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Abstract—High-performance computing (HPC) applications
and workflows are increasingly making use of custom data ser-
vices to complement traditional parallel file systems with fast
transient data management capabilities tailored to application-
specific needs. In the Mochi project we provide methodologies
and tools that enable rapid development of custom HPC data
services, including a collection of composable software compo-
nents that can be combined to build complex distributed data
services. Our initial version of Mochi targeted data services
deployed with static configurations with a fixed number of
nodes and minimal fault tolerance. However, there is a growing
need for dynamic services that can adapt while running in
response to changing workloads and system conditions.

In this paper we present our work to extend the Mochi
architecture to support the development of dynamic data
services. We achieve this by providing new Mochi components
that support unified bootstrapping and online reconfiguration,
fault detection, monitoring, and consensus. We also provide
a methodology for deriving service-wide resilience from the
resilience of each of the service’s components.

1. Introduction
High-performance computing (HPC) systems execute

increasingly complex workflows that enable scientific dis-
coveries in many areas, from molecular dynamics to as-
trophysics, by employing diverse computational techniques
including numerical methods, data mining, and artificial
intelligence. This diversity calls for an approach to data
management that is tailored to each specific use case as
opposed to the one-size-fits-all solution offered by parallel
file systems. Because of the additional layers of customiza-
tion, however, tailored HPC data services can be difficult
for research teams to develop and put into production.

In the Mochi project we aim to democratize method-
ologies and tools for the rapid development of custom
HPC data services. We offer a collection of interoperable
software components that can be assembled together to build
complex distributed data services. A growing community of
researchers rely on Mochi to develop systems ranging from
transient filesystems and data management middleware to
in situ analysis and performance monitoring systems. These
services are typically deployed in a dedicated static set of
nodes alongside the application they support.

Similar to cloud services, HPC data services need to be
able to more dynamically adapt to changes in access patterns
from the workflows that use them. For example, the high-
energy physics NOvA workflow [1], for which the HEPnOS

data service was developed [2], presents steps with vastly
different I/O patterns. Our work in autotuning HEPnOS [3]
showed that the best configuration of the service for one step
of the workflow is not necessarily the best for other steps.
Rather than compromising and using a static configuration
of HEPnOS that provides satisfactory overall performance,
a dynamic version of HEPnOS that reconfigures at run time
for each individual step’s I/O pattern could be used. Other
recent studies have confirmed similarly diverse and dynamic
I/O demands within other workflow environments [4], [5].

We believe that many applications would benefit from
data services designed to be dynamic. We define a dynamic
data service to have four key properties. First, dynamic
services should support performance introspection capabil-
ities to drive configuration decisions based on performance
feedback. Second, dynamic services should allow online
reconfiguration so that the application’s data services can
be reconfigured without service interruptions. Third, the
service must be elastic. Elastic services are able to scale
up or down with workload demand. We expect elastic data
services to pair well with high-level HPC resource managers
such as Flux [6] that support the elastic allocation of cluster
resources such as compute and power. Fourth, dynamic
services should be resilient to failures.

Developing dynamic data services can be daunting. Ide-
ally, dynamic properties should be enabled incrementally in
existing static data services without having to redesign or
refactor existing code. In this paper we extend the Mochi
methodology and provide new components to enable data
service developers to rapidly develop dynamic data services.
Our contributions are threefold:

• We derive requirements for the rapid development
of dynamic services (§2.3).

• We define a methodology for the design and com-
position of dynamic components (§3 to §7).

• We provide a set of reusable components for boot-
strapping, online reconfiguration, data migration,
consensus, and failure detection that we will make
available to users to ease data service development.

2. Motivation
In this section we provide an overview of the Mochi

project, its adoption in the community, and its methodol-
ogy [7] for building static data services. We then identify
additional requirements needed to extend Mochi to support
dynamic services.



2.1. The Mochi project and community adoption
The Mochi project [8] was formed in 2015 as a col-

laboration of Argonne National Laboratory, Carnegie Mel-
lon University, Los Alamos National Laboratory, and The
HDF Group with the goal of facilitating rapid development
of distributed data services in support of scientific HPC
applications. Such services have the potential to radically
improve productivity and usability but historically have been
challenging to develop because of HPC storage complexity
and scientific use-case diversity.

