
FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces

SARA MCALLISTER, Computer Science, Carnegie Mellon University, Pittsburgh, United States

YUCONG WANG∗, Computer Science, Carnegie Mellon University, Pittsburgh, United States and Salesforce

Inc, San Francisco, United States

BENJAMIN BERG, Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, United

States

DANIEL S. BERGER, Microsoft Research, Redmond, United States and University of Washington, Seattle,

United States

NATHAN BECKMANN, Computer Science, Carnegie Mellon University, Pittsburgh, United States

GEORGE AMVROSIADIS, Carnegie Mellon University College of Engineering, Pittsburgh, United States

GREGORY R. GANGER, Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,

United States

Datacenters need to reduce embodied carbon emissions, particularly for lash, which accounts for 40% of embodied carbon in
servers. However, decreasing lash’s embodied emissions is challenging due to lash’s limited write endurance, which more
than halves with each generation of denser lash. Reducing embodied emissions requires extending lash lifetime, stressing its
limited write endurance even further. The legacy Logical Block-Addressable Device (LBAD) interface exacerbates the problem
by forcing devices to perform garbage collection, leading to even more writes.

Flash-based caches in particular write frequently, limiting the lifetimes and densities of the devices they use. These lash
caches illustrate the need to break away from LBAD and switch to the new Write-Read-Erase iNterfaces (WREN) now
coming to market. WREN afords applications control over data placement and garbage collection. We present FairyWren

1, a
lash cache designed for WREN. FairyWren reduces writes by co-designing caching policies and lash garbage collection.
FairyWren provides a 12.5× write reduction over state-of-the-art LBAD caches. This decrease in writes allows lash devices
to last longer, decreasing lash cost by 35% and lash carbon emissions by 33%.

CCS Concepts: · Information systems→ Flash memory; Storage management.

∗Work performed while at CMU
1Fairywrens () are vibrant birds native to Australia. Common varieties include Superb Fairywrens, Splendid Fairywrens, and Lovely
Fairywrens.

Authors’ Contact Information: Sara McAllister, Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States;
e-mail: sjmcalli@cs.cmu.edu; Yucong Wang, Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States and
Salesforce Inc, San Francisco, California, United States; e-mail: yucongw@andrew.cmu.edu; Benjamin Berg, Computer Science, The Univer-
sity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States; e-mail: bsberg@andrew.cmu.edu; Daniel S. Berger,
Microsoft Research, Redmond, Washington, United States and University of Washington, Seattle, Washington, United States; e-mail:
Daniel.Berger@microsoft.com; Nathan Beckmann, Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States;
e-mail: beckmann@cmu.edu; George Amvrosiadis, Carnegie Mellon University College of Engineering, Pittsburgh, Pennsylvania, United
States; e-mail: gamvrosi@andrew.cmu.edu; Gregory R. Ganger, Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania, United States; e-mail: ganger@andrew.cmu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
ACM 1553-3093/2025/3-ART
https://doi.org/10.1145/3718390

ACM Trans. Storage

HTTPS://ORCID.ORG/0000-0001-5253-7094
HTTPS://ORCID.ORG/0009-0002-8314-9355
HTTPS://ORCID.ORG/0000-0002-4147-6860
HTTPS://ORCID.ORG/0000-0002-3911-1512
HTTPS://ORCID.ORG/0000-0001-6301-714X
HTTPS://ORCID.ORG/0000-0002-7328-1857
HTTPS://ORCID.ORG/0000-0002-3065-7316
https://orcid.org/0000-0001-5253-7094
https://orcid.org/0009-0002-8314-9355
https://orcid.org/0000-0002-4147-6860
https://orcid.org/0000-0002-3911-1512
https://orcid.org/0000-0001-6301-714X
https://orcid.org/0000-0002-7328-1857
https://orcid.org/0000-0002-3065-7316
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3718390
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3718390&domain=pdf&date_stamp=2025-03-05

2 • S. McAllister et al.

1 Introduction

Datacenter carbon emissions are a topic of growing concern. At current emission rates, datacenters’ share
of global emissions are projected to rise to 20% by 2038 [48] and 33% by 2050 [53]. In the next few decades,

many companies Ð including Amazon [1], Google [2], Meta [11], Microsoft [71] Ð are looking to achieve Net
Zero, i.e., greenhouse gas emissions close to zero. To achieve this goal, many datacenters are adopting renewable
energy sources such as solar and wind [11, 39, 64, 71]. Google, AWS, and Microsoft are expected to complete
their transition to renewable energy by 2030 [30, 49, 59]. However, this switch in energy source does not reduce
datacenters’ embodied emissions, the emissions produced by the manufacture, transport, and disposal of datacenter
components. Embodied emissions will account for more than 80% of datacenter emissions once datacenters move
to renewable energy [39].
Embodied emissions are produced by one-time lifecycle events. Datacenters can reduce these emissions by:

(i) replacing hardware with less carbon-intensive alternatives, and (ii) extending the lifetime of components to
amortize embodied emissions over a longer period. Recent work has studied embodied emissions in processor
design [24, 38, 39, 85], but considerably less attention has been paid to memory and storage, even though they
constitute 46% and 40% of server emissions, respectively [64]. It is therefore crucial to both move from carbon-
intensive technologies like DRAM to lash, which has 12× less embodied carbon per bit [38], and to extend lash
lifetimes to amortize lash’s embodied carbon.

However, lash introduces a new challenge: limited write endurance. A lash device can only be written a limited
number of times before it wears out. Each new generation of lash has lower write endurance as a result of
manufacturers packing more bits into each cell. This packing, however, does improve sustainability by storing
more capacity in the same silicon (i.e., less carbon per bit). To realize the beneits of denser lash, applications
must write to lash much less frequently. The write-rate budgets that applications must operate under to achieve
longer lifetimes are tiny: to achieve a six-year lifetime on a 2 TB QLC drive, the application can write only 14MB/s,
or 0.09% of available write bandwidth (Sec. 2).

Reducing carbon from caching. Hence, write-intensive lash applications present a major challenge in reducing
overall datacenter emissions. This paper focuses on reducing carbon from lash caching, an increasingly popular
use of lash in the datacenter [3, 16, 21, 22, 35, 36, 83]. We aim to demonstrate, through caching, how to leverage

emerging lash interfaces to reduce writes, in particular by re-purposing garbage collection to do useful work.
Caching is fundamentally write-intensive, as new objects must be frequently admitted to maintain hit rates [15,

18]. Datacenter caches also store many small objects [16, 67], which is particularly problematic because lash can
only be written at a coarse granularity. Because of this mismatch, admitting small objects to the cache can lead to
signiicant write ampliication: i.e., more bytes are written to the underlying lash device than requested by the
application.
Most current lash devices are Logical Block-Addressable Devices (LBAD) that present the same block device

abstraction used by hard disks. This abstraction hides signiicant details about how SSDs work. In particular,
while the interface allows reading and writing 4KB blocks, the underlying lash device can only erase large (MB
to GB) regions. To implement the LBAD interface, the lash irmware performs garbage collection, copying blocks
of valid data and erasing entire regions to make room for new writes. Current lash caches, such as the research
state-of-the-art Kangaroo [67, 68], have a limited ability to optimize these internal writes, which can amplify the
total bytes written by 2× to 10× [67].

Opportunity: WREN. New lash SSD interfaces, such as ZNS [19] and FDP [66], allow closer integration of
host-level software and lash management. The key diference between these interfaces and LBAD is that these
interfaces include Erase as a irst-order operation, allowing the cache to control garbage collection. We use the
name Write-Read-Erase iNterfaces (WREN) to collectively refer to such interfaces, and we describe the necessary
and suicient operations for lash caches to minimize write rate. However, we also show that merely porting

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 3

!

✨

!

✨

Fig. 1. Carbon emissions and cost for flash in Kangaroo (), FairyWREN (), and łminimum writesž ()Ðan idealized cache

with no extra writesÐover a 6-year lifetime for a production Twiter trace and a target 30% miss ratio. Compared to Kangaroo,

FairyWREN reduces carbon emissions by 33% and cost by 35%.

existing lash caches to WREN does not reduce lash writes. Flash caches must be re-designed to leverage the

additional control provided by WREN.

Our solution: FairyWREN. We design and implement FairyWren, a lash cache that harnesses WREN to reduce
writes. The main insight in FairyWren is that every lash write, whether from the application or from garbage

collection, is an opportunity to admit objects to the cache. When lash is written during garbage collection,
FairyWren can admit objects łfor freež. This idea cannot be realized on LBAD, since these devices ofer no control
over garbage collection. FairyWren uses the features of WREN to perform a łnest packingž algorithm on every

write, unifying cache admission and garbage collection in a single algorithm. FairyWren also leverages WREN to
enable large-small object separation and hot-cold set-partitioning, further reducing writes.

Summary of results. We ind that, without major changes to lash interfaces and cache designs, deploying denser
lash will not reduce the carbon emissions of lash caches. For current caching systems, the reduced write endurance

of denser lash outweighs the gains in density. Only by changing the lash interface and optimizing the cache to
this new interface can we realize the signiicant emissions savings of denser lash.

To illustrate this point, we implement FairyWren as a lash cache module within CacheLib [16]. We evaluate
FairyWren on production traces from Meta and Twitter using both simulation and a real ZNS SSD. FairyWREN

reduces lash writes by 12.5× vs. the research state-of-the-art. By enabling caching on denser lash, FairyWREN

reduces lash’s carbon emissions by 33% vs. the research state-of-the-art (Fig. 1). FairyWren performs close to an
idealized, minimum-write cache on both carbon emissions and cost.

Contributions. This paper contributes the following:
• Flash trends (Sec. 2): By studying lash trends, we identify opportunities for more sustainable lash caching
as well as challenges that prevent current lash caches from realizing these beneits (Sec. 3).

• Critical elements of lash interfaces (Sec. 4): We identify the Erase operation and control over garbage
collection as the essential features of emerging lash interfaces. We describe tradeofs and fundamental
constraints of lash interfaces, showing that some features are, contrary to prior work, unhelpful for caching.

• Analysis of erase granularity in WREN (Sec. 4.4): We analyze the efect of Erase operation’s granularity in
WREN, bridging the theoretical and systems understanding of its impact on write ampliication.

• FairyWREN (Sec. 5): FairyWren’s key insight is to leverage emerging lash interfaces to unify garbage
collection and cache admission as one operation, greatly reducing overall lash writes. FairyWren further
reduces writes by partitioning objects by size and popularity (hot vs. cold).

• Model of caching’s carbon emissions (Sec. 6.2): We develop a model to analyze carbon emissions from lash
caching Ð incorporating both write rate and cache capacity to determine overall lash emissions.

ACM Trans. Storage

4 • S. McAllister et al.

0.01

0.10

1.00

10.00

2013 2015 2017 2019 2021 2023

P
ri

ce
 (

$
/G

B
)

Year

DRAM
Flash

Fig. 2. Cost for flash and DRAM over the last 10 years [4, 6]. Flash prices have decreased over 14×, while DRAM prices have only

decreased by ≈2×.

• Analysis of cache write ampliication and its impact on emissions (Sec. 6.3-Sec. 6.7):We show that FairyWren’s
write reduction allows lash caches to improve sustainability using denser lash for longer lifetimes, without
increasing the cache’s miss ratio.

2 Opportunities in flash caching

Flash is an increasingly attractive option for caching [16, 21, 22, 35, 57, 67, 68, 83]. In this section, we discuss
how trends in the design of lash devices present growing opportunities to reduce the cost and carbon emissions
of caching.

Opportunity 1: Flash is less carbon-intensive than DRAM, so caches are more sustainable with less DRAM.

DRAM often makes up 40% to 50% of server cost [58, 79, 82] and is no longer scaling (Fig. 2). DRAM also has
a large embodied carbon footprint and has large operational emissions due to requiring up to half of system
power [38].
Flash is cheaper per-bit, embodies 12× less carbon, and requires less power per-bit than DRAM [38]. Thus,

datacenters should use lash over DRAM whenever possible [37], even for traditionally DRAM workloads, such
as caching [16, 35, 67, 68] or machine learning [95].

Opportunity 2: Flash caches should use denser lash where possible to reduce emissions.

Flash is becoming denser, moving from single-level cells (SLC), which store 1 bit/cell, to tri-level cells (TLC),
which store 3 bits/cell. Flash SSDs will soon use quad-level cells (QLC) and penta-level cells (PLC) [73]. Denser
lash is cheaper; e.g., PLC is forecast to be 40% cheaper per-bit than TLC [9]. Denser lash also reduces carbon
emissions, since more bits are packed onto roughly the same silicon.

Opportunity 3: Lengthening device lifetime is an efective way to improve datacenter sustainability.

Traditionally, datacenter hardware replacement cycles have been around three years [64] due to the rate of
improvement in hardware performance and energy eiciency. Today, datacenters deploy devices for longer.
Longer replacement cycles have become common due to their cost advantages and the slowing of Moore’s Law.
For example, Microsoft Azure increased the depreciable lifetime of servers from four to six years [42, 65], and
Meta recently started planning for servers to last 5.5 years [12]. Additionally, hyperscalers are inding that servers
do not fail quickly: failure rates at Azure have little evidence of increasing before eight years [17, 64].

Moving to longer lifetimes amortizes both cost and embodied carbon. As datacenters shift to renewable energy,
they are rapidly reducing operational carbon. As a result, embodied carbon now dominates datacenter carbon
emissions [12, 38, 39, 84]. The major challenge, though, is how to extend lash lifetime, given its limited write
endurance.

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 5

3 Challenges in flash caching

Flash SSDs have limited write endurance and are warrantied only for a stated write budget [10]. Exceeding
this write budget can cause the device to fail. Hence, while lash caching presents carbon-saving opportunities
(Sec. 2), caches must severely limit the amount they write. Here, we discuss the challenges of lash caching in
detail and describe how current systems fail to address these challenges.

