SkyeF'S:
Distributed Directories using Giga+ and PVFS

ANTHONY CHIVETTA, SWAPNIL PATIL & GARTH GIBSON

anthony @ chivetta.org, {swapnil.patil , garth.gibson} @ cs.cmu.edu

CMU-PDL-12-104
May 2012

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

There is growing set of large-scale data-intensive applications that require file system directories to store
millions to billions of files in each directory and to sustain hundreds of thousands of concurrent directory
operations per second. Unfortunately, most cluster file systems are unable to provide this level of scale and
parallelism. In this research, we show how the GIGA+ distributed directory algorithm, developed at CMU,
can be applied to a real-world cluster file system. We designed and implemented a user-level file system, called
SkyeF'S, that efficiently layers GIGA+ on top of the PVES cluster file system. Our experimental evaluation
demonstrates how an optimized interposition layer can help PVFES achieve the desired scalability for massive

file system directories.

1 Overview

PVES, the Parallel Virtual File System, stores all metadata for a particular directory on a single
metadata server[2] resulting in poor scalability in the case of large or high traffic directories. Giga+
is a scheme for partitioning directory metadata across a set of servers while still maintaining per-
formance for small directories.[1] SkyeFS implements the Giga+ algorithm on top of an unmodified
PVES file system.

SkyeF'S consists of a client (skye_client) which functions as a FUSE filesystem and a server
(skye_server) which provides synchronization for metadata operations, controls directory place-
ment and coordinates splitting.[5]

As a directory grows, Giga+ incrementally splits the directory into multiple partitions which
are load-balanced across available servers. In SkyeFS, we represent each partition as a distinct
PVFS directory. A SkyeF'S server located on the same host as each PVFS metadata server (MDS)
provides synchronization and coordination.

2 Implementation Overview

We chose to implement Giga+ as an overlay filesystem on top of PVFES, instead of modifying PVFES
directly to keep the implementation small and simple. FUSE makes developing a VFS-compatable
filesystem easy by removing the need to write a kernel-mode filesystem drier. Additionally, the
pvfs2fuse application distributed with the PVFS source provides an example of how to implement
FUSE operations using PVFS. However, unlike pvs2fuse, we use the lowlevel FUSE API. This
allows us to directly specify PVFS handles as the inode numbers returned to the kernel, avoiding
extraneous pathname resolution in the client.

In PVES, every object is assigned a PVFS metadata handle and each PVFES server is statically
assigned a range of handles for which it is responsible. Directory entries are stored with the
directory’s metadata on the server responsible for its metadata handle. We exploit this property
of PVFS to control metadata placement for each Giga+ partition.

2.1 Filesystem Layout

SkyeF'S establishes a direct mapping between Giga+ partitions and a set of PVFS directories. This
allows us to use Giga+ for bothload-balancing and to keep directory size small. Rename operations
in PVFS are relatively cheep as they only move object metadata and not entire files. This limits
the cost of the extra renames required by this storage scheme. In systems without efficient rename,
a single directory per metadata server might be used instead.

When a logical directory is created, we also create a PVFS directory on the same server called
“p00000” inside the logical directory to represent the first Giga+ partition. When this partition
splits, a new directory “p00001” will be created adjacent to it to store the files in the new partition.

The PVFS client uses round-robin assignment for selecting the metadata server on which it
will create a new object. Unfortunately, the PVFES client API does not currently provide any way
to influence this server selection. Therefore, when creating PVFS directories for new partitions, we
must repeatedly create new directories until the resulting directory is on the desired server. Future
versions of SkyeF'S might cache these directories to limit extraneous creates.