Mochi addresses the challenges of developing custom
HPC data services using composability. Mochi provides
a collection of robust, reusable, modular, and connectable
data management components and microservices along with
a methodology [7] for composing them into specialized
distributed data services. Agile, specialized data services
can be rapidly constructed to cater to the data management
needs of a particular science domain or computing platform
while still effectively leveraging the underlying capabilities
of cutting-edge HPC hardware.

Mochi has proven successful in the broader commu-
nity, with key elements serving as the foundation for a
diverse array of data services including transient / burst
buffer file systems [9], [10], [11], object storage systems
and middleware [12], [13], application workflow coupling
frameworks [14], in situ analysis tools [15], and perfor-
mance monitoring systems [16], [17], [18]. This breadth of
adoption has revealed common service development patterns
and guided the evolution of the Mochi methodology over
time. These use cases also provide numerous examples of
unpredictable or bursty workloads that would further benefit
from dynamic online adaptation to prevailing workloads and
system conditions.

2.2. Lessons learned: static service methodology
Mochi defines a methodology for rapidly developing

static HPC data services tailored to specific applications [7].
This methodology involves four steps. First, establish user
requirements such as data models, access patterns, and
semantics. Second, translate the user requirements into ser-
vice requirements to determine data organization, hardening
policies, and user interface. Next, develop or reuse building
blocks needed to implement these service requirements.
Fourth, compose these building blocks into a complete user-
facing service. Repeated use of this methodology led us to
a number of lessons learned that we summarize below.

Flexibility vs. productivity. Flexibility is critical to
innovation but can lead to inconsistency across components
and loss of productivity if developers are presented with too
many initial options. This situation led us to standardize best
practices for service development. We accomplished this by
creating microservice templates [19] and used them to refac-
tor the most popular core components: key-value store and
blob store. Feedback from external users indicate that using
these templates saves several weeks of development [15].

Configurable composability. Our initial methodology
included writing “glue code” to connect components. How-

ever, composability is more powerful if it can be accom-
plished at run time without glue code recompilation. This
allows faster exploration of the configuration space and
provides users with an easy way to share their configura-
tion for reproducing experiments or diagnosing performance
issues. To enable runtime composability, we implemented
Mochi’s Bedrock dynamic bootstrapping and configuration
component.

Community support. The diversity of HPC platforms
and applications and the rapid evolution of technology make
centralized community support a bottleneck to adoption.
Mochi users must be able to rapidly diagnose behavioral and
performance problems on their own in order to accelerate
adoption. Thus, we created easy-to-install Mochi packages
(e.g., Spack recipes) for high-profile platforms, command-
line diagnostic tools, and monitoring infrastructure.

2.3. New requirements: toward dynamic services
Based on our experience to date, we have identified four

core requirements for composable dynamic services.

Performance introspection. Performance introspection
is the ability of a service to provide fine-grained perfor-
mance information and statistics at any time. It is a prereq-
uisite to any service dynamicity. It provides the empirical
data necessary for informed decisions about changes made
to the service. Unified performance introspection within the
Mochi methodology will enable all Mochi components to
automatically participate in the analytics that drive dynamic
service decisions.

Online reconfiguration. Online reconfiguration is the
ability to enact live configuration changes in a running
service. The existing Mochi methodology already provides
a hierarchical service configuration mechanism that encom-
passes tuning parameters for each component as well as the
mapping of those components to local hardware resources.
To enable dynamic services, the Mochi methodology must
go one step further and provide the means for online modi-
fication of this representation so that configuration changes
can be enacted immediately without taking the service of-
fline. This will make it possible to alter component mapping,
provisioning, and prioritization across hardware resources
in response to workload changes as part of the dynamic
optimization process.

Elasticity. Elasticity is the ability to dynamically add
resources to or remove them from a running service. On-
line reconfiguration is a prerequisite for elasticity. Elastic
services must also be able to migrate data within or across
nodes and modify load balancing in response to reconfigu-
rations. These capabilities were not present in the original
static Mochi methodology, but they are crucial to enabling
services to grow or shrink in scale in response to prevailing
conditions.