3.1 Wherefore device write amplification?

Flash devices cannot write new values without irst erasing a large region of the device. To support random
writes, devices must read all live data in a region, erase the region, and then write the live data back to the drive
along with any new data. As a result, lash SSDs perform more writes than requested by the application. The
device-level write ampliication (dlwa) [23, 35, 41, 54, 57, 62, 83] captures this relative increase in bytes actually
written to lash vs. bytes written by an application. (If an SSD writes 3GB to serve 1GB of application writes, then
dlwa is 3×.) dlwa can be large: a factor of 2× to 10× is common [67]. dlwa causes write-intensive applications
to quickly wear out lash devices, increasing their replacement frequency and embodied emissions over time.

EU N

EU 1

EU 0

…

Block
…

Block
…

Block
…

…

Block
…

Block
…

Block
…

…

Block
…

Block
…

Block
…

…

…

Empty Page Live Page

…

…

Fig. 3. The internal arrangement of flash devices into planes, blocks, pages, and EUs. Each EU has blocks in multiple pages. EU 0

is a partially full, EU 1 is entirely full, and EU N has just been erased.

dlwa is primarily caused by the physical limitations of lash storage. Flash devices are organized in a physical
hierarchy (Fig. 3). The smallest unit is the page, usually 4 KB. Flash can be written at page granularity, but a page
must be erased before it can be rewritten. To avoid electrical interference during erasure, pages are grouped into
lash blocks [13, 19, 20, 41, 63]. A lash block is the minimum erase size. In practice, however, lash drives stripe
writes across blocks to improve bandwidth and error correction. Striping increases the efective erase unit (EU)
size to gigabytes [19].
The mismatch between the granularity of writes and erases is the root cause of dlwa. To maintain the 4 KB

read/write block interface, lash devices garbage collect (GC), moving live pages from partially empty EUs (such
as EU 0 in Fig. 3) to a writable EU (such as EU N) before erasing the EU and freeing dead pages. The less the
available capacity on the device, the more frequently it has to GC, introducing a tradeof between lash utilization
and lash writes.

One might hope that technological advances would decrease EU sizes, closing the gap between write and erase
granularities. However, lash EU sizes have gotten larger as lash has gotten denser. Efective block sizes on an SLC
lash device were 128 KB[86], MLC and TLC lash devices are around 20 MB [81], and QLC devices will be 48
MB [80]. Striping these blocks with hundreds of 3D-stacked layers [80] results EUs in the gigabyte range [19, 69].

ACM Trans. Storage

6 • S. McAllister et al.

Lesson for lash caches: Write ampliication is caused by the size mismatch between writes and erases in lash.
This mismatch will keep increasing.

PLC QLC TLC

MLC

(a) Carbon emissions.

PLC QLC TLC

MLC

(b) Cost.

Fig. 4. The annual carbon emissions and cost of flash depending on the required average write rate and desired lifetime.

3.2 Denser flash has lower write endurance

As lash becomes denser, its write endurance drops signiicantly. For example, while PLC lash is up to 40%
denser than TLC, PLC is forecast to have only 16% of TLC’s writes [9]. Additionally, because denser lash has
to diferentiate between more voltage levels, even small voltage changes can make data unreadable. TLC uses
two-phase writes and more frequent refresh to prevent data loss [70]. Two-phase writes require the device to
have enough RAM and capacitance to remember all in-light writes, limiting the number of EUs that can be
łactivež (i.e., writable) at any point in time, often to less than ten. Writing to more EUs than this requires closing
an active EU, incurring more internal device writes.

Fig. 4 models how write rate afects both emissions and cost when varying lifetimes and lash density. Each line
shows a device of a diferent lifetime, and shaded regions show which lash density is best for a given write rate.
The model calculates how much capacity must be provisioned for each technology to achieve the desired lifetime
at a given write rate. For example, a device lasting 7 years (green) has lower annualized carbon emissions than one
lasting 3 or 5 years, and it should use dense lash (e.g., TLC) only at write rates below two device-writes-per-day.

Lesson for lash caches: Device lifetime is the most important factor in reducing carbon emissions. Moreover,
denser lash can improve sustainability, but only if lash write rate is very small Ð much less than one device-write
per day.

3.3 Shortcomings of existing solutions

To limit embodied emissions, sustainable lash caches must minimize (i) idle lash space Ð which incurs
emissions for no beneit; (ii) DRAM usage for object metadata Ð which can add up to tens of GBs [35, 67]; and
(iii) lash write rates Ð which wear out the device, reducing lifetime. No prior lash-cache design meets these
criteria (Table 1). In particular, although caches must admit new objects to maintain hit rates, lash caches must
be designed to minimize application- and device-level write ampliication to extend device lifetime.

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 7

Flash caches should minimize ...

Unused lash DRAM ALWA DLWA

Key-value stores ✗ ✓ ✓ ✓

Log-structured caches ✓ ✗ ✓ ✓

Set-associative caches ✗ ✓ ✗ ✗

Kangaroo [67] ✓ ✓ ✓ ✗

FairyWREN ✓ ✓ ✓ ✓

Table 1. Comparison of FairyWREN vs. prior cache designs. FairyWREN is the only design to minimize all important overheads.

Flash caches ≠ DRAM caches. Both lash caches and DRAM caches try to reduce misses, but lash caches must
also contend with lash’s limited write endurance, leading to much diferent designs. Flash caches are designed to
achieve low end-to-end write ampliication, i.e., the product of application-level write ampliication (alwa) (e.g.,
from having to write 4KB to lash to admit a 100B object) and dlwa.

Flash caches ≠ key-value stores. KV stores [5, 7, 33, 55, 60, 75, 90] support a similar read-write interface as caches
and likewise minimize lash writes and DRAM overhead. However, lash caches have signiicantly diferent design
goals.

The main diference is that delete operations are uncommon in KV stores, but very frequent in caches. Caches
frequently evict objects and must reclaim space immediately to admit new objects [67]. Most KV stores do not
support deleting objects quickly enough to implement cache eviction policies. Speciically, standard KV store data
structures like LSM trees [5, 7, 31, 32, 60, 75, 90] will not work well for caching unless the KV store is massively
overprovisioned, often by more than 2× the cache capacity [21, 22, 83].

Moreover, KV stores do not exploit a cache’s biggest advantage: caches are free to evict objects whenever it is
convenient. Evicting objects opportunistically can greatly reduce writes and maximize space utilization, but KV
stores are not built to exploit this cache-speciic optimization.

SegmentSegment

Flash

Segment

Buffer

Segment …

IndexObject

(a) Log-structured

Set

Hash(key)

...

Flash

Set Set Set Set Set

Object

(b) Set-associative

Log
Flash

Sets

Buffer IndexObject

(c) Kangaroo

Fig. 5. Designs of prior flash caches: (a) Log-structured caches write objects segments to flash sequentially, (b) Set-associative

cache write objects to a set based on the key’s hash, and (c) Kangaroo is a hierarchical design that combines a log-structured and

a set-associative cache.

Existing lash caches do not address DLWA. Because of the unique challenges of lash caching, there is a growing
body of work devoted to improving lash cache designs. Prior lash caches generally fall under three categories
(Fig. 5): log-structured, set-associative, and hierarchical.

ACM Trans. Storage

8 • S. McAllister et al.

Log-structured caches. To minimize writes, many lash caches are log-structured [16, 27, 35, 83]. These caches
append objects to an on-lash log (Fig. 5a), locating objects through a DRAM index and evicting objects in large
groups. The log allows large sequential writes to lash and thus achieves nearly ideal write ampliication.
While log-structured caches work well for larger objects, the DRAM index becomes prohibitively large for

small objects, even if it is highly optimized [67], signiicantly increasing overall emissions and cost (see Fig. 13).
Flash caches are thus often partitioned, using a log-structured cache for large objects and a diferent design for
small objects [16].

Set-associative caches. Set-associative caches, such as the Small Object Cache in Meta’s CacheLib [16], replace the
DRAM index with a hash function that maps each object to a unique set (usually a 4 KB page) on lash (Fig. 5b).

The downside of these caches is that they cause signiicantly more writes. When a set-associative cache admits
a small object (say, 100 B), it must write at least one lash page (4 KB), resulting in large alwa (40×). Even worse,
these caches perform random writes, leading to dlwa of 2× to 10× [67]. Since write ampliication (wa) is the
product of alwa and dlwa, a set-associative cache’s WA easily exceeds 100×. To mitigate this, Meta’s lash caches
use only 50% of the drive [16], increasing miss ratio and carbon emissions.

Hierarchical. FairyWren builds on Kangaroo [67, 68], a hierarchical lash cache for small objects that combines
a small log-structured cache (KLog) and a large set-associative cache (KSet) (Fig. 5c). Kangaroo uses KLog to
reduce alwa and KSet to reduce DRAM. Objects are irst written to KLog. Once KLog is full, these objects are
then rewritten in batches to KSet in a lush operation. Since KLog holds many objects, several objects admitted
during a lush will map to the same set in KSet. The alwa for writing each set is then amortized across all objects
that map to that set. In essence, KLog is a bufer that inds set collisions for KSet in order to reduce writes. The
larger KLog is, the more collisions will be found during lush operations, lowering KSet’s alwa in exchange for
higher DRAM overhead. Kangaroo also employs a selective threshold admission policy to limit which objects are
written from KLog to KSet, further reducing lash writes in KSet.

Kangaroo still only needs 5-10% of lash for KLog to substantially reduce KSet’s writes. Since KSet comprises
more than 90% of the cache capacity, the DRAM needed to index KLog is limited. Kangaroo also uses a highly-
optimized partitioned index data structure to reduce the DRAM used by KLog. Due to its low DRAM overhead,
Kangaroo achieves large emission reductions over a memory-optimized log-structured cache, Flashield [35], for
workloads with many small objects (Fig. 13 in Sec. 6.3). This comparison shows that a carbon-eicient cache
needs to have a low DRAM overhead.
While Kangaroo greatly reduces writes by limiting alwa, it still writes too much because Kangaroo cannot

control device-level write ampliication. Kangaroo experiences high dlwa because KSet performs random 4KB
writes, the worst case for dlwa on LBAD devices. Because of its high write budget requirements, Kangaroo
cannot reduce emissions by moving to denser lash. For example, Fig. 4 shows that, for a 10-year lifetime, QLC
tolerates only 0.37 device-writes per day (DWPD) and PLC tolerates only 0.16 DWPD. Kangaroo performs 1.46
DWPD in our evaluation. Our goal is to build a sustainable cache that achieves Kangaroo’s low DRAM usage
while also writing far less to lash. We ind that lash caches need a diferent lash interface in order to reduce
dlwa without adding DRAM overhead.

4 Write-Read-Erase iNterfaces (WREN)

Prior lash caches incur excessive dlwa (Sec. 3). The root causes are the mismatch between write and erase
granularities and a legacy LBAD interface that hides this mismatch from software. This section discusses recent
Write-Read-Erase iNterfaces (WREN), such as ZNS [19] and FDP[66], that include Erase as a irst-order operation.
We show that WREN is necessary but insuicient: a new lash interface does not reduce writes by itself, changes
to the cache design are required.

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 9

4.1 Today’s interface is LBAD

Most lash SSDs today are logical block addressable devices (LBAD), sharing the same interface as disks. LBAD
presents the lash device as a linear address space of ixed-size blocks2 that can be independently read or written.

LBAD eased the transition from HDDs to SSDs, but does not expose the erase granularity of lash (Sec. 3). As
a result, the LBAD device irmware must perform garbage collection (GC) that can cause high dlwa and tail
latency. Although there has been work to decrease dlwa [40, 41, 44, 56, 89, 91], LBAD devices still hide erase
units and GC from applications, preventing co-optimization to minimize overall lash writes.

4.2 Challenges of new interface design

While a variety of lash interfaces have been proposed [20, 44, 51, 52, 72, 78, 88, 96], none have gained
widespread adoption. Two proposals, Multi-streamed SSDs and Open-Channel SSDs, illustrate the pitfalls of
designing a new lash interface.

Multi-streamed SSDs [51, 52] allow users to direct writes to diferent streams. Streams provide isolation between
workloads: diferent streams write to diferent EUs. When objects with similar lifetimes are grouped into the
same stream, GC is more eicient. However, because the application does not control GC directly, dlwa remains
a signiicant issue.

Open-Channel SSDs [20] remove all lash-device logic and force applications to handle all of lash’s complexities,
even beyond those described in Sec. 3. While the hope was to develop layers of abstraction in software to hide
some of this complexity, this software was never widely deployed.

Lesson for lash caches: An ideal lash interface for caching would allow the cache to control all writes, including
GC, but still present a simple abstraction to application developers.

4.3 What makes an interface WREN?

We call interfaces that delegate Erase commands and garbage collection to the hostWrite-Read-Erase iNterfaces

(WREN). WREN is deined by three main features:

1) WREN operations. WREN devices must let applications control which EU their data is placed in and when that
EU is erased. Speciically, WREN devices must, at least, have Write, Read, and Erase operations.

These operations can be implemented diferently. For example, Zoned Namespaces (ZNS)[19] and Flexible Data

Placement (FDP)[66] are both WREN. Both interfaces are NVMe standards with strong support from industry and
provide an abstraction for writing to an EU3. However, they have diferent philosophies, which can be seen, for
instance, in their Write operations. ZNS provides either sequential writes to an EU or nameless writes through
Zone Append [96]. FDP provides random writes within an EU as long as the application tracks that the number
of pages written is less than the EU size. Despite these diferences, both provide the control over data placement
into EUs required by WREN.

Moreover, the aforementioned Open-Channel interface is also WREN. But Open-Channel SSDs expose the full
complexity of the device to the host, which is additional complexity not required to reduce a cache’s dlwa.

