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ABSTRACT
Fuel cells are a promising power source for future data centers,
offering high energy efficiency, low greenhouse gas emissions,
and high reliability. However, due to mechanical limitations
related to fuel delivery, fuel cells are slow to adjust to sudden
increases in data center power demands, which can result in
temporary power shortfalls. To mitigate the impact of power
shortfalls, prior work has proposed to either perform power
capping by throttling the servers, or to leverage energy storage
devices (ESDs) that can temporarily provide enough power to
make up for the shortfall while the fuel cells ramp up power
generation. Both approaches have disadvantages: power
capping conservatively limits server performance and can lead
to service level agreement (SLA) violations, while ESD-only
solutions must significantly overprovision the energy storage
device capacity to tolerate the shortfalls caused by the worst-
case (i.e., largest) power surges, which greatly increases the
total cost of ownership (TCO).

We propose SizeCap, the first ESD sizing framework for
fuel cell powered data centers, which coordinates ESD siz-
ing with power capping to enable a cost-effective solution
to power shortfalls in data centers. SizeCap sizes the ESD
just large enough to cover the majority of power surges, but
not the worst-case surges that occur infrequently, to greatly
reduce TCO. It then uses the smaller capacity ESD in conjunc-
tion with power capping to cover the power shortfalls caused
by the worst-case power surges. As part of our new flexible
framework, we propose multiple power capping policies with
different degrees of awareness of fuel cell and workload be-
havior, and evaluate their impact on workload performance
and ESD size. Using traces from Microsoft’s production data
center systems, we demonstrate that SizeCap significantly re-
duces the ESD size (by 85% for a workload with infrequent yet
large power surges, and by 50% for a workload with frequent
power surges) without violating any SLAs.

1. Introduction
Data center energy consumption has been growing continu-
ously [12]. In 2013, data centers in the United States alone
consumed an estimated total annual energy of 91 billion kWh,
and this is expected to grow up to as high as roughly 140 bil-
lion kWh/year by 2020 [42]. This growth can cause significant
increases in the total cost of ownership (TCO), along with
increasingly harmful carbon emission [5].

Fuel cells are one new power source technology that has
been proposed to power data centers with improved energy ef-
ficiency and reduced greenhouse gas emissions [18,19,43,44].

Fuel cells generate power by converting fuel (e.g., hydrogen,
natural gas) into electricity through an electrochemical pro-
cess. Fuel cells have three major advantages. First, they have
much greater energy efficiency compared to traditional power
sources as they directly convert chemical energy into electrical
energy without the inefficiencies of combustion. A recent pro-
totype demonstrates that using fuel cells to power data centers
achieves 46.5% fuel-source-to-data-center energy efficiency,
while using traditional power sources results in only 32.2%
energy efficiency [44]. Second, fuel cells lower carbon diox-
ide emission by 49% over traditional combustion based power
plants [32, 44]. Third, fuel cells are highly reliable. Natural
gas fuel delivery infrastructure is typically buried underground,
and is robust to threats such as severe storms [13, 44]. These
advantages make fuel cells a promising power source for fu-
ture data centers.

Unfortunately, fuel cells have a significant shortcoming
compared to traditional power sources, such as an electric grid
based source. An electric grid based source can deliver total
power that is strictly a function of the power generation capac-
ity; hence, when power demand/load increases, a traditional
power source can adapt rapidly to that demand by changing its
power generation capacity. In contrast, fuel cells are limited
in how rapidly they can increase their fuel delivery rate as
the power demand/load grows [26, 27, 44]. As a result, they
slowly increase their power output over time, and eventually
match the desired demand only after several seconds or even
minutes [19, 26, 27, 43, 45]. In other words, fuel cells exhibit a
limited load following behavior. When a power surge occurs,
this unique property of fuel cells results in a period of time
where the fuel cells deliver an insufficient amount of voltage
or power, resulting in server damage or shut down, which may
lead to data center unavailability. We call this phenomenon a
power shortfall.

Currently, there are two approaches to mitigating such
power shortfalls. The first is to perform power capping, where
data center peak power consumption is restricted to a thresh-
old value by throttling server execution. Several variants of
power capping have been proposed for traditional utility grid
powered data centers [3, 7, 8, 9, 14, 37, 38]. Power capping
imposes soft and/or hard limits to the power consumption of a
data center, but has two limitations. First, its benefits come at
the expense of performance. Second, its applicability to fuel
cells can be limited. In the case of fuel cells, it is the ramp
rate that requires capping, rather than the peak power, as fuel
cells can eventually match the desired peak demand. Existing
power capping approaches for peak power consumption there-
fore may not be directly applied, as they may unnecessarily
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restrict load demand and hence cause both the fuel cells and
data center to be underutilized. The second approach uses
energy storage devices (ESDs, e.g., batteries, supercapacitors)
to make up for short duration power shortfalls caused by load
surges. Unlike power capping, leveraging ESDs does not incur
any performance penalty, as it allows a fuel cell to observe the
actual load and thus increase the fuel cell’s power output over
time. Prior work has proposed to use local ESDs to construct
an uninterruptible power supply (UPS) system for each server
rack [1, 18, 19, 33, 43, 44]. These works have assumed that the
UPSes are sized large enough to tolerate the worst-case power
surge (i.e., the largest change of the server load).

We make a major observation from traces of production
data center workloads at Microsoft: the worst-case power
surge happens very infrequently, and in general, most power
surges are of a much smaller magnitude and much slower ramp
rate, and they last for a much shorter duration, compared to
the worst-case power surge. Therefore, for most cases, ESDs
sized for worst-case power surges are significantly overprovi-
sioned. Unfortunately, such overprovisioning comes at a very
high cost. For example, every kWh increase in supercapacitor
capacity costs approximately U.S. $20,000 [24]. With an ESD-
only solution that uses worst-case sizing, the TCO increases
significantly to cover these infrequent occurrences [37, 38].
The ESD capacity is also limited by the space available within
the data center, as well as the fact that the ESDs may need ca-
pacity for other purposes (e.g., handling power outages, and ac-
commodating peak power consumption in tightly-provisioned
energy distribution environments [8, 14, 36, 38]). With all of
these constraints, it is desirable to minimize the ESD capacity
dedicated to making up for power shortfalls, by sizing this
capacity only for the typical case (i.e., to cover most of the
shortfalls) and relying on secondary solutions to help cover
the infrequent large surges.

To this end, we propose SizeCap, an ESD sizing framework
for fuel cell powered data centers. SizeCap coordinates ESD
sizing with power capping to enable a cost-effective solution
to power shortfalls in data centers. In this framework, an ESD
is sized to tolerate only typical power surges, thus minimizing
the ESD cost and avoiding unnecessary overprovisioning. In
tandem, for the infrequent cases where the worst-case surge
occurs, SizeCap employs power capping to ensure that the
load never exceeds the joint handling capability of the fuel cell
and the smaller ESD. As part of our new flexible framework,
we propose and evaluate multiple power capping policies for
controlling the load ramp rate, each with different levels of
awareness of both the fuel cell’s load following behavior and
the workload performance improvement resulting from addi-
tional power. We design both centralized capping policies,
which can coordinate load distribution across the entire rack,
and decentralized capping policies, where individual servers
use heuristics to control their own power.

