction techniques for remote repli-
cation in several ways [59, 65, 67]. In these other systems, neither the senders
nor receivers in the protocol are replicas, so the sender does not know what data
is present at the receiver. As a result, they require several network round-trips to
achieve an agreement between a sender and a receiver on which part of the data to
be transferred can be reduced. For database replication traffic, however, the sec-
ondary’s contents are known to the primary—they are identical to the primary’s
contents, except for unsynchronized updates. As a result, each side can use local
indexes and source records without explicit coordination for each record.

dbDedup’s replication protocol is optimistic in that it assumes that the secondary
will have the source record for each oplog entry available locally. When this as-
sumption holds, no extra round trips are involved. In the rare cases when it does not
(e.g., a source record on the primary gets updated before the corresponding oplog
entry is deduplicated), the secondary sends a supplemental request to the primary
to fetch the original unencoded oplog entry, rather than the source record. This
eliminates the need to reconstruct records when bandwidth savings are not being
realized. In our evaluation in Chapter 6 with the Wikipedia dataset, we observe that
only 0.05% of the oplog entries incur a second round trip during replication.

We next describe dbDedup’s protocol for other replication mechanisms. The
example above involves only one primary server that can receive writes, and thus
only the primary maintains the deduplication index. When there are multiple pri-
mary servers, each of them maintains a separate deduplication index. The index is
updated when a primary either sends or receives updates to/from the other replicas.
Eventually all the primaries will have the same entries in their deduplication indexes
through synchronization. When secondaries independently initiate synchronization
requests (pull), the primary does not add an oplog entry’s features to its index until
all secondaries have requested that entry. Because the number of unsynchronized

46

oplog entries is normally small, the memory overhead of keeping track of the secon-
daries’ synchronization progress is negligible. dbDedup supports both synchronous
and asynchronous replication because it is orthogonal to the consistency setting.
We show in Chapter 6 that dbDedup has little impact on performance with eventual
consistency or bounded-staleness. For applications needing strict consistency where
each write requires an acknowledgement from all replicas, dbDedup currently im-
poses a minor degradation (5–15%) on throughput. In practice, however, we believe
that strict consistency is rarely used in geo-replication scenarios where dbDedup
provides the most benefits.

5.2 Indexing Records by Features

An important aspect of dbDedup’s design is how it finds similar records in the cor-
pus. Specifically, given a feature of the target record, dbDedup needs to find the
previous records that contain that feature in their sketches. To do this efficiently,
dbDedup maintains a special index that is separate from the other indexes in the
database.

To ensure fast deduplication, dbDedup’s feature lookups must be primarily in-
memory operations. Thus, the size of the index is an important consideration since
it consumes memory that could otherwise be used for database indexes and caches.
A naïve indexing approach is to store an entry that contains the record’s “dedup
metadata” (including its sketch and database location) for each feature. In our im-
plementation, the database location for each record is encoded with a 52 B database
namespace ID and a 12 B record ID. Combined with the 64 B sketch, the total size
of each dedup metadata entry is 128 B.

To reduce the memory overhead of this feature index, dbDedup uses a two-level
scheme. It stores the dedup metadata in a log-structured disk container and then
uses a variant of Cuckoo hashing [51] to map features to pointers into the disk
container. Cuckoo hashing allows multiple candidate slots for each key, using a
number of different hashing functions. This increases the hash table’s load factor
while bounding lookup time to a constant. We use 16 random hashing functions and

47

eight buckets per slot. Each bucket contains a 2 B compact checksum of the feature
value and a 4 B pointer to the dedup metadata container. As a result, dbDedup only
consumes 6 B per index entry.

For each feature in the target record’s sketch, the lookup and insertion process
works as follows. First, the system calculates a hash of the feature starting with
the first (out of 16) Cuckoo hashing function. The candidate slot in the Cuckoo
hash table is obtained by applying a modulo operation to the lower-order bits of the
hash value; the higher-order 16 bits of the hash value is used as the checksum for
the feature. Then, the checksum is compared against that of each occupied bucket
in the slot. If a match is found, then dbDedup retrieves the dedup metadata using
the pointer stored in the matched bucket. If the record’s dedup metadata contains
the same feature in its sketch, it is added to the list of similar records. The lookup
then continues with the next bucket. If no match is found and all the buckets in
the slot are occupied, the next Cuckoo hashing function is used to obtain the next
candidate slot. The lookup process repeats and adds all matched records to the list of
similar records until it finds an empty bucket, which indicates that there are no more
matches. At this point, an entry for the feature is inserted into the empty bucket. If
no empty bucket is found after iterating with all 16 hashing functions, we randomly
pick a victim bucket to make room for the new feature, and re-insert the victim into
the hash table as if it was new.

The size and load on the Cuckoo hash table can be further reduced by specifying
an upper bound on the number of similar records stored for any given feature. For
instance, with a setting of four, lookup for a given feature stops once it finds a
fourth match. In this case, insertion of an entry for the target record will require first
removing one of the other four matches from the index. We found that evicting the
least-recently-used (LRU) record for the given feature is the best choice. Because
the LRU entry could be early in the lookup process, all of the matching entries
would be removed and reinserted as though they were new entries.

dbDedup uses a small dedup metadata cache to reduce the number of reads to
the on-disk dedup metadata container [32, 59]. The container is divided into con-
tiguous 64 KB pages, each containing 512 dedup metadata entries. Upon checksum

48

INSERT COPY COPY INSERT INSERT

Anchor Duplicate segment Byte-wise comparison

Source

Target

Figure 5.3: Illustration of delta compression in dbDedup.

matches, dbDedup fetches an entire page of dedup metadata into the cache and
adds it to a LRU list of cache pages. The default configuration uses 128 cache pages
(8 MB total). This cache eliminates most disk accesses to the metadata container for
our experiments, but more sophisticated caching schemes and smaller pages could
be beneficial for other workloads.

The combination of the compact Cuckoo hash table and the dedup metadata
cache makes feature lookups in dbDedup fast and memory-efficient. We show in
Chapter 6 that the indexing overhead is small and bounded in terms of CPU and
memory usage, in contrast to traditional deduplication.

