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This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.
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ABSTRACT | NAND flash memory is ubiquitous in everyday life
today because its capacity has continuously increased and cost
has continuously decreased over decades. This positive growth
is a result of two key trends: 1) effective process technology
scaling; and 2) multi-level (e.g., MLC, TLC) cell data coding.
Unfortunately, the reliability of raw data stored in flash memory
has also continued to become more difficult to ensure, because
these two trends lead to 1) fewer electrons in the flash memory
cell floating gate to represent the data; and 2) larger cell-to-
cell interference and disturbance effects. Without mitigation,
worsening reliability can reduce the lifetime of NAND flash
memory. As a result, flash memory controllers in solid-state drives
(SSDs) have become much more sophisticated: they incorporate
many effective techniques to ensure the correct interpretation of
noisy data stored in flash memory cells. In this article, we review
recent advances in SSD error characterization, mitigation, and
data recovery techniques for reliability and lifetime improvement.
We provide rigorous experimental data from state-of-the-art MLC
and TLC NAND flash devices on various types of flash memory
errors, to motivate the need for such techniques. Based on the
understanding developed by the experimental characterization,
we describe several mitigation and recovery techniques, including
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1) cell-to-cell interference mitigation; 2) optimal multi-level cell
sensing; 3) error correction using state-of-the-art algorithms
and methods; and 4) data recovery when error correction fails.
We quantify the reliability improvement provided by each of
these techniques. Looking forward, we briefly discuss how flash
memory and these techniques could evolve into the future.

KEYWORDS | Data storage systems; error recovery; fault
tolerance; flash memory; reliability; solid-state drives

I. INTRODUCTION

Solid-state drives (SSDs) are widely used in computer
systems today as a primary method of data storage. In com-
parison with magnetic hard drives, the previously domi-
nant choice for storage, SSDs deliver significantly higher
read and write performance, with orders of magnitude of
improvement in random-access input/output (I/O) opera-
tions, and are resilient to physical shock, while requiring a
smaller form factor and consuming less static power. SSD
capacity (i.e., storage density) and cost-per-bit have been
improving steadily in the past two decades, which has led
to the widespread adoption of SSD-based data storage in
most computing systems, from mobile consumer devices
[51], [96] to enterprise data centers [48]-[50], [83], [97].
The first major driver for the improved SSD capac-
ity and cost-per-bit has been manufacturing process scaling,
which has increased the number of flash memory cells
within a fixed area. Internally, commercial SSDs are made
up of NAND flash memory chips, which provide nonvolatile
memory storage (i.e., the data stored in NAND flash is
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correctly retained even when the power is disconnected) using
floating gate (FG) transistors [46], [47], [171] or charge trap tran-
sistors [105], [172]. In this paper, we mainly focus on floating
gate transistors, since they are the most common transistor
used in today’s flash memories. A floating gate transistor con-
stitutes a flash memory cell. It can encode one or more bits of
digital data, which is represented by the level of charge stored
inside the transistor’s floating gate. The transistor traps charge
within its floating gate, which dictates the threshold voltage level
at which the transistor turns on. The threshold voltage level of
the floating gate is used to determine the value of the digital
data stored inside the transistor. When manufacturing process
scales down to a smaller technology node, the size of each flash
memory cell, and thus the size of the transistor, decreases,
which in turn reduces the amount of charge that can be trapped
within the floating gate. Thus, process scaling increases storage
density by enabling more cells to be placed in a given area, but
it also causes reliability issues, which are the focus of this paper.

The second major driver for improved SSD capacity has
been the use of a single floating gate transistor to represent more
than one bit of digital data. Earlier NAND flash chips stored a
single bit of data in each cell (i.e., a single floating gate transis-
tor), which was referred to as single-level cell (SLC) NAND
flash. Each transistor can be set to a specific threshold voltage
within a fixed range of voltages. SLC NAND flash divided this
fixed range into two voltage windows, where one window rep-
resents the bit value 0 and the other window represents the bit
value 1. Multi-level cell (MLC) NAND flash was commercial-
ized in the last two decades, where the same voltage range is
instead divided into four voltage windows that represent each
possible 2-bit value (00, 01, 10, and 11). Each voltage window
in MLC NAND flash is therefore much smaller than a voltage
window in SLC NAND flash. This makes it more difficult to
identify the value stored in a cell. More recently, triple-level
cell (TLC) flash has been commercialized [65], [183], which
further divides the range, providing eight voltage windows to
represent a 3-bit value. Quadruple-level cell (QLC) flash, stor-
ing a 4-bit value per cell, is currently being developed [184].
Encoding more bits per cell increases the capacity of the SSD
without increasing the chip size, yet it also decreases reliability
by making it more difficult to correctly store and read the bits.

The two major drivers for the higher capacity, and thus
the ubiquitous commercial success, of flash memory as a stor-
age device, are also major drivers for its reduced reliability
and are the causes of its scaling problems. As the amount of
charge stored in each NAND flash cell decreases, the voltage
for each possible bit value is distributed over a wider voltage
range due to greater process variation, and the margins (i.e.,
the width of the gap between neighboring voltage windows)
provided to ensure the raw reliability of NAND flash chips
have been diminishing, leading to a greater probability of flash
memory errors with newer generations of SSDs. NAND
flash memory errors can be induced by a variety of sources
[32], including flash cell wearout [32], [33], [42], errors
introduced during programming [35], [40], [42], [53], inter-
ference from operations performed on adjacent cells [20],

[26], [27], [35], [36], [38], [55], [62], and data retention
issues due to charge leakage [20], [32], [34], [37], [39].

To compensate for this, SSDs employ sophisticated error-
correcting codes (ECCs) within their controllers. An SSD con-
troller uses the ECC information stored alongside a piece of
data in the NAND flash chip to detect and correct a number
of raw bit errors (i.e., the number of errors experienced before
correction is applied) when the piece of data is read out. The
number of bits that can be corrected for every piece of data is
a fundamental tradeoff in an SSD. A more sophisticated ECC
can tolerate a larger number of raw bit errors, but it also con-
sumes greater area overhead and latency. Error characteriza-
tion studies [20], [32], [33], [42], [53], [62] have found that,
due to NAND flash wearout, the probability of raw bit errors
increases as more program/erase (P/E) cycles (i.e., write accesses,
or writes) are performed to the drive. The raw bit error rate
eventually exceeds the maximum number of errors that can be
corrected by ECC, at which point data loss occurs [37], [44],
[48], [49]. The lifetime of a NAND-flash-memory-based SSD is
determined by the number of P/E cycles that can be performed
successfully while avoiding data loss for a minimum retention
guarantee (i.e., the required minimum amount of time, after
being written, that the data can still be read out without uncor-
rectable errors).

The decreasing raw reliability of NAND flash memory
chips has drastically impacted the lifetime of commercial
SSDs. For example, older SLC NAND-flash-based SSDs were
able to withstand 150 000 P/E cycles (writes) to each flash
cell, but contemporary 1x-nm (i.e., 15-19 nm) process-based
SSDs consisting of MLC NAND flash can sustain only 3000
P/E cycles [53], [60], [81]. With the raw reliability of a flash
chip dropping so significantly, approaches to mitigating reli-
ability issues in NAND-flash-based SSDs have been the focus
of an important body of research. A number of solutions
have been proposed to increase the lifetime of contemporary
SSDs, ranging from changes to the low-level device behavior
(e.g., [33], [38], [40], and [72]) to making SSD controllers
much more intelligent in dealing with individual flash mem-
ory chips (e.g., [34], [36], [37], [39], [41]-[43], [45], and [65]).
In addition, various mechanisms have been developed to suc-
cessfully recover data in the event of data loss that may occur
during a read operation to the SSD (e.g., [37], [38], and [45]).

In this work, we provide a comprehensive overview of the
state of flash-memory-based SSD reliability, with a focus on
1) fundamental causes of flash memory errors, backed up by
2) quantitative error data collected from real state-of-the-art
flash memory devices, and 3) sophisticated error mitigation
and data recovery techniques developed to tolerate, correct,
and recover from such errors. To this end, we first discuss the
architecture of a state-of-the-art SSD, and describe mechanisms
used in a commercial SSD to reduce the probability of data loss
(Section II). Next, we discuss the low-level behavior of the
underlying NAND flash memory chip in an SSD, to illustrate
fundamental reasons why errors can occur in flash memory
(Section IIT). We then discuss the root causes of these errors,
quantifying the impact of each error source using experimental
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characterization data collected from real NAND flash memory
chips (Section IV). For each of these error sources, we describe
various state-of-the-art mechanisms that mitigate the induced
errors (Section V). We next examine several error recovery
flows to successfully extract data from the SSD in the event of
dataloss during a read operation (Section VI). Then, we look to
the future to foreshadow how the reliability of SSDs might be
affected by emerging flash memory technologies (Section VII).
Finally, we briefly examine how other memory technologies
(such as DRAM, which is used prominently in a modern SSD,
and emerging nonvolatile memory) suffer from similar reliabil-
ity issues to SSDs (Section VIII).

II. STATE-OF-THE-ART SSD
ARCHITECTURE

In order to understand the root causes of reliability issues
within SSDs, we first provide an overview of the system archi-
tecture of a state-of-the-art SSD. The SSD consists of a group of
NAND flash memories (or chips) and a controller, as shown in
Fig. 1. A host computer communicates with the SSD through a
high-speed host interface (e.g., SAS, SATA, PCle bus), which
connects to the SSD controller. The controller is then con-
nected to each of the NAND flash chips via memory channels.