Resilience. Resilience is the ability to continue to pro-
vide service in the face of failures. This includes reacting to
both transient failures (e.g., a service process crashed, but its
data is still available in local storage) and permanent failures
(e.g., hardware faults resulting in data loss). Resilience



extends elasticity by ensuring persistent and consistent data
protection and by providing mechanisms to detect faults. It
also requires responding to faults at the scale of the entire
service (e.g., rebalancing data across nodes or spinning up
capabilities on additional nodes). Incorporating resilience
into the Mochi methodology enables specialized data ser-
vices to provide the same level of robust availability that
users expect from traditional systemwide services.

These four requirements are naturally ordered from a
dependency perspective, each requiring the previous one as
a prerequisite. Conveniently, they are also ordered in terms
of the breadth of dynamicity they enable and how difficult
they are to implement. The requirements should be enabled
in a composable manner with the least engineering impact
on existing components and minimal tight coupling between
components.

As an example, consider the design of a resilient key-
value store built by using multiple instances of Yokan
(Mochi’s node-based key-value store). A consensus algo-
rithm such as RAFT [20] is needed to provide data consis-
tency for key-value pairs replicated across the nodes running
Yokan. For this we provide Mochi-RAFT, a Mochi-based
implementation of RAFT. In a composable design, individ-
ual Yokan instances are unaware of their database being
RAFT-replicated across nodes, while Mochi-RAFT itself
does not need to know that the commands it logs represent
Yokan key-value pairs. Yokan database replication should be
transparent to end users. In correctly designed components
it will be relatively simple to enable online reconfiguration,
elasticity, and resilience in an existing Mochi-based service
whose design was originally static.

3. Mochi component design

Before diving into the requirements of dynamic services
listed in Section 2.3, this section illustrates the architecture
of a typical Mochi component.

3.1. Anatomy of a Mochi component

Mochi emphasizes separating capabilities into indepen-
dent components that can be composed together and share
a common threading and networking runtime within the
same process. Such capabilities include managing a key-
value database, a raw storage device, an interpreter for a
scripting language, and so on.

Figure 1 shows the anatomy of a typical Mochi com-
ponent. This component provides two libraries. The server
library lets users create providers that manage and provide
remote access to a resource. Since multiple providers can
live in the same process, they are uniquely identified by a
provider ID. A provider and its resource are configured by
using a JSON-formatted string.

A resource will generally follow an abstract interface
so that the functionality provided by the component can be
implemented in various ways. For instance, Yokan provides
key-value storage on top of backends such as RocksDB,
LevelDB, and Berkeley DB.

Process (client) Process (server)

Client
Registers RPC and keeps their IDs

Resource Handle
Maps to a remote resource

Provider
Registers RPCs and their callbacks

Forwards them to the Resource

Resource
Follows an abstract interface

Maps to a physical object
(file, device, database, etc.)

to send
RPCs to...

maps to...

relies on...

Deviceaccesses...

JSON
config

is configured from...

Figure 1. Anatomy of a Mochi component.

Process

Provider A Provider B Provider C Mercury
progress loop

Argobots Pool X Pool Y Pool Z

ES 0 Execution Stream (ES) 1

contains ULTs from...

runs ULTs on...

submitted to...

Margo Runtime

Figure 2. Providers within a process sharing a common Margo runtime.

The client library lets users instantiate resource handles,
which map to a remote resource by encapsulating the ad-
dress and provider ID of the provider holding that resource.
It provides an API to access the resource, for instance
putting and getting key-value pairs in the case of Yokan.

3.2. Runtime sharing and dependencies
Components within a service use remote procedure calls

(RPCs) to interact. The Margo runtime, based on Mer-
cury [21] and Argobots [22], takes care of running these
RPCs in user-level threads (ULTs), turning them into func-
tion calls if the source and destination are on the same
process, using shared memory if they are on the same
node, and relying on the high-performance network transport
across nodes.

Figure 2 shows an example of a process containing three
providers. These providers are associated with pools, which
contain ULTs. Execution streams (or ESs, the Argobots
term for the operating system threads that will execute
ULTs), mapped to cores, pull ULTs from the pools they
are associated with and execute them. Arbitrarily complex
mappings from providers to cores can be set up thanks to
Argobots. In the present example, the network progress loop
runs exclusively on ES 1 through Pool Z. Upon receiving an
RPC, it submits a ULT to either Pool X if the RPC targets
Provider A or B, or Pool Y if it targets Provider C.