2) The Erase requirement. Unlike LBAD, WREN devices do not move live data from an EU before erasing it.
Applications are responsible for implementing GC to track and move live data before calling Erase. Erase is
diferent from a traditional trim because Erase targets an entire EU rather than individual pages. Failure to
perform correct and timely GC is subject to implementation-speciic error handling by the device. A major
diference between FDP and ZNS is how they treat violations of Erase semantics, but this error behavior is
inessential to reducing dlwa and thus beyond WREN.

2These ixed-size blocks correspond to pages, not lash blocks (Sec. 3)
3This abstraction is called a zone in ZNS and a reclaim unit in FDP.

ACM Trans. Storage

10 • S. McAllister et al.

Variable Deinition

X Random variable representing number of invalid page in an EU chosen for GC
b Number of pages in an EU
p Probability that a page is invalid
k Number of writes between each GC operation
t Total number of EUs
u Number of EUs for user data (does not include overprovisioning)

Table 2. Variables in analytical model of FIFO+.

3) Multiple, but limited, active EUs. An active EU is one that can be written to without being erased. WREN
devices support a few active EUs at one time. Since an active EU typically requires a device bufer for the EU’s
data, the maximum number of active EUs is implementation-speciic. FairyWren requires four simultaneously
active EUs, which we expect will be supported in the vast majority of WREN devices.

4.4 WREN alone is not a cure for wa

WREN devices make it easy to perform large, sequential writes with no wa. When writing sequentially, the
user can maintain a single active EU and ill the EU completely before activating the next EU. Furthermore, if all
writes are large and sequential, it is generally easy to ind an EU consisting of invalid data when GC is required,
resulting in low wa.
However, not all caches can perform large, sequential writes. Set-associative lash caches also want low wa,

but perform small, random writes that incur high dlwa on LBAD devices. One might hope that WREN devices
can achieve lower wa. A reasonable irst attempt at implementing a set-associative cache on WREN is to treat
each set as an object in a log-structured store, allowing the cache to write updates sequentially to a single active
EU. This naive approach does not reduce waÐ it just moves the GC from the device to the cache (see Sec. 6.6).

The impact of smaller EUs. One idea for mitigating wa under small, random writes is to reduce the EU size, e.g.,
from a GB to tens of MB, by removing error correction between lash blocks. Caches can tolerate removing error
correction because they are not tasked with permanently storing the data, rather lost bits just translate to misses.
Prior systems use smaller EUs to minimize GC [14, 69] because, intuitively, lowering the number of sets per EU
creates more EUs that are either mostly invalid (good candidates for GC) or mostly valid (bad candidates for GC
that are skipped). However, other prior work that mathematically analyzes the wa of FIFO GC policies[34, 46]
has largely ignored the efect of EU size. In fact, this modeling work assumes that changing the EU size will not
change the wa from GC. To remedy this discrepancy in prior work, we need to model the wa of a FIFO GC policy
for a set-associative cache and capture the efect of EU size.

Modeling of DLWA Under Random Writes. Our goal is to model the efect of EU size on dlwa. Speciically, we
want to analyze the performance of a FIFO+ GC policy, which selects EUs for garbage collection in FIFO order
and skips EUs which contain only valid data. The FIFO+ policy is under a random write workload from the
set-associative cache since the inserted key’s hash determines which set to write, a random process assuming a
perfect hash function.

We use an approach similar to that of [46] to model the relationship between EU size and dlwa under FIFO+.
While several prior papers [34, 46, 87] have noted that dlwa can be approximated using W Lambert functions,
this prior work focuses on device overprovisioning rather than on the EU size.
We deine � to be the random variable representing the number of invalid pages in an EU that is targeted

for garbage collection (as seen in Table 2). Because FIFO+ will erase an EU only if it contains invalid pages, our
goal is to approximate E [� |� > 0]. This tells us the number of new pages that can be written every time GC is

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 11

performed. Hence, if we let � be the number of pages in an EU, we can compute the dlwa as

dlwa =
�

E [� |� > 0]
. (1)

Our approximation makes two simplifying assumptions.
First, we assume that each of the � pages in the target EU is invalid independently with probability � . This is

reasonable when writes are random and the total number of pages in the device is large. This assumption implies
that � ∼ Binomial(�, �). To approximate the expectation of � , we must approximate � .

Second, we assume that an EU is targeted for GC every � writes, where � is a constant. Speciically, we deine �
to be the total number of EUs in the device and assume � = �E [�]. This is a reasonable approximation because �
is the expected number of writes that occur between GC operations on a given EU and the total number of EUs, � ,
is large. A particular page will be invalid if at least one of the � writes targets the page. Hence, the probability �
that a page is invalid is

� = 1 −

(
1 −

1

��

)�
where � is the number of ��� available to store valid user data. Note that � is typically smaller than � , and �

�

represents the amount of overprovisioning in the device.
Combining these assumptions yields

E [�] ≈ � · � ≈ �

(
1 −

(
1 −

1

��

)�)
(2)

≈ �

(
1 −

(
1 −

1

��

)�E[�]
)
. (3)

We can rewrite (3) using the W Lambert function to get the following approximation for E [�]:

E [�] = � −
� (��

(
1 − 1

��

)��
ln

(
1 − 1

��

)
)

� ln
(
1 − 1

��

) .

To compute E [� | � > 0], we note that

E [� | � > 0] =
�︁

�=1

� ·
� (� = �)

� (� > 0)
=

1

� (� > 0)

�︁

�=0

� · � (� = �)

and thus

E [� | � > 0] =
E [�]

� (� > 0)
=

E [�]

1 − (1 − �)�
.

Hence, we now have an approximation that allows us to write dlwa as deined in (1) in terms of the device
parameters � , �, and �.

Results of model. We validate our model against simulation in Figure 6, where we run both our simulation and
the model with an overprovisioning of 7%. Our approximation (Fig. 6) matches simulation results, with a �2 value
of 0.9996.

Our approximation shows that when EU sizes are small, FIFO is more likely to ind EUs that are mostly invalid
or completely valid. This leads to a lowerwa, as expected in prior systems, since these EUs require fewer rewrites
of valid data. However, as EUs grow, the wa quickly stabilizes. Thus, the wa does not change for EUs larger than
around 256 KB.

ACM Trans. Storage

12 • S. McAllister et al.

16KB 256KB 4MB 64MB 1GB
Size of EU

0

2

4

6

8

W
A

Simulation
Model

Fig. 6. The DLWA for a set-associative cache running on WREN with 7% overprovisioning. EUs have to be less than 128 KB to

significantly reduce DLWA.

Lesson for lash caches: We ind that reducing EU size only improves WA for very small EU sizes. To realize a
signiicant reduction in wa, the EU size must be tens of KBs, but that is unachievable in current devices (Sec. 3).
Hence, we conclude that WREN alone does not reduce wa for caches. To reduce wa, we must also re-design the
cache.

5 FairyWren Overview and Design

FairyWren uses WREN to substantially reduce wa by unifying cache admission with garbage collection. The
resulting reduction in overall writes lets FairyWren use denser lash while extending device lifetime to improve
sustainability.

5.1 Overview

How FairyWREN reduces writes. FairyWren uses WREN’s control over data placement and garbage collection to
reduce writes in two main ways. First, FairyWren introduces nest packing to combine garbage collection with
cache admission and eviction. When live data is rewritten during GC, FairyWren has an opportunity to evict
unpopular objects and admit new objects in their place. In LBAD, by contrast, these objects would have to be
rewritten separately for GC and admission/eviction.

Second, FairyWren groups data with similar lifetimes into the same EU, separating data that in prior caching
systems would have been in the same page. If all of the data in each EU has roughly the same lifetime, EUs will
either consist mostly of live data or mostly of dead data. FairyWren can then GC the mostly dead EUs with
few additional writes. FairyWren leverages two main techniques to enable this grouping: large-small object
separation and hot-cold set partitioning.

Architecture of FairyWREN. FairyWren partitions its capacity into a large-object cache (LOC) and a small-object
cache (SOC), as seen in Fig. 7. Incoming requests irst check the LOC and then check the SOC.

The large-object cache (Sec. 5.2) stores objects larger than 2 KB and uses a simple log-structured design, since it
can tolerate higher per-object DRAM overhead.
The small-object cache (Sec. 5.3) uses a hierarchical design based on Kangaroo [67]. The SOC contains two

levels: FwLog and FwSets. FwLog is a log-structured cache with a relatively high per-object DRAM overhead.
The main function of FwLog is to bufer objects so they can be written eiciently to FwSets. Therefore, FwLog
can have a fairly low capacity (≈ 5%), keeping its DRAM overhead low. FwSets is a set-associative cache, but,
since WREN does not support random writes, the sets are kept in a log-structured store. FwSets stores sets, not
individual objects, in the log to minimize DRAM. When this log-structured store is garbage collected, objects

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 13

WREN ImplementationLogical

LO
C

F
w

Lo
g

F
w

S
e

ts
Log-Structured Cache

Log

Hot-Cold Sets

Sliced Log-Structured Store

Sliced Log-Structured Cache

Segment

S
O

C

Log

Fig. 7. The components of FairyWREN.

are opportunistically moved from FwLog into FwSets. Finally, each set in FwSets is further partitioned into hot
(frequently accessed, long-lived) objects and cold (recently admitted, short-lived) objects (Sec. 5.4).

5.2 The LOC

The LOC is a log-structured cache. Adapting log-structured caches to WREN is straightforward, since they
only perform large, sequential writes. The LOC is broken into large segments, each the size of an EU. Segments
can then be evicted in LRU or FIFO order with minimal wa. The LOC uses DRAM in two ways: (i) an in-memory,
EU-sized bufer for log insertions, and (ii) an in-memory index tracking object locations on lash. Because the
LOC stores large objects, it contains relatively few objects and needs little DRAM. Besides the segment bufer, all
LOC objects are stored on lash.

Insertions. Objects are irst inserted into an in-memory segment bufer and added to the in-memory log index.
Once the segment bufer is full, it is written to an empty EU in the log.

Lookup. Reads look up the object’s key in the log index. If found, the cache reads the object from the indicated
EU.

Eviction. Eventually, the log will ill up and LOC will evict a log segment based on the eviction policy. Since log
segments are aligned to EUs, eviction simply Erases an EU, evicting those objects from the cache. This design
does not rewrite any objects, incurring minimum wa of 1×.

5.3 The SOC

The focus of FairyWren is the SOC. Log-structured caches are impractical for caching small objects because
a large lash cache can it billions of small objects, requiring a large DRAM index to track them all (Sec. 3.3).
FairyWren’s SOC is based on Kangaroo [67], a recent lash cache designed for small objects with low DRAM
overhead and low alwa. The SOC is a hierarchy of two levels: FwLog, a small log-structured cache, and FwSets,
a large set-associative cache. FwLog contains about 5% of the SOC’s capacity, with the remaining 95% for FwSets.
We describe FwLog and FwSets individually, and then how they work together.

FwLog design. FwLog’s goal is to bufer new small objects for insertion into FwSets. Like the LOC, FwLog is a
log-structured cache that uses an in-memory segment bufer and an in-memory index to track objects in the
FwLog. All other objects in the FwLog are stored on lash.

ACM Trans. Storage

14 • S. McAllister et al.

!�as%

'%ad
Garbage Collection

VicKm EU …

FWLog Flush

VicKm Segment

VicKm Set

FWLog

Free EU
4

1

Update

2

Write
3

Fig. 8. Nest packing in FairyWREN’s small-object cache.

FwSets design. FwSets is a set-associative cache that maps each object to a unique set by hashing its key. When
admitting an object, FwSets evicts old objects from the object’s set then overwrites it. However, overwriting is
impossible in WREN, so FwSets stores the sets themselves as objects in a log-structured store. FwSets uses an
in-memory index to track the location of each set on lash, but, unlike prior work [56, 61, 78], it does not track
individual objects, since this would incur too much DRAM overhead. The index’s DRAM overhead is low because
a set is at least 4 KB, whereas objects can be just 10s of bytes. (Larger sets reduce the size of FwSets’s DRAM
index, but increase average read latency.)
When FwSets’s log-structured store is close to full, it must garbage collect in order to admit new objects to

the cache. The simplest scheme would be to erase the EU at the tail of the log, evicting all sets Ð and thus their
objects Ð mapped to this segment4. However, since each set contains a mixture of popular and unpopular objects,
throwing away entire sets would signiicantly increase miss ratio. Instead, FwSets rewrites live sets during GC
before erasing the EU.

SOC operation. FwLog and FwSets operate as a hierarchy:

Lookup. Lookups irst check FwLog for the object. If not found, FwSets hashes the object’s id and looks up the
set’s location. The set is read and scanned for the object.

Insertion. FairyWren irst inserts objects into FwLog. When FwLog is full, objects are evicted from FwLog and
inserted into FwSets, as described next. Similarly, inserting into FwSets can cause cascading eviction from FwSets.

Eviction (nest packing). If either FwLog or FwSets is running out of space, FairyWren needs to perform nest

packing (Fig. 8). FairyWren’s SOC chooses an EU for eviction from FwLog or FwSets, depending on which is full.
If both logs are full, FwSets is chosen because FwSets must have space to receive objects evicted from FwLog.
The victim EU is irst read into memory. If evicting from FwLog, each object in the EU hashes to a victim set.

Otherwise, when evicting from FwSets, each set in the EU is a victim set. Then, 1 FairyWren rewrites each
victim set by: 2 inding all objects in FwLog that map to a given set, forming a new set containing these objects
(evicting objects as necessary), and 3 rewriting the set by appending it to FwSets’s log. Finally, 4 FairyWren

erases the victim EU.

SOC design rationale. Prior lash caches relied on LBAD GC to reclaim lash space from evicted sets, causing
dlwa. The key diference of FairyWREN from prior lash caches is its coordination of cache insertion and eviction

with lash GC.

FairyWren’s nest packing algorithm combines previously distinct processes. LBAD caches pay for eviction
as alwa and for garbage collection as dlwa. In the worst case, a set is copied by garbage collection and then
is immediately rewritten to admit objects from FwLog. It is impossible to merge these lash writes in LBAD.

