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Abstract 
 

Modern File Systems provide scalable performance for large file data management. However, in case of 
metadata management the usual approach is to have single or few points of metadata service (MDS). In the current 
world, file systems are challenged by unique needs such as managing exponentially growing files, using filesystem 
as a key-value store, checkpointing that are highly metadata intensive and are usually bottlenecked by the 
centralized MDS schemes.  

To overcome this metadata bottle-neck, we evaluate a scalable MDS layer for the existing cluster file systems 
using Giga+ -a high performance distributed index without synchronization and serialization and TableFS -a file 
system with an embedded No-SQL database using modern key-value pair levelDB. We take layered approach to 
scale the metadata performance which does not need any hardware infrastructure upgrade in the existing storage 
clusters. In addition to providing scalable and increased metadata performance by several folds, avoiding metadata 
hotspots, packing small files, our MDS layer adds no-or-low performance overhead on the data throughput and  
resource utilizations of the underlying cluster. 
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1 Introduction 
Modern distributed file systems serving “Big Data”, and running on some of the largest clusters, including 

HDFS [7], GoogleFS [6], PanFS [8], and PVFS [5] are experiencing metadata-bottleneck due to centralized 
metadata server schemes. Most of these file systems bifurcate metadata management from the scalable storage of 
file data. This design can scale the storage capacity and data access bandwidth. However, since they have a 
centralized metadata management, the metadata access rate still remains a bottleneck. 

This inherent metadata scalability handicap limits metadata intensive workloads such as checkpoint-restart, key-
value storage, gene sequencing, image processing[9], phone logs for accounting and billing, and photo storage [12]. 
The checkpoint-restart workload, where many parallel applications running on, for instance, ORNL’s CrayXT5 
cluster (with 18,688 nodes of twelve processors each) periodically write application state into a file per process [13, 
14]. Applications that do this per-process checkpointing are sensitive to long file creation delays because of the 
generally slow file creation rate. Other than these specific workloads, in general, studies have shown that about 75% 
of the file system operations performed in a data center require access to file metadata. [10][11].  

To adapt to the needs of metadata intensive applications, the parallel file system makers are now integrating 
scalable metadata techniques within the file system. Lustre[20] community's Clustered Metadata Server (CMD) 
project, scaling of GoogleFS to support 50 million+ files in the next version, ColossusFS in order to use BigTable 
[16] to provide a distributed file system metadata service are some of the major projects in this context.  

The Lustre community considers the performance bottleneck that constraints the file system throughput arising 
from having a single MDS. With a single MDS, Lustre metadata operations can be processed only as quickly as 
what a single server and its backing filesystem can manage. Lustre community has proposed CMD architecture 
which allows for multiple  metadata servers sharing the metadata workload. Though CMD has complex mechanisms 
that can impact the throughout like making a distributed metadata transaction atomic via global locking, this is a 
noteworthy approach towards scaling metadata performance. 

However, these adaptations require an increase in the infrastructure to support new and more MDS. “Scalable” 
in the context of filesystem-built-in MDS usually refers to improving metadata performance near-linearly with the 
number of dedicated MDS servers added in addition to the existing ones in the cluster.  The scalable MDS solutions 
also often come with an additional performance overhead of maintaining metadata consistency across the distributed 
MDS, synchronizing the updates, serialization of critical sections etc.  

It would be a desirable solution to have a scalable metadata service without infrastructure upgrade, 
synchronization and serialization overhead. Perhaps every node in a cluster could share the metadata workload in 
addition to the regular data workload yet not affecting the file system data throughput. In other words, layering a 
scalable and a distributed metadata service over an existing file system cluster, such that every node contributes to 
the metadata workload, yet maintaining the data throughput and consistency model would be an ideal choice. 