[GlGAstate |

77 state | 1
-_L__Mi’g;;’;,’e; T Splithistory ;|
VPSS, bl

S ——
SkyEFS i§_ PVFS-OID =resolve(path
1 client,
read path to PVFS
Apps 0 PVFS servers

PVFS-cli Fervers

FUSE
\ network

from PVFS
clients

User

/big1/.P1
/big2/.P2

Figure 1. SkyeFS Architecture Diagram

struct skye_directory {

giga_mapping mapping;

int reference_count;

PVFS _object_ref PVFS_handle;

int splitting_index;
pthread_rwlock_t rwlock;

UT _hash_handle hashtable_handle;

Figure 2. Giga+ Directory Metadata

uoneasd A103d3.1p/31y

SkyeFS_RESOLVE (/a/b/c.txt) returns PVFS Handle H-®t

GIGA+ Client PVES client GIGA+ Server PVES Client

SkyefS_LOOKUP_RPC('/,)

it He :PVFS_szs_ lookup ('/;a)

Hb = PVES_sys: lookup (H?, P¥)

pvfsHandle (H) for /a/p¥

pvfsHandle (H®) for b/p" €= SkyefS_LOOKUP_RPC (H?, b) (Repeat above steps)

pvfsHandle (H™) for c.txt €= SkyeFS_LOOKUP_RPC (Hb, c.txt) (Repeat above steps)

Figure 3. SkyeFS Name Resolution

2.2 Client/Server Architecture

Giga+ has metadata that it must maintain in order to manage each directory’s partitions. SkyeF'S
uses a small server process, skye_server, located on each PVFS server to manage this metadata and
ensure consistency for the directories and partitions resident on that server. The skye_server has a
cache of skye_directory structures which store this metadata. This metadata can be regenerated
from PVFS at any time, allowing the skye_server to fail or evict items from its cache at any time
without the risk of leaving the system in an inconsistent state.

Each client runs a skye_client process that provides a FUSE filesystem and issues requests
to the skye_servers using ONC RPC and PVFS using the PVFS system interface.[4] For most
operations, the client is a simple adaption of the pvfs2fuse code to use the lowlevel FUSE API.
However, metadata operations which require path name resolution or object creation are forwarded
through the skye_server to prevent race conditions. To speed operation, the client also maintains
a cache of giga mappings for recently accessed directories.

For performance and load-balance reasons, locality between the skye_server process and the
PVEFS server to which requests are being issued is maintained whenever possible. Upon receiving a
RPC request, the server will first check if the partition to be accessed by the request is local. If not,
the server will return the error EAGAIN and provide the client with a copy of its own giga mapping
for the directory. Upon receiving this error, the client will read the provided mapping and merge
that information with its local version. The client will then reattempt the RPC to the new skye_-
server, as per the updated mapping. This ensures that locality is maintained and that the client’s
cached mapping will be updated to reflect new partitions.

The most important job of the skye_server is to prevent race conditions during splitting.
Any operation that must resolve a pathname (such as a lookup, create, or rename) needs to have
an accurate Giga+ bitmap for the directory so that they can operate on the correct partition.
By forwarding these operations to the skye_server, the server can ensure that these operations
proceed without interference from changing bitmaps. There do exist optimistic schemes that would
allow client applications to perform some of these operations without server involvement, however
we believe that they would incur unacceptable performance overhead and require significantly more
complex operations.

2.3 Path Resolution

The FUSE lowlevel API uses a lookup(inode, name) callback to perform path resolution. We
use an object’s PVFS handle as the FUSE inode to avoid keeping a lookup table on the client.
PVFS provides a PVFS_sys_ref _lookup(handle, name) which is analogous to the FUSE lookup
function. Our skye_server wraps this PVFS function to both resolve the Giga+ partition and
the object itself and exposes a lookup RPC to accomplish this. When the skye_client receives
a lookup callback from FUSE, it consults its cached bitmap (if any) and then makes an RPC call
to the responsible skye_server, retrying in the event that an EAGAIN is returned. By resolving
both the partition and requested object in the server, we avoid race conditions due to concurrent
splits.

As PVFS metadata handles do not change when their objects are moved between directories,
the handle returned by lookup is guaranteed to continue to be a valid reference to the object for
the duration of the object’s existence. This is true even if the partition holding an object splits or
the logical directory is moved elsewhere in the directory tree. As a result, we can safely return a
PVEFES handle to FUSE in the form of an inode umber.