Composition in Mochi is achieved by having providers
depend on resource handles pointing to other providers. For
example, one can imagine a Mochi component M managing
“datasets” by storing their metadata in a key-value store
(managed by the Yokan component) and their data in a blob
storage target (managed by the Warabi component). This



component M could be further composed with Mochi’s em-
bedded language interpreter component (Poesie), to execute
scripts on datasets or with Colza [23] to run in situ visual-
ization pipelines on them. This flexible design methodology
allows components to evolve independently, to be reused
across many services, and to benefit from community input.

In the the next four sections we delve into the four
requirements for dynamic services identified in 2.1.

4. Performance introspection
Observation 1: Performance monitoring plays an im-

portant role in motivating any reconfiguration and elasticity
decision. It should therefore be available at no engineering
cost to any component and should expose performance
information in a unified manner to make its analysis as
simple as possible.

Design principle: a customizable monitoring infras-
tructure provided by the runtime. Since most of the
Mochi components rely on Margo, it was natural to im-
plement performance monitoring at the Margo level. Margo
has knowledge of all the RPCs being sent and received
and all the RDMA operations being carried out, as well
as the context in which they are performed. We developed a
customizable monitoring infrastructure in Margo to capture
the relative timings and duration of all relevant parts of
an RPC, from the serialization of input and output data
to the scheduling of ULTs and potential RDMA transfers.
This infrastructure lets users inject callbacks to be invoked
at various points in the lifetime of an RPC, for example
when the RPC is sent, when it is received, and when it
starts and stops executing. The default implementation of
this monitoring system captures statistics and outputs them
as JSON when shutting down the service. It also makes
them available at run time via an API. It periodically tracks
the number of in-flight RPCs and the sizes of user-level
thread pools so as to provide users with a complete view of
what is happening inside a Mochi process at any time. Us-
ing this monitoring infrastructure allows users to precisely
pinpoint the source of performance degradations: while an
upper-level component would measure only that an RPC is
slow, this Margo-level monitoring can tell us whether data
serialization, RDMA transfers, pool scheduling decisions, or
some other bottleneck is at fault. This monitoring inherits
and improves on many of the works done by Ramesh et al.
with SYMBIOSYS [17] and SYMBIOMON [18], our early
take on composable monitoring for Mochi.

An example of statistics is shown in Listing 1. Such
statistics are available to any Mochi-based service at no
engineering cost. It has helped us countless times diagnose
the root cause of performance issues in our users’ services.

1 "rpcs": {
2 "65535:65535:2924675071:65535": {
3 "rpc_id": 2924675071,
4 "provider_id": 65535,
5 "parent_rpc_id": 65535,
6 "parent_provider_id": 65535,
7 "name": "echo",

8 "origin": { ... },
9 "target": {

10 "received from na+sm://28885-0": { ...
11 "ult": {
12 "duration": {
13 "num":3,
14 "avg":0.083172719,
15 "max":0.134156227,
16 ...
17 }, ...

Listing 1. Fragment of performance monitoring data from Margo showing
the ULT duration for an “echo” RPC received by the process from a client
at address na+sm://28885-0. Note that these statistics also include the
context (parent RPC and parent provider), in which an RPC was issued, as
well as who it was received from or sent to, allowing fine-grain analysis.

5. Online reconfiguration
Observation 2: Online reconfiguration involves modi-

fying the way these components map to physical resources
(e.g., hardware threads and cores) and how their operations
are prioritized.

Design principle: a more dynamic run time. Figure 2
shows that, in Mochi terms, this observation translates into
being able to add and remove pools and ESs in the Margo
run time, which all components share. Just like performance
introspection, it is therefore natural that this property be
implemented in Margo.

The Margo run time can be initialized with a
JSON configuration string describing the initial setup
of pools and ESs (e.g., Listing 2). At run time,
this setup can be queried with functions such as
margo_find_pool_by_name and modified by us-
ing functions such as margo_add_pool_from_json.
Margo ensures that the changes are always valid, such as
not allowing adding multiple pools with the same name or
removing a pool that is in use by an ES.

1 { "argobots": {
2 "pools": [ { "name": "MyPoolX",
3 "type": "fifo_wait"
4 "access": "mpmc"
5 }, ...
6 ],
7 "xstreams": [ { "name": "MyES0",
8 "scheduler": {
9 "type": "basic",

10 "pools": ["PoolX"]
11 }
12 }, ...

Listing 2. Example Margo configuration.