We evaluate such a layered, scalable and distributed metadata management scheme using Giga+[1] -a high 
performance distributed index without synchronization and serialization. TabeFS[2] -a file system with an 
embedded No-SQL database using modern key-value pair levelDB[3]. Together, Giga+ and TableFS offer a fast, 
scalable and distributed metadata service layer for the existing cluster file systems, while still letting the underlying 
file system manage the file data operations at its highest throughput, and also manage features such as replication, 
striping etc. 

 
2 Overview 

In this effort, we scale the metadata performance of a PanFS storage cluster by layering Giga+TableFS above it. 
Layering of the Giga+Tables means that each node in a compute cluster (not the PanFS storage cluster), that mounts 
PanFS in the backend, runs one instance of the Giga+ server and mounts atleast one Giga+ client. Giga+ client 
mount point is the gateway to access the underlying PanFS storage cluster. All applications in the nodes accessing 
the under lying PanFS storage do so via their individual Giga+ client mount points.  Essentially, we layer Giga+ 
across our compute cluster without any modification to the backend storage cluster. The Fig 2.1 illustrates 
Giga+TableFS layering over a 3 node compute cluster. As we can see there is no modification needed to the 
underlying storage cluster to support this layering. 
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Fig 2.1: Layering Giga+TableFS metadata service over a cluster backed by PanFS storage 

 
2.1 Centralized metadata management of PanFS 

In a PanFS storage cluster [17], Director Blades are the metadata managers that centralize metadata service to a 
set of Storage Blades – object storage devices. A typical configuration involves one Director Blade per tens of 
Storage Blades.  PanFS stores file metadata in object attributes on two of the N objects used to store the file’s data. 
Thus, every file operation involves accessing a Director Blade and may additionally involve two more accesses to 
the Storage Blades. Since a single Director Blade manages metadata on its set of Storage Blades, the metadata 
management is centralized. 

A PanFS storage cluster can have multiple Director Blades to achieve greater metadata performance. However, 
a particular volume is assigned to a particular director blade. This means that all the metadata accesses to any file in 
a volume will have to be served by a single Director Blade, which serves that volume.  

 
2.2 Layering Giga+ TableFS for scalable metadata performance 

While layering Giga+ TableFS metadata service layer over cluster file systems (in this particular effort, PanFS), 
we consider evaluation of the following concerns: 

1) What is the metadata performance gain? 
2) What is the impact of layering on the underlying file system's data throughput? 
An ideal layering would result in scalable metadata performance, which we obtain from the stand-alone Giga+ 

TableFS directory service; as well as the highest data throughput that is possible from the storage cluster without 
layering. The layering should also solve problems like metadata hotspots by load balancing across all the nodes in 
the storage cluster. Finally, additional overhead of running Giga+ servers and clients to accomplish the layering 
should be minimal. 
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We evaluated Giga+ TableFS FUSE [15] prototype over an 8 node compute cluster mounting a PanFS storage 
gear in its backend. Our evaluation includes both qualitative and quantitative reasoning of the above concerns. 
During the course of our evaluation, we propose and implement 4 techniques to better integrate the metadata service 
layer with the underlying file system for performance. 

 
3 What is the metadata performance gain? 

Giga+ TableFS in a stand-alone deployment [4] - without layering above PanFS, provides scalable metadata 
performance in terms of number of creates per second and stat lookups. The graph form the Giga+TableFS 
performance evaluation exercise shows that the absolute creates/sec rate in a single directory on a typical 8 node 
cluster should be around 25,000. Ideally, this rate should be sustained after layering. 

 

 
Fig 3.1: Scalable performance of Giga+TableFS: creates/sec rates [4] 

 
3.1 Limitations  

Sustaining the high metadata performance of Giga+TableFS over a PanFS cluster has some limitations arising 
due to properties of PanFS. 

1) The file create latency in PanFS is much more than that of Giga+. Creating an object on PanFS takes an 
update to one MDS and at least two OSDs; while in the best case, a "create” in Giga+ may be on just one node. This 
fact impacts creates/sec rate, if for every “create” by an application; we create an object in the underlying PanFS 
storage cluster. 