We make the following key contributions in this work:
• We perform the first systematic analysis of the energy stor-

age sizing problem for fuel cell powered data centers. We
analyze the impact of various power surge parameters on
ESD size, and using both synthetic and real-world data cen-
ter traces, we demonstrate significantly different ESD size
requirements for typical-case and worst-case power surges.

• We propose to use smaller-capacity ESDs sized only for
typical power surges, and in conjunction propose several
new power capping policies that can be used alongside the
smaller ESDs to handle infrequent worst-case power surges
in fuel cell powered data centers.

• We demonstrate the feasibility and effectiveness of SizeCap
in enabling fuel cells, which are a good power source when
the load has limited transience, to accommodate dynamic
workloads. We show that SizeCap can significantly reduce
the TCO of a fuel cell powered data center while still satis-
fying the workload service level agreement (SLA) for the
production data center workloads we evaluate. For example,
we can reduce ESD capacity by 85% for a workload with
infrequent but large power surges, and by 50% for a work-
load with frequent power surges, under a reasonable SLA
constraint.

2. Background
2.1. Fuel Cells
Fuel cells are an emerging energy source that directly convert
fuel into electricity through a chemical reaction. Unlike con-
ventional combustion-based power generation, fuel cells do
not require an intermediate energy transformation into heat,
and are therefore not limited by Carnot cycle efficiency [2].
As a result, using fuel cells provides three benefits. First, the
energy efficiency from power source to data center increases
significantly, from 32.2% to 46.5%, compared to traditional
power sources [44]. Second, fuel cells reduce carbon emis-
sion over traditional power plants by 49% [32, 44]. Third,
the delivery infrastructure for natural gas based fuel cells is
typically buried underground, making fuel cell based power
generation more robust to exposure to and damage from threats
like severe storms [13, 44]. These benefits make fuel cells a
promising solution for powering data centers in the near fu-
ture [18, 19, 43, 44].

Figure 1 shows the high-level design of a fuel cell system.
A fuel cell converts the chemical energy from fuel (e.g., hy-
drogen, natural gas, biogas) into electricity, typically through
the use of a proton exchange membrane. Much like batteries,
several fuel cells are combined, both in series and in parallel,
to deliver the desired voltage and current, respectively. This
combined unit, called a fuel cell stack, is managed by a fuel
cell controller. The fuel cell controller is an electromechanical
control device that uses the demanded load power (PLoad) to
determine the amount of current that needs to be generated
(IFuel Cell), and the desired fuel/air flow rate that needs to be
provided (qSet

Fuel / qSet
Air). The fuel cell processor uses this de-

sired fuel/air flow rate to gradually adjust the actual fuel/air
flow rate provided for the fuel cell stack (qFuel / qAir) . The
fuel cell stack generates power (PUnregulated

Fuel Cell ) based on the ac-
tual fuel/air flow rate and the fuel cell current that needs to
be generated. The power generated by the fuel cell stack then
passes through a DC-to-DC converter before being output
(PFuel Cell), to stabilize the output voltage.

A key challenge to directly powering data centers using fuel
cells is the limited load following behavior of fuel cells: a fuel
cell incurs a delay before it can fully adjust its output power
to match the demanded load. Mechanical limitations in both
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Figure 1: Fuel cell system overview.

the fuel cell processor and the fuel delivery system result in
a slow response time to load changes [26, 27, 44]. When the
load increases significantly, the delay due to the limited load
following behavior can result in a power shortfall, where the
fuel cells cannot output enough power to meet the load. This
shortfall can cause the servers powered by the fuel cells to
crash.

2.2. Addressing Power Shortfalls with ESDs
Energy storage devices (ESDs) such as batteries and superca-
pacitors can be used to make up for fuel cell power shortfalls.
There are two key benefits of ESDs. First, ESDs can deliver
extra power when the data center requires more power than
the power generator can provide [8, 14, 36, 38]. Second, ESDs
can address power shortfalls: they can be invoked when there
is not enough current from the power generator. During nor-
mal operation, fuel cells can generate extra power to recharge
ESDs, ensuring that ESDs are ready to be invoked for future
power shortfalls.

However, ESDs come at a cost. First, the size of an ESD has
a large impact on the data center TCO, with supercapacitors
today costing approximately U.S. $20,000 per kWh of capac-
ity [24]. Second, ESDs take up space in the rack/server. To
make matters worse, ESDs will likely become multipurpose
in the future [8, 14, 36, 38], with a single ESD servicing power
outages, demand response, and potentially power shortfalls.
This requires that part of the ESD capacity be dedicated for
these other purposes, further limiting the capacity available to
cover power shortfalls. As a result, while the naive solution is
to size the ESD to cover the largest possible (i.e., worst-case)
power shortfall, this may be impractical. In this work, we
provide a solution for data centers to effectively utilize smaller
ESDs.

2.3. Fuel Cell Powered Data Center Setup
In our study, we assume a system configuration as shown in
Figure 2. In this configuration, a fuel cell system is directly
connected with a server rack, and is equipped with a UPS.
Prior prototypes for fuel cell powered data centers have used
this same configuration, as it eliminates unnecessary power
equipment (e.g., transformers, high voltage switching equip-
ment), thereby reducing capital costs and improving energy
efficiency [43, 44].

We use the ESD within the UPS to cover power shortfalls
during spikes in load power. We assume that this ESD is a
supercapacitor, as when power shortfalls are no longer than

Server 1Fuel
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Rack

.

.

.

Server N
UPS
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Figure 2: Configuration of fuel cell powered data center.

several minutes, supercapacitors are cheaper and more reliable
over their lifetime than batteries [25]. (Prior work has shown
that a fuel cell system can generally match the increased load
power within 5 minutes [19].) We assume that this ESD
discharges whenever there is a power shortfall, and that it is
recharged whenever the fuel cell system matches or exceeds
the demanded rack power. The ESD subjects the fuel cell
system to a constant load of 1 kW while it recharges. We
discuss the parameters selected for our data center model in
detail in Section 5.

3. Power Shortfall Analysis
Fuel cells are slow to react to sudden changes in load power,
and exhibit load following behavior, as we discussed in Sec-
tion 2.1. In order to better understand the magnitude of the
power shortfall problem that results from this behavior, we
analyze the impact of load power changes (i.e., power surges)
on a data center powered by fuel cells, with the system con-
figuration shown in Figure 2. First, we characterize the extent
of a power shortfall for an example power surge, and then
analyze how ESD sizing can affect the impact of this shortfall,
in Section 3.1. Second, in Section 3.2, we study traces from
production data center systems to determine how ESD size
affects availability. Finally, in Section 3.3, we look at various
approaches to power capping, where servers are throttled to
reduce the upper bound of power consumption when power
shortfalls occur.