5.3 Delta Compression

To ensure lightweight dedup, it is important to make dbDedup’s delta compression
fast and efficient. The delta compression algorithm used in dbDedup is adapted
from xDelta [46], a classic copy/insert encoding algorithm using a string matching
technique to locate matching offsets in the source and target byte streams. The orig-
inal xDelta algorithm mainly works in two steps. In the first step, xDelta divides
the source stream into fixed-size (by default, 16-byte) blocks. It then calculates an
Alder32 [33] checksum (the same fingerprint function used in gzip) for each byte
block and builds a temporary in-memory index mapping the checksums to their cor-
responding offsets in the source. In the second step, xDelta scans the target object
byte by byte from the beginning, using a sliding window of the same size as the byte
blocks. For each target offset, it calculates a Alder32 checksum of the bytes in the

49

sliding window and consults the source index populated in the first step. If it finds
a match, xDelta extends the search process from the matched offsets, using bidi-
rectional byte-wise comparison to determine the longest common sequence (LCS)
between the source and target streams. It then skips the matched region to continue
the iterative search. If it does not find a match, it moves the sliding window by one
byte and restarts the matching. Along this process, xDelta encodes the matched re-
gions in the target into COPY instructions and the unmatched regions into INSERT
instructions.

The delta compression algorithm used in dbDedup, as shown in Algorithm 4 and
Fig. 5.3, modifies xDelta based on the observation that a large fraction of computa-
tion time is spent in source index building and lookups. To mitigate this overhead,
in the first encoding step, dbDedup samples a subset of the offset positions called
anchors, whose checksums’ lower bits match a pre-determined pattern. The interval
between anchors indicates the sampling ratio and is controlled by the length of the
bit pattern, similar to how variable-sized chunking algorithms determine the aver-
age chunk size. In the second step, dbDedup performs index lookups only for the
anchors in the target, avoiding the need to consult the source index at every target
offset. The anchor interval provides a tunable trade-off between compression ra-
tio and encoding speed, and we evaluate its effects in Chapter 6. Of course, some
details are omitted in the pseudo-code given above. For example, contiguous and
overlapping COPY instructions are coalesced; short COPY instructions are con-
verted into equivalent INSERT instructions when the encoding overhead exceeds
space savings.

As we discussed in Section 4.1, after computing the forward-encoded data using
the algorithm above, dbDedup uses delta re-encoding (Algorithm 5) to efficiently
generate the backward-encoded source record. Instead of switching the source and
target objects and performing delta compression again, dbDedup reuses the COPY
instructions generated before and sorts them by their corresponding source offsets.
It then fills the unmatched regions in the source with INSERT instructions. While it
may result in slightly sub-optimal compression rate (e.g., due to overlapping COPY
instructions that are merged), the re-encoding process is extremely fast (at memory

50

speed), since there are no checksum calculations or index operations.
Delta decompression in dbDedup is straightforward (Algorithm 6). It simply

iterates over the instructions generated by the compression algorithm and concate-
nates the matched and unmatched regions to reproduce the original target object.

51

Algorithm 4 Delta Compress
1: function DELTACOMPRESS(src, tgt)
2: i 0 . Initialization
3: j 0

4: pos 0

5: ws 16

6: sIndex empty
7: tInsts empty
8: while i+ ws <= src.length do . Build index for src anchors
9: hash RABINHASH(src, i, i+ ws)

10: if ISANCHOR(hash) then
11: sIndex[hash] i
12: end if
13: i i+ 1

14: end while
15: while j + ws <= tgt.length do . Scan tgt for longest match
16: hash RABINHASH(tgt, j, j + ws)
17: if ISANCHOR(hash) and hash in sIndex then
18: (soff, toff, l) BYTECOMP(src, tgt, sIndex[fp], j)
19: if pos < toff then
20: insInst INST (INSERT, pos, toff � pos)
21: memcpy(insInst.data, tgt, toff � pos)
22: tInsts.append(insInst)
23: end if
24: cpInst INST (COPY, soff, l)
25: tInsts.append(cpInst)
26: pos toff + l
27: j toff + l
28: else
29: j j + 1

30: end if
31: end while
32: return tInsts
33: end function

52

Algorithm 5 Delta Re-encode
1: function DELTAREENCODE(src, tgt, tInsts)
2: sPos 0

3: tPos 0

4: copySegs empty
5: sInsts empty
6: for each inst in tInsts do
7: if inst.type = COPY then
8: copySegs.append(inst.sOff, tPos, inst.len)
9: end if

10: tPos tPos+ inst.len
11: end for
12: copySegs.sortBy(sOff)
13: for each seg in copySegs do
14: if sPos < seg.sOff then
15: insInst INST (INSERT, sPos, sOff � sPos)
16: memcpy(insInst.data, src, sOff � sPos)
17: sInsts.append(insInst)
18: end if
19: cpInst INST (COPY, seg.tOff, seg.len)
20: sInsts.append(cpInst)
21: sPos seg.sOff + seg.len
22: end for
23: return sInsts
24: end function

Algorithm 6 Delta Decompress
1: function DELTADECOMPRESS(src, insts)
2: pos 0

3: tgt empty
4: for each inst in insts do
5: if inst.type = COPY then
6: memcpy(tgt[pos], src[inst.offset], inst.len)
7: else if inst.type = INSERT then
8: memcpy(tgt[pos], inst.data, inst.len)
9: end if

10: pos pos+ inst.len
11: end for
12: return tgt
13: end function

53

Chapter 6

Evaluation

This chapter evaluates dbDedup using four real-world datasets. For this evaluation,
we implemented both dbDedup and traditional chunk-based dedup (trad-dedup) in
MongoDB (v3.1). The results show that dbDedup provides significant compression
benefits, outdoes traditional dedup, combines with block-level compression, and
imposes negligible overhead on DBMS performance.

Unless otherwise noted, all experiments use a replicated MongoDB setup with
one primary, one secondary, and one client node. Each node has four CPU cores,
8 GB RAM, and 100 GB of local HDD storage. We use MongoDB’s WiredTiger [18]
storage engine with the full journaling feature turned off to avoid interference.

6.1 Workloads

The four real-world datasets represent a diverse range of database applications: col-
laborative editing (Wikipedia), email (Enron), and on-line forums (Stack Exchange,
Message Boards). Table 6.1 shows some key characteristics of these datasets. The
average record size ranges from 1–16 KB, and most changes modify less than 100 B.
We sort each dataset by creation timestamp to generate a write trace, and then gener-
ate a read trace using public statistics or known access patterns to mimic a real-world
workload, as detailed below.