2) Centralization of metadata accesses to every directory. PanFS centralizes updates to a directory, which 
means that there cannot be concurrency to boost creates/sec rate within a single directory. Whereas in Giga+, since 
all metadata is stored as key value pairs in SSTables there can be any number of concurrent(but not conflicting) 
updates to a directory. 

3) Coarse grained allocation of volumes to MDS. In PanFS, a volume is mapped to a particular and single 
Director Blade that manages all the metadata of those volumes. Hence parallel updates to a set of volumes mapping 
to the same MDS are not scalable. 
 
3.2 Overcoming concurrency limitations  

We propose and evaluate 4 techniques for better layering the Giga+TableFS metadata service over PanFS. The 
techniques work around the centralization limitations of PanFS and can implemented within the Giga+ TableFS 
layer. We further demonstrate that these are critical in achieving scalable performance. 

 
3.2.1 Distributing same-directory metadata operations across volumes 

In order to scale the performance of parallel metadata operations, it is important to provide scope for parallelism 
by avoiding centralization. It would be an ideal case if every metadata operation by the applications gets routed to a 
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different MDS. Since Giga+TableFS adds a layer of indirection between the applications' operations and the actual 
operations at the PanFS cluster, there is a potential scope to provide for such parallelism. 

Giga+ incrementally splits a directory into partitions and offloads one of them to a new server for load 
balancing and parallelism. The idea is to make scope for more than just one server to process concurrent updates to 
the same directory. A configurable split threshold decides when to split a directory and the splitting process takes 
place without any serialization or synchronization between the Giga+ servers. The same idea of directory-partitions 
can be extended and applied when creating objects on PanFS as well. Splitting a large directory into multiple 
partitions and having different volumes in PanFS that are managed by different MDS serve those partitions, brings 
up the scope for same-directory metadata operations. 
 
3.2.2 Distributed file creation scheme for PanFS 

We propose to represent the Giga+ directories on PanFS as a group of directories that correspond to the Giga+ 
partitions. All files created in a particular Giga+ directory partition go to their respective-corresponding 
subdirectories on PanFS. Further, during every split in Giga+ which causes creation of a new partition, a new 
corresponding sub directory is created in a volume of PanFS that is mapped to a different MDS. 
 

 
Fig 3.2.2.1: Representing a Giga+ directory on PanFS 
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As illustrated in the Fig 3.2.2.1, a directory “foo” with 3 partitions by Giga+, is represented in PanFS by 
creating 3 subdirectories in 3 different volumes (managed by different MDS). Files in the partitions are created in 
their respective-corresponding PanFS volumes. Thus in this example, creates on different partitions are can be 
created in parallel in PanFS. This is the same level of concurrency provided by Giga+. 
 
3.2.3 Dispersing Metadata-Hotspots 

A large number of accesses to the same set of files within a single directory or a large number of mutations to a 
single directory can cause metadata hotspots. By extending the inherent mechanism of Giga+ to split a directory to a 
new server for load balancing, we create the files in different volumes in a distributed manner, hence alleviating the 
metadata hot spot problem. 

Creating a large number of files in a single directory can make it a hot-spot. Looking up metadata from such a 
large directory can cause performance degradation. By layering Giga+TeableFS, such hotspots can be avoided at the 
create step by creating a file in PanFS at path = “/dir_id/partition_id/file_name.” In Giga+, a directory is partitioned 
if the number of dentries in it exceeds a configurable “SPLIT_THRESHOLD” (default=8000). This feature is 
extended and used for evenly distributing the files across the underlying cluster file system. Including “partition_id” 
in the path name ensures that no directory of the underlying cluster file system has more than 
“SPLIT_THRESHOLD” files. 