4In this scenario, FwSets would be on a log-structured cache.

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 15

Merge

Hot

Subset

Cold

Subset
Hot Objects

Cold Objects

Read
Sort

Write

Cold Log

Hot Log

Fig. 9. FwSets is split in two: hot subsets with cold objects and cold subsets with hot objects. Most of the time objects are inserted

into the hot subset. However, every � subset updates, both subsets are read, merged, split by object popularity, and then both

rewriten.

FairyWren leverages WREN to eliminate unnecessary writes by aligning the eviction and garbage collection
cadences of FwLog and FwSets.

5.4 Optimizing the SOC

The SOC is the main source of DRAM overhead and wa in FairyWren. We employ a variety of optimizations
to improve the memory and write eiciency of the SOC.

5.4.1 Reducing flash writes by separating hot and cold objects. Even after using nesting to decrease writes, FwSets
is still the primary source of lash writes in FairyWren. To further reduce these writes, FwSets separates objects
by popularity, as determined by a modiied RRIP algorithm [45, 67]. Instead of a set being one unit that is written
every insertion, each set in FwSets is split in twain, into a subset for popular objects and a subset for unpopular
objects, each backed by its own log-structured store. Each subset is at least a page. Paradoxically, since the
unpopular objects are most likely to be evicted, the subsets with unpopular objects correspond to hot (i.e.,
frequently written) pages on lash. Hence, we refer to the subsets with unpopular objects as hot subsets and we
refer to the subsets with popular objects as cold subsets.
With hot and cold subsets enabled, objects evicted from FwLog are inserted into the hot subset. The cold

subset is not typically written during insertion. Every � nest packing operations on a subset, both the hot and
cold subsets are read. In memory, these subsets are merged and redivided by object popularity, as seen in Fig. 9.
Any popular objects found in the hot subset are moved into the cold subset. Since popular objects are likely to
remain in the cache for a while, they do not need to be rewritten as frequently. Therefore, they should be in the
cold subset and not incur extra rewrites. The least popular objects found in the cold subset are moved into the
hot subset so that FwSets can evict them if they remain suiciently unpopular.

Hot-cold object separation can nearly halve FwSets’s write ampliication. If � is 5 and sets are 8 KB (two 4KB
subsets), FairyWren without hot-cold object separation would have to write all 8 KB on each insertion to a set.
With hot-cold object separation, FairyWren writes 4 KB for the hot subset on every insertion, but only has to
write 4 KB for cold subset on every ifth insertion. Speciically, FairyWren writes 4 KB for the 1st, 2nd, 3rd and
4th new object written to a set, since it only has to update the hot subset with the new object. New objects have a
high likelihood of being unpopular since many objects are never accessed [16] so starting them in the hot subset
aligns well with our variant on the RRIP eviction policy. On the ifth insertion, FairyWren remerges the hot and
cold subsets Ð rewriting all 8 KB. Thus, FwSets writes only 24 KB instead of 40 KB every ive inserts to a set, a
40% write reduction. Since this write reduction applies to all sets, we see a 40% write reduction for FwSets overall.
This translates to a large reduction in FairyWren (Sec. 6.6).

Theoretically, FairyWren could further reduce writes by further dividing sets. However, there are some
practical limitations to this, namely that WREN devices only support a limited number of active EUs, often less
than 10. FairyWren currently needs 4 active EUs: 1 for LOC, 1 for FwLog, and 2 for FwSets (one for the hot

ACM Trans. Storage

16 • S. McAllister et al.

DRAM

EU =

EU :

Logical

5�L8g

…

Slice-

= : >…

…

WREN

@��iAe EU

Fig. 10. FwLog uses slicing to minimize memory overhead in FwLog.

subsets and one for the cold subsets). Using only 4 active EUs allows FairyWren to run concurrently with other
programs on the lash without interference and ensures compatibility with a wide range of WREN devices while
still achieving low write rates.
Moreover, separating objects by popularity yields diminishing returns since it increases miss ratio due to

object-popularity mispredictions. To maintain miss ratio, the cache then requires more capacity Ð meaning
FairyWren would trade a wa problem, which may require additional capacity to maintain the required write
rate, for a just a capacity problem. We expect many wrong object-popularity predictions. FairyWren maintains
very few bits of metadata to track each object’s popularity to minimize DRAM, leading to low idelity predictions.
The miss ratio will increase if popular objects are placed in hot subsets and evicted prematurely. This type of
error becomes more frequent as one tries to separate objects by popularity at iner granularity. In fact, even our
single layer of hot-cold separations causes a modest increase in miss ratio (Sec. 6.6).

5.4.2 Minimizing DRAM in FwLog by slicing. Like Kangaroo [67, 68], FwLog is implemented as 64 slices, i.e., 64
independent log-structured caches that operate in parallel over subsets of the keyspace. This is done to save
log2 64 = 6 bits per lash pointer in the DRAM index.

A naïve implementation of slicing on WREN would require one active EU for each slice. Many WREN devices
do not permit 64 simultaneously active EUs due to the prohibitively large DRAM overhead this would impose on
the lash device. Instead, FwLog uses a single active EU and shares segments among all 64 slices, giving each slice
an equal static share of each segment (Fig. 10). The downside of sharing FwLog segments is that one slice could
ill up its share of the segment before the others. In the worst case, one slice ills before the others contain any
objects, causing internal fragmentation in FwLog. This fragmentation reduces FwLog’s ability to minimize wa in
FwSets. Via simulation, we found that fragmentation could exceed 20%.

Balls and bins approximation of slicing. To better understand how much fragmentation slicing creates, we model
the process of illing a sliced bufer using a balls and bins approximation. Since FwLog hashes each object to a
slice, we can model each object as a ball randomly being assigned to a bin representing one slice. To simplify the
analysis, we assume each object is the same size.

We want to know how many balls, in expectation, that we can throw before the maximum number of balls in
any bin is greater than the number of objects that can it in a slice (�). To answer this question, we consider the
stochastic process of sequentially throwing balls into � bins. It is easy to see that the average number of balls in a

given bin is
(�
�

)
, suggesting that fragmentation should be limited. However, based on our simulation, we know

that fragmentation occurs. Thus, we need to bound the deviation of the maximum number of balls in any bin
from this mean.

To derive bounds on fragmentation, we deine the stochastic process {��} to be the maximum number of balls
in any bin after� balls have been thrown. We deine the random variable� to be

� = min
�

{� | �� > �}.

Our goal is to bound E [�] . Fortunately, the results of Raab and Steger [74] give a high-probability bound on ��

which we can use to bound E [�].

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 17

1 4 16 64 256 1024
Size of buffer (MB)

0

10

20

Fr
ag

m
en

ta
tio

n
(%

)

Single Buffer Sim
Model
Double Buffer Sim

Fig. 11. Comparison of splice model to single and double bufer simulations over a range of bufer sizes with 64 slices (�2 = .97
between single bufer simulation and model).

Speciically, Raab and Steger show that �{� > �� } = � (1) if � > 1 and �{� > �� } = 1 − � (1) if 0 > � > 1,
when

�� =

log�

log
� log�

log�

©«
1 + �

log log
� log�

log�

log
� log�

log�

ª®®®¬
, � �

�

polylog(�)
≤ � ≪ � log�

(�� − 1 + �) log�, if� = � · � log� for some constant �
�

�
+ �

︂
2
�

�
log�, if � log� ≪� ≤ � polylog(�)

�

�
+

︄
2� log�

�

(
1 −

1

�

log log�

2 log�

)
, if� ≫ �(log�)3

where polylog(�) is the class of functions
⋃

�≥1 O
(
log� �

)
and �� denotes a suitable constant depending only on � .

In our setup, we only care about the case where � ≫ �(log�)3 since, for 64 slices, �(log�)3 = 377 and
� ≈ 10, 000 at least.

To bound E [�], we note that �{�� > �} = 1 − � (1) if� ≥ �1. This gives

E [�] = E
[
� | ��1 > �

]
· �{��1 > �} + E

[
� | ��1 ≤ �

]
· �{��1 ≤ �} (4)

≥ �1 · �{� > �1} + 0 (5)

≥ �1 · (1 − � (1)). (6)

Hence, taking limits as � becomes large gives

lim
�→∞

E [�] ≥ �1 (7)

= −

︁
�2 (2 log� − log log�) (2 log� − log log� + 4�)

2
−
� log log�

2
+ �� + � log�. (8)

While Eq. 8 is an asymptotic lower bound, we ind that it closely matches our simulation results, as seen in
Fig. 11. Our simulation consists of 100 trials of the balls and bins problem at each bufer size. We plot the average
of these 100 trials. We ind that, unless the bufer is at least 1GB, more than 1% of bufered capacity is wasted
by our simple bufering policy. Therefore, we need to ind another way to decrease our fragmentation without
increasing our memory usage.

ACM Trans. Storage

18 • S. McAllister et al.

DRAM WRENLogical

FwLog

…

…

3
1

2

Slices

0 1 p… EU 0

EU 1
…

EU N

Fig. 12. FwLog uses overflow bufers to ensure the log segments are full when slicing.

Leveraging double bufering to decrease fragmentation. FwLog reduces fragmentation via double bufering (Fig. 12).
On insertion, FwLog 1 attempts to insert an object into its slice in the łprimaryž segment bufer. If the primary
is full, 2 the object is inserted into its slice in the secondary, łoverlowž segment bufer. 3 When any slice in the
overlow bufer becomes more than half full, FwLog writes the primary bufer to lash. The overlow bufer then
becomes the new primary bufer and vice versa. Double bufering increases the number of objects seen before a
bufer is written, reducing the variance in the number of objects in each slice.

Using both simulation, we ind that this optimization limits the capacity loss from fragmentation to <1%, even
for small (16MB) bufers (Fig. 11). At 16MB, the double bufer solution has less fragmentation than 1GB with a
single bufer.

5.4.3 Minimizing DRAM in FwSets by slicing. Like FwLog, FwSets also slices the log-structured store to reduce
DRAM overhead, sharing segments to minimize active EUs and segment bufers. However, since sets are much
larger than individual objects, the capacity of each bin in our fragmentation model is smaller. This means that
FwSets would incur more internal fragmentation than FwLog if using the same bufer size and number of slices.
FwSets therefore uses only 8 slices, which keeps fragmentation to less than 1% just like slicing in FwLog.

5.4.4 Reducing DRAM in FwSets by using larger sets. Finally, FwSets further reduces DRAM by using sets larger
than 4KB, reducing the number of sets that need to be tracked proportionally. Naïvely, one might expect that
increasing set size would increase lash writes. In a pure set-associative cache, this would be true. However,
FwLog bufers objects, and the number of objects that hash to a set also increases proportionally with set size, so
FwSets’s writes are roughly independent of set size. We see only a 5% increase in wa when going from 8KB to
16 KB sets with a 4 KB hot subset and a 12 KB cold subset.

DRAM overhead breakdown. Compared to a LBAD set-associative cache, FwSets requires additional DRAM to
track sets. Hot-cold object separation compounds this efect, doubling the number of (sub)sets to track.

Component Kangaroo Naïve SOC SOC

Log total 48 bits/obj 48 bits/obj 48 bits/obj

Set index ś ≈ 3.1 b ≈ 1.4 b

Sets (other) 4 b 4 b 4 b
Sets total 4 bits/obj 7.1 bits/obj 5.4 bits/obj

Log metadata ≈ 0.8 b ≈ 0.8 b ≈ 0.8 b
Log size 5% = 2.4 b 5% = 2.4 b 5% = 2.4 b
Set size 95% = 3.8 b 95% = 6.7 b 95% = 5.1 b
Total 7.0 bits/obj 9.9 bits/obj 8.3 bits/obj

Table 3. Kangaroo and FairyWREN’s SOC’s DRAM overhead for a 2 TB small-object cache with a 5% log. Despite tracking sets,

FairyWREN’s SOC still needs fewer than 10 bits per object.

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 19

Parameter FairyWREN Kangaroo

Interface WREN (ZNS) LBAD
Flash capacity 400 GB 400 GB

Usable lash capacity 383 GB 376 GB
LOC size 10% of lash 10% of lash

SOC log size 5% of SOC 5% of SOC
SOC set size 4 KB hot, 4 KB cold 4 KB

Hot-set write frequency every 5 cold set writes
Set over-provisioning 5%

Table 4. FairyWREN and Kangaroo experiment parameters.

Table 3 shows the per-object DRAM overhead for Kangaroo and FairyWren’s SOC. Due to partitioning and
double bufering, FairyWren achieves the same log overhead as Kangaroo. FairyWren’s added overhead shows
up in FwSets. Naïvely, when FairyWren has 4 KB subsets and 200 B objects, each set would need 8 bytes, for 3.1
bits/obj. However, since FairyWren uses 8 KB subsets and slices FwSets in eighths, FwSets needs just 1.4 bits/obj
to track sets.

FairyWren uses 19% more DRAM than Kangaroo, a 1.5 GB DRAM overhead increase for a 2 TB cache. However,
FairyWren’s DRAM overhead is still much lower than a log-structured cache, and this modest DRAM increase
allows FairyWren to greatly decrease lash writes (by 12.5×), netting large savings in carbon emissions and cost.

6 Evaluation

We compare FairyWren to prior lash caches and ind that: (1) FairyWren reduces lash writes by 92% over the
research state-of-the-art Kangaroo, leading to a 33% carbon reduction and a 35% cost reduction, (2) FairyWren is
within 11% of the minimum write rate, and (3) FairyWren is the irst cache design to actually beneit from QLC.

6.1 Experimental setup

Implementation. We implement FairyWren in C++ as a module in CacheLib [16]. All experiments were run on
two 16-core Intel Xeon CPU E5-2698 servers running Ubuntu 18.04 with 64 GB of DRAM, using Linux kernel
5.15. For WREN experiments, we use a Western Digital Ultrastar DC ZNS540 1 TB ZNS SSD, using the LOC and
ZNS library written by Western Digital [50]. The ZNS SSD has a zone (EU) capacity of 1077 MiB. The devices
support 3.5 device writes per day for an expected 5-year lifetime.