55

Stack Message
Wikipeda Enron Exchange Boards

Record Size (bytes) 15875 2849 936 308
Change Size (bytes) 77 56 79 42

Change Distance (bytes) 3602 864 83 37
of Changes per Record 4.3 3.1 5.8 3.9

Table 6.1: Average characteristics of four datasets.

Wikipedia: The full revision history of every article in the Wikipedia English
corpus [16] from January 2001 to August 2014. We extracted a 20 GB subset via
random sampling based on article IDs. Each revision contains the new version of the
article and metadata about the user that made the edits (e.g., username, timestamp,
comment). Most duplication comes from incremental revisions to pages. We insert
the first 10,000 revisions to populate the initial database. We then issue read and
write requests according to a public Wikipedia access trace [70], where the normal-
ized read/write ratio is 99.9 to 0.1. 99.7% of read requests are to the latest version
of a wiki page, and the remainder to a specific revision.

Enron: A public email dataset [2] with data from about 150 users, mostly
senior management of Enron. The corpus contains around 500k messages, totaling
1.5 GB of data. Each message contains the text body, mailbox name, message
headers such as timestamp and sender/receiver IDs. Duplication primarily comes
from message forwards and replies that contain content of previous messages. We
insert the sorted dataset into the DBMS as fast as possible. After each insertion,
we issue a read request to the specific email message, resulting in an aggregate
read/write ratio of 1 to 1. This is based on the assumption that each user uses a
single email client that caches the requested message locally, so each message is
written and read once to/from the DBMS.

Stack Exchange: A public data dump from the Stack Exchange network [13]
that contains the full history of user posts and associated information such as tags
and votes. Most duplication comes from users revising their own posts and from
copying answers from other discussion threads. We extracted a 10 GB subset (of

56

100 GB total) via random sampling. We insert the posts into the DBMS as new
records in temporal order. For each post, we read it for the same number of times as
its view count. The aggregate read/write ratio is 99.9 to 0.1.

Message Boards: A 10 GB forum dataset containing users’ posts crawled from
a number of public vBulletin-powered [14] message boards that cover a diverse
range of threaded topics, such as sports, cars, and animals. Each post contains the
forum name, thread ID, post ID, user ID, and the post body including quotes from
other posts. This dataset also contains the view count per thread, which we use to
generate synthetic read queries. Duplication mainly originates from users quoting
others’ comments. To mimic users’ behavior in a discussion forum, for each post
insertion, we issue a certain number of “thread reads” that request all the previous
posts in the containing thread. The number of thread reads per insertion is derived
by dividing the total view count of the thread by the number of posts it contains.

6.2 Compression Ratio and Index Memory

We first evaluate dbDedup’s compression ratio and index memory usage and com-
pare them to trad-dedup and Snappy [11], MongoDB’s default block-level com-
pressor. For each dataset, we load the records into the DBMS as fast as possible and
measure the resulting storage sizes, the amount of data transferred over the network,
and the index memory usage.

Fig. 6.1 shows the results for five configurations: (1) dbDedup with chunks of
1 KB or 64 bytes, (2) trad-dedup with chunks of 4 KB or 64 bytes, and (3) Snappy.
The pink (left) bar shows storage compression ratio, indicating the contribution of
dedup alone and compression after dedup. The compression ratio is defined as
original data size divided by compressed data size, so a value of one means no
compression achieved. The network transfer compression ratio is within 5% of
that for storage, in all cases. The blue (right) bar shows index memory usage. The
small source record cache (32 MB, used by both dbDedup and trad-dedup) and lossy
write-back cache (8 MB, used by dbDedup only) are not shown.

57

(a) Wikipedia (b) Enron

(c) Stack Exchange (d) Message Boards

Figure 6.1: Compression Ratio and Index Memory – The compression ratio and
index memory usage for dbDedup (1 KB chunks or 64 byte chunks), trad-dedup
(4 KB and 64 byte), and Snappy. The upper portion of each dedup bar represents
the added benefit of compressing after dedup.

The benefits are largest for Wikipedia (Fig. 6.1a). With a chunk size of 1 KB,
dbDedup reduces data storage by 26⇥ (41⇥ combined with Snappy) using 36 MB
index memory. Decreasing the chunk size to 64 B increases compression ratio to
37⇥ (61⇥) using only 45 MB index memory. Decreasing chunk size for dbDedup
does not increase index memory usage much, because dbDedup indexes at most K
entries per record, regardless of chunk size. In contrast, while trad-dedup’s com-
pression ratio increases from 2.3⇥ (3.7⇥) to 15⇥ (24⇥) when using a chunk size
of 64 B instead of 4 KB, its index memory grows from 80 MB to 780 MB, mak-
ing it impractical for operational DBMSs. This is because trad-dedup indexes every

58

unique chunk hash, leading to almost linear increase of index overhead as chunk size
decreases, and also because it must use much larger index keys (20-byte SHA-1 hash
vs. 2-byte checksum) since collisions would result in data corruption. Consuming
40% less index memory, dbDedup with 64 B chunk size achieves a compression
ratio 16⇥ higher than trad-dedup with its typical 4 KB chunk size. Snappy com-
presses the dataset by only 1.6⇥, because it can not eliminate the duplication caused
by application-level versioning, but requires no index memory. It provides the same
1.6⇥ compression when applied to the deduped data.

For the other datasets, the absolute benefits are smaller, but the primary observa-
tions are similar: dbDedup provides higher compression ratio with lower memory
usage than trad-dedup, and Snappy’s compression benefits (1.6–2.3⇥) complement
deduplication. For the Enron dataset (Fig. 6.1b), dbDedup reduces storage by 3.0⇥
(5.8⇥), which is consistent with results we obtained from experiments with data
from a cloud deployment of Microsoft Exchange servers containing PBs of real user
email data.1 The two forum datasets (Figs. 6.1c and 6.1d) do not exhibit as much
duplication as the Wikipedia or email datasets, because users do not quote or edit
comments as frequently as Wikipedia revisions or email forwards/replies. Even so,
we still observe that dbDedup reduces storage by 1.3–1.8⇥ (3–3.5⇥). Because we
were only able to crawl the latest posts in the Message Boards dataset, dbDedup’s
compression ratio is conservative, not including the benefits from delta compressing
users’ revisions to their own posts.2

In addition to storage usage, dbDedup simultaneously achieves significant com-
pression on data transmission over the network with forward encoding. Fig. 6.2
shows the network-level compression as a normalized result to that on storage usage
(1.0 on the Y-axis for each dataset). dbDedup achieves slightly lower compression
on database storage than on data transferred over the network, mainly due to over-
lapped encodings (Section 4.1) and delta evictions from the write-back cache. Nev-
ertheless, the difference is below 5% for all datasets, because overlapped encodings

1Sadly, we cannot reveal details due to confidentiality restrictions.
2We find that 15% of posts are edited at least once, and most edited posts are larger than the

average post size.