A. Flash Memory Organization

Fig. 2 shows an example of how NAND flash memory is
organized within an SSD. The flash memory is spread across
multiple flash chips, where each chip contains one or more
flash dies, which are individual pieces of silicon wafer that
are connected together to the pins of the chip. Contemporary
SSDs typically have 4-16 chips per SSD, and can have as many
as 16 dies per chip. Each chip is connected to one or more
physical memory channels, and these memory channels are
not shared across chips. A flash die operates independently
of other flash dies, and contains between one and four planes.
Each plane contains hundreds to thousands of flash blocks.
Each block is a 2-D array that contains hundreds of rows of
flash cells (typically 256-1024 rows) where the rows store
contiguous pieces of data. Much like banks in a multibank
memory (e.g., DRAM banks [84], [85], [99], [101], [102],
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Fig. 2. Flash memory organization.

[108], [193]-[196]), the planes can execute flash operations
in parallel, but the planes within a die share a single set of data
and control buses [185]. Hence, an operation can be started in
a different plane in the same die in a pipelined manner, every
cycle. Fig. 2 shows how blocks are organized within chips
across multiple channels. In the rest of this work, without
loss of generality, we assume that a chip contains a single die.

Data in a block is written at the unit of a page, which is
typically between 8 and 16 kB in size in NAND flash memory.
All read and write operations are performed at the granular-
ity of a page. Each block typically contains hundreds of pages.
Blocks in each plane are numbered with an ID that is unique
within the plane, but is shared across multiple planes. Within
the block, each page is numbered in sequence. The control-
ler firmware groups blocks with the same ID number across
multiple chips and planes together into a superblock. Within
each superblock, the pages with the same page number are
considered a superpage. The controller opens one superblock
(i.e., an empty superblock is selected for write operations) at a
time, and typically writes data to the NAND flash memory one
superpage at a time to improve sequential read/write perfor-
mance and make error correction efficient, since some parity
information is kept at superpage granularity (see Section II-C).
Having the ability to write to all of the pages in a superpage
simultaneously, the SSD can fully exploit the internal parallel-
ism offered by multiple planes/chips, which in turn maximizes
write throughput.

B. Memory Channel

Each flash memory channel has its own data and con-
trol connection to the SSD controller, much like a main
memory channel has to the DRAM controller [99], [100],
[102], [108], [197]-[201]. The connection for each channel
is typically an 8- or 16-bit wide bus between the controller
and one of the flash memory chips [185]. Both data and flash
commands can be sent over the bus.

Each channel also contains its own control signal pins
to indicate the type of data or command that is on the bus.
The address latch enable (ALE) pin signals that the control-
ler is sending an address, while the command latch enable
(CLE) pin signals that the controller is sending a flash
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command. Every rising edge of the write enable (WE) signal
indicates that the flash memory should write the piece of
data currently being sent on the bus by the SSD controller.
Similarly, every rising edge of the read enable (RE) signal
indicates that the flash memory should send the next piece
of data from the flash memory to the SSD controller.

Each flash memory die connected to a memory channel
has its own chip enable (CE) signal, which selects the die
that the controller currently wants to communicate with.
On a channel, the bus broadcasts address, data, and flash
commands to all dies within the channel, but only the die
whose CE signal is active reads the information from the bus
and executes the corresponding operation.

C. SSD Controller

The SSD controller, shown in Fig. 1(b), is responsible for
managing the underlying NAND flash memory, and for han-
dling I/O requests received from the host. To perform these
tasks, the controller runs firmware, which is often referred
to as the flash translation layer (FTL). FTL tasks are exe-
cuted on one or more embedded processors that exist inside
the controller. The controller has access to DRAM, which
can be used to store various controller metadata (e.g., how
host memory addresses map to physical SSD addresses) and
to cache relevant (e.g., frequently accessed) SSD pages [48],
[161]. When the controller handles I/O requests, it performs
a number of operations on the data, such as scrambling
the data to improve raw bit error rates, performing ECC
encoding/decoding, and in some cases compressing the
data and employing superpage-level data parity. We briefly
examine the various tasks of the SSD controller.

1) Flash Translation Layer: The main duty of the FTL is to
manage the mapping of logical addresses (i.e., the address
space utilized by the host) to physical addresses in the
underlying flash memory (i.e., the address space for actual
locations where the data is stored, visible only to the SSD
controller) for each page of data [1], [2]. By providing this
indirection between address spaces, the FTL can remap the
logical address to a different physical address (i.e., move
the data to a different physical address) without notifying
the host. Whenever a page of data is written to by the host
or moved for underlying SSD maintenance operations (e.g.,
garbage collection [3], [4]; see below), the old data (i.e., the
physical location where the overwritten data resides) is sim-
ply marked as invalid in the physical block’s metadata, and
the new data is written to a page in the flash block that is
currently open for writes (see Section III-D for more detail
on how writes are performed).

Over time, page invalidations cause fragmentation
within ablock, where a majority of pages in the block become
invalid. The FTL periodically performs garbage collection,
which identifies each of the highly fragmented flash blocks
and erases the entire block (after migrating any remaining
valid pages to a new block, with the goal of fully populating

the new block with valid pages) [3], [4]. Garbage collection
often aims to select the blocks with the least amount of uti-
lization (i.e., the fewest valid pages) first. When garbage col-
lection is complete, and a block has been erased, it is added
to a free list in the FTL. When the block currently open for
writes becomes full, the SSD controller selects a new block
to open from the free list.

The FTL is also responsible for wear leveling, to ensure that
all of the blocks within the SSD are evenly worn out 3], [4].
By evenly distributing the wear (i.e., the number of P/E cycles
that take place) across different blocks, the SSD controller
reduces the heterogeneity of the amount of wearout across
these blocks, extending the lifetime of the device. Wear-
leveling algorithms are invoked when the current block that
is being written to is full (i.e., no more pages in the block are
available to write to), and the controller selects a new block
for writes from the free list. The wear-leveling algorithm dic-
tates which of the blocks from the free list is selected. One
simple approach is to select the block in the free list with the
lowest number of P/E cycles to minimize the variance of the
wearout amount across blocks, though many algorithms have
been developed for wear leveling [98], [203].

2) Flash Reliability Management: The SSD controller
performs many background optimizations that improve
flash reliability. These flash reliability management tech-
niques, as we will discuss in more detail in Section V,
can effectively improve flash lifetime at a very low cost,
since the optimizations are usually performed during idle
times, when the interference with the running workload
is minimized. These management techniques sometimes
require small metadata storage in memory (e.g., for stor-
ing optimal read reference voltages [37], [38], [42]), or
require a timer (e.g., for triggering refreshes in time

[34], [39)).

3) Compression: Compression can reduce the size of the
data written to minimize the number of flash cells worn out
by the original data. Some controllers provide compression,
as well as decompression, which reconstructs the original
data from the compressed data stored in the flash memory
[5], [6]. The controller may contain a compression engine,
which, for example, performs the LZ77 or LZ78 algorithms.
Compression is optional, as some types of data being stored
by the host (e.g., JPEG images, videos, encrypted files, files
that are already compressed) may not be compressible.

4) Data Scrambling and Encryption: The occurrence of
errors in flash memory is highly dependent on the data val-
ues stored into the memory cells [32], [35], [36]. To reduce
the dependence of the error rate on data values, an SSD
controller first scrambles the data before writing it into the
flash chips [7], [8]. The key idea of scrambling is to proba-
bilistically ensure that the actual value written to the SSD
contains an equal number of randomly distributed zeroes
and ones, thereby minimizing any data-dependent behav-
ior. Scrambling is performed using a reversible process, and
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the controller descrambles the data stored in the SSD during
aread request. The controller employs a linear feedback shift
register (LFSR) to perform scrambling and descrambling.
An n-bit LFSR generates 2"1 bits worth of pseudo-random
numbers without repetition. For each page of data to be writ-
ten, the LFSR can be seeded with the logical address of that
page, so that the page can be correctly descrambled even if
maintenance operations (e.g., garbage collection) migrate
the page to another physical location, as the logical address
is unchanged. (This also reduces the latency of maintenance
operations, as they do not need to descramble and rescram-
ble the data when a page is migrated.) The LFSR then gener-
ates a pseudo-random number based on the seed, which is
then XORed with the data to produce the scrambled version
of the data. As the XOR operation is reversible, the same
process can be used to descramble the data.

In addition to the data scrambling employed to mini-
mize data value dependence, several SSD controllers
include data encryption hardware [167], [168], [170]. An
SSD that contains data encryption hardware within its
controller is known as a self-encrypting drive (SED). In the
controller, data encryption hardware typically employs
AES encryption [168]-[170], [204], which performs multi-
ple rounds of substitutions and permutations to the unen-
crypted data in order to encrypt it. AES employs a separate
key for each round [169], [204]. In an SED, the controller
contains hardware that generates the AES keys for each
round, and performs the substitutions and permutations
to encrypt or decrypt the data using dedicated hardware
[167], [168], [170].

5) Error-Correcting Codes: ECC is used to detect and cor-
rect the raw bit errors that occur within flash memory. A
host writes a page of data, which the SSD controller splits
into one or more chunks. For each chunk, the controller
generates a codeword, consisting of the chunk and a cor-
rection code. The strength of protection offered by ECC
is determined by the coding rate, which is the chunk size
divided by the codeword size. A higher coding rate provides
weaker protection, but consumes less storage, representing
a key reliability tradeoff in SSDs.