We compare to Kangaroo [67] over the irst ≈2.5 days of a production trace from Meta. FairyWren uses a ZNS
SSD and Kangaroo uses an equivalent LBAD SSDwith similar parameters (Table 4). Both caches use 400 GB of lash
capacity and achieve similar miss ratios as Kangaroo’s production experiments [67]. We overprovision FwSets by
5% to ensure forward progress during nest packing, giving several free EUs to the FwSets log-structured store.
Thus, FairyWren efectively uses 383GB. This idle capacity should decrease in larger lash devices. Kangaroo
only uses 376GB of capacity due to device-level overprovisioning. We approximate Kangaroo’s dlwa based on
results in the Kangaroo paper [67].

Simulation. In addition to lash experiments, we implemented a simulator to compare a much wider range of
possible conigurations for FairyWren. The simulator replays a scaled-down trace to measure writes and misses
from each level of the cache, including the LOC, FwLog, and FwSets.

We evaluate our cache in simulation on a 21-day trace from Meta [16] and a 7-day trace from Twitter [92]. The
Meta trace accesses 6 TB of unique bytes with a 13.8% compulsory miss ratio and an average object size of 395
bytes. Small objects (<2 KB) are 95.2% of requests, and these requests account for 60.2% of bytes requested. The
Twitter trace accesses 3.5 TB of unique bytes, has a 17.2% compulsory miss ratio, and an average object size of 265
bytes. Small objects are >99% of requests, and these requests account for >99% of bytes requested. Both of these
traces are higher idelity than the open-source traces [16, 92]. We present results for the last 2 days of the trace.

ACM Trans. Storage

20 • S. McAllister et al.

SLC MLC TLC QLC PLC

Write endurance 4.4× 4× 1× 0.32× 0.16×
Capacity discount 3× 1.5× 1× 0.75× 0.6×

Table 5. Scaling factors for diferent flash densities. We optimistically assume that increasing the bits per cell does not afect

emissions or cost.

6.2 Carbon emissions and cost model

We want to evaluate carbon emissions and cost across diferent caching system. Our model allows diferent
cache coniguration, lash densities, and device lifetime. Since we want to compare caching systems, our model
assumes that a lash device will have the same caching workload for its entire lifetime and that all lash is
purchased at the start of the estimated lifetime.
Our model needs to estimate how much lash each cache needs to account for both the cache’s capacity

and its writes over the desired lifetime. If the cache capacity cannot accommodate the write rate, we need to
overprovision the lash for the write rate. Thus,

Flash Capacity = max

(
Cache Capacity,

Write Rate ∗ Desired Lifetime

Write Endurance

)

For example, a 2 TB cache with a 6-year lifetime will require at least 2 TBs of lash, but it may require 2.5 TB of
lash to accommodate the cache’s write rate over 6 years. LBAD devices use 7% overprovisioning, the standard on
datacenter drives [8].

We combine this lash capacity requirement with the cache’s DRAM coniguration and CPU to estimate both
the cost and the carbon emissions, assuming that lash’s write endurance is the server’s main lifetime constraint.
While we believe this constraint is reasonable for shorter lifetimes, other failures will become more common at
longer lifetimes (particularly above 10 years). We base our write endurance on Micron 7300 NVMe U.2 TLC SSDs.
For other densities, we multiply the TLC write endurance by the write-endurance factors in Table 5, based on [9].
We optimistically assume that diferent lash densities will have the same cost and emissions per cell; e.g., 1 TB of
PLC has the same emissions as 600GB of TLC (5:3 ratio). Our model can incorporate more data on denser lash if
it becomes available.
For cost, we account for both the power and acquisition cost of the lash, DRAM, and CPU. For the lash

acquisition cost, we interpolate linearly between the Micron SSD’s lash capacities to ind a cost for any lash
capacity. Cost is normalized to Kangaroo with a 30% miss ratio for the Twitter trace and 20% for Meta.

To determine carbon emissions, we use the ACT model [38] to estimate operational and embodied emissions
from CPUs, DDR4 DRAM, and lash.

Carbon Emissions = Operational Emissions + Embodied Emissions

=

device︁
CPU, DRAM, Flash

(
Energydevice × Carbon Intensity +

(Embodied Emissions)device
Desired Lifetime

)

For the energy’s carbon intensity, we assume the grid is a 50/50 mix of wind and solar, a common renewable-
energy mix [12]. The embodied emissions of both DRAM and lash depend on their capacity and we assume that
the CPU uses 70% of its maximum power on average.

6.3 Carbon emissions of flash caches

We irst examine the carbon emissions of diferent lash caches for a 6-year deployment. Fig. 13 compares
FairyWren to three systems: MinimumWrites, Kangaroo, and a Flashield-like log-structured cache [35]. Minimum
Writes is an unachievable, idealized cache with wa of 1× and no DRAM overhead. Flashield also assumes a wa of

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 21

1×, but requires a DRAM:SSD capacity ratio of 1:10, as originally proposed. Since we cannot faithfully replicate
Flashield’s ML eviction policy (and no working implementation is available), we assume that Flashield achieves
FairyWren’s miss ratios.

Takeaway 0: Sustainable lash caches must use much less DRAM than log-structured cache designs.

� �� �� 	� 	�
�
�
���!!���!������	���"�� �

��

��

���

� ��
����
���!�

!

"

✨

Fig. 13. Yearly carbon emissions for 4 caching systems: minimum writes () with a write amplification of 1 with no additional

DRAM, FairyWREN (), Kangaroo (), and a Flashield-like log-structured cache (). Our results include the embodied and

operational (hatched) emissions from CPU, DRAM, and flash.

Although we optimistically assumed that Flashield incurs no write ampliication, Flashield’s overall carbon
emissions are 1.7× higher than Kangaroo’s. These emissions are due to its high DRAM overhead. Despite
optimizations in Flashield designed to save DRAM, high DRAM overhead is unfortunately inherent in the design
of a log-structured cache. and thus we need to look beyond log-structured designs.

Kangaroo reduces DRAM overhead through its hierarchical design. Unfortunately, Kangaroo also incurs a far
higher write rate than a log-structured cache. Kangaroo accounts for its increased writes by overprovisioning
lash capacity, increasing the write rate it can maintain in exchange for additional embodied emissions. While
Kangaroo is far more sustainable than Flashield, it leaves room for improvement compared to minimum writes
due to its overprovisioning needs.

FairyWren maintains Kangaroo’s low memory overhead while greatly reducing the lash write rate, lowering
its overprovisioning requirements. Consequently, FairyWren reduces overall carbon emissions by 21.2% compared
to Kangaroo. As this improvement comes from reducing lash emissions, we focus on lash emissions for the
remainder of the evaluation.

6.4 On-flash experiments

To study how FairyWren reduces lash writes, we evaluate FairyWren on real lash drives using the setup in
Sec. 6.1.

Takeaway 1: FairyWREN greatly reduces lash writes while maintaining a slightly better miss ratio than Kangaroo.

Fig. 12 plots the lash write rate and miss ratio over time for Kangaroo and FairyWren. The igure shows small
write rate spikes in FairyWren. This is because FairyWren performs nest packing at the granularity of an EU,
≈1GB. Kangaroo’s write rate appears smooth as it lushes more frequently, at 256 KB granularity.
The main goal of FairyWren is to reduce writes, enabling the use of denser lash. In Fig. 12a, FairyWren

reduces writes by 12.5× over Kangaroo, from 97 MB/s to 7.8 MB/s. To achieve this, FairyWren leverages WREN
to combine cache logic and GC and to separate writes of diferent lifetimes.

ACM Trans. Storage

22 • S. McAllister et al.
	
�
 �� � �� �

� ''���($����

����

��

���

���

	���

	�

	��

�$
&"

�!
 +�

��
�#

#)
�!

��
$'

(
�� &*������������� ��#��&$$��������� � # ")"��& (�'��������� ��*' ��!���%�&�($#���������

!

(a) Write rate (Mean: FairyWREN ≈7.8MB/s, Kangaroo ≈97

MB/s)
	
�
 �� � �� �

� ''���($����

����

��

���

���

	���

	�

	��

�$
&"

�!
 +�

��
�#

#)
�!

��
$'

(

�� &*������������� ��#��&$$��������� � # ")"��& (�'��������� ��*' ��!���%�&�($#���������

!

(b) Miss ratio (Mean: FairyWREN ≈ 0.575, Kangaroo ≈ 0.594)

Fig. 12. The miss ratio and write rate for Kangaroo and FairyWREN.

	
�
 �� � �� �
� ''���($����

����

��

���

���

	���

	�

	��

�$
&"

�!
 +�

��
�#

#)
�!

��
$'

(

�� &*������������� ��#��&$$��������� � # ")"��& (�'��������� ��*' ��!���%�&�($#���������✨ !"

�� �� ��
M�		
��� ���

�

�

��

��

��

��
��
��
��
�

(�
�

��
��
�
"#

)

(a) Twiter Emissions

$& (&)&
*+,, ./0+1 234

&6&&

&6$7

&67&

&697

;6&&

;6$7

;67&

<?
BC
DE
FG
HI
JK
KL
DE
M?
NO

(b) Twiter Cost

PQ RQ SQ
TUVV WaXUY Z[\

Q

]

PQ

P]

RQ

^_
`a
a`
bc
a

(d
e

fg
hi
jk

al

)

(c) Meta Emissions

mn on pn
Mqrr stuqv wxy

nznn

nzo{

nz{n

nz|{

mznn

mzo{

mz{n

}~
��
��
��
��
��
��
��
�~
��

(d) Meta Cost

Fig. 13. The emissions and cost over six years for Kangaroo (), FairyWREN (), Min. Writes (), and Physical Sep. ().

However, reducing writes must not increase misses. Fig. 12b shows that, in fact, FairyWren and Kangaroo have
very similar miss ratios: on average, 0.575 for FairyWren vs 0.594 for Kangaroo. FairyWren’s small advantage
comes from reducing idle capacity due to overprovisioning.
We see very similar results for write ampliication: a 12.2× reduction, from 23× in Kangaroo to 1.89× in

FairyWren. The slight diference between the write rate and wa comes from FairyWren’s slightly better miss
ratio.

Takeaway 2: FairyWREN outperforms Kangaroo for both throughput and read latency at peak load.

While the primary performance metric for caches is miss ratio, FairyWren must provide enough throughput
that it does not require more servers Ð and thus more carbon emissions Ð to handle the same load. In our
experiments, FairyWren’s throughput is 104 KOps/s whereas Kangaroo’s is 40.5 KOps/s. FairyWren’s signiicant
throughput increase is mostly due to lower write rate, but also due to better engineering that moved work of the
critical path for lookups and inserts.

Similarly, we ind that FairyWren’s and Kangaroo’s 99th-percentile latencies are 170 µs and 1,370 µs, respectively.
But note that, in practice, the overall tail latency is set by the backing store, not the lash cache.

6.5 FairyWren reduces carbon emissions

We now evaluate lash carbon emissions and cost via simulation, comparing FairyWren (), Kangaroo (),
Minimum Writes (), and Physical Separation (). Physical Separation represents Kangaroo on WREN, where
each cache component (e.g., LOC, KLog, KSet) is placed in its own EU to separate traic and thereby allow LOC
and KLog to have wa of 1×.

Takeaway 3: FairyWREN’s reduced writes translate into reduced carbon emissions and reduced cost across miss ratios.

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 23

Fig. 13 plots emissions and cost for a 6-year lifetime vs. miss ratio over a wide range of cache conigurations.
Each point is labeled with the lash density used (e.g., T for TLC).
For the Twitter traces (Fig. 13a, Fig. 13b), Kangaroo is limited to either MLC or TLC due to its high write

rate, and likewise for Physical Separation because it does not reduce writes by much (Sec. 6.6). Meanwhile,
FairyWren leverages its low wa to use mostly QLC across miss ratios, giving it large carbon and cost reductions
vs. Kangaroo. However, FairyWren still has too many writes to use PLC. While the gap between Minimum
Writes and FairyWren grows at low miss ratios, there is only a 10.1% diference in their emissions at 20% miss
ratio and a 7.7% diference in cost.

The Meta traces (Fig. 13c, Fig. 13d) are less write-intensive. However, even here we see that FairyWren reduces
cache emissions and cost compared to both Kangaroo and Physical Separation. In this case, FairyWren is able to
lower the write rate suiciently to use QLC and PLC. As a result, FairyWren performs close to Minimum Writes,
even at low miss ratios.

Takeaway 4: FairyWREN beneits from using denser lash when Kangaroo cannot.

K FW M0
5

10
15
20

Em
iss

io
ns

(C
O

2 /
 y

ea
r)

(a) Twiter

K FW M0
5

10
15
20

Em
iss

io
ns

(C
O

2 /
 y

ea
r)

(b) Meta

Fig. 14. The carbon emissions to achieve a 30% miss ratio on Twiter trace or 20% miss ratio on Meta trace on diferent flash

densities for a desired lifetime of 6 years. Each bar for each cache represents a diferent density from SLC (let, darkest) to PLC

(right, lightest).

Flash devices are becoming denser over time (Sec. 2). Fig. 14 shows the carbon-optimal cache conigurations
over a 6-year lifetime at a target miss ratio of 30% for Twitter and 20% for Meta, varying lash density from
SLC (left) to PLC (right). Kangaroo performs best when using TLC on the Twitter trace and QLC on the Meta
trace. Using PLC increases Kangaroo’s emissions due to the excessive overprovisioning needed to compensate for
PLC’s lower write endurance. FairyWren’s lower write rate enables it to use QLC for Twitter and PLC for Meta,
reducing emissions and cost. Since Twitter’s trace is more write-intensive, using PLC increases carbon emissions
by 24% due to overprovisioning.
For Minimum Writes on Twitter, emissions decrease by 17% going from TLC to QLC and by 8% from QLC to

PLC. On Meta, emissions reduce by 18% and 15%. While these numbers show that denser lash reduces emissions,
they suggest diminishing returns even for an optimal cache.