59

Figure 6.2: Storage and Network Bandwidth Savings – Relative compression
ratios achieved by dbDedup (with 64-byte chunk size) for local storage and network
transfer, for each of the datasets, normalized to the absolute storage compression
ratios shown in Fig. 6.1 (for dbDedup with 64-byte chunks).

are uncommon and because the lossy write-back cache uses prioritized eviction.

6.3 Runtime Performance Impact

This section shows that dbDedup has negligible impact on DBMS performance by
comparing three MongoDB configurations: no compression, with dbDedup, and
with Snappy.

Throughput: Fig. 6.3a shows throughput for the four workloads. We see
that dbDedup imposes negligible overhead on throughput. Snappy also degrades
performance slightly for three of the workloads, since it is a fast and lightweight
inline compressor. The exception is Wikipedia, for which using Snappy causes 5%
throughput reduction, because some large Wikipedia records cannot fit in a single
WiredTiger page and require extra I/Os.

Latency: Fig. 6.3b shows the CDF of client latency. For clarity, we only show
the results for MongoDB with and without dbDedup enabled. Again, we observe
that dbDedup has almost no effect on performance. The latency distribution curves

60

(a) Throughput

(b) Latency

Figure 6.3: Performance Impact – Runtime measurements of MongoDB’s
throughput and latency for the different workloads and configurations.

with dbDedup enabled closely track those for no compression/dedup. The difference
in the 99.9%-tile latency is less than 1% for all workloads.

6.4 Dedup Time Breakdown

Fig. 6.4 shows the time required to load the Wikipedia dataset, using stacked bars
to show the contribution of each step described in Chapter 3. The three bars show
the benefits of adding each of dbDedup’s two most significant speed optimizations:

61

Figure 6.4: Deduplication Time Breakdown – Time breakdown of deduplication
steps as individual refinements are applied.

sampling source index in delta computation and adding a source record cache.
The default configuration uses both of the optimizations. With no optimizations,
dbDedup spends most of the time fetching source records from the DBMS and per-
forming delta compression. The unoptimized delta compression step is slow be-
cause it builds an index for each offset in the source record. dbDedup addresses this
issue by sampling only a small subset of the offsets, at a negligible cost in com-
pression ratio. With a sampling ratio of 1

32 , the time spent on delta compression is
reduced by 95%, which makes fetching source records from the database the biggest
contributor. By using a small source record cache of 32 MB, dbDedup reduces the
source fetching time by ⇠87%, which corresponds to the hit rate observed in Sec-
tion 6.5.

6.4.1 Performance with limited bandwidth:

When network bandwidth is restricted, such as for WAN links, remote replication
can throttle insertion throughput and reduce end-user performance. dbDedup im-
proves the robustness of a DBMS’s performance in the presence of limited network
bandwidth.

To emulate an environment with limited bandwidth, we use a Linux traffic con-
trol tool (tc) to configure the maximum outbound network bandwidth on the primary

62

Figure 6.5: Insertion Throughput under Limited Bandwidth. – A evaluation
of MongoDB’s insertion throughput with and without dbDedup for various network
bandwidth configurations.

server. The experiments load the Wikipedia snapshot into the DBMS as fast as pos-
sible and enforce replica synchronization every 1000 record insertions.

Fig. 6.5 shows the DBMS’s insertion rate as a function of available network
bandwidth. Without dbDedup, the required replication bandwidth is equal to the
raw insertion rate, resulting in significant throttling when bandwidth is limited.
With dbDedup, on the other hand, the DBMS is able to deliver full write perfor-
mance even with limited network bandwidth, because less data is transferred to the
secondary.

6.5 Effects of Caching

As described in Section 4.2, dbDedup uses two small caches to minimize I/O over-
heads involved in reading and updating source records: a source record cache (32 MB)
and lossy write-back cache (8 MB). We now evaluate the effectiveness of these
caches.

63

Figure 6.6: Source Record Cache Size – The efficacy of the source record cache
and the cache-aware selection optimization.

6.5.1 Source Record Cache

dbDedup’s source record cache reduces the number of database queries issued to
fetch source records. To evaluate the efficacy of this cache, as a function of its
size, We replay the Wikipedia workload starting with a cold cache, and report the
steady-state hit rates with and without dbDedup’s cache-aware selection technique
(see Section 3.3).

Fig. 6.6 shows the hit rate of the record cache as a function of the cache size.
Even without cache-aware selection, the source record cache is effective in remov-
ing many database queries due to temporal locality in the record updates. Enabling
cache-aware selection provides an additional ⇠10% hits (e.g., 50% hit rate instead
of 40%) for all cache sizes shown. For example, with a relatively small cache size
of 2000 entries (⇠32 MB, assuming average record size of 16 KB) the hit ratio is
⇠75% without and ⇠87% with cache-aware selection. So, the number of cache
misses is cut in half. We use a cache size of 2000 entries for all other experiments,
providing a reasonable balance between performance and memory usage.

Fig. 6.7 shows the effect of the source record cache (with a fixed cache size of
32 MB) on compression ratio (left Y-axis) and percent of source record retrievals
requiring a DBMS read (cache miss ratio; right Y-axis), with a range of reward score
values for the Wikipedia workload. Recall that dbDedup uses cache-aware selection

64

Figure 6.7: Reward Score – An evaluation of the normalized compression ratio
and cache miss ratio as a function of the reward score for records residing in the
source record cache.

of candidate similar records, assigning a reward score to candidates that are present
in the cache (see Section 3.3).

When no cache is used (the left-most bars), every retrieval of a source record
incurs a read query. Even without cache-aware selection (0 reward score), the small
source record cache eliminates 75% of these queries. With a reward score of two
(default), the cache-aware selection technique further cuts the miss ratio by 40% (to
16%), without reducing the compression ratio noticeably. Further increases to the
reward score marginally reduce the cache miss ratio while reducing the compression
ratio slightly, because less similar candidates are more likely to be selected as the
source records.