The ECC algorithm employed (typically BCH [9], [10],
[92], [93] or LDPC [9], [11], [94], [95]; see Section VI),
as well as the length of the codeword and the coding rate,
determine the total error correction capability, i.e., the
maximum number of raw bit errors that can be corrected
by ECC. ECC engines in contemporary SSDs are able to
correct data with a relatively high raw bit error rate (e.g.,
between 10 > and 102 [110]) and return data to the host at
an error rate that meets traditional data storage reliability
requirements (e.g., a post-correction error rate of 107" in
the JEDEC standard [12]). The error correction failure rate
(Pgcrr) of an ECC implementation, with a codeword length
of | where the codeword has an error correction capability
of t bits, can be modeled as

1 1 _
Ppcpr = Zk=t+1(k> (1 - BER)"*BER* @

where BER is the bit error rate of the NAND flash memory.
We assume in this equation that errors are independent and
identically distributed.

In addition to the ECC information, a codeword con-
tains cyclic redundancy checksum (CRC) parity information
[161]. When data is being read from the NAND flash mem-
ory, there may be times when the ECC algorithm incorrectly
indicates that it has successfully corrected all errors in the
data, when uncorrected errors remain. To ensure that incor-
rect data is not returned to the user, the controller performs
a CRC check in hardware to verify that the data is error free
[161], [205].

6) Data Path Protection: In addition to protecting the
data from raw bit errors within the NAND flash memory,
newer SSDs incorporate error detection and correction
mechanisms throughout the SSD controller, in order to
further improve reliability and data integrity [161]. These
mechanisms are collectively known as data path protection,
and protect against errors that can be introduced by the vari-
ous SRAM and DRAM structures that exist within the SSD.!
Fig. 3 illustrates the various structures within the control-
ler that employ data path protection mechanisms. There are
three data paths that require protection: 1) the path for data
written by the host to the flash memory, shown as a red solid
line in Fig. 3; 2) the path for data read from the flash mem-
ory by the host, shown as a green dotted line; and 3) the path
for metadata transferred between the firmware (i.e., FTL)
processors and the DRAM, shown as a blue dashed line.

In the write data path of the controller (the red solid
line shown in Fig. 3), data received from the host interface
(@ in the figure) is first sent to a host FIFO buffer ().
Before the data is written into the host FIFO buffer, the data
is appended with memory protection ECC (MPECC) and
host FIFO buffer (HFIFO) parity [161]. The MPECC parity is
designed to protect against errors that are introduced when
the data is stored within DRAM (which takes place later
along the data path), while the HFIFO parity is designed

ISee Section VIII for a discussion on the possible types of errors that
can be present in DRAM.

a 5 MPECC HFIFO Parity HFIFO Parity
8 Generator Generator Check
T
= =
=27 { MPECC HFIFO Parity| _ _ I:ITG g
=0 Check ! Check !
Fris
8 (2)
T O
a MPECC Generator

- MPECC Check

Interface (NJIK) DRAM (uses MPECC)

Fig. 3. Data path protection employed within the controller.
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to protect against SRAM errors that are introduced when
the data resides within the host FIFO buffer. When the
data reaches the head of the host FIFO buffer, the control-
ler fetches the data from the buffer, uses the HFIFO parity
to correct any errors, discards the HFIFO parity, and sends
the data to the DRAM manager (). The DRAM manager
buffers the data (which still contains the MPECC informa-
tion) within DRAM (@), and keeps track of the location of
the buffered data inside the DRAM. When the controller
is ready to write the data to the NAND flash memory, the
DRAM manager reads the data from DRAM. Then, the con-
troller uses the MPECC information to correct any errors,
and discards the MPECC information. The controller then
encodes the data into an ECC codeword (@), generates CRC
parity for the codeword, and then writes both the codeword
and the CRC parity to a NAND flash FIFO buffer (@) [161].
When the codeword reaches the head of this buffer, the con-
troller uses CRC parity to correct any errors in the code-
word, and then dispatches the data to the flash interface (@),
which writes the data to the NAND flash memory. The read
data path of the controller (the green dotted line shown in
Fig. 3) performs the same procedure as the write data path,
but in reverse order [161].

Aside from buffering data along the write and read paths,
the controller uses the DRAM to store essential metadata,
such as the table that maps each host data address to a physi-
cal block address within the NAND flash memory [48],
[161]. In the metadata path of the controller (the blue dashed
line shown in Fig. 3), the metadata is often read from or writ-
ten to DRAM by the firmware processors. In order to ensure
correct operation of the SSD, the metadata must not contain
any errors. As a result, the controller uses memory protec-
tion ECC (MPECC) for the metadata stored within DRAM
[130], [161], just as it did to buffer data along the write and
read data paths. Due to the lower rate of errors in DRAM
compared to NAND flash memory (see Section VIII), the
employed memory protection ECC algorithms are not as
strong as BCH or LDPC. We describe common ECC algo-
rithms employed for DRAM error correction in Section VIII.

7) Bad Block Management: Due to process variation or
uneven wearout, a small number of flash blocks may have
a much higher raw bit error rate (RBER) than an average
flash block. Mitigating or tolerating the RBER on these flash
blocks often requires a much higher cost than the benefit of
using them. Thus, it is more efficient to identify and record
these blocks as bad blocks, and avoid using them to store
useful data. There are two types of bad blocks: original bad
blocks (OBBs), which are defective due to manufactur-
ing issues (e.g., process variation), and growth bad blocks
(GBBs), which fail during runtime [91].

The flash vendor performs extensive testing, known
as bad block scanning, to identify OBBs when a flash chip
is manufactured [106]. Initially, all blocks are kept in
the erased state, and contain the value OxFF in each byte

(see Section III-A). Inside each OBB, the bad block scan-
ning procedure writes a specific data value (e.g., 0x00) to
a specific byte location within the block that indicates the
block status. A good block (i.e., a block without defects) is
not modified, and thus its block status byte remains at the
value OxFF. When the SSD is powered up for the first time,
the SSD controller iterates through all blocks and checks
the value stored in the block status byte of each block. Any
block that does not contain the value OxFF is marked as bad,
and is recorded in a bad block table stored in the control-
ler. A small number of blocks in each plane are set aside as
reserved blocks (i.e., blocks that are not used during normal
operation), and the bad block table automatically remaps
any operation originally destined to an OBB to one of the
reserved blocks. The bad block table remaps an OBB to a
reserved block in the same plane, to ensure that the SSD
maintains the same degree of parallelism when writing to a
superpage, thus avoiding performance loss. Less than 2% of
all blocks in the SSD are expected to be OBBs [162].

The SSD identifies growth bad blocks during runtime by
monitoring the status of each block. Each superblock con-
tains a bit vector indicating which of its blocks are GBBs.
After each program or erase operation to a block, the SSD
reads the status reporting registers to check the operation
status. If the operation has failed, the controller marks the
block as a GBB in the superblock bit vector. At this point,
the controller uses superpage-level parity to recover the data
that was stored in the GBB (see Section II-C8), and all data
in the superblock is copied to a different superblock. The
superblock containing the GBB is then erased. When the
superblock is subsequently opened, blocks marked as GBBs
are not used, but the remaining blocks can store new data.

8) Superpage-Level Parity: In addition to ECC to protect
against bit-level errors, many SSDs employ RAID-like parity
[13]-[16]. The key idea is to store parity information within
each superpage to protect data from ECC failures that occur
within a single chip or plane. Fig. 4 shows an example of
how the ECC and parity information are organized within
a superpage. For a superpage that spans across multiple
chips, dies, and planes, the pages stored within one die or
one plane (depending on the implementation) are used to
store parity information for the remaining pages. Without
loss of generality, we assume for the rest of this section that
a superpage that spans c chips and d dies per chip stores par-
ity information in the pages of a single die (which we call
the parity die), and that it stores user data in the pages of
the remaining (¢ X d)-1 dies. When all of the user data is
written to the superpage, the SSD controller XORs the data
together one plane at a time (e.g., in Fig. 4, all of the pages
in Plane 0 are XORed with each other), which produces the
parity data for that plane. This parity data is written to the
corresponding plane in the parity die, e.g., Plane 0 page in
Die (¢ X d)-1 in the figure.
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Fig. 4. Example layout of ECC codewords, logical blocks, and
superpage-level parity for superpage n in superblock m. In this
example, we assume that a logical block contains two codewords.

The SSD controller invokes superpage-level parity when
an ECC failure occurs during a host software (e.g., OS, file
system) access to the SSD. The host software accesses data
at the granularity of a logical block (LB), which is indexed
by a logical block address (LBA). Typically, an LB is 4 kB
in size, and consists of several ECC codewords (which are
usually 512 B to 2 kB in size) stored consecutively within
a flash memory page, as shown in Fig. 4. During the LB
access, a read failure can occur for one of two reasons.
First, it is possible that the LB data is stored within a hid-
den GBB (i.e., a GBB that has not yet been detected and
excluded by the bad block manager). The probability of
storing data in a hidden GBB is quantified as Pygpp. Note
that because bad block management successfully identifies
and excludes most GBBs, Pygpp is much lower than the
total fraction of GBBs within an SSD. Second, it is possible
that at least one ECC codeword within the LB has failed
(i.e., the codeword contains an error that cannot be cor-
rected by ECC). The probability that a codeword fails is
Prcrr (see Section II-C5). For an LB that contains K ECC
codewords, we can model Pjpg,;, the overall probability
that an LB access fails (i.e., the rate at which superpage-
level parity needs to be invoked), as

Prgrail = Prces +[1— Puces] X [1— (1—Pecrr)] (2)

In (2), Prpp,y consists of 1) the probability that an LB is
inside a hidden GBB (left side of the addition); and 2) for
an LB that is not in a hidden GBB, the probability of any
codeword failing (right side of the addition).