3.1. Fuel Cell Reaction to Power Surges
In order to understand the load following behavior of a fuel
cell system, we study the impact of an example power surge
on a detailed model of fuel cell behavior (see Section 5). We
model the power surge as a sequence of loads applied over
time:

1. 0–2 minutes: constant load of 5.6 kW
2. 2–3 minutes: constant slope ramp up to 10.3 kW
3. 3–12 minutes: constant load of 10.3 kW
4. 12–13 minutes: constant slope ramp down to 5.6 kW
5. 13–15 minutes: constant load of 5.6 kW

Figure 3 illustrates this load as a solid red line. We also plot
the output power of the fuel cell system when it is subjected to
this load. Under our example power surge, the fuel cell system
matches the load power 1.5 minutes after the ramp up begins.
When the ramp up begins, we observe that initially, the fuel
cell system can keep up with the increase, as there is enough
fuel already within the fuel cell stack to rapidly increase power
production. However, once the output power reaches 6.3 kW,
the system can continue to increase power only as the fuel
flow rate increases, which, as we described in Section 2.1, is
slow. This slowdown in power output increase results in a
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Figure 3: Fuel cell and ESD power output when the load power
exhibits a surge.

power shortfall, as Figure 3 shows. At this point, the ESD
begins to discharge in order to make up for the shortfall. After
3.5 minutes have elapsed (i.e., 1.5 minutes after the ramp
up started), the fuel cell power output finally matches the
load. In order to accommodate this shortfall, we need an ESD
with a minimum capacity of 91 kJ.1 Note that even though
the power output now matches the load, the fuel cell system
briefly continues to increase its output, as it must now recharge
the ESD in addition to fully powering the rack.

In order to understand how variation in power surges im-
pacts the capacity required for the ESD, we characterize these
surges using the three properties shown in Figure 3: (1) mag-
nitude (the difference between initial power and peak power),
(2) slope (the rate at which the load ramps up), and (3) width
(how long the surge lasts for). Our initial example power surge
has a magnitude of 4.7 kW, a slope of 78 W/s, and a width of
11 minutes. We perform a controlled study of each property,
varying the values for one property while we hold the other
two properties constant at these values.

Figure 4 shows how the fuel cell responds when we vary
the surge slope. For a reduced slope of 21 W/s, we find that
the fuel cell system can always supply the power demanded,
and there is no shortfall.2 For a slope of 50 W/s, we see a
slight shortfall, where the fuel cell can increase its power at
an average rate of only 42 W/s. A larger slope of 1 kW/s
experiences a large shortfall, with the fuel cell system capable
of increasing its output power at an average rate of only 78 W/s.
As was the case with our example surge in Figure 3, we need
an ESD to make up for this shortfall.

As Figure 4 demonstrates, the amount of power shortfall
increases with the slope of the power surge. We plot the
relationship between surge slope and the required ESD size
to handle a power shortfall (again holding magnitude and
width constant) in Figure 5a. As we found in Figure 4, small
slope values do not necessitate an ESD. We perform similar
sweeps to show the relationship between surge magnitude and

1In order to guarantee normal operation of the UPS, we ensure that the
stored energy of the ESD within the UPS never drops below 20% of its
capacity. We call this value the energy threshold. This constraint is accounted
for when we calculate the minimum required ESD capacity.

2Upon further experimentation, we find that for larger magnitudes, there
can be shortfalls with a surge slope of 21 W/s. We find that at a slope of
16 W/s, the fuel cell system never experiences a shortfall within the rack
power operating range, regardless of the magnitude of the surge. This slope is
defined to be the load following rate of the fuel cell system.
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Figure 4: Fuel cell load following behavior for different surge
slopes during power surge ramp up.

ESD size (Figure 5b), and between surge width and ESD size
(Figure 5c). We find that when the magnitude is small, we do
not need any ESD. This is because the fuel cell can leverage
its internal fuel to increase its output power in a timely manner
and handle the power surge. However, as magnitude continues
to grow, the required ESD capacity needs to grow linearly
since the limited internal fuel cannot handle such large power
surges. Besides, we also find that when the width is short, the
required ESD capacity grows with the width. However, as the
width continues to grow, the required ESD capacity remains
constant, since fuel cell power eventually matches the load
power, at which point the ESD is no longer required.

In summary, we find that the slope, magnitude, and width
of a power surge are important characteristics required to
determine the minimum ESD capacity required to avoid a
power shortfall.

3.2. Impact of ESD Size on Availability
We now investigate the impact that ESD size has on data
center availability. Figures 6a and 6b show two load power
traces recorded from Microsoft’s production data centers (see
Section 5 for details). Trace 1 (Figure 6a) is a case where the
rack power demand remains flat for most of the time, except
for a single, large power surge. Trace 2 (Figure 6b) is a case
that includes several power surges, each with different surge
slopes, magnitudes, and widths.

For both of these traces, we sweep over various ESD sizes
to determine the percentage of time the rack is unavailable (i.e.,
there is an unmitigated power shortfall) for each ESD size, as
shown in Figure 6c. In order to avoid any shortfalls, we tra-
ditionally size our ESD to handle the worst-case power surge
(i.e., the greatest observed change in load power). However,
we observe that if we reduce the size of the ESD somewhat,
such that it can cover the vast majority of the power surge
behavior (i.e., typical power surges), the data center unavail-
ability remains very low. For Trace 1, we can cut down the
ESD size by as much as 85%, while experiencing only 0.4%
unavailability. For Trace 2, reducing the ESD size by 50%
leads to unavailability of only 6%.

We conclude that the ESD size can be reduced significantly
if we size it to cover only typical power surges instead of
worst-case surges. However, this introduces data center un-
availability when the infrequent worst-case surges do occur.
As we discuss next in Section 3.3, we can employ power cap-
ping as a secondary power control mechanism, to ensure that
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0 6 12 18 244

6

8

10

Time (hour)

R
ac

k 
Po

w
er

 (K
W

)

(a)

0 20 40 60 80 100 1204

6

8

10

Time (min)

R
ac

k 
Po

w
er

 (K
W

)

(b)

0 20 40 60 80 100 1200

20

40

60

ESD Capacity (KJ)

   
  P

er
ce

nt
ag

e 
of

   
   

   
U

na
va

ila
bl

e 
Pe

rio
d 

(%
)  

   

 

 

Trace1
Trace2

Typical
 Case

Worst Case

(c)
Figure 6: Load power traces for production data center workloads: (a) Trace 1, (b) Trace 2; (c) Data center availability for Traces 1
and 2 when ESD capacity is reduced.

the data center remains available even in the infrequent cases
where the ESD is no longer large enough to cover the shortfall.