6.5.2 Lossy Write-back Cache

dbDedup uses backward encoding to avoid decode when reading the latest “ver-
sions” of an update sequence. Thus, deduplicating a new record involves both writ-
ing the full new record and replacing the source record with delta-encoded data. The
extra write (the replacing) may lead to significant performance problems for I/O in-
tensive workloads during write bursts. dbDedup’s lossy write-back cache mitigates

65

Figure 6.8: Write-back Cache – Runtime throughput of the DBMS with and with-
out the write-back cache. Using the cache avoids DBMS slowdown during workload
bursts.

such problems.
To emulate a bursty workload with I/O intensive and idle periods, we insert

Wikipedia data at full speed for 10 seconds and sleep for 10 seconds, repeatedly.
Fig. 6.8 shows MongoDB’s insertion throughput over time, with and without the
write-back cache. Without the cache, DBMS throughput visibly decreases during
busy periods because of the extra database writes. In contrast, using the write-back
cache avoids DBMS slowdown during workload bursts, as shown by the difference
between the two lines at various points of time (e.g., at seconds 0, 130, 170, and
190).

6.6 Failure Recovery

When a primary node fails, a secondary node is elected to become the new pri-
mary. Because the dedup index is maintained on the original primary, the new
primary needs to build its own index from scratch as new records are inserted. To
evaluate dbDedup’s performance in presence of a primary node failure,3 we use a
80 GB Wikipedia dataset sorted by revision timestamp to emulate the real-world

3Failure on a secondary node has no effect on the compression ratio, because only the primary maintains the deduplication
index.

66

Figure 6.9: Failure Recovery – Measuring how quickly dbDedup recovers after
the primary fails.

write workload. We load the dataset into a primary with two secondaries and stop
(fail) the primary after 200k insertions.

Fig. 6.9 shows the compression ratios achieved by dbDedup in the normal and
failure cases with a moving average of 2000 inserted records. The compression ra-
tio decreases significantly at the failure point, because the records that would origi-
nally be selected as similar candidates can no longer be identified due to loss of the
in-memory deduplication index. The compression ratio up returns to normal rea-
sonably quickly (after ⇠50k new record insertions). This is because most updates
are to recent records, so that the effect of missing older records in the index fades
rapidly.

When the primary node restarts due to a normal administrative operation, dbDedup
can rebuild its in-memory deduplication index (on the original primary) to min-
imize the loss of compression ratio. dbDedup achieves this by first loading the
log-structured dedup metadata using a sequential disk read, and then replaying the
feature insertions for each record in the oplog. The rebuild process finishes quickly
(less than three seconds for 200k records), after which dbDedup behaves as if no
restart occurred.

67

Figure 6.10: Sketch Size – The impact of the sketch size on the compression ratio
for the Wikipedia dataset.

6.7 Tuning Parameters

dbDedup has three primary tunable parameters, beyond those explored above, that
affect compression/performance trade-offs: sketch size, hop distance and anchor
interval. This section quantifies the effects of these parameters and explains the
default values.

6.7.1 Sketch Size

As described in Section 3.1, a sketch consists of the first-K features. Fig. 6.10
shows the compression ratio achieved by dbDedup as a function of the sketch size
(K). For the smaller chunk sizes (1 KB) that provide the best compression ratios,
K should be 4–8 to identify the best source records. K > 8 provides minimal
additional benefit, while increasing index memory size, and K = 8 is the default
configuration used in all other experiments. Larger chunk sizes, such as 4 KB, do
not work well because there are too few chunks per record, and increasing the sketch
size only helps slightly.

68

Figure 6.11: Hop Encoding vs. Version Jumping – For the Wikipedia workload
and moderate hop distances, hop encoding provides much higher compression ratios
with small increases in worst-case source retrievals and number of write-backs.

6.7.2 Hop Distance

dbDedup uses hop encoding to reduce the worst-case retrieval times while main-
taining compression benefits. To evaluate its efficacy, we also implemented version
jumping in MongoDB and compared the two encoding schemes.

Fig. 6.11 shows the results for three metrics as a function of hop distance: com-
pression ratio (normalized to standard backward encoding), worst-case number of
source retrievals (for an encoding chain length of 200), and number of write-backs.
Version jumping results in significantly (60–90%) lower compression ratios, be-

69

Figure 6.12: Anchor Interval – The impact of the anchor interval on the delta
compression throughput and compression ratio for the Wikipedia dataset.

cause all reference versions are stored unencoded. Its compression ratio improves as
the hop distance increases, because fewer records are stored in unencoded form. In
contrast, because hop bases are stored as deltas, hop encoding provides compression
ratios within 10% of full backward encoding. For hop encoding, the compression
ratio remains relatively steady as hop distance increases, due to having fewer but
less similar hop bases.

The number of worst-case source retrievals for hop encoding is close to that for
version jumping. With multiple hop levels, tracing back to the nearest hop base only
takes logarithmic time. As the hop distance increases, the decoding time is domi-
nated by traversing backward deltas between adjacent hop bases. The bottom graph
shows the number of extra writebacks needed in each scheme. While hop encoding
incurs more writebacks for small hop distances, both schemes quickly approach the
length of the encoding chain as hop distance increases. Empirically, we find that
a hop distance of 16 (default) provides a good trade-off between compression ratio
and decoding overhead.

6.7.3 Anchor Interval

dbDedup outperforms the xDelta algorithm by reducing the computation overhead
on source index insertion and lookups. It introduces a tunable anchor interval that

70

Number of shards 1 3 5 9
Compression ratio 38.4 38.2 38.1 37.9

Table 6.2: Compression ratio with sharding – dbDedup provides consistent com-
pression benefits in sharded environments.

controls the sampling rate of the offset points in the source byte stream.

Fig. 6.12 shows the compression ratio (left Y-axis) and throughput (right Y-axis)
for various dbDedup anchor interval values, as well as for xDelta, for the Wikipedia
workload. With an anchor interval of 16 (default window size in xDelta), dbDedup
performs almost the same as xDelta. As anchor interval increases, dbDedup’s delta
compressing speed improves, because it reduces the number of source offset in-
dex insertions and lookups. The compression ratio does not significantly decrease,
because dbDedup performs byte-level comparison bidirectionally from the matched
points. With an anchor interval of 64, dbDedup outperforms xDelta by 80% in terms
of compression throughput, while incurring only 7% loss in compression ratio. In-
creasing the anchor interval to 128 further improves the throughput by 10% but
results in 15% loss in compression ratio. We use 64 as the default value, providing
a balance between compression ratio and throughput.