Takeaway 5: FairyWREN’s low WA allows it to avoid massive overprovisioning on dense lash as lifetime is increased.

To explore the trend of increasing device lifetime (Sec. 2), Fig. 15 considers the emissions for caches on QLC
devices, showing emissions from overprovisioning in a darker shade.

For a 6-year lifetime, Kangaroo requires 2.2× the emissions of FairyWren on Twitter and 1.17× on Meta. At 12
years, the gap increases to 2.6× and 1.54×. Due to the dlwa in LBAD devices, Kangaroo’s emissions are lowest
when it has some amount of overprovisioning. FairyWren does not need this overprovisioning due to its lower
wa. This lower overprovisioning leads to FairyWren’s much lower emissions, particularly for the Twitter trace.

ACM Trans. Storage

24 • S. McAllister et al.

	
 � � �� �	 �
 ��
����������!����

�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������
	
 � � �� �	 �
 ��

����������!����
�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������

	
 � � �� �	 �
 ��
����������!����

�

��

	�
�

���
��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������! ✨

2 4 � � 10 12 14 1�
�������� ������

0

10

20

�
�
��
��
�
�
�

 ¡
¢

 C
O

2 £

 ¤
¥
¦
§¨

(a) Twiter

2 4 © ª 10 12 14 1©
«¬®¯¬°® ±²®³´µ

0

10

20

¶
·
¸¹
¹¸
º
»
¹

¼½
¾

 C
O

2 ¿

 À
Á
Â
ÃÄ

(b) Meta

Fig. 15. The carbon emissions to achieve a 30% miss ratio on Twiter trace or 20% miss ratio on Meta trace with diferent lifetimes

on QLC flash. The darker part of each bar represents emissions due to overprovisioning.

Takeaway 6: Increasing lash density does not necessarily improve sustainability, as lifetime matters more than

density.

	
 � � �� �	 �
 ��
����������!����

�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������
	
 � � �� �	 �
 ��

����������!����
�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������

	
 � � �� �	 �
 ��
����������!����

�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������! ✨

2 4 Å Æ 10 12 14 1Å
ÇÈÉÊËÈÌÊ ÍÎÊÏÐÑ

0

10

20

Ò
Ó
ÔÕ
ÕÔ
Ö
×
Õ

ØÙ
Ú

 C
O

2 Û

 Ü
Ý
Þ
ßà

á á á á á â â â â â â â âã ä ä ä ä ä á á á á á á áã ã ã ã ã ã ã ã ã ã ã ã ã

(a) Twiter

2 4 å æ 10 12 14 1å
çèéêëèìê íîêïðñ

0

10

20

ò
ó
ôõ
õô
ö
÷
õ

øù
ú

 C
O

2 û
 ü

ý
aþ

ÿ

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

(b) Meta

Fig. 16. The lowest carbon emissions to achieve a 30% miss ratio on Twiter trace or 20% miss ratio on Meta trace while varying

both desired lifetimes and flash density. The darker part of each bar represents emissions due to overprovisioning. Leters on each

bar represent the flash density

To minimize emissions, we need to optimize both lifetime and lash density. Fig. 16 shows each system’s
emissions for all lifetimes, with the best density displayed on each bar. Kangaroo usually prefers MLC and TLC
because, to provide enough write endurance. QLC and PLC require too much overprovisioning and thus Kangaroo
would have higher emissions if using them. FairyWren has fewer emissions than Kangaroo at all lifetimes and
stays within 30% of Minimum Writes.
The best lash density decreases for longer lifetimes. FairyWren prefers PLC on Twitter for a 3 year desired

lifetime, but TLC for 9 years. At these long lifetimes, the reduced write endurance of denser lash outweighs its
sustainability beneits, and extending lifetime is more important than using denser lash. Although a minimum
write cache can use PLC for up to 15 years, even a slighly higher write rate quickly overcomes PLC’s limited
write endurance.

Takeaway 7: For a given lash device, FairyWREN extends lifetime by at least a couple of years.

So far, we have evaluated emissions when deploying the optimal drive for a given lifetime and lash density.
However, lash deployments are often constrained to speciic devices with a pre-determined capacity and density.
In these situations, extending lifetime can still reduce emissions. Fig. 17 evaluates device lifetime for a 3.6 TB
drive at diferent miss ratios. Compared to Kangaroo, FairyWren is able to extend the device’s lifetime by at
least 2 years and by over 5 years on the Meta trace. By contrast, Physical Separation barely improves lifetime vs.

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 25

�

!
!

(a) Twiter

�

!

!

(b) Meta

Fig. 17. The lifetimes for a 3.6 TB cache for Kangaroo (), FairyWREN (), and Physical Separation ().

Kangaroo. While Physical Separation reduces writes some over Kangaroo, both ultimately need to massively
overprovision to extend lifetime Ð thus, increasing their miss ratio for any lifetime.

6.6 Where are benefits coming from?

We next explore how FairyWren’s optimizations contribute to its write rate reduction. Fig. 18 shows the
write rate on the Twitter trace starting with Kangaroo on LBAD (Log + Sets). We then add the optimizations of
FairyWren incrementally. First, we port Kangaroo naively to WREN (+WREN), then we physically separate the
large and small objects into diferent erase units (+Physical Sep.). Then we add nest packing (+Nest Packing),
and, inally, hot-cold object separation (+Hot-Cold) to realize FairyWren. We irst present the write rates for the
diferent systems across diferent capacities and miss ratios, showing the emissions-optimal lash density for one
capacity. We then show how the lifetimes of each design would vary if deployed on a QLC drive.

�� �� �� �� ��

�	

 ��	�

���

���

���

�
��
��
�
�
��
��
�
��
� �! " #$

 %&'�(!�)��*
" +�,-

" ./0
	1�2 #$34

" -$
 .�15	(!

" 6�78�29
 %& :+*

 ;

<

=

>

4

5

?
@A
B
C@
D
B
EF
B
G
HI
J

Fig. 18. Write rate (log-scale) and lifetime breakdown on the Twiter trace, incrementally adding optimizations to go from Kangaroo

to FairyWREN.

Takeaway 8: Caches on optimal LBAD devices cannot achieve the same write rate as FairyWREN.

Three of the lines in Fig. 18 are achievable with LBAD devices: Log + Sets, +WREN, and +Physical Sep (though
+Physical Sep assumes an augmentation to LBAD such as streams). Log + Sets represents the current Kangroo
implementation on LBAD. +WREN is a naive port of Kangaroo to WREN devices that redirects all cache writes
to a single log-structured store using FIFO garbage collection. This naïve port does not attempt any separation of
objects by expected lifetime, and we assume it has the same alwa as Kangaroo. +WREN has a simplistic FIFO
garbage collection policy, meaning that it can be worse than just running on LBAD which often do try to separate
objects belonging to diferent streams. This means +WREN has higher write rates than Kangaroo on LBAD. In
practice, even the best LBAD implementation must perform somewhere between +WREN and +Physical Sep,

ACM Trans. Storage

26 • S. McAllister et al.

which would require LBAD to perfectly predict diferent streams of data. But even in this best case of Physical
Sep., the cache still incurs far too many writes, limiting the lifetime of a QLC device to less than half a year.

Takeaway 9: Both nest packing and hot-cold object separation are essential to FairyWREN’s write reduction.

The other two systems we compare in this breakdown are +Nest packing and +Hot-Cold (i.e., FairyWren

with all optimizations). Nest packing reduces writes by at least 3.7× and hot-cold object separation reduces
writes by another 3.4×. Either of these optimizations alone would not achieve a close to 5 year lifetime, meaning
that the cache still has too many writes to achieve a reasonable deployment lifetime today on QLC. With both
optimizations, FairyWren achieves up to a 33× increase in QLC lifetime over the Kangaroo baseline and a 13×
increase over +Physical Sep. We also observe that, even though hot-cold separation can increase miss ratios, the
reduction in write rate and its accompanying reduction in overprovisioning outweighs this miss ratio increase.

6.7 Operating on a fixed flash device

We now compare Kangaroo and FairyWren with respect to miss ratio given a ixed lash capacity. We enforce
the same constraints of a 6-year lash lifetime, TLC lash density, and 32GB of DRAM for both systems. Unlike
prior igures where we minimize emissions, FairyWren cannot not gain an advantage for using denser lash, and
Kangaroo cannot increase write endurance by using less-dense lash. We show that FairyWren under the same
capacity constraints, and thus write rate constraints, improves miss ratio over Kangaroo through its reduction in
writes allowing it to more efectively use the capacity.	
 � � �� �	 �
 ��

����������!����
�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������
	
 � � �� �	 �
 ��

����������!����
�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������!

	
 � � �� �	 �
 ��
����������!����

�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������

�
�
��
��
�

0 2000 KLLL MLLL
NOPQR STUVWT XPYPWVZ[\]^_

1`
20
2`
aL

a`

KL

K`

b
cd
d
e
f
gc
h
ij
k

0 2000 4000 lmmm
nopqr stuvwt xpypwvz{ |}~�

0

20

40

lm

�m

100

�
��
��
�
�
��
��
�
��
�

� ���� ���� ����
����� ������ �������� ¡¢£

�

¤

¥�

¥¤

��

¦
§¨
©ª
«
¬

®¨
¯¨
°±
©¨
²
³

�
��
�

0 2000 ´µµµ ¶µµµ
·¸¹º» ¼½¾¿À½ Á¹Â¹À¿ÃÄ ÅÆÇÈ

10

1É

20

2É

Êµ

ÊÉ

Ë
ÌÍ
Í
Î
Ï
ÐÌ
Ñ
ÒÓ
Ô

(a) Capacity

0 2000 4000 ÕÖÖÖ
×ØÙÚÛ ÜÝÞßàÝ áÙâÙàßãä åæçè

0

20

40

ÕÖ

éÖ

100

ê
ëì
íî
ï
ð
íî
ñò
ó
ôõ
ö

(b) Write Rate

÷ ø÷÷÷ ù÷÷÷ ú÷÷÷
ûüýþÿ ������ �ý�ý���� 	
��

÷

�÷

�

ø÷

�
��
��
�
�
�
��
��
�
�
��
�
�

(c) WA

Fig. 19. Pareto curve of cache miss ratio at diferent flash device sizes and the corresponding write rate and write amplification of

these points. The DRAM capacity is limited to 32 GB, the desired lifetime is 6 years, and the caches use TLC flash.

Takeaway 10: FairyWREN achieves the same miss ratio at lower lash capacities than Kangaroo.

ACM Trans. Storage

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 27

	
 � � �� �	 �
 ��
����������!����

�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������
	
 � � �� �	 �
 ��

����������!����
�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������!

	
 � � �� �	 �
 ��
����������!����

�

��

	�

�
���

��
��

�
	��
�!
��
��

����������������� ����!������������ ����� �����������������

0 �� �

D!"# $%&'

�(

�(

40

M

)*
*
+

a,
)-
./
0

(a) Twiter

0 12 63
4567 89:;

10

20

1<

=
>?
?
@
A
B>
C
DE
F

(b) Meta

Fig. 20. Pareto curve of cache miss ratio at diferent DRAM sizes. The flash capacity is limited to 3.6TB, the desired lifetime is 6

years, and the caches use TLC flash.

Fig. 19 shows the efects of changing the lash capacity on miss ratio for both traces. For each lash capacity, we
also plot the write rate and wa of both systems. We ind that FairyWren needs less lash capacity than Kangaroo
to achieve a given miss ratio. FairyWren also requires less overprovisioning due to its lower write rate. This
trend is more prominent in the Twitter trace than the Meta trace, which is less write-intensive. For the Twitter
trace, the limitation of only using TLC prevents Kangaroo from achieving better miss ratios since Kangaroo’s
needs much more overprovisioning, increasing the overall lash capacity needed to survive 6 years above 3.6 TB.
Thus, Kangaroo’s miss ratio curve shifts to the right.

We also see that lash capacity sets the write budget for the lash device, deining the write rate that the caching
system can tolerate for a desired lifetime. As the capacity increases, both FairyWren and Kagnaroo can maintain
a higher write rate and both systems use that write rate to further reduce misses. One might expect a similar
relationship for write ampliication. However, the systems have diferent miss ratios, causing Kangaroo to need
to have a lower wa through massive overprovisioning.

Takeaway 11: FairyWREN maintains its advantage under a DRAM constraint.

We investigated how DRAM restrictions afect Kangaroo and FairyWren when both caches use 3.6 TB of TLC
lash for a 6-year lifetime, Fig. 20. Despite having a large DRAM footprint, FairyWren maintains a constant
miss ratio advantage over Kangaroo from 16GB to 64GB of DRAM for both traces. FairyWren still has a low
enough overhead to need less than 16GB of DRAM for a full 3.6 TB on-lash cache. Therefore, similarly to
less DRAM-constrained environments, FairyWren’s lower write rate translates directly into using more cache
capacity and a lower miss ratio.
FairyWren’s miss ratio only begins to increase when DRAM falls to 8GB on the both traces. On the Twitter

workload, Kangaroo cannot handle the workload with only 8GB of DRAM. As seen in the Fig. 19, with too small
of a cache, Kangaroo actually needs more overprovisioning to handle the extra writes from the higher miss
ratio. With the DRAM overhead too high to enable a larger cache, Kangaroo cannot be conigured to run with
8GB of memory and only 3.6 TB of lash capacity. Even for the Meta workload with its lower writes, we see
that FairyWren performs slightly better than Kangaroo at 8GB of DRAM. FairyWren’s slightly higher DRAM
overhead means its cache capacity is more constrained than Kangaroo’s, but its lower overprovisioning results
in a slightly lower miss ratio. Hence, FairyWren always outperforms Kangaroo even under severe memory
constraints.