When a read failure occurs for an LB in plane p, the SSD
controller reconstructs the data using the other LBs in the
same superpage. To do this, the controller reads the LBs
stored in plane p in the other (¢ X d)-1 dies of the super-
page, including the LBs in the parity die. The controller
then XORs all of these LBs together, which retrieves the
data that was originally stored in the LB whose access failed.
In order to correctly recover the failed data, all of the LBs
from the (¢ X d)-1 dies must be correctly read. The overall

superpage-level parity failure probability Pp.qq (i-e., the
probability that more than one LB contains a failure) for an
SSD with ¢ chips of flash memory, with d dies per chip, can

be modeled as [16]

d)—
Pparity = Prprail X [1- @ = Prgra) 7 ©)

Thus, by designating one of the dies to contain parity infor-
mation (in a fashion similar to RAID 4 [16]), the SSD can
tolerate the complete failure of the superpage data in one die
without experiencing data loss during an LB access.

D. Design Tradeoffs for Reliability

Several design decisions impact the SSD lifetime (i.e.,
the duration of time that the SSD can be used within a
bounded probability of error without exceeding a given
performance overhead). To capture the tradeoff between
these decisions and lifetime, SSD manufacturers use the
following model:

PEC X (1 + OP)
365 X DWPD X WA X Rcompress

Lifetime(Years) = 4)
In (4), the numerator is the total number of full drive writes
the SSD can endure (i.e., for a drive with an X-byte capacity,
the number of times X bytes of data can be written). The num-
ber of full drive writes is calculated as the product of PEC, the
total P/E cycle endurance of each flash block (i.e., the number
of P/E cycles the block can sustain before its raw error rate
exceeds the ECC correction capability), and 1+OP, where OP
is the overprovisioning factor selected by the manufacturer.
Manufacturers overprovision the flash drive by providing
more physical block addresses, or PBAs, to the SSD controller
than the advertised capacity of the drive, i.e., the number of
logical block addresses (LBAs) available to the operating sys-
tem. Overprovisioning improves performance and endurance,
by providing additional free space in the SSD so that mainte-
nance operations can take place without stalling host requests.
OP is calculated as

PBA count—LBA count ©)

OP = LBA count

The denominator in (4) is the number of full drive writes
per year, which is calculated as the product of days per year
(i-e., 365), DWPD, and the ratio between the total size of
the data written to flash media and the size of the data sent
by the host (i.e., WA X Reompress)- DWPD is the number of
full disk writes per day (i.e., the number of times per day the
OS writes the advertised capacity’s worth of data). DWPD
is typically less than 1 for read-intensive applications, and
could be greater than 5 for write-intensive applications [34].
WA (write amplification) is the ratio between the amount
of data written into NAND flash memory by the controller
over the amount of data written by the host machine. Write
amplification occurs because various procedures (e.g.,
garbage collection [3], [4]; and remapping-based refresh,
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Section V-C) in the SSD perform additional writes in the
background. For example, when garbage collection selects a
block to erase, the pages that are remapped to a new block
require background writes. R.ompress; OF the compression
ratio, is the ratio between the size of the compressed data
and the size of the uncompressed data, and is a function of
the entropy of the stored data and the efficiency of the com-
pression algorithms employed in the SSD controller. In (4),
DWPD and R ompress are largely determined by the workload
and data compressibility, and cannot be changed to opti-
mize flash lifetime. For controllers that do not implement
compression, we set Reompress to 1. However, the SSD con-
troller can trade off other parameters between one another
to optimize flash lifetime. We discuss the most salient trade-
offs next.

1)  Tradeoff Between Write Amplification and
Overprovisioning: As mentioned in Section II-C, due to the
granularity mismatch between flash erase and program
operations, garbage collection occasionally remaps remain-
ing valid pages from a selected block to a new flash block,
in order to avoid block-internal fragmentation. This remap-
ping causes additional flash memory writes, leading to
write amplification. In an SSD with more overprovisioned
capacity, the amount of write amplification decreases,
as the blocks selected for garbage collection are older
and tend to have fewer valid pages. For a greedy garbage col-
lection algorithm and a random-access workload, the cor-
relation between WA and OP can be calculated [17], [18], as
shown in Fig. 5. In an ideal SSD, both WA and OP should
be minimal, i.e., WA = 1 and OP = 0%, but in reality there
is a tradeoff between these parameters: when one increases,
the other decreases. As Fig. 5 shows, WA can be reduced by
increasing OP, and with an infinite amount of OP, WA con-
verges to 1. However, the reduction of WA is smaller when
OP is large, resulting in diminishing returns.

In reality, the relationship between WA and OP is also a
function of the storage space utilization of the SSD. When the
storage space is not fully utilized, many more pages are avail-
able, reducing the need to invoke garbage collection, and thus
WA can approach 1 without the need for a large amount of OP.

2) Tradeoff Between P/E Cycle Endurance and

Overprovisioning: PEC and OP can be traded against each

B

Write Amplification
ORNWAUIOINOWLORN

0% 10% 20% 30% 40% 50%
Overprovisioning

Fig. 5. Relationship between write amplification (WA) and the
overprovisioning factor (OP).

Table 1 Tradeoff Between Strength of Error Correction Configuration
and Amount of SSD Space Left for Overprovisioning

Error Correction Configuration Overprovisioning Factor
ECC-1 (0.93), no superpage-level parity 11.6%
ECC-1 (0.93), with superpage-level parity 8.1%
ECC-2 (0.90), no superpage-level parity 8.0%
ECC-2 (0.90), with superpage-level parity 4.6%

other by adjusting the amount of redundancy used for error
correction, such as ECC and superpage-level parity (as dis-
cussed in Section II-C). As the error correction capability
increases, PEC increases because the SSD can tolerate the
higher raw bit error rate that occurs at a higher P/E cycle
count. However, this comes at a cost of reducing the amount
of space available for OP, since a stronger error correction
capability requires higher redundancy (i.e., more space).
Table 1 shows the corresponding OP for four different error
correction configurations for an example SSD with 2.0 TB
of advertised capacity and 2.4 TB (20% extra) of physical
space. In this table, the top two configurations use ECC-1
with a coding rate of 0.93, and the bottom two configura-
tions use ECC-2 with a coding rate of 0.90, which has higher
redundancy than ECC-1. Thus, the ECC-2 configurations
have a lower OP than the top two. ECC-2, with its higher
redundancy, can correct a greater number of raw bit errors,
which in turn increases the P/E cycle endurance of the SSD.
Similarly, the two configurations with superpage-level par-
ity have a lower OP than configurations without superpage-
level parity, as parity uses a portion of the overprovisioned
space to store the parity bits.

When the ECC correction strength is increased, the
amount of overprovisioning in the SSD decreases, which
in turn increases the amount of write amplification that
takes place. Manufacturers must find and use the correct
tradeoff between ECC correction strength and the over-
provisioning factor, based on which of the two is expected
to provide greater reliability for the target applications of
the SSD.

ITI. NAND FLASH MEMORY BASICS

A number of underlying properties of the NAND flash
memory used within the SSD affect SSD management,
performance, and reliability [20], [22], [24]. In this sec-
tion, we present a primer on NAND flash memory and its
operation, to prepare the reader for understanding our
further discussion on error sources (Section IV) and miti-
gation mechanisms (Section V). Recall from Section II-A
that within each plane, flash cells are organized as mul-
tiple 2-D arrays known as flash blocks, each of which
contains multiple pages of data, where a page is the gran-
ularity at which the host reads and writes data. We first
discuss how data is stored in NAND flash memory. We
then introduce the three basic operations supported by
NAND flash memory: read, program, and erase.
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A. Storing Data in a Flash Cell

NAND flash memory stores data as the threshold volt-
age of each flash cell, which is made up of a floating gate
transistor. Fig. 6 shows a cross section of a ﬂoating gate
transistor. On top of a flash cell is the control gate (CG) and
below is the floating gate (FG). The floating gate is insulated
on both sides, on top by an interpoly oxide layer and at the
bottom by a tunnel oxide layer. As a result, the electrons
programmed on the floating gate do not discharge even
when flash memory is powered off.

For single-level cell (SLC) NAND flash, each flash cell
stores a 1-bit value, and can be programmed to one of two
threshold voltage states, which we call the ER and P1 states.
Multi-level cell (MLC) NAND flash stores a 2-bit value in each
cell, with four possible states (ER, P1, P2, and P3), and triple-
level cell (TLC) NAND flash stores a 3-bit value in each cell
with eight possible states (ER, P1-P7). Each state represents
a different value, and is assigned a voltage window within
the range of all possible threshold voltages. Due to variation
across program operations, the threshold voltage of flash cells
programmed to the same state is initially distributed across
this voltage window.

Fig. 7 illustrates the threshold voltage distribution of
MLC (top) and TLC (bottom) NAND flash memories. The
x-axis shows the threshold voltage (Vy,), which spans a cer-
tain voltage range. The y-axis shows the probability den-
sity of each voltage level across all flash memory cells. The
threshold voltage distribution of each threshold voltage
state can be represented as a probability density curve that
spans over the state’s voltage window.

We label the distribution curve for each state with the
name of the state and a corresponding bit value. Note that
some manufacturers may choose to use a different map-
ping of values to different states. The bit values of adjacent
states are separated by a Hamming distance of 1. We break
down the bit values for MLC into the most significant bit
(MSB) and least significant bit (LSB), while TLC is broken
down into the MSB, the center significant bit (CSB), and
the LSB. The boundaries between neighboring threshold
voltage windows, which are labeled as V, V},, and V, for the
MLC distribution in Fig. 7, are referred to as read reference
voltages. These voltages are used by the SSD controller to
identify the voltage window (i.e., state) of each cell upon
reading the cell.