 
3.2.4 Lazy File Creates and Small file packing 

We propose to delay the actual file creates on PanFS and instead just create the file entry on Giga+ TableFS. 
Later when the file is actually written or written beyond a particular threshold size, they file can be actually created 
on PanFS. This scheme hides the file creation latency into one of the write operations. This scheme has 2 different 
ramifications that can affect big performance gains for small files.  
1) Files below a particular threshold may not be created on PanFS at all. They could be stored as key-value 
pair within the Giga+TableFS. Since a create operation on PanFS is saved and the small file contents are stored 
efficiently in the leveldb SSTables (providing sequential disk read/write performance), small file throughput will be 
maximized. 
2) Beyond a particular threshold, the file can actually be created on PanFS and its contents in TableFS can be 
transferred to the newly created file on PanFS. This background processing between the initial create operation 
issued by the application and the actual creation on PanFS, can be utilized to share the simultaneous creates among 
server processes in the cluster.  

If 2 processes simultaneously create a file, the “creates” are absorbed by Giga+TableFS. Later, if they have 
different thresholds, their actual creates on PanFS happens at different times and thus avoiding the original 
simultaneous create competition. Having different/random thresholds for different processes can hence lead to a 
better timing-harmony of creates. 

 
3.3 Experimental evaluation of Metadata performance 

 
3.3.1 Experimental setup 

Our evaluation was performed on an OpenCirrus [18] compute cluster with a Tashi [19] Virtual Machine 
Cluster management system infrastructure. Each of our workload generating nodes was a Tashi Virtual Machine 
running on a dedicated physical machine. Each node mounted a PanFS client (Direct Flow) on a single mount point. 
The PanFS storage cluster itself had 5 shelves.  

Each of our nodes ran 1 instance of Giga+ Server. The Giga+ servers used TableFS internally to store the entire 
cluster’s metadata. The workload generating applications on our nodes used variable number of Giga+ client mount 
points, depending on the test case.  

The below tables provide complete configuration information of various entities – nodes, physical machines, 
Giga+ and PanFS storage cluster. 
 
Table 3.3.1.1: Compute Nodes  

Node type Tashi Virtual Machine 

Total no of nodes (Tashi virtual machine) 8 

Total no of physical machines 8 

Node(s)/Physical machine 1 (dedicated) 
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Table 3.3.1.2: System resources per Virtual Node 

Resource Configuration 

# CPUs 8 

CPU Type and Speed Intel 2.6 GHz 

Memory 14 GBytes 

NIC 1 Gig E  

Network MTU 1500 
 
Table 3.3.1.3: Giga+ configuration on each Node 

# of Giga+ Servers per node 1 
Giga+ Server split threshold 8000 
# of Giga+ Clients per node Variable (1 through 4) 
FUSE threading configuration Single Threaded (per Giga+ client) 

 
Table 3.3.1.4: PanFS storage cluster configuration  

Resource Configuration 

# of PanFS client (Direct Flow) mount 
points per node 

1 

# of PanFS volumes 100 

# of volumes per MDS 20 

# of Shelves 5 

# of MDS per shelf 1 

# of OSD per shelf 10 

Director Blades [MDS]  5 – A200e-12GB: Quad Core Xeon 1.73GHz, 
(1) 160GB drive, 
LAGG Network Interface 1 

Storage Blades [OSDs]  50 – A4000-8GB: Xeon 1.73GHz, 
(2) 2000GB drives, 
LAGG Network Interface 1 

 
3.3.2 Some commonly used terms explained 

node Tashi virtual machine. Each virtual machine runs on a 
dedicated physical machine. Every node mounts a PanFS 
client (Direct Flow) to access the PanFS storage cluster in the 
backend. 

application Workload generating process. For ex: program creating 100 
files and writing 4 GB to each. In case of multiple 
applications, they run in parallel. 

client Giga+ client. Every client is represented by an individual 
FUSE mount point. Each node can have multiple clients 
depending on the test case. Applications read/write to the 
mount points.  
We use multiple FUSE mount points on a single node to 
ensure that applications run in parallel irrespective of the 
multithreading configuration of FUSE. 

server Giga+ server. Each node runs 1 Giga+ server 
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3.3.3 Experimental approach and results 
The workload, against which the metadata performance is tested, includes:  

a) Creating thousands to millions of files (make_node test) in a single directory by parallel applications across 
multiple nodes. 

b) Stating the created files (stat_test).  
 