7 Related Work

This section discusses additional related work with similar techniques and goals to FairyWren.

ACM Trans. Storage

28 • S. McAllister et al.

Hot-cold objects and deathtime. In caching, hot objects are the most popular objects. Caches use eviction policies
to retain popular objects [15, 45, 47, 83]. FairyWren adapts Kangaroo’s RRIP-based eviction policy [45, 67].
Popularity is diferent than deathtime, the time when an object will be deleted [41]. To minimize GC, many

storage systems will physically separate objects by their deathtime [26, 28, 41, 54, 76, 94]. Grouping objects with
similar deathtimes reduceswa. Hence, accurately predicting deathtimes is vital for minimizing write ampliication
within LBAD. Recent work uses ML to make these predictions [26, 94]. Unfortunately, ML solutions require
additional hardware that can increase emissions and cost.
Caches have more control over deathtimes than storage systems. Deathtimes are set by the eviction policy,

and thus determining an object’s deathtime is more straightforward. For instance, in caches that evict based on
TTLs, the TTLs can be used to group objects [93]. FairyWren leverages its eviction policy’s popularity rankings
and the WREN interface to physically group objects by deathtime.

Eviction and garbage collection. Prior lash caches have attempted to reduce in-device garbage collection. Many
log-structured caches [27, 35, 56, 61] group objects into large segments and trim these segments during eviction
to minimize garbage collection. These systems attempt to evict segments before device-level GC rewrites them.
Unfortunately, this does not ensure GC is prevented on LBAD devices, so some work has proposed leveraging
newer interfaces to guarantee alignment. DidaCache [78], for example, uses an Open-Channel SSD [20] to
guarantee its segments will align with erase units. Other proposals to use more expressive interfaces re-implement
LBAD-like GC on top of a ZNS SSD [29], prohibiting optimizations like FairyWren’s nest packing. All of these log-
structured approaches sufer from high DRAM overheads and cannot evict individual objects without additional
writes.

Grouping by object size. FairyWren separates objects into two object size classes, large and small, similar to
Kangaroo [68] and CacheLib [16]. This grouping is used to minimize memory overhead. Allocating memory using
size-based slab classes is often used to reduce fragmentation [25, 43, 77, 78, 93]. Introducing additional object size
classes in FairyWren would result in additional lash accesses, since FairyWren does not index the size classes
to save memory. Instead, FairyWren reduces fragmentation by grouping objects into either large segments in
the LOC or sets in FwSets. These segments and sets are periodically rearranged to prevent fragmentation.

8 Conclusion

FairyWren reduces lash’s carbon emissions and cost by integrating lash management with cache policies.
Doing so requires redesigning the cache to transition from old LBAD lash interfaces to a WREN interface.
Experiments show that FairyWren decreases lash writes by 12.5× vs. the state-of-the-art, allowing longer lash
lifetimes that reduce carbon emissions by 33% and cost by 35%.

9 Acknowledgements

Sara McAllister is supported by a NDSEG Fellowship and a Siebel Scholarship. We thank the members and
companies of the PDL Consortium (Amazon, Datadog, Google, Hitachi, Honda, IBM Research, Intel, Jane Street,
Meta, Microsoft Research, Oracle, Pure Storage, Salesforce, Samsung, Two Sigma, Western Digital) for their
interest, insights, feedback, and support. This work is also supported by NSF CIF-241615 and NSF IIS-233630
grants. We thank Gala Yadgar and our anonymous reviewers for their helpful comments and suggestions. We
also thank Western Digital for providing resources and technical expertise; we especially thank Matias Bjùrling,
Ajay Joshi, and Hans Holmberg. We also speciically thank Javier Gonzalez and Mike Allison, at Samsung, and
Ross Stenfort, at Meta, for providing their technical expertise on FDP. We thank the PDL staf, particularly Jason
Bowles, for their support.

References
[1] [n. d.]. Amazon Sustainability. https://sustainability.aboutamazon.com/climate-solutions.

ACM Trans. Storage

https://sustainability.aboutamazon.com/climate-solutions

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 29

[2] [n. d.]. Climate change is humanity’s next big moonshot. https://blog.google/outreach-initiatives/sustainability/dear-earth/.
[3] [n. d.]. Fatcache. https://github.com/twitter/fatcache.
[4] [n. d.]. Flash prices. https://jcmit.net/lashprice.htm.
[5] [n. d.]. LevelDB. https://github.com/google/leveldb.
[6] [n. d.]. Memory prices. https://jcmit.net/memoryprice.htm.
[7] [n. d.]. RocksDB. http://rocksdb.org.
[8] [n. d.]. SSD Over-Provisioning And Its Beneits. https://www.seagate.com/blog/ssd-over-provisioning-beneits-master-ti/.
[9] [n. d.]. WD and Tosh talk up penta-level cell lash. https://blocksandiles.com/2019/08/07/penta-level-cell-lash/ 5/17/22.
[10] 2023. Is there a limited warranty for Samsung SSDs? https://semiconductor.samsung.com/us/consumer-storage/support/faqs/05/.
[11] 2023. Our Path to Net Zero. https://sustainability.fb.com/wp-content/uploads/2023/07/Meta-2023-Path-to-Net-Zero.pdf.
[12] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj Chakkaravarthy, David Brooks, and Carole-Jean Wu.

2023. Carbon Explorer: A Holistic Framework for Designing Carbon Aware Datacenters. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. ACM, Vancouver BC Canada, 118ś132.
doi:10.1145/3575693.3575754

[13] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina Panigrahy. 2008. Design Tradeofs for SSD
Performance. In USENIX 2008 Annual Technical Conference (Boston, Massachusetts) (ATC’08). USENIX Association, USA, 57ś70.

[14] Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, and Myoungsoo Jung. 2022. What You Can’t Forget: Exploiting Parallelism for Zoned
Namespaces. In Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems (Virtual Event) (HotStorage ’22).
Association for Computing Machinery, New York, NY, USA, 79ś85. doi:10.1145/3538643.3539744

[15] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Improving Hit Rate by Maximizing Hit Density. In USENIX NSDI.
[16] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan

Beckmann, Mor Harchol-Balter, and Gregory G. Ganger. 2020. The CacheLib Caching Engine: Design and Experiences at Scale. In
USENIX OSDI.

[17] Daniel S. Berger, Fiodar Kazhamiaka, Esha Choukse, Inigo Goiri, Celine Irvene, Pulkit A. Misra, Alok Kumbhare, Rodrigo Fonseca, and
Ricardo Bianchini. 2023. Research Avenues Towards Net-Zero Cloud Platforms. Workshop on NetZero Carbon Computing (2023).

[18] Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. 2017. AdaptSize: Orchestrating the Hot Object Memory Cache in a
Content Delivery Network. In USENIX NSDI.

[19] Matias Bjùrling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien Le Moal, Gregory R. Ganger, and George Amvrosiadis.
2021. ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, 689ś703. https://www.usenix.org/conference/atc21/presentation/bjorling

[20] Matias Bjùrling, Javier Gonzalez, and Philippe Bonnet. 2017. Lightnvm: The linux open-channel SSD subsystem. In USENIX Conference

on File and Storage Technologies. USENIX-The Advanced Computing Systems Association, 359ś374.
[21] Netlix Technology Blog. 2016. Application data caching using SSDs. https://netlixtechblog.com/application-data-caching-using-ssds-

5bf25df851ef.
[22] Netlix Technology Blog. 2018. Evolution of Application Data Caching : From RAM to SSD. https://bit.ly/3rN73CI.
[23] Simona Boboila and Peter Desnoyers. 2010. Write Endurance in Flash Drives: Measurements and Analysis. In USENIX FAST.
[24] Erik Brunvand, Donald Kline, and Alex K. Jones. 2018. Dark Silicon Considered Harmful: A Case for Truly Green Computing. In 2018

Ninth International Green and Sustainable Computing Conference (IGSC).
[25] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. 2019. Faster slab reassignment in memcached. In Proceedings of the International

Symposium on Memory Systems (Washington, District of Columbia, USA) (MEMSYS ’19). Association for Computing Machinery, New
York, NY, USA, 353ś362. doi:10.1145/3357526.3357562

[26] Chandranil Chakraborttii and Heiner Litz. 2021. Reducing Write Ampliication in Flash by Death-Time Prediction of Logical Block
Addresses. In Proceedings of the 14th ACM International Conference on Systems and Storage. ACM, Haifa Israel, 1ś12. doi:10.1145/
3456727.3463784

[27] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski, James Hunter, and Mike Barnett. 2018. FASTER: an
embedded concurrent key-value store for state management. VLDB (2018).

[28] Mei-Ling Chiang, Paul CH Lee, and Ruei-Chuan Chang. 1999. Using data clustering to improve cleaning performance for lash memory.
Software: Practice and Experience 29, 3 (1999), 267ś290.

[29] Gunhee Choi, Kwanghee Lee, Myunghoon Oh, Jongmoo Choi, Jhuyeong Jhin, and Yongseok Oh. 2020. A New LSM-style Garbage
Collection Scheme for ZNS SSDs. In 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 20). USENIX Association.
https://www.usenix.org/conference/hotstorage20/presentation/choi

[30] Amanda Peterson Corio. [n. d.]. Five years of 100ahead to a 24/7 carbon-free future. https://cloud.google.com/blog/topics/sustainability/5-
years-of-100-percent-renewable-energy.

[31] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM

International Conference on Management of Data (SIGMOD ’17). doi:10.1145/3035918.3064054

ACM Trans. Storage

https://blog.google/outreach-initiatives/sustainability/dear-earth/
https://github.com/twitter/fatcache
https://jcmit.net/flashprice.htm
https://github.com/google/leveldb
https://jcmit.net/memoryprice.htm
http://rocksdb.org
https://www.seagate.com/blog/ssd-over-provisioning-benefits-master-ti/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://semiconductor.samsung.com/us/consumer-storage/support/faqs/05/
https://sustainability.fb.com/wp-content/uploads/2023/07/Meta-2023-Path-to-Net-Zero.pdf
https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1145/3538643.3539744
https://www.usenix.org/conference/atc21/presentation/bjorling
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://bit.ly/3rN73CI
https://doi.org/10.1145/3357526.3357562
https://doi.org/10.1145/3456727.3463784
https://doi.org/10.1145/3456727.3463784
https://www.usenix.org/conference/hotstorage20/presentation/choi
https://cloud.google.com/blog/topics/sustainability/5-years-of-100-percent-renewable-energy
https://cloud.google.com/blog/topics/sustainability/5-years-of-100-percent-renewable-energy
https://doi.org/10.1145/3035918.3064054

30 • S. McAllister et al.

[32] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Ofs for LSM-Tree Based Key-Value Stores via Adaptive
Removal of Superluous Merging. In Proceedings of the 2018 International Conference on Management of Data (SIGMOD ’18). doi:10.1145/
3183713.3196927

[33] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM Space Skimpy Key-Value Store on Flash-Based Storage. In ACM

SIGMOD.
[34] Peter Desnoyers. 2012. Analytic modeling of SSD write performance. In Proceedings of the 5th Annual International Systems and Storage

Conference. 1ś10.
[35] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman, Mohammad Alizadeh, and Sachin Katti. 2019. Flashield:

a Hybrid Key-value Cache that Controls Flash Write Ampliication.. In USENIX NSDI.
[36] Alex Gartrell, Mohan Srinivasan, Bryan Alger, and Kumar Sundararajan. [n. d.]. McDipper: A key-value cache for Flash Storage.

https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-lash-storage/10151347090423920/.
[37] Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang,

Niladrish Chatterjee, Aditya Agrawal, Mike O’Connor, and Onur Mutlu. 2018. What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study. Proc. ACMMeas. Anal. Comput. Syst. 2, 3, Article 38 (dec 2018), 41 pages. doi:10.1145/3224419

[38] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. 2022. ACT: designing
sustainable computer systems with an architectural carbon modeling tool. In Proceedings of the 49th Annual International Symposium on

Computer Architecture. ACM.
[39] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. 2021. Chasing

carbon: The elusive environmental footprint of computing. In 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA). IEEE, 854ś867.
[40] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim, Henry Hofmann, and Haryadi S. Gunawi. 2020. LinnOS: Predictability

on Unpredictable Flash Storage with a Light Neural Network. In 14th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20). USENIX Association, 173ś190. https://www.usenix.org/conference/osdi20/presentation/hao
[41] Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. The unwritten contract of solid state drives.

In ACM EuroSys.
[42] Amy Hood. July 2022.
[43] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen Ding, Song Jiang, and Zhenlin Wang. 2015. LAMA: Optimized

Locality-aware Memory Allocation for Key-value Cache. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX
Association, Santa Clara, CA, 57ś69. https://www.usenix.org/conference/atc15/technical-session/presentation/hu

[44] Jian Huang, Anirudh Badam, Laura Caulield, Suman Nath, Sudipta Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. 2017.
FlashBlox: Achieving Both Performance Isolation and Uniform Lifetime for Virtualized SSDs. In 15th USENIX Conference on File and

Storage Technologies (FAST 17). USENIX Association, Santa Clara, CA, 375ś390. https://www.usenix.org/conference/fast17/technical-
sessions/presentation/huang

[45] Aamer Jaleel, Kevin Theobald, Simon Steely Jr, and Joel Emer. 2010. High performance cache replacement using re-reference interval
prediction. In ISCA-37.

[46] Jaeheon Jeong and Michel Dubois. 2006. Cache replacement algorithms with nonuniform miss costs. IEEE Trans. Comput. 55, 4 (2006),
353ś365.

[47] Theodore Johnson and Dennis Shasha. 1994. 2Q: A Low Overhead High Performance Bufer Management Replacement Algorithm. In
Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 439ś450.