6.8 Sharding

This section evaluates the performance of dbDedup in a sharded cluster, in which
data is divided among multiple primary servers that each has a corresponding sec-
ondary. Each primary/secondary pair runs an independent instance of dbDedup. For
experiments with sharding, we use the 20 GB Wikipedia dataset and shard records
on article ID (like the Wikipedia service). To accommodate MongoDB’s capac-
ity balancing migrations, we modified dbDedup to remove the assumption that the
source record can always be found on the primary node. When it cannot, because it
was migrated, dbDedup simply deletes it from the dedup index and treats the target
record as unique.

71

Table 6.2 shows the compression ratio as a function of the number of shards. The
compression ratio is not significantly affected, because Wikipedia records with the
same article ID go to the same server and most duplication comes from incremental
updates to the same article. This indicates that dbDedup is robust and still works in
sharded deployments.

72

Chapter 7

Conclusion and Future Directions

This chapter concludes the dissertation and discusses possible directions for future
research.

7.1 Conclusion

This dissertation describes a systematic approach termed similarity-based dedupli-
cation to reducing the storage usage and network transfer for operational DBMSs.
Our appraoch achieves higher compression ratios than block-level compression and
chunk-based deduplication while being memory efficient by (1) partially indexing
representative chunk hashes for new records; (2) performing byte-level delta com-
pression on similar records; and (3) maximizing cache efficiency and utilization
with source-aware cache replacement. Our approach imposes negaligible perfor-
mance overhead on the runtime performance of the DBMS by performing the main
dedup work off the critical path and using a single-pass encoding scheme for both
storage and network layers. In addition, it uses a combination of several techniques
in order to mitigate the deduplication overhead, including two-way encoding, hop
encoding, cache-aware selection, lossy write-back caching, automatic dedup gov-
erning, and adaptive size-based filtering. Experimental results with four real-world
workloads show that the proposed approach is able to achieve up to 37⇥ reduction

73

(61⇥ when combined with block-level compression) in storage size and replication
traffic while imposing negligible overhead on DBMS performance.

This disseration makes the following contributions:

• The first dedup system for online DBMSs that achives data reduction in both
database storage and network bandwidth for replication services, as well as
the first database dedup system that employs similarity-based dedup.

• The characterization of real-world database workloads, based on which we
illustrate the advantange of the proposed approach over the state-of-the-art
data reduction schemes in face of these workloads.

• The presentation of a general-purpose end-to-end workflow of similarity-based
dedup, and the proposal of various novel techniques in encoding, caching and
similarity selection that are important to achieve high dedup efficiency.

• The implementation of dbDedup, a lightweight scheme for online database
systems that uses similarity-based dedup to compress individual records stored
on disk and sent to remote replicas over network, and the full integration of
dbDedup into MongoDB’s storage and replication components.

• The evaluation of dbDedup in terms of compression ratio, memory usage and
runtime performance overhead (throughput and latency) using four real-world
datasets, which shows that similarity-based dedup is a viable and efficient
approach for online DBMSs.

7.2 Future Directions

This section describes several future research directions for applying or extending
the proposed similarity-based dedup approach.

7.2.1 Client-side Deduplication

In addition to reducing replication bandwidth between replicas and primary nodes,
the similarity-based deduplication approach could also be applied to reducing the
amount of data transferred between clients and database servers. Specifically, clients’

74

writes that are actually modified versions of existing records could be deduplicated
against the original records before they are sent to the servers. The deduplication ap-
proach in this senario would be similar to deduplicating replication streams between
database servers. The only difference is that clients and servers are not replicas—
clients only store and operate on a small subset of data in the servers. Because the
servers store the original versions being used by clients as source records, the servers
will be able to interpret and re-construct the deduplicated data using locally stored
records. For applications in which most write requests are incremental updates on
existing data, the potential for client bandwidth reduction is significant.

7.2.2 Similarity-informed Sharding

Currently, we assume that in a sharded setup, similar records would be assigned
to the same database server so that the compression ratio with sharding would not
significantly decrease as compared to that in a non-sharded setup. For the Wikipedia
example, revisions of a particular article are distributed to the same servers because
they share the same article ID. While we believe that this assumption holds for
many applications, when it does not (e.g., when the Wikipedia articles are randomly
sharded by system-wide unique IDs), the compression ratio may drop visibly as the
number of shards increases, since there is no more guarranttee that similar records
are sharded to the same server. In this scenario, a new sharding scheme is needed
that preserves the dedup quality by taking into consideration of similarity properties
of data to be sharded. It is interesting to explore the tradeoff between compression
ratio, resource usage, query latency and load balancing of the new sharding method.

7.2.3 Field Name Compression in Document Databases

While we propose similarity-based dedup as a general-purpose approach that treats
record data as raw byte streams for all DBMSs, we believe that greater savings may
be realized using specialized schemes that exploits a priori knowledge of the in-
put data format. An example of using simlarity-based dedup in combination with

75

such knowledge is document databases, where field names are stored in each doc-
ument to support flexible schema changes. This creates an extra source of dupli-
cation, in addition to those discussed in Section 2.2.2, that can be eliminated by
slightly modifying the current dedup workflow of dbDedup. Since schema change
is not a frequent operation, most documents belonging to the same collection would
have a significant portion of duplicate field names. It is expected that a special-
ized dedup scheme that takes specific document layouts into consideration would
provide higher compression ratio than the general approach.

76

Bibliography

[1] Baidu Baike. http://baike.baidu.com/.

[2] Enron Email Dataset. https://www.cs.cmu.edu/~./enron/.

[3] InnoDB Compression. http://dev.mysql.com/doc/refman/5.6/en/

innodb-compression-internals.html.

[4] Linux SDFS. www.opendedup.org.

[5] MongoDB Monitoring Service. https://mms.mongodb.com.

[6] MongoDB. http://www.mongodb.org.

[7] Windows Storage Server. technet.microsoft.com/en-us/library/

gg232683(WS.10).aspx.

[8] MurmurHash. https://sites.google.com/site/murmurhash.

[9] Ocarina Networks. www.ocarinanetworks.com.