3.3. Employing Power Capping

A second method of preventing power shortfalls is power cap-
ping, where the rack servers are throttled to ensure that their
power consumption does not exceed the amount of available
power in the system. On its own, power capping can be unnec-
essarily restrictive: power shortfalls in a fuel cell powered data
center are only temporary until the fuel cell system can ramp
up its power production, but power capping alone prevents the
server power consumption from increasing beyond a certain
value, even if the fuel cell can eventually deliver that power.

We instead choose to implement power capping on top of
using an ESD for shortfall mitigation. Our primary solution to
avoiding power shortfalls is to rely on a smaller ESD, which,
as we mentioned in Section 3.2, can cover the majority of
typical power surges. In the infrequent cases where the ESD
is not large enough to handle worst-case power surges, we
propose to use power capping to ensure that the load power
demanded by the rack does not exceed the combined power
output of the fuel cell system and the ESD.

There are several options for implementing power capping.
One option is to make the power capping policy fuel cell aware.
A fuel cell aware policy has knowledge of the fuel cell system’s
load following behavior, and works to increase the load power
as quickly as possible to ensure that the fuel cell ramps up
at its fastest possible rate, whereas a fuel cell unaware policy
performs more conservative capping. Figure 7 shows the two
capping policies being used on our example power surge from
Section 3.1. As we can see, both policies behave identically
until around the 170 second mark, at which point the ESD is
no longer able to make up for the shortfall. We see that the
fuel cell aware capping policy allows the fuel cell to ramp
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Figure 7: Behavior of fuel cell aware vs. fuel cell unaware power
capping policies during power surge ramp up.

up to full power output much earlier, with an average power
increase of 29 W/s. In contrast, fuel cell unaware capping
restricts the power output ramp up to only 16 W/s.

A second option is to make the power capping policy work-
load aware. A workload aware policy has knowledge of how
efficiently a workload will utilize the available power, and
can predict how the intensity of the workload will change
in the near future. As a result, a workload aware policy can
control when capping takes place such that it minimizes the
long-term impact on workload performance. As an example,
we examine the workload behavior of one of our applications,
WebSearch (which models how the index searching compo-
nent of commercial web search engine services queries; see
Section 5 for details). Figure 8a shows the success rate (i.e.,
the percentage of requests completed within the maximum
allowable service time for the workload) for WebSearch as the
power is reduced, while Figure 8b shows the average latency
for servicing queries. In these figures, we observe that the suc-
cess rate does not drop significantly, and the latency does not
increase greatly, when we start to lower the power. However,
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Figure 8: Power utility curves for WebSearch under 60% load:
(a) success rate, (b) average latency.

as we lower the power further, changes in success rate and
latency begin to become substantial.

A workload aware capping policy can exploit the informa-
tion in Figure 8 to minimize performance degradation. For
example, suppose that we need to cap the overall dynamic
power consumption of WebSearch at 75% of peak power over
the next two execution periods. One approach is to cap the
first period at 50% power consumption, and then allow the
second period to execute at full power. This has an overall
success rate of 95.13%, with an average latency of 44 ms.
A second approach is to uniformly cap both periods at 75%
power consumption, which leads to a 99.32% success rate
and an average latency of only 23 ms. As a workload aware
capping policy can track the power utility of an application,
it can correctly predict that the second option is better for
application performance.

A third option for power capping policy design is whether
the policy should be implemented in a centralized or decentral-
ized manner. A centralized power capping controller resides
in a single server, but controls the power of every server within
a rack. As such, this server is aware of the workload intensity
of every server within the rack, and can use this intensity in-
formation to make power distribution decisions. In contrast,
a decentralized controller will have each server within the
rack manage its own power. Unlike a centralized policy, a
decentralized policy does not require communication across
servers, but it is unable to make globally-optimal decisions. A
decentralized power capping policy is more fault tolerant than
a centralized policy, which can break if the server performing
the centralized calculations fails, and is also more scalable.

4. SizeCap: ESD Sizing Framework
In this section, we introduce SizeCap, an ESD sizing frame-
work for fuel cell powered data centers. SizeCap sizes the
ESD just large enough to cover the majority of power surges
that occur within a rack, and employs power capping tech-
niques specifically designed for fuel cell powered data centers
to handle the remaining power surges. In this section, we first
provide an overview of SizeCap. Then, we propose five power
capping policies with various levels of system and workload
knowledge.

4.1. Framework Overview
SizeCap uses a representative workload and trace to determine
the appropriate size of the ESD, as well as which power cap-
ping policy to use with it, as shown in Figure 9. SizeCap

Simulation/Prototype

Power Capping 
Policy Pool

ESD Sizing Engine
Representative

Workload/Trace
SLA

ESD Capacity
+

Power Capping
Policy

Power Capping
Requirement

SizeCap

C-FCU-WU
C-FCA-WU
C-FCA-WA

D-FCU-WU
D-FCA-WU

Figure 9: High-level overview of SizeCap.

consists of two components: a power capping policy pool, and
an ESD sizing engine.

The power capping policy pool contains a list of all possible
capping policies that can be used in tandem with a smaller
ESD. Depending on the rack configuration, some of the cap-
ping policies may not be implementable (or may not be practi-
cal at scale). This information is relayed to the pool to disable
any unusable capping policies for this particular rack. As we
saw in Section 3.3, the capping policy can impact workload
performance, so it is important to take into account the power
capping policy that will be used when sizing the ESD.

The ESD sizing engine works to find the most underprovi-
sioned ESD capacity that can still satisfy workload SLAs. The
representative trace allows SizeCap to determine the typical
power surges that the data center rack will encounter. This
information, combined with the workload SLA, is used to
explore various combinations of ESD size and power capping
policy, and will determine the minimum ESD size (paired with
a power capping policy) that does not violate any SLAs.

4.2. Power Capping Policies
We propose five power capping policies that SizeCap can
employ:
• Decentralized Fuel Cell Unaware Workload Unaware

(D-FCU-WU)
• Centralized Fuel Cell Unaware Workload Unaware

(C-FCU-WU)
• Decentralized Fuel Cell Aware Workload Unaware

(D-FCA-WU)
• Centralized Fuel Cell Aware Workload Unaware

(C-FCA-WU)
• Centralized Fuel Cell Aware Workload Aware

(C-FCA-WA)
Note that certain combinations of the policy options from
Section 3.3 are not feasible. Workload aware policies cannot
be implemented in a decentralized manner, as each controller
would need to receive workload information from every server,
incurring high communication overhead. Fuel cell unaware
policies cannot be workload aware, as they cannot predict
when the ESD’s energy will be exhausted, and are thus unable
to redistribute its usage over the duration of fuel cell ramp up.