[48] Nicola Jones et al. 2018. How to stop data centres from gobbling up the world’s electricity. Nature 561, 7722 (2018), 163ś166.
[49] Lucas Joppa. [n. d.]. Made to measure: Sustainability commitment progress and updates. https://blogs.microsoft.com/blog/2021/07/14/

made-to-measure-sustainability-commitment-progress-and-updates/.
[50] Ajay Joshi. 2022. CacheLib on ZNS. https://github.com/ajaysjoshi/CacheLib-zns.
[51] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The multi-streamed solid-state drive. In 6th {USENIX}

Workshop on Hot Topics in Storage and File Systems (HotStorage 14).
[52] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, Myoungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul Lee, and Jihong Kim. 2019.

Fully Automatic Stream Management for Multi-Streamed SSDs Using Program Contexts. In 17th USENIX Conference on File and Storage

Technologies (FAST 19). USENIX Association, Boston, MA, 295ś308. https://www.usenix.org/conference/fast19/presentation/kim-taejin
[53] Bran Knowles. 2021. ACM TechBrief: Computing and climate change.
[54] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015. F2FS: A New File System for Flash Storage. In USENIX FAST.
[55] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell: The Design and Implementation of a Fast Persistent

Key-Value Store. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19). doi:10.1145/3341301.3359628
[56] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and Grant Wallace. 2014. Nitro: A Capacity-Optimized SSD

Cache for Primary Storage. In 2014 USENIX Annual Technical Conference (USENIX ATC 14).

ACM Trans. Storage

https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/3183713.3196927
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://doi.org/10.1145/3224419
https://www.usenix.org/conference/osdi20/presentation/hao
https://www.usenix.org/conference/atc15/technical-session/presentation/hu
https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang
https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang
https://blogs.microsoft.com/blog/2021/07/14/made-to-measure-sustainability-commitment-progress-and-updates/
https://blogs.microsoft.com/blog/2021/07/14/made-to-measure-sustainability-commitment-progress-and-updates/
https://github.com/ajaysjoshi/CacheLib-zns
https://www.usenix.org/conference/fast19/presentation/kim-taejin
https://doi.org/10.1145/3341301.3359628

FairyWREN: A Sustainable Cache for

Emerging Write-Read-Erase Flash Interfaces • 31

[57] Cheng Li, Philip Shilane, Fred Douglis, and Grant Wallace. 2017. Pannier: Design and analysis of a container-based lash cache for
compound objects. ACM Transactions on Storage 13, 3 (2017), 24.

[58] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott
Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA,
574ś587. doi:10.1145/3575693.3578835

[59] Xin Li, Greg Thompson, and Joseph Beer. [n. d.]. How Amazon Achieves Near-Real-Time Renewable Energy Plant Monitoring to
Optimize Performance Using AWS. https://aws.amazon.com/blogs/industries/amazon-achieves-near-real-time-renewable-energy-
plant-monitoring-to-optimize-performance-using-aws/.

[60] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. 2011. SILT: A Memory-Eicient, High-Performance Key-Value
Store. In ACM SOSP.

[61] Jian Liu, Kefei Wang, and Feng Chen. 2021. TSCache: An Eicient Flash-Based Caching Scheme for Time-Series Data Workloads. (2021).
[62] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating

Keys from Values in SSD-conscious Storage. In USENIX FAST.
[63] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. 2018. Improving 3D NAND Flash Memory Lifetime by Tolerating

Early Retention Loss and Process Variation. Proc. ACM Meas. Anal. Comput. Syst. 2, 3, Article 37 (dec 2018), 48 pages. doi:10.1145/3224432
[64] Jialun Lyu, JaylenWang, Kali Frost, Chaojie Zhang, Celine Irvene, Esha Choukse, Rodrigo Fonseca, Ricardo Bianchini, Fiodar Kazhamiaka,

and Daniel S. Berger. 2023. Myths and Misconceptions Around Reducing Carbon Embedded in Cloud Platforms. In 2nd Workshop on Sus-

tainable Computer Systems (HotCarbon23). ACM. https://www.microsoft.com/en-us/research/publication/myths-and-misconceptions-
around-reducing-carbon-embedded-in-cloud-platforms/

[65] Jialun Lyu, Marisa You, Celine Irvene, Mark Jung, Tyler Narmore, Jacob Shapiro, Luke Marshall, Savyasachi Samal, Ioannis Manousakis,
Lisa Hsu, et al. 2023. Hyrax:{Fail-in-Place} Server Operation in Cloud Platforms. In 17th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 23). 287ś304.
[66] Bill Martin, Yoni Shternhell, Mike James, Yeong-Jae Woo, Hyunmo Kang, Anu Murthy, Erich Haratsch, Kwok Kong, Andres Baez,

Santosh Kumar, and et al. 2022. Nvm Express Technical Proposal 4146 Flexible Data Placement.
[67] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan

Beckmann, and Gregory R. Ganger. 2021. Kangaroo: Caching Billions of Tiny Objects on Flash. In ACM SOSP.
[68] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan

Beckmann, and Gregory R. Ganger. 2022. Kangaroo: Theory and Practice of Caching Billions of Tiny Objects on Flash. ACM Transactions

on Storage (2022).
[69] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind Krishnamurthy. 2023. eZNS: An Elastic Zoned Namespace for Commodity

ZNS SSDs. In 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23). USENIX Association, Boston, MA,
461ś477. https://www.usenix.org/conference/osdi23/presentation/min

[70] Christian Monzio Compagnoni, Akira Goda, Alessandro S. Spinelli, Peter Feeley, Andrea L. Lacaita, and Angelo Visconti. 2017. Reviewing
the Evolution of the NAND Flash Technology. Proc. IEEE 105, 9 (2017), 1609ś1633. doi:10.1109/JPROC.2017.2665781

[71] Melanie Nakagawa. 2022. On the road to 2030: Our 2022 environmental sustainability report. https://blogs.microsoft.com/on-the-
issues/2023/05/10/2022-environmental-sustainability-report/.

[72] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng Wang. 2014. SDF: Software-Deined Flash for Web-Scale
Internet Storage Systems. In ASPLOS.

[73] Francisco Pires. 2022. Solidigm Introduces Industry-First PLC NAND for Higher Storage Densities. https://www.tomshardware.com/
news/solidigm-plc-nand-ssd.

[74] Martin Raab and Angelika Steger. 1998. Balls into Bins: A Simple and Tight Analysis. In Randomization and Approximation Techniques in

Computer Science, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Michael Luby, JosÃ© D. P. Rolim, and Maria Serna (Eds.). Vol. 1518.
Springer Berlin Heidelberg, Berlin, Heidelberg, 159ś170. doi:10.1007/3-540-49543-6_13 Series Title: Lecture Notes in Computer Science.

[75] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017. PebblesDB: Building Key-Value Stores Using Fragmented
Log-Structured Merge Trees. In ACM SOSP.

[76] Mendel Rosenblum and John K. Ousterhout. 1991. The Design and Implementation of a Log-Structured File System. In ACM SOSP.
[77] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. 2014. Log-structured Memory for DRAM-based Storage. In 12th USENIX

Conference on File and Storage Technologies (FAST 14). USENIX Association, Santa Clara, CA, 1ś16. https://www.usenix.org/conference/
fast14/technical-sessions/presentation/rumble

[78] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. 2018. Didacache: an integration of device and application for lash-based key-value
caching. ACM Transactions on Storage (TOS) 14, 3 (2018), 1ś32.

[79] Shigeru Shiratake. 2020. Scaling and Performance Challenges of Future DRAM. In 2020 IEEE International Memory Workshop (IMW). 1ś3.
doi:10.1109/IMW48823.2020.9108122

ACM Trans. Storage

https://doi.org/10.1145/3575693.3578835
https://aws.amazon.com/blogs/industries/amazon-achieves-near-real-time-renewable-energy-plant-monitoring-to-optimize-performance-using-aws/
https://aws.amazon.com/blogs/industries/amazon-achieves-near-real-time-renewable-energy-plant-monitoring-to-optimize-performance-using-aws/
https://doi.org/10.1145/3224432
https://www.microsoft.com/en-us/research/publication/myths-and-misconceptions-around-reducing-carbon-embedded-in-cloud-platforms/
https://www.microsoft.com/en-us/research/publication/myths-and-misconceptions-around-reducing-carbon-embedded-in-cloud-platforms/
https://www.usenix.org/conference/osdi23/presentation/min
https://doi.org/10.1109/JPROC.2017.2665781
https://blogs.microsoft.com/on-the-issues/2023/05/10/2022-environmental-sustainability-report/
https://blogs.microsoft.com/on-the-issues/2023/05/10/2022-environmental-sustainability-report/
https://www.tomshardware.com/news/solidigm-plc-nand-ssd
https://www.tomshardware.com/news/solidigm-plc-nand-ssd
https://doi.org/10.1007/3-540-49543-6_13
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://doi.org/10.1109/IMW48823.2020.9108122

32 • S. McAllister et al.

[80] Billy Tallis. [n. d.]. 2021 NAND Flash Updates from ISSCC: The Leaning Towers of TLC and QLC. https://www.anandtech.com/show/
16491/lash-memory-at-isscc-2021.

[81] Billy Tallis. [n. d.]. Micron 3D NAND Status Update. https://www.anandtech.com/show/10028/micron-3d-nand-status-update.
[82] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew

Clark, Kabir Gogia, Long Cheng, Ben Christensen, Alex Gartrell, Maxim Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan, and Peter Zhang. 2020. Twine: A Uniied Cluster Management
System for Shared Infrastructure. In USENIX OSDI.

[83] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li. 2015. RIPQ: advanced photo caching on lash for facebook. In USENIX

FAST.
[84] Swamit Tannu and Prashant J Nair. 2022. The Dirty Secret of SSDs: Embodied Carbon. In HotCarbon.
[85] Amanda Tomlinson and George Porter. 2022. Something Old, Something New: Extending the Life of CPUs in Datacenters. In HotCarbon.
[86] Ted Tso. [n. d.]. Aligning ilesystems to an SSD’s erase block size. https://tytso.livejournal.com/2009/02/20/.
[87] Benny Van Houdt. 2013. A mean ield model for a class of garbage collection algorithms in lash-based solid state drives. ACM

SIGMETRICS Performance Evaluation Review 41, 1 (2013), 191ś202.
[88] Haitao Wang, Zhanhuai Li, Xiao Zhang, Xiaonan Zhao, Xingsheng Zhao, Weijun Li, and Song Jiang. 2018. OC-Cache: An Open-channel

SSD Based Cache for Multi-Tenant Systems. In 2018 IEEE 37th International Performance Computing and Communications Conference

(IPCCC). IEEE, Orlando, FL, USA, 1ś6. doi:10.1109/PCCC.2018.8711079
[89] Qiuping Wang, Jinhong Li, Patrick P. C. Lee, Tao Ouyang, Chao Shi, and Lilong Huang. 2022. Separating Data via Block Invalidation

Time Inference for Write Ampliication Reduction in Log-Structured Storage. In 20th USENIX Conference on File and Storage Technologies

(FAST 22). USENIX Association, Santa Clara, CA, 429ś444. https://www.usenix.org/conference/fast22/presentation/wang
[90] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-based Ultra-Large Key-Value Store for Small Data Items.

In USENIX ATC.
[91] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Andrew A. Chien, and Haryadi S. Gunawi.

2017. Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs. ACM Trans. Storage 13, 3, Article
22 (oct 2017), 26 pages. doi:10.1145/3121133

[92] Juncheng Yang, Yao Yue, and KV Rashmi. 2021. A Large-scale Analysis of Hundreds of In-memory Key-value Cache Clusters at Twitter.
ACM Transactions on Storage (TOS) 17, 3 (2021), 1ś35.

[93] Juncheng Yang, Yao Yue, and Rashmi Vinayak. 2021. Segcache: a memory-eicient and scalable in-memory key-value cache for small
objects. In USENIX NSDI.

[94] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun, Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li, and Kihyoun Kwon. 2019.
Reducing Garbage Collection Overhead in SSD Based on Workload Prediction. In 11th USENIX Workshop on Hot Topics in Storage and

File Systems (HotStorage 19). USENIX Association, Renton, WA. https://www.usenix.org/conference/hotstorage19/presentation/yang
[95] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin yong Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S. Kim.

2023. Overcoming the Memory Wall with CXL-Enabled SSDs. In 2023 USENIX Annual Technical Conference (USENIX ATC 23).
[96] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2012. De-Indirection for Flash-Based

SSDs with Nameless Writes. In Proceedings of the 10th USENIX Conference on File and Storage Technologies (San Jose, CA) (FAST’12).
USENIX Association, USA, 1.

Received 5 November 2024; revised 5 November 2024; accepted 14 February 2025

ACM Trans. Storage

https://www.anandtech.com/show/16491/flash-memory-at-isscc-2021
https://www.anandtech.com/show/16491/flash-memory-at-isscc-2021
https://www.anandtech.com/show/10028/micron-3d-nand-status-update
https://tytso.livejournal.com/2009/02/20/
https://doi.org/10.1109/PCCC.2018.8711079
https://www.usenix.org/conference/fast22/presentation/wang
https://doi.org/10.1145/3121133
https://www.usenix.org/conference/hotstorage19/presentation/yang

	Abstract
	1 Introduction
	2 Opportunities in flash caching
	3 Challenges in flash caching
	3.1 Wherefore device write amplification?
	3.2 Denser flash has lower write endurance
	3.3 Shortcomings of existing solutions

	4 Write-Read-Erase iNterfaces (WREN)
	4.1 Today's interface is LBAD
	4.2 Challenges of new interface design
	4.3 What makes an interface WREN?
	4.4 WREN alone is not a cure for wa

	5 FairyWren Overview and Design
	5.1 Overview
	5.2 The LOC
	5.3 The SOC
	5.4 Optimizing the SOC

	6 Evaluation
	6.1 Experimental setup
	6.2 Carbon emissions and cost model
	6.3 Carbon emissions of flash caches
	6.4 On-flash experiments
	6.5 FairyWren reduces carbon emissions
	6.6 Where are benefits coming from?
	6.7 Operating on a fixed flash device

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