9
Control Gate (CG) )
Floating
Oxide Gate
S 66 686 6 (FG)
Oxide

Source n+ n+  Drain

Substrate

Fig. 6. Flash cell (i.e., floating gate transistor) cross section.
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Fig. 7. Threshold voltage distribution of MLC (top) and TLC (bottom)
NAND flash memory.

B. Flash Block Design

Fig. 8 shows the high-level internal organization of a
NAND flash memory block. Each block contains multiple
rows of cells (typically 128-512 rows). Each row of cells is
connected together by a common wordline (WL, shown hori-
zontally in Fig. 8), typically spanning 32K-64K cells. All of
the cells along the wordline are logically combined to form
a page in an SLC NAND flash memory. For an MLC NAND
flash memory, the MSBs of all cells on the same wordline are
combined to form an MSB page, and the LSBs of all cells on
the wordline are combined to form an LSB page. Similarly,
a TLC NAND flash memory logically combines the MSBs
on each wordline to form an MSB page, the CSBs on each
wordline to form a CSB page, and the LSBs on each wordline
to form an LSB page. In MLC NAND flash memory, each
flash block contains 256-1024 flash pages, each of which
are typically 8-16 kB in size.

Within a block, all cells in the same column are con-
nected in series to form a bitline (BL, shown vertically in
Fig. 8) or string. All cells in a bitline share a common ground
(GND) on one end, and a common sense amplifier (SA) on
the other for reading the threshold voltage of one of the cells

Fig. 8. Internal organization of a flash block.

GSL
ground select

WL O
WL1
WL 2

Wordlines

WL N-1
LWLN

SSL
string select

e

Sense
Amplifiers

1674 PROCEEDINGS OF THE IEEE | Vol. 105, No. 9, September 2017



Cai et al.: Error Characterization, Mitigation, and Recovery in Flash-Memory-Based SSDs

when decoding data. Bitline operations are controlled by
turning the ground select line (GSL) and string select line
(SSL) transistor of each bitline on or off. The SSL transis-
tor is used to enable operations on a bitline, and the GSL
transistor is used to connect the bitline to ground during a
read operation [103]. The use of a common bitline across
multiple rows reduces the amount of circuit area required
for read and write operations to a block, improving storage
density.

C. Read Operation

Data can be read from NAND flash memory by applying
read reference voltages onto the control gate of each cell, to
sense the cell’s threshold voltage. To read the value stored
in a single-level cell, we need to distinguish only the state
with a bit value of 1 from the state with a bit value of 0.
This requires us to use only a single read reference voltage.
Likewise, to read the LSB of a multi-level cell, we need to
distinguish only the states where the LSB value is 1 (ER and
P1) from the states where the LSB value is 0 (P2 and P3),
which we can do with a single read reference voltage (V}, in
the top half of Fig. 7). To read the MSB page, we need to dis-
tinguish the states with an MSB value of 1 (ER and P3) from
those with an MSB value of 0 (P1 and P2). Therefore, we
need to determine whether the threshold voltage of the cell
falls between V, and V,, requiring us to apply each of these
two read reference voltages (which can require up to two
consecutive read operations) to determine the MSB.

Reading data from a triple-level cell is similar to the data
read procedure for a multi-level cell. Reading the LSB for TLC
again requires applying only a single read reference voltage
(V4 in the bottom half of Fig. 7). Reading the CSB requires two
read reference voltages to be applied, and reading the MSB
requires four read reference voltages to be applied.

As Fig. 8 shows, cells from multiple wordlines (WL in the
figure) are connected in series on a shared bitline (BL) to the
sense amplifier, which drives the value that is being read from
the block onto the memory channel for the plane. In order to
read from a single cell on the bitline, all of the other cells (i.e.,
unread cells) on the same bitline must be switched on to allow
the value that is being read to propagate through to the sense
amplifier. The NAND flash memory achieves this by applying
the pass-through voltage onto the wordlines of the unread cells,
as shown in Fig. 9(a). When the pass-through voltage (i.e., the
maximum possible threshold voltage Vi) is applied to a flash
cell, the source and the drain of the cell transistor are con-
nected, regardless of the voltage of the floating gate. Modern
flash memories guarantee that all unread cells are passed through
to minimize errors during the read operation [38].

D. Program and Erase Operations

The threshold voltage of a floating gate transistor is con-
trolled through the injection and ejection of electrons through

= GND = GND
GSL GSL GSL
on off floating
V,DUSS V[JUSS GND
Vpass Vpass GND :
: |body bias: body bias: body bias:
: GND GND Verase
Vprogram GND
Vipass GND
SSL SSL
on floating
(a) Read (b) Program (c) Erase

Fig. 9. voltages applied to flash cell transistors on a bitline to
perform (a) read, (b) program, and (c) erase operations.

the tunnel oxide of the transistor, which is enabled by the
Fowler—Nordheim (FN) tunneling effect [21], [24], [28]. The
tunneling current (Jpy) [22], [28] can be modeled as

Jen = opnEdce PlFo ©)

In (6), apy and By are constants, and E,, is the electric field
strength in the tunnel oxide. As (6) shows, Jpy is exponen-
tially correlated with E,,,.

During a program operation, electrons are injected into
the floating gate of the flash cell from the substrate when
applying a high positive voltage to the control gate (see Fig. 6
for a diagram of the flash cell). The pass-through voltage is
applied to all of the other cells on the same bitline as the
cell that is being programmed as shown in Fig. 9(b). When
data is programmed, charge is transferred into the floating
gate through FN tunneling by repeatedly pulsing the pro-
gramming voltage, in a procedure known as incremental
[23]-[25]. During
ISPP, a high programming voltage (Vprogram) is applied for
a very short period, which we refer to as a step-pulse. ISPP
then verifies the current voltage of the cell using the voltage
Vyerify- ISPP repeats the process of applying a step-pulse and
verifying the voltage until the cell reaches the desired tar-

step-pulse programming (ISPP) [20],

get voltage. In the modern all-bitline NAND flash memory,
all flash cells in a single wordline are programmed concur-
rently. During programming, when a cell along the wordline
reaches its target voltage but other cells have yet to reach
their target voltage, ISPP inhibits programming pulses to
the cell by turning off the SSL transistor of the cell’s bitline.
In SLC NAND flash and older MLC NAND flash, one-
shot programming is used, where all of the ISPP step-pulses
required to program a cell are applied back to back until all
cells in the wordline are fully programmed. One-shot pro-
gramming does not interleave the program operations to
a wordline with the program operations to another word-
line. In newer MLC NAND flash, the lack of interleaving
between program operations can introduce a significant
amount of cell-to-cell program interference on the cells of
immediately-adjacent wordlines (see Section IV-C).
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To reduce the impact of program interference, the con-
troller employs two-step programming for sub-40-nm MLC
NAND flash [26], [35]: it first programs the LSBs into the
erased cells of an unprogrammed wordline, and then pro-
grams the MSBs of the cells using a separate program opera-
tion [26], [27], [33], [40]. Between the programming of the
LSBs and the MSBs, the controller programs the LSBs of
the cells in the wordline immediately above [26], [27], [33],
[40]. Fig. 10 illustrates the two-step programming algo-
rithm. In the first step, a flash cell is partially programmed
based on its LSB value, either staying in the ER state if the
LSB value is 1, or moving to a temporary state (TP) if the LSB
value is 0. The TP state has a mean voltage that falls between
states P1 and P2. In the second step, the LSB data is first
read back into an internal buffer register within the flash
chip to determine the cell’s current threshold voltage state,
and then further programming pulses are applied based on
the MSB data to increase the cell’s threshold voltage to fall
within the voltage window of its final state. Programming
in MLC NAND flash is discussed in detail in [33] and [40].

TLC NAND flash takes a similar approach to the two-
step programming of MLC, with a mechanism known as
foggy-fine programming [19], which is illustrated in Fig. 11.
The flash cell is first partially programmed based on its LSB
value, using a binary programming step in which very large
ISPP step-pulses are used to significantly increase the voltage
level. Then, the flash cell is partially programmed again based
on its CSB and MSB values to a new set of temporary states
(these steps are referred to as foggy programming, which uses
smaller ISPP step-pulses than binary programming). Due to
the higher potential for errors during TLC programming as a
result of the narrower voltage windows, all of the programmed
bit values are buffered after the binary and foggy program-
ming steps into SLC buffers that are reserved in each chip/
plane. Finally, fine programming takes place, where these bit
values are read from the SLC buffers, and the smallest ISPP
step-pulses are applied to set each cell to its final threshold
voltage state. The purpose of this last fine programming step
is to fine tune the threshold voltage such that the threshold
voltage distributions are tightened (bottom of Fig. 11).

0. Erase ER
(XX) Vin

1. Program ER
LSB (X1)

2. Program ER
MSB (11)

>
>

Threshold Voltage (V,,)

Fig. 10. Two-step programming algorithm for MLC flash.
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Fig. 11. Foggy-fine programming algorithm for TLC flash.

Though programming sets a flash cell to a specific
threshold voltage using programming pulses, the voltage
of the cell can drift over time after programming. When no
external voltage is applied to any of the electrodes (i.e., CG,
source, and drain) of a flash cell, an electric field still exists
between the FG and the substrate, generated by the charge
present in the FG. This is called the intrinsic electric field
[22], and it generates stress-induced leakage current (SILC)
[24], [29], [30], a weak tunneling current that leaks charge
away from the FG. As a result, the voltage that a cell is pro-
grammed to may not be the same as the voltage read for that
cell at a subsequent time.