The parameters evaluated are: 
1) Creates/Sec  
2) Total time for stat_test on the created files.  
 
The tests were performed for various target schemes: 

1) Directly on PanFS, applications across multiple nodes– In this scheme of testing, applications across the 
nodes create files on PanFS via their node’s Direct Flow mount point. 

2) No Create-distribution – Giga+TableFS is layered above PanFS storage cluster. The applications create 
files via their individual clients. However, there is no file create-distribution as described in 3.2.2. 

3) With create-distribution, applications on same node – Giga+TableFS are layered above PanFS storage 
cluster. The applications create files via their individual clients. File create-distribution, as described in 
3.2.2, is employed. However, all the clients and the applications are on a single node. 

4) With create-distribution, applications across multiple nodes – Giga+TableFS are layered above PanFS 
storage cluster. The applications create files via their individual clients. File create-distribution, as 
described in 3.2.2, is employed. Giga+ clients and the applications are across multiple nodes. 

5) Stand-alone Giga+TableFS/Lazy creates 
a. Stand-alone Giga+TableFS - On file creation by an application, they are created only in the 

Giga+TableFS layer and not in the underlying PanFS storage cluster. 
b. Lazy creates - On file creation by an application, they are initially only created in the 

Giga+TableFS layer. Later on writing to the files, they are actually created in the underlying 
PanFS cluster. This  technique is described in 3.2.4 

 

 
Fig 3.3.2.1: mknod_test results for various target schemes 

 
We can see that the create-distribution (Schemes 3 and 4) to overcome PanFS's centralization of metadata 

accesses is critical to provide the scalable metadata performance of Giga+TableFS. Also since the metadata path in 
Giga+TableFS layered over PanFS is quite long (involves more than 1 network links in the worst case), it helps to 
have parallel applications across different nodes (Scheme 4) to create enough parallelism to create a “pipelining 
effect” which increases the overall metadata performance. Finally, Lazy-Creates provide the utmost creates/sec rate, 
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which is close to that of the stand-alone Giga+TableFS. High metadata performance of the stand-alone 
Giga+TableFS is provided by the efficient on-disk key-value storage of leveldb. 

Fig 3.3.2.2 illustrates the results of stat_test – running stat on a directory containing thousands of files from any 
one client on a node. We can see an improvement in the stat performance of PanFS after layering Giga+TableFS due 
to efficient key value storage by lelveldb. 
 

 
Fig 3.3.2.2: Stat test results for PanFS and Giga+TableFS layered over PanFS 

 
4 What is the impact of layering on the underlying file system's data throughput? 

While layering Giga+TableFS helps overcoming the metadata-bottleneck, it is also very important to ensure that 
the impact of the large file data performance is trivial. It would be an ideal case to have complete isolation of the 
data and metadata paths so that improving performance on one does not affect the other at all. However, since data 
modifications to files almost every time results in a metadata modification, complete isolations of the data and 
metadata paths becomes a non trivial system level problem. 

After the Giga+PanFS Layer processes a metadata operation, subsequent data operations need to be routed to 
reach the actual files. Similarly after completion of the data operations, metadata updates become impending. We 
have several stages in Giga+TableFS at which the metadata path could be split apart from data path. With respect to 
metadata updates after a data operation, having the Giga+ Servers proxy data to the applications (Path 1) along with 
the metadata could be a good choice. 
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Step 1: Applications query for metadata and data via syscalls 
Step 2: FUSE kernel module bounces off the syscalls to userspace Giga+ client 
Step 3: Giga+ client queries the Giga+ Server for both metadata and data 
Step 4: Giga+ Server relays metadata from lebelDB, and data from PanFS (via Direct Flow mount point) 
Step 5: Giga+ client returns the metadata and data to FUSE kernel module 
Step 6: FUSE kernel module returns the metadata and data to the applications 
 

Fig 4.1: Path 1, indirect data-access to the files via Giga+ servers. 
 