[10] Permabit Data Optimization. www.permabit.com.

[11] Snappy. http://google.github.io/snappy/.

[12] Data Compression: Why Do we need it? https://blogs.

msdn.microsoft.com/sqlserverstorageengine/2007/09/29/

data-compression-why-do-we-need-it/.

[13] Stack Exchange Data Archive. https://archive.org/details/

stackexchange.

[14] vBulletin. https://www.vbulletin.com.

[15] W3Techs. http://www.w3techs.com.

77

http://baike.baidu.com/
https://www.cs.cmu.edu/~./enron/
http://dev.mysql.com/doc/refman/5.6/en/innodb-compression-internals.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-compression-internals.html
www.opendedup.org
https://mms.mongodb.com
http://www.mongodb.org
technet.microsoft.com/en-us/library/gg232683(WS.10).aspx
technet.microsoft.com/en-us/library/gg232683(WS.10).aspx
https://sites.google.com/site/murmurhash
www.ocarinanetworks.com
www.permabit.com
http://google.github.io/snappy/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2007/09/29/data-compression-why-do-we-need-it/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2007/09/29/data-compression-why-do-we-need-it/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2007/09/29/data-compression-why-do-we-need-it/
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://www.vbulletin.com
http://www.w3techs.com

[16] Wikimedia Downloads. https://dumps.wikimedia.org, .

[17] Wikipedia. https://www.wikipedia.org/, .

[18] WiredTiger. http://www.wiredtiger.com/.

[19] ZFS Deduplication. blogs.oracle.com/bonwick/entry/zfs_dedup.

[20] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression
and execution in column-oriented database systems. In SIGMOD, pages 671–
682, 2006.

[21] Carlos Alvarez. NetApp deduplication for FAS and V-Series deployment and
implementation guide. 2010.

[22] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bitner, Michael Hirsch, and
Shmuel T Klein. The design of a similarity based deduplication system. In
SYSTOR, page 6, 2009.

[23] Jon Bentley and Douglas McIlroy. Data compression using long common
strings. In Data Compression Conference, 1999. Proceedings. DCC’99, pages
287–295, 1999.

[24] Deepavali Bhagwat, Kave Eshghi, Darrell DE Long, and Mark Lillibridge.
Extreme binning: Scalable, parallel deduplication for chunk-based file backup.
In MASCOTS, pages 1–9, 2009.

[25] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-based
order-preserving string compression for main memory column stores. In SIG-
MOD, pages 283–296, 2009.

[26] A. Broder. On the resemblance and containment of documents. Compression
and Complexity of Sequences, 1997.

[27] A. Broder. Identifying and filtering near-duplicate documents. 11th Annual
Symposium on Combinatorial Pattern Matching, 2000.

[28] Randal C Burns and Darrell DE Long. Efficient distributed backup with delta
compression. In Proceedings of the fifth workshop on I/O in parallel and
distributed systems, pages 27–36, 1997.

78

https://dumps.wikimedia.org
https://www.wikipedia.org/
http://www.wiredtiger.com/
blogs.oracle.com/bonwick/entry/zfs_dedup

[29] Austin Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li. Decen-
tralized Deduplication in SAN Cluster File Systems. In USENIX ATC, 2009.

[30] Gregory Cobena, Serge Abiteboul, and Amelie Marian. Detecting changes in
xml documents. In ICDE, pages 41–52, 2002.

[31] Gordon V Cormack. Data compression on a database system. Communica-
tions of the ACM, 28(12):1336–1342, 1985.

[32] Biplob Debnath, Sudipta Sengupta, and Jin Li. Chunkstash: Speeding up
inline storage deduplication using flash memory. In USENIX Annual Technical
Conference, 2010.

[33] Peter Deutsch and Jean-Loup Gailly. Zlib compressed data format specifica-
tion version 3.3. Technical report, 1996.

[34] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Woj-
ciech Kilian, Przemyslaw Strzelczak, and Jerzy Szczepkowski. Hydrastor: A
scalable secondary storage. In FAST, 2009.

[35] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Woj-
ciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungure-
anu, , and Michal Welnicki. HYDRAstor: a Scalable Secondary Storage. In
FAST, 2009.

[36] Ahmed El-Shimi, Ran Kalach, Ankit Kumar Adi, Oltean Jin Li, and Sudipta
Sengupta. Primary data deduplication-large scale study and system design. In
USENIX Annual Technical Conference, 2012.

[37] EMC Corporation. EMC Centera: Content Addresses Storage System, Data
Sheet, April 2002.

[38] Kave Eshghi and Hsiu Khuern Tang. A framework for analyzing and improv-
ing content-based chunking algorithms. 2005.

[39] Stavros Harizopoulos, Velen Liang, Daniel J Abadi, and Samuel Madden. Per-
formance tradeoffs in read-optimized databases. In VLDB, pages 487–498,
2006.

79

[40] Balakrishna Iyer and David Wilhite. Data compression support in databases.
1994.

[41] Navendu Jain, Michael Dahlin, and Renu Tewari. Taper: Tiered approach for
eliminating redundancy in replica synchronization. In FAST, 2005.

[42] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al.
B4: Experience with a globally-deployed software defined wan. In ACM SIG-
COMM Computer Communication Review, volume 43, pages 3–14, 2013.

[43] Purushottam Kulkarni, Fred Douglis, Jason D LaVoie, and John M Tracey.
Redundancy elimination within large collections of files. In Usenix Annual
Technical Conference, 2004.

[44] Erwin Leonardi and Sourav S Bhowmick. Xanadue: a system for detecting
changes to xml data in tree-unaware relational databases. In SIGMOD, pages
1137–1140, 2007.

[45] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg
Trezise, and Peter Camble. Sparse indexing: Large scale, inline deduplication
using sampling and locality. In FAST, 2009.

[46] Joshua P. MacDonald. File system support for delta compression. Master’s
thesis, University of California, Berkeley, 2000.

[47] Udi Manber et al. Finding similar files in a large file system. In Proceedings
of the USENIX Winter 1994 Technical Conference, 1994.

[48] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication.
In FAST, 2011.

[49] Sanjay Mishra. Data compression: Strategy, capacity planning and best prac-
tices. SQL Server Technical Article, 2009.

[50] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth
network file system. In SOSP, 2001.

[51] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Al-

80

gorithms, 51(2):122–144, 2004.