In NAND flash, a cell can be reprogrammed with new
data only after the existing data in the cell is erased. This is
because ISPP can only increase the voltage of the cell. The
erase operation resets the threshold voltage state of all cells
in the flash block to the ER state. During an erase opera-
tion, electrons are ejected from the FG of the flash cell into
the substrate by inducing a high negative voltage on the cell
transistor. The negative voltage is induced by setting the CG
of the transistor to GND, and biasing the transistor body
(i.e., the substrate) to a high voltage (Vey..), as shown in
Fig. 9(c). Because all cells in a flash block share a common
transistor substrate (i.e., the bodies of all transistors in the
block are connected together), a flash block must be erased
in its entirety [103].

IV. NAND FLASH ERROR
CHARACTERIZATION

Each block in NAND flash memory is used in a cyclic fash-
ion, as is illustrated by the observed raw bit error rates seen
over the lifetime of a flash memory block in Fig. 12. At the
beginning of a cycle, known as a program/erase (P/E) cycle,
an erased block is opened (i.e., selected for programming).
Data is then programmed into the open block one page at
a time. After all of the pages are programmed, the block is
closed, and none of the pages can be reprogrammed until
the whole block is erased. At any point before erasing, read
operations can be performed on a valid programmed page
(i-e., a page containing data that has not been modified
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by the host). A page is marked as invalid when the data
stored at that page’s logical address by the host is modified.
As ISPP can only inject more charge into the floating gate
but cannot remove charge from the gate, it is not possi-
ble to modify data to a new arbitrary value in place within
existing NAND flash memories. Once the block is erased,
the P/E cycling behavior repeats until the block is worn out
(i.e., the block can no longer avoid data loss over the course
of the minimum data retention period guaranteed by the
manufacturer). Although the 5x-nm (i.e., 50-59 nm)
generation of MLC NAND flash could endure ~10000 P/E
cycles per block before being worn out, modern 1x-nm
(i.e., 15-19 nm) MLC and TLC NAND flash can endure
only ~3000 and ~1000 P/E cycles per block, respectively
[53], [60], [81], [86].

As shown in Fig. 12, several different types of errors can
be introduced at any point during the P/E cycling process:
P/E cycling errors, program errors, errors due to cell-to-cell pro-
gram interference, data retention errors, and errors due to read
disturb. As discussed in Section III-A, the threshold voltage
of flash cells programmed to the same state is distributed
across a voltage window due to variation across program
operations and across different flash cells. Several types of
errors introduced during the P/E cycling process, such as
data retention and read disturb, cause the threshold voltage
distribution of each state to shift and widen. Due to the shift
and widening, the tails of the distributions of each state can
enter the margin that originally existed between each of the
two neighboring states’ distributions. Thus, the threshold
voltage distributions of different states can start overlap-
ping, as shown in Fig. 13. When the distributions overlap
with each other, the read reference voltages can no longer
correctly identify the state of some flash cells in the overlap-
ping region, leading to raw bit errors during a read operation.

In this section, we discuss the causes of each type of error
in detail, and characterize the impact that each error type
has on the amount of raw bit errors occurring within NAND
flash memory. We use an FPGA-based testing platform [31]
to characterize state-of-the-art TLC NAND flash chips. We
use the read-retry operation present in NAND flash devices
to accurately read the cell threshold voltage [33]-[38], [42],
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Fig. 12. Pictorial depiction of errors accumulating within a NAND
flash block as P/E cycle count increases.
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Fig. 13. Threshold voltage distribution shifts and widening can
cause the distributions of two neighboring states to overlap with
each other (compare to Fig. 7), leading to read errors.

[52], [107] (for a detailed description of the read-retry oper-
ation, see Section V-D). As absolute threshold voltage values
are proprietary information to flash vendors, we present our
results using normalized voltages, where the nominal maxi-
mum value of Vy, is equal to 512 in our normalized scale,
and where O represents GND. We also describe characteri-
zation results and observations for MLC NAND flash chips.
These MLC NAND results are taken from our prior works
[32]-[40], [42], which provide more detailed error charac-
terization results and analyses. To our knowledge, this paper
provides the first experimental characterization and analysis
of errors in real TLC NAND flash memory chips.

We later discuss mitigation techniques for these flash
memory errors in Section V, and provide procedures to
recover in the event of data loss in Section VI.

A. P/E Cycling Errors

A P/E cycling error occurs when either 1) an erase opera-
tion fails to reset a cell to the ER state; or 2) when a pro-
gram operation fails to set the cell to the desired target state.
P/E cycling errors occur because electrons become trapped
in the tunnel oxide after stress from repeated P/E cycles.
Errors due to such electron trapping (which we refer to as
P/E cycling noise) continue to accumulate over the lifetime
of a NAND flash block. This behavior is called wearout,
and it refers to the phenomenon where, as more writes are
performed to a block, there are a greater number of raw bit
errors that must be corrected, exhausting more of the fixed
error correction capability of the ECC (see Section II-C).

Fig. 14 shows the threshold voltage distribution of TLC
NAND flash memory after O P/E cycles and after 3000 P/E
cycles, without any retention or read disturb errors present
(which we ensure by reading the data immediately after
programming). The mean and standard deviation of each
state’s distribution are provided in Table 4 in the Appendix

10t

— 0 P/E Cycles

— 3K P/E Cycles
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Fig. 14. Threshold voltage distribution of TLC NAND flash memory
after O P/E cycles and 3000 P/E cycles.
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(for other P/E cycle counts as well). We make two obser-
vations from the two distributions. First, as the P/E cycle
count increases, each state’s threshold voltage distribution
systematically 1) shifts to the right and 2) becomes wider.
Second, the amount of the shift is greater for lower-voltage
states (e.g., the ER and P1 states) than it is for higher-voltage
states (e.g., the P7 state).

The threshold voltage distribution shift occurs because
as more P/E cycles take place, the quality of the tunnel
oxide degrades, allowing electrons to tunnel through the
oxide more easily [58]. As a result, if the same ISPP condi-
tions (e.g., programming voltage, step-pulse size, program
time) are applied throughout the lifetime of the NAND flash
memory, more electrons are injected during programming
as a flash memory block wears out, leading to higher thresh-
old voltages, i.e., the right shift of the distribution. The dis-
tribution of each state widens due to the process variation
present in 1) the wearout process, and 2) the cell’s struc-
tural characteristics. As the distribution of each voltage state
widens, more overlap occurs between neighboring distribu-
tions, making it less likely for a read reference voltage to
determine the correct value of the cells in the overlapping
regions, which leads to a greater number of raw bit errors.

The threshold voltage distribution trends we observe here
for TLC NAND flash memory trends are similar to trends
observed previously for MLC NAND flash memory [32], [33],
[42], [53], although the MLC NAND flash characterizations
reported in past studies span up to a larger P/E cycle count than
the TLC experiments due to the greater endurance of MLC
NAND flash memory. More findings on the nature of wearout
and the impact of wearout on NAND flash memory errors and
lifetime can be found in our prior work [32], [33], [42].

B. Program Errors

Program errors occur when data read directly from the
NAND flash array contains errors, and the erroneous values
are used to program the new data. Program errors occur in two
major cases: 1) partial programming during two-step or foggy-
fine programming, and 2) copyback (i.e., when data is copied
inside the NAND flash memory during a maintenance opera-
tion) [109]. During two-step programming for MLC NAND
flash memory (see Fig. 10), in between the LSB and MSB pro-
gramming steps of a cell, threshold voltage shifts can occur
on the partially-programmed cell. These shifts occur because
several other read and program operations to cells in other
pages within the same block may take place, causing inter-
ference to the partially-programmed cell. Fig. 15 illustrates
how the threshold distribution of the ER state widens and
shifts to the right after the LSB value is programmed (step 1
in the figure). The widening and shifting of the distribution
causes some cells that were originally partially programmed
to the ER state (with an LSB value of 1) to be misread as being
in the TP state (with an LSB value of 0) during the second
programming step (step 2 in the figure). As shown in Fig. 15,

0. Erase ER
(XX) Ve,
Interference shifts/widens
ER distribution
1. Program TP
\:\‘~~\~
ER B\ e
~,
2. Program N ~
MSB (11) (01) .. ‘(00) .

Program errors
LSB should be 1, but is incorrectly programmed to 0

Fig. 15. Impact of program errors during two-step programming on
cell threshold voltage distribution.

the misread LSB value leads to a program error when the
final cell threshold voltage is programmed [40], [42], [53].
Some cells that should have been programmed to the P1 state
(representing the value O1) are instead programmed to the
P2 state (with the value 00), and some cells that should have
been programmed to the ER state (representing the value 11)
are instead programmed to the P3 state (with the value 10).

The incorrect values that are read before the second pro-
gramming step are not corrected by ECC, as they are read
directly inside the NAND flash array, without involving the
controller (where the ECC engine resides). Similarly, during
foggy-fine programming for TLC NAND flash (see Fig. 11),
the data may be read incorrectly from the SLC buffers used to
store the contents of partially-programmed wordlines, leading
to errors during the fine programming step. Program errors
occur during copyback [109] when valid data is read out from
a block during maintenance operations (e.g., a block about to
be garbage collected) and reprogrammed into a new block, as
copyback operations do not go through the SSD controller.