In this model – Path 1, Giga+ server is responsible for serving both data and metadata. The sequence of steps 

from 1 through 6 is taken for all metadata and data operations. 
Path 1 adds an extra link segment (Application to Giga+ server) to the datapath that otherwise would have been 

directly reaching the storage cluster otherwise. Since the applications query Giga+ clients (FUSE mounted) for data, 
there are 2 additional copies from the user space to kernel space and vice versa.  These overheads associated with 
Path 1 are expected to impact the data throughput and hence it may be desirable to have a more direct data path. 

In an attempt to avoid the additional network link between the application and its files, we could let the Giga+ 
client at the application's node proxy data from the underlying storage cluster (Path 2). The advantage of this 
approach is that the Giga+TableFS layer is still in the loop to complete updating the file metadata upon completion 
of the data operations, while still avoiding the extra network link latency. However, data copy overhead still exists in 
this model. 
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Step 1: Applications query for metadata and data via syscalls 
Step 2: FUSE kernel module bounces off the syscalls to userspace Giga+ client 
Step 3: Giga+ client queries the Giga+ Server for only metadata 
Step 4: Giga+ Server relays metadata from lebelDB 
Step 5: Giga+ client directly accesses data from PanFS Direct Flow mount point 
Step 6: Direct Flow returns data to the Giga+ client 
Step 7: Giga+ client passes metadata and data to the FUSE kernel module 
Step 8: FUSE kernel module returns the metadata and data to the application 

 
Fig 4.2: Elimination of the Giga+ server from the data path 

 
In an ideal case, once the metadata lookups are done, it would be desirable to provide the most direct access to 

the file bypassing the metadata service layer. For instance if the Giga+ client just gave back the direct link of the file 
on the PanFS cluster, the application could directly reach the data and there would not be a data performance 
overhead. This is shown in path 3, Fig 4.3 

However, on completion of the data operations, updating the metadata changes caused by the data operation 
(such as change in size etc) in leveldb requires some sort of feedback path to the metadata service layer, telling 
TableFs that file has stopped changing ,which is missing for this model. 
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Step 1: Applications query FUSE kernel module only for metadata 
Step 2: FUSE kernel module bounces off the syscalls to userspace Giga+ client 
Step 3: Giga+ client queries the Giga+ server for only metadata 
Step 4: Giga+ Server relays metadata from lebelDB 
Step 5; Giga+ client passes metadata and data to the FUSE kernel module 
Step 6: FUSE kernel module returns the metadata to the application 
Step 7: Application directly accesses data from PanFS Direct Flow mount point 
Step 8: Direct Flow returns data to the application 
 

Fig 4.3: Applications directly accessing the files in the storage cluster 
 

4.1 Experimental evaluation of data performance 
The data performance test includes creating parallel processes across all the 8 nodes that continuously and 

simultaneously create N files and write M bytes per file. Each process writes to its individual Giga+(FUSE) mount 
point (Thus ensuring it executes in parallel irrespective of the multithreaded configuration of FUSE). The average of 
the cumulative data rate recorded by each process at each instant (file) is plotted. The average of cumulative data 
rate across all processes and all files is also reported. 

We compare the average cumulative data rates, for different number of clients (parallel workload generating 
processes) for 3 possible schemes path 1, path 2 and path3 – as explained above. 
 