[52] Meikel Poess and Dmitry Potapov. Data compression in oracle. In VLDB,
pages 937–947, 2003.

[53] Himabindu Pucha, David G. Andersen, and Michael Kaminsky. Exploiting
similarity for multi-source downloads using file handprints. In NSDI, 2007.

[54] William Pugh. Skip lists: A probabilistic alternative to balanced trees. In
Workshop on Algorithms and Data Structures, pages 437–449. Springer, 1989.

[55] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage.
In FAST, 2002.

[56] Michael O Rabin. Fingerprinting by random polynomials.

[57] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong
Liu, Guy M Lohman, et al. Db2 with blu acceleration: So much more than
just a column store. VLDB, 6(11):1080–1091, 2013.

[58] Sherif Sakr. Xml compression techniques: A survey and comparison. Journal
of Computer and System Sciences, 75(5):303–322, 2009.

[59] Philip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. Wan-optimized
replication of backup datasets using stream-informed delta compression. In
FAST, 2012.

[60] Philip Shilane, Grant Wallace, Mark Huang, and Windsor Hsu. Delta com-
pressed and deduplicated storage using stream-informed locality. USENIX
Hot Storage, 2012.

[61] Neil T Spring and David Wetherall. A protocol-independent technique for
eliminating redundant network traffic. ACM SIGCOMM Computer Communi-
cation Review, 30(4):87–95, 2000.

[62] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti. id-
edup: Latency-aware, inline data deduplication for primary storage. In FAST,
2012.

81

[63] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O’Neil, et al. C-store: a column-oriented dbms. In VLDB, pages 553–564,
2005.

[64] Torsten Suel and Nasir Memon. Algorithms for delta compression and remote
file synchronization. Lossless Compression Handbook, 2002.

[65] D. Teodosiu, Y. Gurevich, M. Manasse, and J. Porkka. Optimizing file replica-
tion over limited bandwidth networks using remote differential compression.
Tech. Rep. MSR-TR-2006-157, Microsoft Research, 2006.

[66] Walter F Tichy. Rcs–a system for version control. Software: Practice and
Experience, 15(7):637–654, 1985.

[67] Niraj Tolia, M. Satyanarayanan, and Adam Wolbach. Improving mobile
database access over wide-area networks without degrading consistency. In
Mobisys, 2007.

[68] Dimitre Trendafilov, Nasir Memon, and Torsten Suel. zdelta: An efficient delta
compression tool. Technical Report TR-CIS-2002-02, Polytechnic University,
2002.

[69] A. Tridgell. Efficient algorithms for sorting and synchronization. In PhD
thesis, Australian National University , 2000.

[70] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. Wikipedia work-
load analysis for decentralized hosting. Computer Networks, 53(11):1830–
1845, 2009.

[71] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smal-
done, Mark Chamness, and Windsor Hsu. Characteristics of backup workloads
in production systems. In FAST, 2012.

[72] Yuan Wang, David J DeWitt, and J-Y Cai. X-diff: An effective change detec-
tion algorithm for xml documents. In ICDE, pages 519–530, 2003.

[73] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Silo: A similarity-locality based
near-exact deduplication scheme with low ram overhead and high throughput.

82

In USENIX Annual Technical Conference, 2011.

[74] Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, Nitin Gupta,
Michael A Kozuch, and Gregory R Ganger. Springfs: bridging agility and
performance in elastic distributed storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST 14), pages 243–255,
2014.

[75] Lawrence L You, Kristal T Pollack, and Darrell DE Long. Deep store: An
archival storage system architecture. In ICDE, pages 804–815, 2005.

[76] Benjamin Zhu, Kai Li, and R Hugo Patterson. Avoiding the disk bottleneck in
the data domain deduplication file system. In FAST, 2008.

[77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on information theory, 23(3):337–343,
1977.

[78] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar
ram-cpu cache compression. In ICDE, pages 59–59, 2006.

83

	1 Introduction
	1.1 Thesis Statement
	1.2 Contributions
	1.3 Outline

	2 Background and Related Work
	2.1 Need for Data Reduction in DBMSs
	2.1.1 Database Storage Usage
	2.1.2 Replication for Distributed DBMSs
	2.1.3 Network Bandwidth for Replication

	2.2 Why Dedup for Database Applications?
	2.2.1 Compression Alone is Insufficient
	2.2.2 Sources of Redundancy

	2.3 Similarity-based Dedup vs. Exact Dedup
	2.3.1 Chunk-based Dedup
	2.3.2 Better Compression with Similarity-based Dedup

	2.4 Categorizing Dedup Systems
	2.5 Additional Related Work
	2.5.1 Deduplication
	2.5.2 Database Compression
	2.5.3 Delta Compression
	2.5.4 Similarity Detection
	2.5.5 My Other Work

	3 Deduplication Workflow in dbDedup
	3.1 Feature Extraction
	3.2 Index Lookup
	3.3 Source Selection
	3.4 Delta Compression

	4 Mitigating Deduplication Overhead
	4.1 Encoding for Online Storage
	4.1.1 Two-way Encoding
	4.1.2 Hop Encoding

	4.2 Caching for Delta-encoded Storage
	4.2.1 Source Record Cache
	4.2.2 Lossy Write-back Delta Cache

	4.3 Avoiding Unproductive Dedup Work
	4.3.1 Automatic Deduplication Governor
	4.3.2 Adaptive Size-based Filter

	5 Implementation
	5.1 Integration into DBMSs
	5.1.1 Integration into Storage and Replication Components
	5.1.2 Integration into Replication Component

	5.2 Indexing Records by Features
	5.3 Delta Compression

	6 Evaluation
	6.1 Workloads
	6.2 Compression Ratio and Index Memory
	6.3 Runtime Performance Impact
	6.4 Dedup Time Breakdown
	6.4.1 Performance with limited bandwidth:

	6.5 Effects of Caching
	6.5.1 Source Record Cache
	6.5.2 Lossy Write-back Cache

	6.6 Failure Recovery
	6.7 Tuning Parameters
	6.7.1 Sketch Size
	6.7.2 Hop Distance
	6.7.3 Anchor Interval

	6.8 Sharding

	7 Conclusion and Future Directions
	7.1 Conclusion
	7.2 Future Directions
	7.2.1 Client-side Deduplication
	7.2.2 Similarity-informed Sharding
	7.2.3 Field Name Compression in Document Databases

	Bibliography