All of these policies consist of two components: a power
budget planner and a power budget assigner, as shown in
Figure 10. At every power capping period (TCapping), the
power budget planner determines the total rack power budget
for the next period, based on the current state of the power
system (and possibly the workload information from each
server in the rack). This budget is then given to the power
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Figure 10: Power capping policy design.

budget assigner, which uses this budget along with information
about each server in the rack to determine how this budget
is distributed amongst the servers in the next period. This
information differs with each policy, as we will discuss later.

Each power capping policy can use either a centralized con-
troller or decentralized controllers. A centralized controller,
as shown in Figure 11, collects information from the power
system and from all of the servers, allowing it to have a global
view of the current system state. A decentralized mechanism,
as shown in Figure 12, instead assigns a separate controller
to each server in the rack. Each controller is aware of only
the power system state, as well as the state of the server that
it resides on, but is unaware of the state of the other servers.
A decentralized controller can only cap the power of the one
server that it is assigned to.
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Power
System Info

Uncapped?

.

.

.

Server N
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Figure 11: Centralized power capping policy design.
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Figure 12: Decentralized power capping policy design.

In both centralized and decentralized mechanisms, the ESD
controller must know when all of the servers are not being
capped, as this informs the ESD that it can recharge itself
(as the load demand has been fully met). In the centralized
mechanism, the central controller sends a single packet to the
ESD controller to notify it that none of the servers are capped.
In the decentralized mechanism, each decentralized controller
must send its own packet, notifying the ESD controller that
the individual server is not being capped, and is receiving all
the power that it has demanded.

Table 1 lists the variables we use to describe the power
capping policies. Here, the server workload intensity λi char-
acterizes how intensive the workload running on each server is,

Notation Meaning

PRack Rack power

P̃Rack Rack power budget

PServer i Server i’s power

P̃Server i Server i’s power budget

λi Server i’s workload intensity

Pidle Server idle power

N Number of servers within the rack

SFuelCell Fuel cell state

PFollowing Fuel cell load following rate

EESD Energy currently stored within the ESD

Emin ESD energy threshold

η ESD charging/discharging efficiency

TCapping Power capping period

Table 1: Variables used to define power capping policies.

and is approximated with the request arrival rate normalized to
the maximum request arrival rate that the server can handle.3
The fuel cell state SFuel Cell includes information about the fuel
cell output power, fuel flow rate, and the hydrogen, oxygen,
and water pressure within the fuel cell stack. Pidle character-
izes the power consumption when the server has a workload
intensity of zero (i.e., it is not servicing any requests). We
define t to be the current time period, and t + k represents the
kth power capping period after the current time. Therefore,
PRack (t) represents the current rack power, and PRack (t + k)
represents the rack power k power capping periods in the fu-
ture. Other variables also follow this time period convention.

4.2.1. Fuel Cell and Workload Unaware Policies. The
fuel cell unaware, workload unaware power capping poli-
cies (C-FCU-WU and D-FCU-WU) do not take advantage
of the load following behavior of the fuel cell, nor do they take
workload characteristics into account. Since these policies are
workload unaware, when the load demand suddenly increases,
they do not evaluate the impact that power provisioning has on
current and future workload performance. Instead, they just
try to ramp up the rack power as fast as possible, such that the
fuel cell can sense this fast-increasing load and also increase
its power as fast as possible, thus reducing the gap between
fuel cell power and load. However, when the ESD energy
drops down to Emin,4 these policies have no choice but to cap
the rack power at the load following rate.5 This guarantees
that no further power is extracted from the ESD.

Thus, the power budget planner needs to know only the
current fuel cell power (PFuelCell (t)), and the amount of en-
ergy currently stored in the ESD (EESD (t)). As Equation 1
shows, when EESD (t)> Emin, the policies calculate the max-

3The maximum request arrival rate that a server can handle for a given
workload is typically known, or can be profiled.

4As stated in Section 3, the ESD maintains a minimum amount of energy
to ensure the normal operation of the UPS.

5The load following rate is the slope at which a fuel cell system will never
experience a power shortfall within the rack power operating range, as defined
in Section 3.
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imum power that the ESD can deliver on top of the fuel cell
output power (PFuel Cell (t)) for the next power capping period
(TCapping). Note that we take into account the energy efficiency
of ESD discharging (η). When EESD (t) = Emin, the policy
ramps up the rack power at the load following rate (PFollowing).

P̃Rack (t +1) =

PFuelCell (t)+η
EESD(t)−Emin

TCapping
if EESD (t)> Emin

PFuel Cell (t)+PFollowing×TCapping if EESD (t) = Emin

(1)

This power budget planner can be implemented in either a
centralized or decentralized manner. The decentralized imple-
mentation runs a copy of the same power budget planner on
each server.

The power budget assigner differs between the centralized
and decentralized versions of the policy. For the centralized
policy, the assigner requires the current workload intensity
(λi (t)) from each server, and divides the rack power budget
based on the workload intensity of each server, as a server with
a greater workload intensity usually demands more power. The
power budget assigner first assigns the idle power (Pidle) to
each server, and then assigns the remaining dynamic power
proportionally based on each server’s workload intensity (here,
N is the number of servers in the rack). The power budget
assigned to server i during the next power capping period
(P̃Server i (t +1)) is given in Equation 2:

P̃Server i (t +1) = Pidle +
(

P̃Rack (t +1)−N×Pidle

)
× λi (t)

∑
N
i=1 λi (t)

(2)

In reality, when we assign the server power budget based
on Equation 2, the assigned power may exceed the server’s
uncapped load. To tackle such situations, for each server,
the power budget assigner compares the server power budget
assigned by Equation 2 with the actual power demanded by
the server currently, and first only assigns enough power to
meet the demand. After that, if the rack power budget has not
been fully assigned, it assigns the remaining power budget pro-
portionally to each server that has not received its demanded
power based on its workload intensity. When every server re-
ceives its demanded power but the rack power budget has not
been fully assigned, we assign the remaining budget propor-
tionally to each server based on its current workload intensity.
Thus, the leftover power is used to increase the power cap of
each server, such that if the number of incoming requests to a
server increases significantly in the next capping period, the
server can use this extra power to mitigate the negative impact
of these additional requests on the request success rate.