Testing primitives: 

• write_blocks: This utility writes the specified number of chunks of 4096 Bytes to an open file. It then 
calculates the total time t taken to write x bytes and prints the data rate (x/t) in MB/s. The time to create the 
file, open and close is not included in the data rate calculation. 
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• create_write: creates a given number of files in a given directory and for each file, uses the write_blocks 
utility to write a given number of bytes. For each file, the data rate is logged.The time to create the file, 
open and close is not included in the data rate calculation. 

• data_test: runs create_write (with given files and blocks per file) on a given list of mount points. A new 
instance/process of create_write is created for every mount point. 

• data_test_controller: runs remotely on OpenCirrus to control the data_tests on the host of VMs (8). It 
creates a given number of mount points on each VM and calls data_test on each of them. 

• gather_results: runs remotely on OpenCirrus. It copies to one folder, the data rate logs by each 
create_write process running on every VM. For every file, sequentially in the logs, it adds the data rate by 
all the processes and creates an aggregate log. 

4.1.1 Experimental setup 
Same as described in 3.3.2. 
Since our setup has 8 physical machines, each having 1 GE links, the best bandwidth would be 8 Gbps = 1000 

MBps. 
 
4.1.2 Experimental approach and results 

 
4.1.2.1 Throughput without Giga+ TableFS layering / Path 3 model 

To evaluate the impact of layering Giga+ TableFS metadata service layer, it is important to set the 
benchmark for data performance without layering – direct data accesses to the PanFS storage cluster. The below 
graphs show the data rate for above described and compares it with the number of clients. 
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Fig 4.1.2.1: Data rate per file for large write workload (400MB per file) comparison with # of parallel 
applications

 
 

Fig 4.1.2.2: Average data rate comparison with the # of applications generating large write workload 
 
We can see that the data throughput maximizes at 56 applications to about 810 MB/s, when there is sufficient 

parallelism to keep all the resources utilized. We see similar performance numbers for path 3 scheme as well since 
path 3 provides same direct path to the files. 

 
4.1.2.2 CPU utilization without Giga+ TableFS layering 

CPU utilization is the average of various idle % values reported periodically by vmstat. As seen in Fig 4.1.2.3, 
in most of the cases the CPU utilization is about 10 %– 15%. 



 16 

 
Fig 4.1.2.3:  Typical CPU utilization from one of the representative nodes. 

 
4.1.2.3 Memory utilization without Giga+ TableFS layering 

Memory utilization is the average of various free memory % values reported periodically by vmstat. 

 
Fig 4.1.2.3:  Typical Memory utilization from one of the representative nodes. 

 
4.1.2.4 Throughput after Giga+ TableFS layering / path 2 model 

 
Path 2 model should ideally provide near direct PanFS performance (800 MB/s) or path 3 performance, since it 

does not have the additional link overhead.  
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Fig 4.1.2.4:  Data rate per file for large write workload (400MB per file) for Path 2 

 
With an increase in the # of applications upto 32, we see an increase in data throughput reaching close to the 

hardware limits, despite of the 2+ user to kernel layer copy overheads. 
 
4.1.2.5 CPU utilization with Giga+ TableFS layering 

 
Fig 4.1.2.5:  Typical CPU utilization from one of the representative nodes 

 
CPU utilization is the average of various idle % values reported periodically by vmstat. As seen, in most of the 

cases the CPU utilization is about 10 % – 15% greater than the without-layering case. 
 

4.1.2.6 Memory utilization with Giga+ TableFS layering 
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Fig 4.1.2.6: Typical memory utilization from one of the representative nodes from each set of clients 

 
4.1.2.7 Throughput comparison with and without Giga+TableFS layering 

 

 
Fig 4.1.2.7:  Comparison of data rate with and without Giga+TableFS 

Path 2 data rate, due to its inherent overhead of memory copies and kernel context switching, falls behind the 
data rates of direct-PanFS and path 3. However, by allowing sufficient amount of parallelism by allowing higher 
number of parallel processes, we can see that Path 2 performs equally well. Path 2 performs equally well because in 
this exercise, we have enough CPU to saturate a 1 GE link even with copy overhead.  However, in case of higher 
capacity links, this will not be held true. 