2.4 Metadata Persistence

All of the metadata required by Giga+ is persisted directly in PVFS. Whenever possible, we prefer
to rederive metadata from PVFs instead of storing new Giga+ metadata. While this may come
at a performance cost, preventing opportunities for inconsistencies makes the system simple to
implement and highly resilient to failures.

The only filesystem-wide metadata is the server list. Each SkyeFS client and server queries
this information from PVFS directly. This allows the system administrator to change server host
names or add new servers by modifying only the PVFS configuration.

The most important piece of per-directory metadata is the Giga+ bitmap. This consists of bits
indicating the presence (or absence) of each possible partition, the server number of the zeroth server
and the number of servers at the time of creation. To determine the partitions present in a logical
directory, we issue a readdir () against the directory and parse the resulting directory names to
determine the partition. Future versions of SkyeF'S will use a different prefix for currently splitting
partitions to avoid prematurely adding these to the bitmap and to enable resuming splitting after
a failure. The zeroth server is always the server responsible for the logical directory. To support
server additions, the number of servers at creation can be stored as an extended attribute on the
directory.

2.5 Client Bootstrap

To avoid creating additional load on PVFS, the skye_client only loads a subset of the metadata
from PVFS. The first time a directory is accessed, it is assumed that there is only one partition.
The client can determine the identity of the zeroth server without incurring any PVFS operations.
If the client issues a RPC to the skye_server for the directory which results in an EAGAIN error,
it takes the bitwise OR of the current bitmap and the server provided bitmap, allowing the client
bitmap to be filled-in by the server without additional PVFES operations.

Populating the initial mapping in this way causes the lookup() code to always start at the
zeroth server in the cache-cold state. While this ensures that some progress towards finding the
correct server is always made, it has the potential to cause unbalanced load on servers which
host the zeroth partition for a popular directory. A future optimization might include having the

File Creation - SkyeFS_ CREATE(/a/b/foo.txt)

pvfsHandle (H®) for b €= SkyeFS_RESOLVE (/a/b/foo.txt)

SkyeFS_CREATE_RPC (H°, “foo.txt")

HPM = PVES_sys: lookup (Hb, PM)

HF = PVFS_sys_create (H™, file.txt’)

pvfsHandle (HF) for “foo.txt”

Figure 4. SkyeFS Create Procedure

skye_server provide a bootstrap bitmap to clients when returning a lookup () result for a directory
that is already cached on the server.

3 Filesystem Operations

3.1 Splitting and file creation

The skye_server provides a create() RPC for the skye_client to create files in a given directory.
As with all skye_server RPCs, only the server responsible for a partition will service create requests
for that partition. Each server manages splits for its partitions and coordinates operations that
happen concurrently with a split.

Splits are triggered in Giga+ when the partition size exceeds a threshold. The current splitting
status is maintained by the splitting _index field of the skye_directory structure. When no split
is happening, this field has the value -1; other times it has the number of the currently splitting
partition. Only one partition per directory may split at a time under this scheme, however this is
a desirable property for performance reasons.

The skye_directory structure contains a read-write lock which is used to synchronize changes
in the splitting state. Operations that act on the directory, such as lookup and create, take a read
lock for their duration. When a partition is to be split, the write lock is taken, the splitting index
updated, and then the write lock is dropped. Similarly, when splitting is complete, the write lock
is taken while updating the splitting index. This scheme ensures that each operation acting
on a directory has a consistent view of the splitting state throughout the operation. Without
this synchronization, a complete bitmap comparison would be required to determine if a split had
interfered with a concurrent operation making retry and recovery complex. The read-write lock is
initialized with the PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP option to prevent starving
writers.

With a one percent probability, we evaluate the partition of a new object at the end of each
create operation to see if the partition needs to be split. This check is implemented using the
PVFS getattr operation which will return the number of directory entries in a directory. If the
directory size is greater than the split threshold, the partition is added to a queue of partitions to
split and the create call returns.

Fach skye_server has a dedicated thread for splitting partitions. This thread waits on a
condition variable associated with the split queue. When a partition is added to the queue, the
adding thread signals on the condition variable to wake up the splitter thread. Upon waking, the
splitter thread will iterate through the queue, confirming that the partitions are still over threshold

and splitting them if needed.