For the decentralized policy’s power budget assigner, since
it is unaware of the workload intensity of other servers, it is in-
feasible to assign power based on workload intensity. Instead,
it passes the current rack power consumption (PRack (t)) and
the server power consumption (PServer i (t)) into a heuristic that
assigns the non-idle power to a server proportionally based on
its current non-idle power consumption, as follows:

P̃Server i (t +1) = Pidle +

((
P̃Rack (t +1)−N×Pidle

)
× PServer i (t)−Pidle

PRack (t)−N×Pidle

) (3)

Since each decentralized power budget planner computes
the same rack power budget P̃Rack (t +1), and because

PRack (t) =
N

∑
i=1

PServer i (t) (4)

it can be proven that with this heuristic-based approach, the
sum of each server’s power budget P̃Server i (t +1) is equal
to the rack power budget P̃Rack (t +1). In case the servers
crash for reasons other than power availability (e.g., workload
consolidation, software errors), we can update the value of
N in the decentralized controllers of the remaining servers,
allowing power capping to continue working normally.
Scalability Analysis. The computation time and message
count sent for the centralized policy scale linearly with the
number of machines per rack. The centralized policy has a
single capping controller computing the power budgeted for
each machine, and must optimize assigned power on a per-
machine basis. The capping controller must receive messages
from each server. For the decentralized policy, the computa-
tion time does not depend on the number of machines, while
message count scales linearly. The decentralized policy has a
capping controller per machine, allowing parallel computation
for each machine’s power budget. Each capping controller
must exchange messages with the ESD controller, leading to
linear scaling of message count.

4.2.2. Fuel Cell Aware, Workload Unaware Policies. The
fuel cell aware, workload unaware power capping policies
(C-FCA-WU and D-FCA-WU) improve over the previous two
policies by adding knowledge of the load following behavior
of fuel cells into the policy. As they are still workload unaware,
they continue to ramp up the rack power as fast as possible.
However, since these policies are aware of the fuel cell load
following behavior, they know how the fuel cell power varies
for a given load, based on the current state of the fuel cell.
Moreover, these policies can calculate the change in stored
ESD energy. Therefore, they can ramp the rack power up at
the fastest potential speed, without violating the ESD energy
threshold constraint.

The power budget planner needs to know the current
fuel cell state (SFuel Cell (t)) and current stored ESD energy
(EESD (t)), which it uses to determine the rack power budget
(P̃Rack (t +1)) by solving the optimization problem shown in
Equation 5. In this optimization problem, the power budget
planner tries to maximize the rack power budget in the next
step (P̃Rack (t +1)). To do this, it employs the ESD energy
model (EESD Model , derived from the fuel cell load following
model; see details in Section 5), and evaluates whether ESD
energy EESD (t +1) at the next step would fall below the en-
ergy threshold Emin under a rack power budget P̃Rack (t +1).
This power budget planner can be implemented in both a
centralized and decentralized manner. A decentralized imple-
mentation needs to run a copy of the power budget planner on
each server.

maximize P̃Rack (t +1)

s.t. EESD (t +1) = EESD Model

(
P̃Rack (t +1) , SFuelCell (t) , EESD (t)

)
EESD (t +1)≥ Emin

(5)
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The power budget assigner for the fuel cell aware, workload
unaware policies is exactly the same as that of the fuel cell un-
aware, workload unaware policies presented in Section 4.2.1.
The scalability of the centralized/decentralized policies is also
similar to their counterparts.

4.2.3. Fuel Cell Aware, Workload Aware Policy. Unlike the
other four policies, the fuel cell aware, workload aware policy
(C-FCA-WA) is aware of how the provisioned power impacts
future workload performance, and tries to optimize workload
performance when it makes power capping decisions. This
policy may not necessarily provision the full power demanded
by the rack even when the ESD energy can be utilized. In-
stead, this policy tries to intelligently distribute the ESD energy
across several periods in the near future, by using an estimate
of future workload intensity to determine when this ESD en-
ergy is best spent (and thus when more aggressive capping is
needed), optimizing for workload performance.

In order to determine how the provisioned power im-
pacts future workload performance, the power budget plan-
ner of C-FCA-WA relies on the workload power utility
function ( futility), which characterizes the workload per-
formance under different server power budgets and work-
load intensities.6 The power budget planner collects the
future workload intensity estimates for all servers within
the rack ({λi (t + k) , k = 1, ...,P}). Based on this informa-
tion, for each power capping period in the near future, the
power budget planner uses the average server power budget
( 1

N P̃Rack (t + k)) and the average workload intensity within the
rack ( 1

N ∑
N
i=1 λi (t + k)) to approximate the average workload

performance futility within the rack. After that, the power bud-
get planner sums up the approximated workload performance
for the next P power capping steps, and tries to optimize it,
which is shown as the objective function of the following
optimization problem:

maximize∑
P
k=1 futility

(
1
N P̃Rack (t + k) , 1

N ∑
N
i=1 λi (t + k)

)
s.t. EESD (t + k) = EESD Model

({
P̃Rack (t + j) , j = 1, ...,k

}
,

SFuelCell (t) , EESD (t)
)

EESD (t + k)≥ Emin

k = 1, ...,P

(6)

In addition, similar to the fuel cell aware, workload unaware
policies, the power budget planner of C-FCA-WA must also
maintain the ESD energy threshold constraint. To do this, it
needs to know the current ESD energy (EESD (t)) and fuel
cell state (SFuel Cell (t)), and leverages the ESD energy model
(EESD Model , see details in Section 5) to ensure that the ESD en-
ergy in the near future ({EESD (t + k) , k = 1, ...,P}) is always
greater than the ESD energy threshold Emin.

The power budget assigner is similar to that of the central-
ized workload unaware policies. The only difference is that
since this policy is aware of future workload intensity, instead
of using the current workload intensity λi (t) to distribute the

6In our implementation, the workload power utility function uses the
workload request success rate as an example performance metric, representing
the success rate as a function dependent on the server power budget under
different workload intensities.

power, it uses the workload intensity in the next power capping
period λi (t +1) to assign the rack power budget, as this better
reflects the demanded power in the next power capping period:

P̃Server i (t +1) = Pidle +
(

P̃Rack (t +1)−N×Pidle

)
× λi (t +1)

∑
N
i=1 λi (t +1)

(7)

As we can see, the fuel cell aware, workload aware policy
must collect the workload intensity from each server to deter-
mine how its power capping decisions impact future workload
performance. Therefore, we cannot implement a decentralized
version of this policy, as it would require every server to com-
municate its workload performance information to every other
server, which would induce a high communication overhead.
Scalability Analysis. Similar to both C-FCU-WU and
C-FCA-WU, the computation time and message count of this
policy scale linearly with the number of machines per rack.