Observation 3: Once the mapping of components to
hardware resources is made dynamic, online reconfiguration
can enable starting and stopping components in a given
process.

The functionalities of a Mochi service are implemented
in providers. The next step after being able to add/remove
pools and ESs is to be able to add/remove providers. Margo
has no knowledge of the providers that use each pool, how-
ever, and cannot ensure that we are not leaving a provider



without its pool during a reconfiguration. Hence, another
component is needed to keep track of the providers running
in a process and their mapping to thread pools.

Design principle: a “provider of providers.” Bedrock
is a component meant to manage other providers running
in a Mochi process. It follows the same architecture as
shown in Figure 1, with a server and a client library, but the
“resource” it manages is the configuration of the process it
runs on. Bedrock takes as input a JSON file describing the
desired composition, from the list of providers and their
configuration, down to the Argobots setup in Margo. It
checks the validity of this configuration and takes care of
resolving dependencies between providers, both within and
across processes.

1 { "margo": { ... },
2 "libraries": { "A": "libcomponent_a.so" },
3 "providers": [
4 { "name": "myProviderA",
5 "type": "A",
6 "pool": "MyPoolX",
7 "config": {...},
8 "dependencies": {...}
9 }, ...

Listing 3. Example Bedrock configuration.

Listing 3 shows an example of Bedrock configuration.
The libraries section tells Bedrock which libraries to
load to know how to instantiate a provider of type “A.”
This library contains a structure of function pointers that
Bedrock will call to instantiate providers, clients, and re-
source handles, as well as to obtain their configuration. The
providers section then lists providers to instantiate.

Bedrock’s bootstrapping mechanism is already a pow-
erful way to set up Mochi services without the need for
glue code. Its configuration format enables the evaluation
of potential configurations without recompiling code. Thus,
it provides an effective way to perform parameter space
explorations in Mochi [3]. The configuration can also easily
be shared with the community to diagnose issues and bugs.

Bedrock’s client library enables remote access to its
functionalities, providing a standardized entry point for
querying and altering a process’s configuration at run time.
Querying the configuration can be done by using Jx9, a
lightweight, embeddable scripting language designed to han-
dle queries on JSON documents. Listing 4 shows an example
query that returns the names of all the providers in the
process that receives it. Jx9 can also be used as input in
place of JSON, allowing parameterized configurations.

1 $result = [];
2 foreach($__config__.providers as $p) {
3 array_push($result, $p.name); }
4 return $result;

Listing 4. Example of Bedrock query in Jx9 to list the names of all the
providers in a process.,basicstyle=

To modify the configuration of a process, Bedrock’s
client library provides a C++ API, exemplified in Listing 5.
This API allows adding and removing pools, ESs, and

providers. Bedrock will check that the resulting configu-
ration remains valid before carrying out the changes. This
includes carrying these checks across Bedrock processes and
handling consistency. For example, if a client c1 requests
the creation of a provider p1 in node n1 and p1 depends
on another provider p2 in node n2, if a client c2 requests
the destruction of p2 at the same time, then either c1’s or
c2’s request will success, but not both, leaving the system
in a state where either both p1 and p2 exist (with the former
having a dependency on the latter) or p2 was destroyed and
p1 was not created.

1 bedrock::Client client{...};
2 bedrock::ServiceHandle p =
3 client.makeServiceHandle(address);
4 // p is handle to remote process. Following
5 // RPC calls change its configuration.
6 p.addPool(jsonPoolConfig);
7 p.removePool("MyPoolX");
8 p.loadModule("B", "libcomponent_b.so");
9 p.startProvider("myProviderB", "B",...);

Listing 5. Simplified overview of Bedrock’s C++ API to manipulate a
process’s configuration remotely and at run time.

6. Elasticity
Bedrock provides a good basis for starting new processes

with a specific configuration and reconfiguring existing pro-
cesses at run time. However, elasticity in a data service goes
beyond just spinning up new processes.

Observation 4: Adding new nodes to a service pro-
vides an opportunity for some of the existing data to be
redistributed. Removing nodes first requires their data to
be sent to remaining nodes. Data migration is therefore a
requirement for elasticity.

Most data managed by Mochi components resides in
files stored in a local storage device. Migrating a resource
from a node to another often comes down to transferring
files between two nodes.