To split a partition, the splitter thread performs repeated readdir operations on the partition
to determine the set of candidate entries. For each entry, it hashes the name to determine if the
object is to be moved to the new partition and, if so, moves the entry using the PVFS rename
operation. This process continues until a complete readdir of the directory finds no new entries
to move. In practice, this usually requires three passes. When the split is complete, a bucket_add
RPC is sent to the server responsible for the new partition. This RPC will cause the new server to
add the partition to its bitmap and, therefore, assume responsibility for the partition.

While a split is occurring, any thread that accesses the directory will notice that splitting -
index is not set to -1 allowing the operation to modify its behavior to operate correctly despite the
split. In the case of object creation, objects are created in the child partition if that is where they
would be migrated. In the case of lookup, both the child and parent partitions are checked for the
object.

We use a separate splitting thread to allow splitting to take place asynchronously with respect
to the triggering create operation. Our locking semantics allow filesystem operations to continue
on a partition during its split. These features can result in significantly improved performance over
implementations that must block all operations during a split.

3.2 Directory Creation

In most respects, mkdir is implemented identically to create. When the skye_server creates a
directory it also creates that directory’s first partition. No additional work is done at creation time
to setup Giga+ metadata as the server which creates the directory is usually not the zeroth server
for the new directory. The first time the new directory is accessed, the zeroth server will load the
Giga+ metadata as if it was simply an old, but empty, directory. In the event that a server fails
between creating a directory and its zeroth partition, the directory will be in an inconsistent state.
However, this can be easily repaired by the server when such a directory is first accessed.

3.3 Object Removal

Removing a file is a relatively simple operation, we simply issue a PVFS remove for the file.
Currently, we do not remove empty partitions or coalesce partitions which shrink to below the split
threshold.

However, rmdir presents a challenge because the directory removal must be coordinated be-
tween all servers which are responsible for a partition of the directory. Additionally, we must ensure
that the remove operation on a directory will fail if there exist any files in the directory.

To coordinate removal of a directory, we implement a server to server RPC call called bucket_-
remove. The client attempting to remove a directory will send a remove RPC to the server holding
the directory entry for the directory. The server will then issue a bucket_remove RPC for each
bucket in descending order (i.e. the highest numbered bucket first).

When a server receives this call it will attempt to remove the specified partition by issuing a
PVEFS remove for the partition. If the operation succeeds then the partition will be removed from
the owner’s bitmap and the owner will return a positive response to the caller. The caller will also
remove the partition from its bitmap and then issue the next bucket_remove.

If the PVFS remove fails (for any reason other than ENOENT) the partition will remain in the
bitmap and a negative response will be returned to the server. The coordinating server will then
halt the operation and return the error to the client. In this case care must be taken to ensure that
the system is left in a consistent state. By removing the partitions in descending order we ensure

Directory scans — SkyeFS_READDIR(/a/b/)

pvfsHandle (H?) for b €= SkyeFS_RESOLVE (/a/b/)

SkyeFS dient uses the PVFS readdir to get the list of partitions {P,, P;, P,,P; ... }in a directory
PVFS_sys_readdir (H, ...)
—»

—

pvfsHandle (H™) for b €= SkyeFS_RESOLVE (b/P,) (for all partitions returned above)

SkyeFS dient uses the PVFS readdir on:all paritions returned above

PVES_sys_readdir (%, ...)
—

—

Figure 5. SkyeFS readdir()

that we always remove the child of a split before its parent. Therefore, each intermediate bitmap
(produced between bucket_remove () calls) is a valid bitmap in itself.

However, for a client to behave correctly after an aborted rmdir operation, we need a mech-
anism to remove the deleted partitions from the client bitmap. As the standard merge operation
performed by the client does a logical OR of the old and new bitmaps it is unable to handle a
removal. Instead, we rely on a fail safe mechanism. If a client receives an EAGAIN from a server
but merging the returned bitmap does not add any new partitions, the client will assume that a
partition was removed and replace its bitmap with the server provided bitmap. This behavior is
not currently implemented in SkyeF'S, but may also allow for removal or coalescing of partitions as
a directory shrinks.