Program errors that occur during partial programming
predominantly shift data from lower-voltage states to higher-
voltage states. For example, in MLC NAND flash, program
errors predominantly shift data that should be in the ER state
(11) into the P3 state (10), or data that should be in the P1state
(01) into the P2 state (00) [40]. This occurs because MSB pro-
gramming can only increase (and not reduce) the threshold
voltage of the cell from its partially-programmed voltage
(and thus cannot move a multi-level cell that should be
in the P3 state into the ER state, or one that should be in
the P2 state into the P1 state). TLC NAND flash is much
less susceptible to program errors than MLC NAND flash,
as the data read from the SLC buffers in TLC NAND flash
has a much lower error rate than data read from a partially-
programmed MLC NAND flash wordline [202].

From a rigorous experimental characterization of modern
MLC NAND flash memory chips [40], we find that program
errors occur primarily due to two types of errors affecting the
partially-programmed data. First, cell-to-cell program inter-
ference (Section IV-C) on a partially-programmed wordline is
no longer negligible in newer NAND flash memory compared
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to older NAND flash memory, due to manufacturing process
scaling. As flash cells become smaller and are placed closer to
each other, cells in partially-programmed wordlines become
more susceptible to bit flips. Second, partially-programmed
cells are more susceptible to read disturb errors than fully-
programmed cells (Section IV-E), as the threshold voltages
stored in these cells are no more than approximately half of
Viass [40], and cells with lower threshold voltages are more
likely to experience read disturb errors.

More findings on the nature of program errors and the
impact of program errors on NAND flash memory lifetime
can be found in our prior work [40], [42].

C. Cell-to-Cell Program Interference Errors

Program interference refers to the phenomenon where the
programming of a flash cell induces errors on adjacent flash
cells within a flash block [35], [36], [55], [61], [62]. The inter-
ference occurs due to parasitic capacitance coupling between
these cells. As a result, when the threshold voltage of an adja-
cent flash cell increases, the threshold voltage of the victim
cell increases as well. The unintended threshold voltage shifts
can eventually move a cell into a different state than the one it
was originally programmed to, leading to a bit error.

We have shown, based on our experimental analysis of
modern MLC NAND flash memory chips, that the threshold
voltage change of the victim cell can be accurately modeled
as a linear combination of the threshold voltage changes of
the adjacent cells when they are programmed, using linear
regression with least-square-error estimation [35], [36].
The cells that are physically located immediately next to the
victim cell (called the immediately-adjacent cells) are the
major contributors to the cell-to-cell interference of a victim
cell [35]. Fig. 16 shows the eight immediately-adjacent cells
for a victim cell in 2-D planar NAND flash memory.

The amount of interference that program operations to
the immediately-adjacent cells can induce on the victim cell
is expressed as

AV,

victim

ZX:KXA Vy (7)

where AV is the change in voltage of the victim cell
due to cell-to-cell program interference, Ky is the coupling

Bitline M-1 Bitllne M Bltlme M+1
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|
Fig. 16. Immediately-adjacent cells that can induce program
interference on a victim cell that is on wordline N and bitline M.
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Table 2 coupling Coefficients for Immediately-Adjacent Cells

Process Wordline Bitline Diagonal

Technology Neighbor Neighbor Neighbor
2y-nm 0.060 0.032 0.012
1x-nm 0.110 0.055 0.020

coefficient between cell X and the victim cell, and AVy is
the threshold voltage change of cell X during programming.
Table 2 lists the coupling coefficients for both 2y-nm and
1x-nm NAND flash memory. We make two key observations
from Table 2. First, we observe that the coupling coeffi-
cient is greatest for wordline neighbors (i.e., immediately-
adjacent cells on the same bitline, but on a neighboring
wordline) [35]. The coupling coefficient is directly related
to the effective capacitance C between cell X and the victim
cell, which can be calculated as

C = &S/d )

where € is the permittivity, S is the effective cell area of cell
X that faces the victim cell, and d is the distance between the
cells. Of the immediately-adjacent cells, the wordline neigh-
bor cells have the greatest coupling capacitance with the vic-
tim cell, as they likely have a large effective facing area to,
and a small distance from, the victim cell compared to other
surrounding cells. Second, we observe that the coupling
coefficient grows as the feature size decreases [35], [36].
As NAND flash memory process technology scales down
to smaller feature sizes, cells become smaller and get closer
to each other, which increases the effective capacitance
between them. As a result, at smaller feature sizes, it is easier
for an immediately-adjacent cell to induce program interfer-
ence on a victim cell. We conclude that 1) the program inter-
ference an immediately-adjacent cell induces on a victim cell
is primarily determined by the distance between the cells and
the immediately-adjacent cell’s effective area facing the vic-
tim cell; and 2) the wordline neighbor cell causes the highest
such interference, based on empirical measurements.

Due to the order of program operations performed in
NAND flash memory, many immediately-adjacent cells do
not end up inducing interference after a victim cell is fully
programmed (i.e., once the victim cell is at its target voltage).
In modern all-bitline NAND flash memory, all flash cells on
the same wordline are programmed at the same time, and
wordlines are fully programmed sequentially (i.e., the cells
on wordline i are fully programmed before the cells on word-
line i 4+ 1). As a result, an immediately-adjacent cell on the
wordline below the victim cell or on the same wordline as the
victim cell does not induce program interference on a fully-
programmed victim cell. Therefore, the major source of pro-
gram interference on a fully-programmed victim cell is the
programming of the wordline immediately above it.

Fig. 17 shows how the threshold voltage distribution of
a victim cell shifts when different values are programmed
onto its immediately-adjacent cells in the wordline above
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Fig. 17. Impact of cell-to-cell program interference on a victim
cell during one-shot programming, depending on the value its
neighboring cell is programmed to.

the victim cell for MLC NAND flash, when one-shot pro-
gramming is used. The amount by which the victim cell
distribution shifts is directly correlated with the number
of programming step-pulses applied to the immediately-
adjacent cell. That is, when an immediately-adjacent cell
is programmed to a higher-voltage state (which requires
more step-pulses for programming), the victim cell distribu-
tion shifts further to the right [35]. When an immediately-
adjacent cell is set to the ER state, no step-pulses are applied,
as an unprogrammed cell is already in the ER state. Thus, no
interference takes place. Note that the amount by which a
tully-programmed victim cell distribution shifts is different
when two-step programming is used, as a fully-programmed
cell experiences interference from only one of the two pro-
gramming steps of a neighboring wordline [40].

More findings on the nature of cell-to-cell program
interference and the impact of cell-to-cell program inter-
ference on NAND flash memory errors and lifetime can be
found in our prior work [35], [36], [40].

D. Data Retention Errors

Retention errors are caused by charge leakage over time
after a flash cell is programmed, and are the dominant source
of flash memory errors, as demonstrated previously [20],
[32], [34], [37], [39], [56]. As flash memory process technol-
ogy scales to smaller feature sizes, the capacitance of a flash
cell, and the number of electrons stored on it, decreases.
State-of-the-art (i.e., Ix-nm) MLC flash memory cells can
store only ~100 electrons [81]. Gaining or losing several elec-
trons on a cell can significantly change the cell’s voltage level
and eventually alter its state. Charge leakage is caused by the
unavoidable trapping of charge in the tunnel oxide [37], [57].
The amount of trapped charge increases with the electrical
stress induced by repeated program and erase operations,
which degrade the insulating property of the oxide.

Two failure mechanisms of the tunnel oxide lead to reten-
tion loss. Trap-assisted tunneling (TAT) occurs because the
trapped charge forms an electrical tunnel, which exacer-
bates the weak tunneling current, SILC (see Section III-D).
As a result of this TAT effect, the electrons present in the

floating gate (FG) leak away much faster through the intrin-
sic electric field. Hence, the threshold voltage of the flash
cell decreases over time. As the flash cell wears out with
increasing P/E cycles, the amount of trapped charge also
increases [37], [57], and so does the TAT effect. At high P/E
cycles, the amount of trapped charge is large enough to form
percolation paths that significantly hamper the insulating
properties of the gate dielectric [30], [37], resulting in reten-
tion failure. Charge detrapping, where charge previously
trapped in the tunnel oxide is freed spontaneously, can also
occur over time [30], [37], [57], [59]. The charge polarity can
be either negative (i.e., electrons) or positive (i.e., holes).
Hence, charge detrapping can either decrease or increase the
threshold voltage of a flash cell, depending on the polarity of
the detrapped charge.

Fig. 18 illustrates how the voltage distribution shifts
for data we program into TLC NAND flash, as the data sits
untouched over a period of one day, one month, and one year.
The mean and standard deviation are provided in Table 5 in
the Appendix (which includes data for other retention ages
as well). These results are obtained from real flash memory
chips we tested. We distill three major findings from these
results, which are similar to our previously reported findings
for retention behavior on MLC NAND flash memory [37].

First, as the retention age (i.e., the length of time after
programming) of the data increases, the threshold voltage dis-
tributions of the higher-voltage states shift to lower voltages,
while the threshold voltage distributions of the lower-voltage
states shift to higher voltages. As the intrinsic electric field
strength is higher for the cells in higher-voltage states, TAT
is the dominant failure mechanism for these cells, which can
only decrease the threshold voltage, as the resulting SILC can
flow only in the direction of the intrinsic electric field gener-
ated by the electrons in the FG. Cells at the lowest-voltage
states, where the intrinsic electric field strength is low, do not
experience high TAT, and instead contain many holes (i.e.,
positive charge) that leak away as the retention age grows,
leading to increase in threshold voltage.