Design principle: a component to migrate files. REMI
(Mochi’s REsource MIgration component) was designed to
handle such file migrations. It does so either by memory
mapping the files and using RDMA to transfer the data or
by using a series of RPCs to send the files in chunks. The
former method is more efficient for large files. The latter is
more efficient when sending multiple small files, since they
can be packed together into larger chunks and the transfer
of chunks can be pipelined.

Thanks to REMI, the migration of a component can be
reduced to the migration of its files to a new location, the
instantiation of a new provider to manage these files, and
the removal of the provider previously holding the files.

Observation 5: Component migrations need to be trig-
gered remotely and controlled for correctness.

Design principle: migration control and triggers.
Since Bedrock manages components within each process,
it is the natural place to enable control and trigger of
component migration. In their Bedrock module, components
can declare a dependency on a REMI provider to be able to



carry out such a migration and expose a migrate function
pointer for Bedrock to call. The migration of a provider
hence becomes an operation managed by Bedrock that can
be triggered remotely and checked for consistencies. For
instance, Bedrock can assert that migrating a provider will
not break dependencies.

Observation 6: Rebalancing data requires knowing
where the data is and what the best placement should be.

With a composable mechanism in Mochi to migrate a
provider to another node, the next step is to enable rebal-
ancing decisions in a composable manner as well.

Design principle: externalized rebalancing decisions.
In [24] we presented Pufferscale, a Mochi component that
implements heuristics to decide which pieces of data to
migrate and where in order to achieve load balance (balance
of accesses to the data), data balance (balance of their
volume on each node), rebalancing time, or a compromise
between these three objectives. Pufferscale is a great exam-
ple of a composable design for an elastic storage service:
Pufferscale does not require any knowledge of the nature of
the resources being migrated or how they will be migrated.
It simply works out a rebalancing plan and carries it out
by calling functions provided via dependency injection. We
intend to integrate this as a core Bedrock capability based on
this proof of concept, using the performance introspection
tools presented in Section 4 to guide load rebalancing.

Observation 7: If the nodes used by a data service can
change, we need a mechanism to track the service location
at all times.

Another challenge in supporting elasticity is keeping the
applications that use the service up to date with the service’s
location (i.e., the list of addresses of the nodes making up
the service).

Design principle: dynamic group membership. To
address this issue, we provide the SSG group-membership
component. SSG maintains a dynamic view of a group of
processes and allows this view to be retrieved by client
applications. A group can be bootstrapped from PMIx, MPI,
or simply a list of initial addresses. Should the group change,
for example when adding or removing a node, the view will
be updated in all the service’s processes.

From a client application’s perspective, several strategies
can be put in place to react to a change in the service’s
group. The simplest one consists of an explicit function
that the application needs to call to query the current view
of the group. Another possible strategy is the one used in
Colza [23], which implements elastic in situ visualization
using Mochi. Colza providers declare a dependency on SSG
to keep track of the group’s view and maintain a hash of
this view. Any RPC sent by client applications has this hash
as an argument. A mismatch between the hash sent by the
client and the hash maintained by a Colza provider informs
the latter that the client’s view of the group is outdated.

SSG only provides eventual consistency of the group’s
view to all group members. This can be problematic when
components or applications need such a view to be consis-
tent. To solve this problem, Colza uses a two-phase commit
approach, with the application itself acting as a controller.

In the future, however, we plan to build a consistent view
by using the RAFT protocol [20] to coordinate configuration
changes across a set of Bedrock-managed processes.

7. Resilience
Designing a resilient distributed system is a difficult

task. In the following, we show how thinking in terms of
composable building blocks can make this more tractable.
We first present two perspectives on resilient designs, before
diving into Mochi components and design methodologies
that can help implement each of them.

Observation 8: Our answers to the requirements of
online reconfiguration and elasticity were often contained
in a component that other parts of a service could rely
on. Resilience, on the other hand, is harder to tackle in a
composable manner. A fault, by nature, will cut across com-
ponents, break dependencies, and render data unavailable.
Hence, reaction to a fault is also cross-component by nature.
Yet design principles for resilient HPC data services must
strive to avoid coupling components more than necessary.