3.4 Rename

The rename operation is also challenging because it must operate on two distinct objects that
may not be located on the same server. To solve this we use an optimistic retry strategy. The
skye_server implements a partition RPC that is similar to lookup but instead of returning the
handle of the requested object it returns the handle of the encompassing partition. The client uses
partition to determine the handle of the source’s parent partition. This handle (and the source
and destination file names) are passed to the destination partition’s skye _server. The skye -
server will attempt to move the file using the provided source handle and name into the correct
destination partition.

In the event that a split has happened between the partition call and the rename call,
causing the source partition to change, the rename will return ENOENT. The client will then retry
the partition RPC to see if the partition’s handle has changed. If so, the rename is retried with
the new handle.

This technique eliminates the need for any locks to be held across multiple RPC calls but is
vulnerable to starvation in the event of high rates of splitting. We believe starvation is unlikely to
occur in practice.

File 1/0 operations — read, write, getattr, etc.

pvfsHandle (H) for “bar.txt” €= SkyeFS_RESOLVE (/a/b/bar.xt)

SkyeFS dlient uses the PVFS handle to issue a PVFS 10 call (for data reads/writes, attribute reads)
PVES_sys_10 (Ho=r, ...)
—_—

—

Figure 6. SkyeFS IO Operations

3.5 Directory Listing

To simplify readdir and ensure correct semantics, the skye_client implements the actual directory
reading during the FUSE opendir callback at which point the contents of the directory are loaded
into an array from which each subsequent readdir command is serviced.

Because each Giga+ partition is implemented as a distinct PVFS directory, it would be very
difficult to implement a fully consistent readdir. Instead, we make a best effort and avoid synchro-
nization. When the skye_client receives an opendir call it first issues a PVFS readdir on the
logical directory itself to get a list of partitions (both complete and splitting). The client then iter-
ates through each of these partitions and issues a PVFS readir for each partition, concatenating
the results.

While this technique is prone to returning inconsistent results in the case of concurrent mod-
ifications, it places a minimum load on the PVFS servers. However, it is important to note that
this is only an issue for directories larger than the split threshold and most directories will fall well
below this threshold. In the future, skye_client could aggressively fetch directory entries from
multiple PVFS servers in parallel to complete the readdir more quickly.

3.6 Other Operations

All other operations are relatively straightforward modifications of their pvfs2fuse counterparts
with the PVFS lookup operation replaced by our RPC. This includes both data operations such
as read and write as well as metadata operations like stat and chmod. Because we resolve all
objects to PVFS handles inside their Giga+ partitions, these operations can proceed on the client
without concern for future splitting.

4 Other Considerations

4.1 Multi-step Lookup

In the current system, a lookup call can only descend one step in a path traversal. Future work
could extend the operation to provide the entire path to the skye_server and allow the server to
descend as many directories in the path as it owns. This would be of limited value in the current
system where the servers for a parent and child directory are chosen independently. At the cost
of load balancing, parent and child directories could be placed often on the same server to allow
this mechanism to speed directory lookups. One example scheme to achieve this would be to place
all new directories on the same server as their parent. When a directory splits the first time the
zeroth server would be moved to a new server chosen at random. This would have the effect of

keeping strings of small directories on the same server while still ensuring that large directories are
load-balanced.

4.2 Server Addition

PVEFS includes very limited support for server addition. While new servers can be added to the
configuration file for a filesystem and brought online they must take a previously unoccupied part
of the handle space and there exists no mechanism for automatically migrating either data or
metadata to the new server. The current SkyeFS implementation includes no specific provisions
for addition of servers, however future work could use SkyeFS to support the migration of some
data to new PVFS MDS. In particular, by splitting overfull but already load-balanced directories
to these new servers some load can be moved to the servers in already existing directories. Because
SkyeFS will store the number of servers existing at the time of creation in each directory as an
extended attribute of that directory, no specific mechanism is needed to add a new server other
than adding the server to the PVFS cluster and restarting all skye_server processes.