The maximum average data throughput by both with and without layering Giga+ TableFS is around 800 M 
Bytes / sec for an 8 node cluster with each machine having  a 1 GE Network Interface Card. 
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4.1.2.8 Reflection from PanFS visualization tool on the data rate of each of the nodes 
 
Fig 4.1.2.8 shows the network-data utilization by DirectFlow clients on each of the nodes during the course of 

the data performance evaluation. We can see that all the nodes are almost fully utilizing their network IO capability 
and hence accounting for the maximum data throughput achievable. 

 

Fig 4.1.2.8: Panasas DirectFlow statistics on the 8 nodes 
 

5 Results and Conclusions 
1. The Giga+ TableFS – distributed metadata service can be layered over existing cluster filesystems without 

sacrificing much of the direct data bandwidth provided nodes have sufficient CPU power, at the same time 
exploiting the benefits – scalable and high performing metadata service, avoiding metadata hotspots,  small 
file packing using leveldb etc. 
1. We see path2 and path3 providing matching data performance compared to direct access. 
2. We also see a clear advantage in metadata performance in the figures 3.3.2.1 and 3.3.2.2. 

 
2. The underlying cluster file system gear's configuration impacts the layering of Giga+ metadata service 

layer. The number of MDS, volumes and their mapping, and metadata centralization scheme need to be 
taken into account while designing the file placement and distribution logic of the Giga+ layer. In case of 
PanFS, 3 such details are required to be considered: 
1. Metadata accesses to a particular directory are centralized: It is important to keep the number of 

dentries in a single directory small. It helps to split a directory as the number of dentries or dentry-
access-heat increases.  

2. Metadata accesses to a particular volume are served by a single MDS: In case of high parallel metadata 
workloads, it helps to distribute the files across various volumes. 

3. A group of Volumes may be managed by a single MDS: In case of high parallel metadata workloads, it 
helps to distribute the files across various MDS-managed-volumes. 

 
3. The way applications interact with the filesystems (via FUSE) impacts the degree of decoupling we can 

bring about between the metadata and data paths. 
1. Since “getattr” is used as a tool to decide what FS operations to choose for the intended operation, it 

gets hard to completely isolate the metadata management from the underlying cluster file system to 
Giga+ layer leaving it only the data management. 

2. If “getattr” response from the Giga+ client abstracts a file as a symlink, applications chase it for 
read/write via the most direct path reaching it in the underlying cluster file system. This is Path 3 with 
the highest data rate. However the metadata operations in this case also get routed to the cluster file 
system and Giga+TableFS is not serving the metadata at all. 

3. On the other hand, if “getattr” reflects the file attributes as-is then along with the metadata operations, 
data operations are also routed through Giga+. In this case path 2 will be the best decoupling possible. 
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4. Although FUSE layer adds an absolute performance overhead of 15 – 20 % on the data operations, this 

overhead can be hidden by increasing the number of parallel operations. 
1. By increasing the number of Giga+ clients per VM, we could see that the aggregate data rate obtained 

matches the highest value possible for our setup. 
2. This increase in the parallel workload is under the premise that, by doing so we do not encounter any 

other resource crunch such as CPU, Memory etc.  
 
5. Admin imposed infrastructure limitations on the storage cluster can be overcome by Giga+.  

1. We could see that path 3 and path 2 (for sufficiently high number of parallel workload generating 
processes) get a higher aggregate throughput than direct PanFS path 

2. The entire workload was writing to a few volumes of PanFS only, and hence (could have) was facing a 
configuration limitation on the subset of the storage servers/disks a volume can access. 

Since Giga+ indirection layer, distributes the files across all the volumes, such configuration limitations can be 
overcome. 
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