5. Evaluation Methodology
System Configuration. We study one rack of servers, pow-
ered by a single 12.5 kW fuel cell system with a load following
rate of 16 W/s. The rack consists of 45 identical dual socket
production servers with 2.4GHz Intel Xeon CPUs. Each server
runs a power capping software driver developed in-house,
leveraging Intel processor power management capabilities. In
every power capping period (TCapping = 2s), the power capping
controller notifies the driver on each server to set its power
budget. Information about the current fuel cell state, ESD
energy, and rack power are measured, and each server can poll
them via an Ethernet interface. The ESD in our study has a
95% charging/discharging efficiency [1].
Workload and Traces. We use both synthesized single power
surge traces and production data center workload traces col-
lected from Microsoft data centers,7 which capture real work-
load intensity and power profiles. We use WebSearch for our
production workload. WebSearch is an internally developed
workload to emulate the index searching component of com-
mercial search engines [23]. It faithfully accounts for queuing,
delay variation, and request dropping.
Metrics. We use the success rate and average latency of
search requests to represent the overall workload performance
for both synthesized traces and production data center traces.
Success rate characterizes the percentage of requests com-
pleted within the maximum allowable service time for the
workload. Average latency characterizes the average service
latency of all requests. In addition, we also evaluate 95th

percentile (P95) latency, as tail latency is very important for
search workloads.
Simulation Methodology. We faithfully model the data cen-
ter configuration described in Section 2.3. Our simulator con-
sists of three modules: a power capping module, a workload
module, and a power system module. The power capping mod-
ule models the behavior of each power capping policy. The
workload module models the overall workload performance
and rack power consumption under power capping decisions.

7The production data center workload traces are processed and scaled to
fit our configuration.
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To do this, we profile WebSearch on our production servers,
and build a lookup table for workload performance and server
power consumption under different workload intensities and
server power budgets. This lookup table allows the module
to use the workload performance and power consumption for
each server to calculate overall workload performance and
rack power consumption. The power system module models
both fuel cell and ESD behavior. The fuel cell model is based
on previously published fuel cell models [28,30,45], and mod-
els every component of the fuel cell system in detail (see our
technical report [20] for details). Using this model, the power
system module can determine how the fuel cell state (e.g., fuel
cell power, fuel flow rate, hydrogen/oxygen/water pressure
within the fuel cell stack) evolves with a given rack power.
The ESD energy model uses the fuel cell power and rack power
from the fuel cell model, along with the ESD characteristics
(i.e., charge/discharge efficiency and energy capacity), to de-
termine how much power needs to be charged/discharged from
the ESD, and how the ESD energy changes over time. We
employ the ESD energy model in our fuel cell aware power
capping policies in Section 4.2. The power system module
assumes that the ESD energy can be measured with a precision
of only 1% of the ESD energy capacity, to reflect the practical
limitations of ESD energy measurement. The measured ESD
energy is derived by rounding down the actual ESD energy
to match the available precision. The power system module
feeds all of this information back to the power capping module
for power capping decisions.

6. Experimental Results
In this section, we evaluate the performance of SizeCap, study-
ing how the request success rate and average request latency
change as a result of our different power capping policies
when ESD capacity is underprovisioned. We study the impact
of SizeCap first on synthetic traces, and then on traces from
production data center workloads.

6.1. Synthesized Single Power Surge Trace
We first use a synthesized trace, containing a single power
surge, to explore how the combination of ESD sizing and
our power capping policies impacts data center behavior and
availability. In order to simulate workload intensity variation
within a rack, we construct our trace using the surge bounds
shown in Figure 13. We use insight from prior work on the
workload intensity heterogeneity across servers as measured
in a production data center [11], and generate a trace using a
normal distribution with 8% standard deviation from the mean

surge. The workload intensity of each server is updated every
three minutes, redistributing the heterogeneity.

We first focus on the two extremes for our proposed policies:
D-FCU-WU and C-FCA-WA. Figure 14 shows the power de-
mand and rack power output for D-FCU-WU, using an ESD
underprovisioned at 50% (i.e., it only has enough charge to
tolerate a power shortfall half the size of the worst-case short-
fall). Initially, the D-FCU-WU policy allows the delivered
rack power to equal the demanded power, as it discharges
the ESD. At t=180s, when the ESD cannot provide any more
power, the policy reduces the rack power by 2 kW. At this
point, D-FCU-WU can only ramp up the output power at an
average rate of 15 W/s, leading to significant performance
degradation. We conclude that D-FCU-WU is a poor policy
for servicing this trace.

Figure 15 shows the power demand and rack power output
for C-FCA-WA, again with a 50% underprovisioned ESD.
Initially, C-FCA-WA does not follow the demanded load
as closely as D-FCU-WU did, but it can gradually increase
rack power output without ever dropping it like D-FCU-WU
did, which benefits workload performance. Compared with
D-FCU-WU, C-FCA-WA has three performance advantages.
First, as C-FCA-WA is workload aware, it knows that the work-
load performance drops superlinearly with power reduction at
higher loads, and so it tries to balance power capping through-
out the duration of the ramp up. Second, as C-FCA-WA is
aware of the load following behavior of the fuel cell, it can
ramp up the rack power budget as fast as possible when the
ESD is unable provide any more power (starting at t = 203s).
In this phase, C-FCA-WA can ramp up the output power at an
average rate of 30 W/s, which is much faster than D-FCU-WU
and benefits workload performance. Third, as C-FCA-WA is
centralized, it has knowledge of the actual current workload
intensity of each server, allowing it to make global decisions,
while the decentralized D-FCU-WU may waste power since,
without the global knowledge, a server may be assigned more
power than it actually requires.

To understand the performance impact of our different
power capping policies, we study the success rate (Figure 16)
and normalized average latency (Figure 17) for the synthesized
workloads, sweeping over ESD capacity. We observe that as
the ESD capacity decreases, the success rate decreases, while
the average latency increases. We also observe that more in-
formed policies, such as C-FCA-WA, can significantly reduce
the performance degradation over more oblivious policies such
as D-FCU-WU. For example, at 50% ESD capacity, D-FCU-
WU has a 2.27% drop in success rate and a 48% increase in
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Figure 13: Load surge model used to syn-
thesize our evaluation trace.
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Figure 14: Synthetic trace behavior of
SizeCap with D-FCU-WU policy, using
a 50% underprovisioned ESD.
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Figure 15: Synthetic trace behavior of
SizeCap with C-FCA-WA policy, using a
50% underprovisioned ESD.
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Figure 16: Success rate vs. ESD capacity
for capping policies.
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Figure 17: Average latency vs. ESD ca-
pacity for capping policies.
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Figure 18: Average latency vs. surge
slope for capping policies.
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Figure 19: Average latency vs. surge
magnitude for capping policies.
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Figure 20: Average latency vs. surge
width for capping policies.
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Figure 21: Latency vs. heterogeneity up-
date frequency for capping policies.

average latency, while C-FCA-WA sees only a 0.64% drop in
success rate, and a 21% average latency increase.

We also explore how the average latency is impacted by
changes in power surge characteristics under our different
power capping policies. As before, we hold all attributes con-
stant except for the one being explored. We examine latency
changes as a function of surge slope (Figure 18), magnitude
(Figure 19), and width (Figure 20). Again, we observe that
smarter capping policies that are centralized, or that are aware
of fuel cell behavior or workload utility, are better at con-
trolling the increase in latency for an ESD underprovisioned
at 50%. We also observe that for small slopes and small
magnitudes, the advantage of smarter policies becomes much
smaller, as at these smaller surge sizes, the underprovisioned
ESD itself can handle the surge. As a result, the capping pol-
icy is rarely invoked, and has little effect. Interestingly, as
Figure 20 shows, the latency initially increases with the width,
before dropping down and stabilizing. This is similar to the
initial peak in latency that we observed in Figure 6c — as the
width grows, the reliance on the power capping policy grows
due to the underprovisioned ESD, but over time, this reliance
becomes steady, reducing the amount of capping required.