4.3 Fault Tolerance

PVES is not a redundant file system and has very limited support for fault tolerant operation. As
a result, we do not make any attempts to provide redundant services or fall over support in the
case of failures. We assume that skye_server processes and the PVFS servers fail together and
that any failure will render the system unusable until resolved.

However, we do make every effort to leave the system in a consistant state at all times should
any component fail. Any skye process can fail at any time and the resulting state will be repaired
transparently upon restart. This is primarily due to the lack of additional SkyeFS metadata that
is required on top of the PVFES file system. By carefully controlling the sequence of actions we take
on the PVFS file system we are able to ensure that any state of PVFS is recognizable as either
complete or the result of an unfinished action which can then be resumed or aborted.

5 Correctness

To ensure correctness of the system, we tested against a modified version of FreeBSD’s fstest suite. [6]
Our version was limited to the tests for chflags, chmod, chown, mkdir, open, readdir, rename,
rmdir and unlink. We removed tests that required hard links, which SkyeFS does not support.

6 Performance Analysis

6.1 Method

Tests were performed on the Marmot cluster consisting of 128 nodes each with two single core
Opteron CPUs, 16GiB of RAM, one SATA disk and Gigabit Ethernet. PVFS was configured with
default settings. In production configurations, we expect that PVFS would be run on fast disk
arrays. To prevent the single 7200 RPM disks available from artificially limiting throughput, we
ran all experiments with PVFS configured to use a tmpfs for storage.[7] In each experiment, both
the clients and servers were located on the same set of machines

15000
I

— 32 servers, 320 client threads

— 16 servers, 160 client threads 4

10000

8 servers, 80 client threads

Creation Rate (files/s)
5000

0 200 400 600 80(
Time Elapsed (s)

Figure 7. SkyeFS Empty File Creation Throughput

6.2 File Creation

To test directory insert rates we started with an empty filesystem and created a single directory.
For each server, we started 10 clients simultaneously which all attempted to insert uniquely named
files into the directory. We recorded the overall rate of inserts in the entire system.

For 32 servers, the system reached a peak throughput of over 15k creates per second after 4
minutes and 30 seconds. For 16 servers, peak throughput was 8k creates per second after 2 minutes
and 25 seconds. And for 8 servers, peak throughput was 4k creates per seconds after 1 minutes
and 55 seconds.

This experiment provides the expected linear scaling of throughput after the system has become
load balanced. We believe the increased time required to get to a load-balanced state for the 32
server experiment is due to higher resource contention during the first few splits. Future work
might look at ways to quicken these first few splits in the event of very high load to prevent this
problem.

We note that the use of FUSE turns each mknod into a pair of lookup and mknod requests. The
use of the SkyeF'S operations directly, i.e. as part of a shared library, might be able to drastically
improve this performance by avoiding the superfluous lookup.

6.3 Readdir

One of the desirable properties of the Giga+ algorithm is that it keeps the overhead for a readdir
small in the case of small directories. To test this, we created directories of various sizes and
measured the time it took a single client to read all the entries in the directory. We repeated this
experiment with 8, 16, and 32 servers.

The client was able to complete a readdir for a directory with 1000 entries in 0.1 seconds. As
expected, this increased slightly super linearly as the number of entries and partitions increased.
In the case of 200k entries, a readdir took approximately 2.4 seconds. No significant difference in
performance was noted between the different server configurations.

10

SkyeF'S Readdir Performance

SN R L B N I B
L —— 8 Servers .
2 = —
L —— 16 Servers -
- B —— 32 Servers 7]
S~—" | .
(O —
E —
o= B .
& B i
—~
= = .
T 2 —
ol
& L .
Q - -
~ =]
w []
S
” paoa vy v by by T

50000 100000 150000 20001
Number of Files

Figure 8. SkyeFS Readdir Performance

Further work might improve upon this performance by issuing the readdir for each partition
in parallel.