Design principles: top-down vs. bottom-up design.
Imagine a distributed service made up of a collection of
databases spread across multiple nodes. Realizing that any
node can crash, a “top-down” approach to resilience would
consist of implementing a component that has knowledge
of all the databases in the service and that can react to one
of them becoming unavailable. Similar to how Pufferscale
dealt with rebalancing by having a global view of the com-
ponents to rebalance, such a resilience component could,
for instance, request that data be replicated across multiple
databases, control how this replication is done, and trigger
further copies when nodes die. The resilience component
itself could be replicated to avoid becoming single points of
failure or points of contention.

Another approach, which we term “bottom up,” consists
of addressing resilience at the lowest level possible first.
In the above example, the question would become How do
we make each individual database resilient? This bottom-
up approach is more composable: other components do not
need to know how they each manage their own resilience,
and implementing resilience in one component benefits all
the services that rely on this component. The bottom-up
approach is usually insufficient, however, and often some
global knowledge of the full service is still required, for ex-
ample to rebalance data or rewire component dependencies.

In designing composable distributed services, we advo-
cate for considering a bottom-up approach first, leaving the
top-down approach for what the bottom-up approach could
not solve. In the following, we present multiple approaches
and components that can help with both bottom-up and top-
down approaches.

Observation 9: Periodically saving a provider’s state
(its data) to persistent storage is a first way to enable some
form of resilience. When crashing, the component at worst
will lose the modifications done since its last checkpoint.
Depending on the use case, such a loss could be acceptable.

Design principle: leveraging parallel file systems. Just
as data services complement parallel file systems, parallel



file systems can support specialized Mochi-based services
by storing checkpoints in a way that makes them accessi-
ble from any node. Should a node die, another node can
be provisioned and restarted with the same components
restoring their respective checkpoint. This solution is fully
“bottom-up”: each component individually implements how
its checkpointing is done. We enable control over the check-
pointing of components via their Bedrock module, which
provides checkpoint and restore function pointers.
Hence checkpointing can be triggered remotely via Bedrock.

Observation 10: Data replication is another way of
protecting data. In order to be composable, replication and
recovery from replicas should involve the least amount of
coupling between components.

Design principle: virtual resources. The concept of
virtual resource helps implement bottom-up resilience by
having a provider manage a resource that forwards its re-
quests to other components that hold the actual data. For
instance, a Yokan “virtual database” could forward the data
it receives to N other actual databases living on other nodes.
The client accessing this virtual database does not know that
the provider it contacts does not actually hold data itself or
that the data is replicated. Hence this approach provides a
way to implement data replication in a bottom-up manner.

Observation 11: HPC data services must maintain dis-
tributed, shared data structures as a core aspect their func-
tionality. These distributed data structures in turn require
mechanisms for maintaining consensus and performing co-
herent updates.

Protocols such as PAXOS [25] and RAFT [20] ensure
that multiple components agree on commands to apply
to their internal state, for example on data to store in a
database.

Design principle: composable consensus. To enable
consensus across multiple Mochi components, we devel-
oped Mochi-RAFT, a RAFT implementation based on C-
RAFT [26] and Margo. Mochi-RAFT can help with the
bottom-up approach to resilience by implementing state
machine replication across components of the same type.
For instance, multiple Yokan providers could use a Mochi-
RAFT instance as a dependency to ensure that the content of
their key-value databases is consistent. It can also help with
the top-down approach, for instance by ensuring that a set
of RAFT-replicated “controller” providers apply the same
commands to an underlying collection of other, nonresilient
Mochi components.

Observation 12: Reacting to faults requires detecting
them first. Such a detection should be done by one compo-
nent with the ability to notify other components of faults.

Design principle: extending group membership. We
already mentioned Mochi’s group membership component
SSG as a means for client applications to track changes
to an elastic service. SSG also includes a fault detection
mechanism based on the SWIM gossip protocol [27], [28].
SSG helps with the top-down approach to resilience by
providing a way for any member to be notified if any other
member dies.

8. Related Work
8.1. Dynamic distributed systems

In HPC. Task-based workflow management systems
(WMS) provide the most natural paradigm for elasticity in
HPC. Dask [29] and its extended in situ version DEISA [30],
[31] are such WMS. They support adaptive deployments by
manually adding/removing workers to/from the cluster or
by relying on the adapt(minimum, maximum) method
offered by some Dask deployment solutions such as Slurm,
Yarn, and Kubernetes. Dask keeps information about the
tasks, their historical runtime, available memory, the status
of the workers (idle or saturated), and the reasons for that
(e.g., the presence of specialized hardware). The scaling
heuristics in adaptive deployments use these to determine
a target number of workers to use by scaling up or down.