Finally, we ensure that our experiments are not sensitive to
the period at which we update the workload intensity hetero-
geneity between servers. As Figure 21 shows, the centralized
policies maintain a constant latency. However, the decen-
tralized policies drop slightly for longer update periods, as
the greater stability over the period allows the decentralized
heuristics, which use the starting power distribution between
servers, to make more accurate predictions.

We conclude that more intelligent power capping policies
that take into account more information, such as centralized
policies or fuel cell aware and workload aware policies, are
better able to utilize the available ESD power when the ESD
is underprovisioned, and thus deliver higher performance.

6.2. Production Data Center Traces
We now evaluate the effectiveness of SizeCap using the two
production data center traces presented in Section 3.2. Here,
we employ the same method we used for our synthesized trace
to generate the heterogeneity of workload intensity between
servers. Trace 1, shown in Figure 6a, generally demands
constant power, but contains infrequent, large power surges.
Trace 2, shown in Figure 6b, contains frequent power surges of
various sizes. SizeCap must know the SLA of the workload, as
well as what success rate margin and average latency margin
the workload currently has to determine the underprovisioned
ESD capacity. (For example, if a workload has an SLA of
a 99.5% success rate, and its current success rate is 99.6%,
it has a success rate margin of 0.1%.) For both traces, we
assume the following margins when they operate with a fully-
provisioned ESD (i.e., an ESD that can tolerate worst-case
power surges without capping): 0.1% for success rate, 3% for
average latency, and 10% for P95 latency.

Figure 22 shows the change in success rate, average la-
tency, and P95 latency at various smaller ESD sizes for Trace
1. For both traces, with power capping, as the ESD capac-
ity decreases, workload performance reduces. For Trace 1,
which has little load power variation, we find that all of the
fuel cell aware policies perform similarly. If we look at the
D-FCA-WU policy performance, which is feasible to imple-
ment at scale in a contemporary data center, we find that reduc-
ing the ESD capacity to as low as 15% of the fully-provisioned
size still meets our SLA requirements, with success rate reduc-
tion of only 0.1%,8 an average latency increase of only 2.1%,
and a P95 latency increase of 7.5%.

For Trace 2 (Figure 23), when the ESD capacity is reduced,
the workload performance degrades much faster than it does
for Trace 1. Unlike Trace 1, Trace 2 contains a large number

8The success rates with a fully-provisioned ESD for Traces 1 and 2 are
99.00% and 99.86%, respectively.
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Figure 22: Workload performance of capping policies under different ESD capacities for Trace 1.
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Figure 23: Workload performance of capping policies under different ESD capacities for Trace 2.

of power surges, and therefore invokes power capping much
more frequently as the ESD capacity is reduced. Looking
at the D-FCA-WU policy, we find that we can still meet the
SLA requirements if we reduce the ESD capacity to as low
as 50% of the fully provisioned size. At 50% ESD capacity,
the success rate reduces by only 0.05%,8 the average latency
increases by only 2.9%, and the P95 latency increases 9.6%.

For both traces, we leverage the life cycle model of a su-
percapacitor to evaluate the supercapacitor’s lifetime. The
model assumes that the supercapacitor cannot be used beyond
a certain number of charge/discharge cycles, and is based on
recent cycle testing of a commercial supercapacitor [29]. We
find that under all of the ESD capacities that we evaluated, for
both traces, the ESD would have a lifetime of over 20 years.
As a result, we do not expect ESD lifetime to be a dominating
factor in data center TCO.

In summary, we find that SizeCap can significantly decrease
the size of the ESD for production data center workloads,
without violating any SLA requirements.

7. Related Work
To our knowledge, this is the first work to (1) holistically
explore the ESD sizing problem for fuel cell powered data
centers (we use ESDs to complement the power supply when
the fuel cell is limited by its load following behavior, which
differs greatly from prior uses of ESD); and (2) develop power
capping policies that are aware of load following, and that
can allow load following power sources such as fuel cells to
continue ramping up power delivery during capping.
Energy Storage for Data Centers. ESDs in data cen-
ters have been mainly used for handling utility failures
and/or intermittent power supplies such as renewable en-

ergy sources [7, 10, 15, 17, 22, 34, 35, 37]. Recent stud-
ies [8, 9, 14, 22, 36, 38] have proposed to leverage ESD-based
peak shaving approaches to enhance data center demand re-
sponse for cap-ex and op-ex savings. We leverage ESDs to
complement fuel cell power supply load following limitations,
which is very different from prior applications of ESDs.
Power Capping for Data Centers. Many control algorithms
for power capping have been proposed [4, 6, 21, 39, 40, 41].
More recent works have proposed power capping mechanisms
for data centers with renewable energy sources [7, 16, 18, 19],
which leverage ESDs to handle intermittent power losses. All
of these works assume that ESDs have sufficient capacity,
whereas our work aims to reduce the capacity of ESDs.
Fuel Cell Powered Data Centers. Riekstin et al. evaluate
the TCO of using fuel cells at the rack level [31]. Zhao et
al. evaluate the energy efficiency benefits and load following
capability of fuel cells [43, 44]. While they consider ESDs,
none of these works explore the ESD sizing problem.

8. Conclusion
Fuel cells are a promising power source for data centers, but
mechanical limitations in fuel delivery make them slow to
react to load surges, resulting in power shortfalls. Prior work
has used large ESDs to make up for such shortfalls, but these
large ESDs greatly increase the data center TCO. We analyzed
the impact of various power surge characteristics (slope, mag-
nitude, and width) on ESD size, and then demonstrated that
power capping can effectively help to reduce the size of the
ESD required to cover shortfalls.

Based on these observations, we propose SizeCap, the first
ESD sizing framework for fuel cell powered data centers. In-
stead of using an ESD large enough to cover the worst-case
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load surges, SizeCap reduces the ESD size such that it can han-
dle most of the typical load surges, while still satisfying SLA
requirements. In the rare case when a worst-case surge occurs,
SizeCap employs power capping to ensure that the servers
do not crash. As part of our flexible framework, we propose
multiple power capping policies, each with different degrees
of awareness of fuel cell and workload behavior. Using traces
from Microsoft’s production data center systems, we show
that SizeCap can successfully provide very large reductions
in ESD size without violating any SLAs. We conclude that
SizeCap is a promising and low-cost framework for managing
power and TCO in fuel cell powered data centers.
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