6.4 FUSE Low Level API

Our initial prototype system used the standard FUSE “high level” API. This API provides a full
pathname in every callback. As a result, each mknod call in our file creation experiment required
resolving the PVFES path from the root of the filesystem. This created an excessive amount of
traffic on the server responsible for the filesystem root and bottlenecked the system. We were able
to resolve this problem by switching to the lowlevel API and running our benchmark utility from
within the directory in which the files are to be created.

6.5 SkyeFS Client and PVFS

Our initial prototype included a fully multi-threaded client. However, we quickly noticed that
executing many operations in parallel (e.g. using make -j8) would result in long stalls while
executing PVFS calls. To work around this problem, we currently run the client in the single
threaded FUSE mode.

The FUSE lowlevel API allows the filesystem to return from the callback without returning
a result to FUSE. After consulting with the PVFS developers, it has been suggested that using
this functionality along with the asynchronous PVFS operations might allow concurrent operation
without experiencing these stalls. This was not attempted for this project because of the large
engineering effort required to convert each operation to persist its state across asynchronous PVFS
calls.

11

6.6 SkyeFS Server and PVFS

The skye_server is based on the initial Giga+ prototype and uses a single thread to handle
each incoming RPC connection. As a result, it is easy in our experiments for upwards of 100 client
operations to be in flight concurrently. The PVFS system interface keeps an array of state machines
for all outstanding operations in the address space. All threads which have an in-flight operation
attempt to take a lock on this array and the thread which acquires the lock drives progress on all
state machines in the array.

The first problem that results from this design is that the array is of limited size. Currently,
the PVFS code statically defines the array of state machines to be of length 256. If an incoming
operation would overflow this array, an assertion is tripped. To avoid tripping this assertion we
implemented flow control in the form of a semaphore. When the server starts the semaphore is
initialized to a small value. When a thread receives an RPC request, it downs the semaphore
before issuing any PVFS requests. When the thread completes its work, it will up the semaphore.
In this way, we prevent more than the semaphore’s initial value threads from issuing PVFS requests
concurrently. In practice, we found that we needed to set this initial value as low as 32 to avoid
tripping the assert.

The other problem with the PVFES client design is that it does not guarantee fairness to the
requests on the array. This means that while a request may have completed, the requesting thread
may not notice this for a very long time. This introduces significant jitter into client response
times and slows the entire system’s throughput as a client is unnecessarily blocked on a server
response. To solve this problem, we further restrict the number of concurrent operations in flight
by initializing our flow control semaphore to 12. Our testing indicated that this value is optimal in
the 32 server case.

6.7 Split Performance

During a split, the split thread must issue readdir calls to the partition which is being split. While
this is happening, additional creates may be issued against that partition. We found that without
external synchronization, this pattern of requests results in very poor PVFS performance.

We wrote a test program to isolate this particular workload. The program connects to a
provided PVFS server using the system interface. It then spawns 10 threads which all create files
in that directory until 5000 files are created. It also spawns another thread that will list out the
contents of that directory repeatedly, reporting the time taken each time. The program supports
three synchronization models for the threads to test different levels of interleaving of requests.

In the unsynchronized model all threads are allowed to run without any synchronization. On
our test system, this required 42 seconds and the directory listings took between 2 and 12 seconds
to complete with a median of 7 seconds.

In our create-synchronized model, each of the 10 threads that issue creates synchronizes on a
single mutex such that only one create is ever in flight at a time. With this model, 41 seconds were
required to create the files and the listings took between 2 and 20 seconds to complete.

In our final, everything synchronized model, all create threads and the readdir thread synchro-
nized on the same mutex. With this model, the creates take 43 seconds to complete and all listings
take less than 200ms.

To overcome the PVFS stalls in the unsynchronized and create-synchronized models, our split-
ter thread initially drops the write lock after updating the splitting index but then reacquires
the write lock for each set of readdir + rename operations. This allows some degree of concur-
rency (outstanding operations can complete between each set of operations) while still preventing

12

the observed stall.

7 Related Work

SkyeFS implements the Giga+ technique for distributing filesystem metadata presented in [1]. As
discussed in [1], Giga+ builds on a wide range of previous work on distributed file systems and
data structures. We adapt the code from the initial Giga+ prototype for use on a distributed file
system (DFS) and show that the scalability results seen by the initial prototype can be seen when
Giga+ is implemented in the context of a DFS.