Ray [32] is a WMS for scaling AI and Python applica-
tions, providing static and dynamic resource management.
Similarly to Dask, users can add/remove workers manually
or use the autoscaler feature to react to the application’s
logical resource demand (requested in @ray.remote) but
not to accurate metrics or resource utilization.

Parsl [33] implements a cloudlike elasticity module. It
provides an elasticity component connected to an extensi-
ble strategy interface, in which users can implement their
elasticity logic. This strategy module periodically tracks
the running tasks and available compute capacity, triggers
scaling events to match workflow needs, and communicates
with the connected providers to scale up and down.

PyCOMPSs [34] is another task-based workflow system.
Although PyCOMPSs applications are dynamically sched-
uled in available resources, thanks to the task-based aspect
of this WMS, dynamic resource configurations are restricted
only to the cloud deployment of PyCOMPS applications
through Docker, Mesos, and others.

While resource reconfiguration and elasticity are easily
achievable on the cloud, they are still complicated in HPC
because of the static nature of the jobs that contain these
workflows and because of queue delays when attempting to
provision the workflows. New HPC resource managers such
as Flux [6] attempt to solve these problems.

In the cloud. The properties of reconfigurability, elas-
ticity, resilience, and performance introspection described in
this paper are at the core of cloud services, where monetary
incentives push for high availability, resilience, and resource
efficiency. The large ecosystem of microservices available in
this space also forces the use of composable designs, using
service-oriented architectures, or event-driven architectures.
In this space, Kubernetes [35] (K8s) is the work most
relevant to us. It runs applications in containers, grouped
into pods, and handles the deployment, reconfiguration, and
scaling of these pods to physical resources. K8s’s YAML-
based description of a service is not unlike Bedrock’s JSON
configuration, although the latter describes components shar-
ing resources within a process, at a much finer granularity,
while components in K8s-based services are containerized
processes that need to talk to each other via a network. K8s
provides an overlay network, which simplifies migration



and scaling. Our use of specialized HPC networks and
RDMA makes such an overlay network nearly impossible
to implement, forcing us to implement mechanisms to track
process locations, such as SSG.

8.2. Elastic and resilient storage services
Resilience in parallel file systems is typically handled by

using a RAID strategy or erasure coding, which corresponds
to a bottom-up approach. Parallel file systems are generally
not designed to be elastic or reconfigurable, in large part
because they are deployed on a fixed hardware and shared by
all the users of a supercomputer. Weka is a notable exception
in that it is based on a proprietary data distribution mech-
anism [36] that includes both rebalancing and autoscaling
capabilities. This level of dynamicity is motivated by Weka’s
targetting both HPC and cloud applications.

While elastic storage is common in the cloud, finding
open source implementations of such services is difficult.
Elastic storage is generally provided as a service by vendors
such as Amazon AWS or Microsoft Azure. The move to rely
on cloud resources to run HPC applications may change this
in the future and may also highlight the benefit of elastic
data services in HPC workflows, motivating their use in
traditional supercomputers. We hope that our methodology
and set of tools will be a driver in this direction.

Some elements of elastic data service techniques can be
found in storage virtualization, a long-standing technique
for decoupling physical media from its provisioning and
presentation to facilitate storage pool expansion and ser-
vice migration. This technique, in conjunction with fabric-
attached storage, can serve as a foundation for dynamic load-
balancing algorithms in data center environments [37].

9. Conclusion
While HPC data services increase productivity by pro-

viding interfaces and functionalities tailored to their target
applications, dynamic data services for have the potential
to provide better performance by adapting to changing
access patterns and by being resilient. In this work we
have extended our Mochi methodology to enable the rapid
development of dynamic data services.

Our immediate next step will be to provide quantifiable
evidence of these performance improvements by enabling
dynamic behaviors in existing Mochi-based services and
with real-life applications.

We then plan to investigate authentication, authoriza-
tion, and encryption methods necessary for Mochi services
to become secure in a multiuser environment. Similar to
dynamicity, security needs to be enabled in a composable
manner, that is, by providing security components to form
secure building blocks and by enabling encryption and
authentication transparently in existing components.
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