Second, the threshold voltage distribution of each state
becomes wider with retention age. Charge detrapping can
cause cells to shift in either direction (i.e., toward lower or
higher voltages), contributing to the widening of the distri-
bution. The rate at which TAT occurs can also vary from cell
to cell, as a result of process variation, which further widens
the distribution.

— 1 month retention

AVA
¥/ P3 Y
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200 300
Normalized V,,

Fig. 18. Threshold voltage distribution for TLC NAND flash memory
after one day, one month, and one year of retention time.
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Third, the threshold voltage distributions of higher-
voltage states shift by a larger amount than the distributions
of lower-voltage states. This is again a result of TAT. Cells
at higher-voltage states have greater intrinsic electric field
intensity, which leads to larger SILC. A cell where the SILC
is larger experiences a greater drop in its threshold voltage
than a cell where the SILC is smaller.

More findings on the nature of data retention and the
impact of data retention behavior on NAND flash memory
errors and lifetime can be found in our prior work [32], [34],
[371, [39].

E. Read Disturb Errors

Read disturb is a phenomenon in NAND flash memory
where reading data from a flash cell can cause the threshold
voltages of other (unread) cells in the same block to shift to
a higher value [20], [32], [38], [54], [61], [62], [64]. While a
single threshold voltage shift is small, such shifts can accumu-
late over time, eventually becoming large enough to alter the
state of some cells and hence generate read disturb errors.

The failure mechanism of a read disturb error is similar
to the mechanism of a normal program operation. A pro-
gram operation applies a high programming voltage (e.g.,
+15 V) to the cell to change the cell’s threshold voltage to
the desired range. Similarly, a read operation applies a high
pass-through voltage (e.g., +6 V) to all other cells that share
the same bitline with the cell that is being read. Although
the pass-through voltage is not as high as the programming
voltage, it still generates a weak programming effect on the
cells it is applied to [38], which can unintentionally change
these cells’ threshold voltages.

Fig. 19 shows how read disturb errors impact thresh-
old voltage distributions in real TLC NAND flash memory
chips. We use blocks that have endured 2000 P/E cycles,
and we experimentally study the impact of read disturb on
a single wordline in each block. We then read from a sec-
ond wordline in the same block 1, 10K, and 100K times to
induce different levels of read disturb. The mean and stand-
ard deviation of each distribution are provided in Table 6 in
the Appendix. We derive three major findings from these
results, which are similar to our previous findings for read
disturb behavior in MLC NAND flash memory [38].

First, as the read disturb count increases, the threshold
voltages increase (i.e., the voltage distribution shifts to the

200 300
Normalized V,,

Fig. 19. Threshold voltage distribution for TLC NAND flash memory
after 1, 10K, and 100K read disturb operations.

right). In particular, we find that the distribution shifts are
greater for lower-voltage states, indicating that read disturb
impacts cells in the ER and P1 states the most. This is because
we apply the same pass-through voltage (Vp.s,) to all unread
cells during a read operation, regardless of the threshold volt-
ages of the cells. A lower threshold voltage on a cell induces
a larger voltage difference (Vo5s — Vi) through the tunnel
oxide layer of the cell, and in turn generates a stronger tun-
neling current, making the cell more vulnerable to read dis-
turb (as described in detail in our prior work [38]).

Second, cells whose threshold voltages are closer to the
point at which the voltage distributions of the ER and P1
states intersect are more vulnerable to read disturb errors.
This is because process variation causes different cells to have
different degrees of vulnerability to read disturb. We find that
cells that are prone to read disturb end up at the right tail
of the threshold voltage distribution of the ER state, as these
cells’ threshold voltages increase more rapidly, and that cells
that are relatively resistant to read disturb end up at the left
tail of the threshold voltage distribution of the P1 state, as
their threshold voltages increase more slowly. We can exploit
this divergent behavior of cells that end up at the left and
right distribution tails to perform error recovery in the event
of an uncorrectable error, as we discuss in Section VI-D.

Third, unlike with the other states, the threshold volt-
ages of the cells at the left tail of the highest-voltage state
(P7) in TLC NAND flash memory actually decreases as the
read disturb count increases. This occurs for two reasons:
1) applying V. causes electrons to move from the floating
gate to the control gate for a cell at high voltage (i.e., a cell
containing a large number of electrons), thus reducing its
threshold voltage [38]; and 2) some retention time elapses
while we sweep the voltages during our read disturb experi-
ments, inducing trap-assisted tunneling (see Section IV-D)
and leading to retention errors that decrease the voltage.

More findings on the nature of read disturb and the
impact of read disturb on NAND flash memory errors and
lifetime can be found in our prior work [38].

F. Large-Scale Studies on SSD Errors

The error characterization studies we have discussed so
far examine the susceptibility of real NAND flash memory
devices to specific error sources, by conducting controlled
experiments on individual flash devices in controlled envi-
ronments. To examine the aggregate effect of these error
sources on flash devices that operate in the field, several
recent studies have analyzed the reliability of SSDs deployed
at a large scale (i.e., tens to hundreds of thousands of SSDs)
in production data centers [48]-[50]. Unlike the con-
trolled low-level error characterization studies discussed in
Sections IV-A through IV-E, these large-scale studies ana-
lyze the observed errors and error rates in an uncontrolled
manner, i.e., based on real data center workloads operating
at field conditions as opposed to controlled access patterns
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and controlled conditions. As such, these large-scale studies
can study flash memory behavior and reliability using only
a black-box approach, where they are able to access only the
registers used by the SSD to record select statistics. On the
other hand, these studies incorporate the effects of a real
system, including the system software stack and real work-
loads [48], on the flash memory devices, which is not pre-
sent in the controlled small-scale studies.

These large-scale studies have made a number of observa-
tions across large sets of SSDs. We highlight five key obser-
vations from these studies. First, SSD failure rates do not
increase monotonically with the P/E cycle count, and instead
exhibit several distinct periods of reliability, where the fail-
ure rates between each period can vary by as much as 81.7%
[48]. Second, the raw bit error rate grows with the age of the
device even if the P/E cycle count is held constant, indicating
that mechanisms such as silicon aging are likely contributing
to the error rate [50]. Third, the observed failure rate of SSDs
has been noted to be significantly higher than the failure rates
specified by the manufacturers [49]. Fourth, higher operating
temperatures can lead to higher failure rates, but modern SSDs
employ throttling techniques that reduce the access rates to
the underlying flash chips, which can greatly reduce the nega-
tive reliability impact of higher temperatures [48]. Fifth, while
SSD failure rates are higher than specified, the overall occur-
rence of uncorrectable errors is lower than expected because
1) effective bad block management policies (see Section II-C)
are implemented in SSD controllers; and 2) certain types of
error sources, such as read disturb [48], [50] and incomplete
erase operations [50], have yet to become a major source of
uncorrectable errors at the system level.

V. ERROR MITIGATION

Several different types of errors can occur in NAND flash
memory, as we described in Section IV. As NAND flash mem-
ory continues to scale to smaller technology nodes, the mag-
nitude of these errors has been increasing [53], [60], [81].
This, in turn, uses up the limited error correction capability
of ECC more rapidly than in past flash memory generations
and shortens the lifetime of modern SSDs. To overcome the
decrease in lifetime, a number of error mitigation techniques,
which exploit intrinsic properties of the different types of
errors to reduce the rate at which they lead to raw bit errors,
have been designed. In this section, we discuss how the flash
controller mitigates each of the error types via proposed error
mitigation mechanisms. Table 3 shows the techniques we
overview and which errors (from Section IV) they mitigate.

A. Shadow Program Sequencing

As discussed in Section IV-C, cell-to-cell program inter-
ference is a function of the distance between the cells of the
wordline that is being programmed and the cells of the victim
wordline. The impact of program interference is greatest on

Table 3 List of Different Types of Errors Mitigated by NAND Flash
Error Mitigation Mechanisms
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a victim wordline when either of the victim’s immediately-
adjacent wordlines is programmed (e.g., if we program WL1
in Fig. 8, WLO and WL2 experience the greatest amount of
interference). Early MLC flash memories used one-shot pro-
gramming, where both the LSB and MSB pages of a wordline
are programmed at the same time. As flash memory scaled to
smaller process technologies, one-shot programming resulted
in much larger amounts of cell-to-cell program interference.
As a result, manufacturers introduced two-step programming
for MLC NAND flash (see Section III-D), where the SSD con-
troller writes values of the two pages within a wordline in two
independent steps.

The SSD controller minimizes the interference that
occurs during two-step programming by using shadow pro-
gram sequencing [27], [35], [40] to determine the order that
data is written to different pages in a block. If we program
the LSB and MSB pages of the same wordline back to back,
as shown in Fig. 20(a), both programming steps induce

LB MSB LB MSB LB CSB MSB
wLo 0—1 wLO 0 2 wLo 0 2 5
wL1 2‘—/>3 WwL1 i/‘l wL1 i%/S
wL2 4'—/>5 wL2 3/6 wL2 3/7 11
wL 3 6‘—/>7 wL 3 5% WL3 6//14
wL 4 8 4 9 wL 4 7%10 wL 4 9/;11%16
wL5 10— 11 wL5 9 1ll wL5 17/1/1T7

(a) Bad MLC (b) MLC shadow (c) TLC shadow

program sequence program sequence program sequence

Fig. 20. order in which the pages of each wordline (WL) are
programmed using (a) a bad programming sequence, and using
shadow sequencing for (b) MLC and (c) TLC NAND flash. The bold
page programming operations for WL1 induce cell-to-cell program
interference when WLO is fully programmed.
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