SkyeFS also builds on the FUSE module for the Linux kernel and the PVFS client library to
provide filesystem services and consume PVFS services respectively. The pvfs2fuse application
distributed with PVFS provided valuable insight on how to bridge between the FUSE API and the
PVFS API. When possible, portions of code from this application were used verbatim.

OrangeF'S is a native implementation of Giga+ in PVFS.[3] OrangeFS shows similar scaling
performance to SkyeFS, however it lacks the ability to incrementally grow the number of partitions
in a directory.

8 Conclusion

We successfully implemented Giga+ distributed directories on top of PVFS. We demonstrated
that the capabilities provided by PVFS are sufficient for a high performance implementation of
distributed directories without requiring modification to PVFS itself. This shim technique may
be adaptable to implementation of distributed metadata on other distributed filesystems. We’ve
shown that Giga+ is capable of achieving near linear speedup once a directory is at load balance.
We'’ve also demonstrated that Giga+ preserves the desired responsiveness properties of PVFS in
the case of small directories. We note that future work is needed to overcome performance problems
in PVFS exposed by the SkyeFS workloads.

Acknowledgements

We'd like to thank Sam Lang, Phil Carns and Rob Ross for their advice and assistance in working
with PVFS. This material is based upon research supported in part by the Notional Science Founda-
tion under contract NFS CNS-1042543 (PRODE) and the Los Alamos National Lab under contract
number DE-AC52-06NA25396 (IRHPIT). We also thank the members and companies of the PDL
Consortium (including Actifio, American Power Conversion, EMC Corporation, Emulex, Facebook,
Fusion-io, Google, Hewlett-Packard Labs, Hitachi, Huawei Technologies Co., Intel Corporation,
Microsoft Research, NEC Laboratories, NetApp, Inc., Oracle Corporation, Panasas, Riverbed,
Samsung Information Systems America, Seagate Technology, STEC, Inc., Symantec Corporation,
VMware, Inc., Western Digital) for their interest and support.

Source Code

The source code for SkyeFS is available under the terms of the GNU Lesser General Public License.
It can be downloaded at https://github.com/achivetta/skyefs.

13

https://github.com/achivetta/skyefs

References

1]

Patil, S. and Gibson, G. Scale and Concurrency of GIGA+: File System Directories with
Millions of Files. Proceedings of FAST ’11: 9th USENIX Conference on File and Storage Tech-
nologies.

P. H. Carns, R. B. W. B. Ligon III, and R. Thakur. PVFS: A Parallel File System For Linux
Clusters. Proceedings of the 4th Annual Linux Showcase and Conference, 2000.

S. Yang, W. Ligon, and E. Quarles. Scalable Distributed Directory Implementation on Orange
File System. 7th IEEE International Workshop on Storage Network Architecture and Parallel
I/0, 2011.

Srinivasan, R. RPC: Remote Procedure Call Protocol Specification Version 2. RFC 1831, Aug.
1995.

FUSE. Filesystem in Userspace. http://fuse.sf.net
Pawel Dawidek. fstest from FreeBSD. http://people.freebsd.org/~pjd/fstest/

tmpfs: a file system which keeps all files in virtual memory. http://www.kernel.org/doc/
Documentation/filesystems/tmpfs.txt

14

http://fuse.sf.net
http://people.freebsd.org/~pjd/fstest/
http://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
http://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt

	Overview
	Implementation Overview
	Filesystem Layout
	Client/Server Architecture
	Path Resolution
	Metadata Persistence
	Client Bootstrap

	Filesystem Operations
	Splitting and file creation
	Directory Creation
	Object Removal
	Rename
	Directory Listing
	Other Operations

	Other Considerations
	Multi-step Lookup
	Server Addition
	Fault Tolerance

	Correctness
	Performance Analysis
	Method
	File Creation
	Readdir
	FUSE Low Level API
	SkyeFS Client and PVFS
	SkyeFS Server and PVFS
	Split Performance

	Related Work
	Conclusion

