
FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems

Jishen Zhao∗�†, Onur Mutlu†, Yuan Xie‡∗
∗Pennsylvania State University, †Carnegie Mellon University, ‡University of California, Santa Barbara, �Hewlett-Packard Labs

∗juz138@cse.psu.edu, †onur@cmu.edu, ‡yuanxie@ece.ucsb.edu

Abstract—Byte-addressable nonvolatile memories promise a new tech-
nology, persistent memory, which incorporates desirable attributes from
both traditional main memory (byte-addressability and fast interface)
and traditional storage (data persistence). To support data persistence,
a persistent memory system requires sophisticated data duplication
and ordering control for write requests. As a result, applications
that manipulate persistent memory (persistent applications) have very
different memory access characteristics than traditional (non-persistent)
applications, as shown in this paper. Persistent applications introduce
heavy write traffic to contiguous memory regions at a memory channel,
which cannot concurrently service read and write requests, leading to
memory bandwidth underutilization due to low bank-level parallelism,
frequent write queue drains, and frequent bus turnarounds between reads
and writes. These characteristics undermine the high-performance and
fairness offered by conventional memory scheduling schemes designed
for non-persistent applications.

Our goal in this paper is to design a fair and high-performance
memory control scheme for a persistent memory based system that runs
both persistent and non-persistent applications. Our proposal, FIRM,
consists of three key ideas. First, FIRM categorizes request sources
as non-intensive, streaming, random and persistent, and forms batches
of requests for each source. Second, FIRM strides persistent memory
updates across multiple banks, thereby improving bank-level parallelism
and hence memory bandwidth utilization of persistent memory accesses.
Third, FIRM schedules read and write request batches from different
sources in a manner that minimizes bus turnarounds and write queue
drains. Our detailed evaluations show that, compared to five previous
memory scheduler designs, FIRM provides significantly higher system
performance and fairness.

Index Terms—memory scheduling; persistent memory; fairness; mem-
ory interference; nonvolatile memory; data persistence

1. INTRODUCTION

For decades, computer systems have adopted a two-level storage

model consisting of: 1) a fast, byte-addressable main memory that

temporarily stores applications’ working sets, which is lost on a

system halt/reboot/crash, and 2) a slow, block-addressable storage

device that permanently stores persistent data, which can survive

across system boots/crashes. Recently, this traditional storage model

is enriched by the new persistent memory technology – a new tier

between traditional main memory and storage with attributes from

both [2, 9, 47, 54, 59]. Persistent memory allows applications to

perform loads and stores to manipulate persistent data, as if they

are accessing traditional main memory. Yet, persistent memory is the

permanent home of persistent data, which is protected by versioning

(e.g., logging and shadow updates) [17, 54, 88, 90] and write-order

control [17, 54, 66], borrowed from databases and file systems

to provide consistency of data, as if data is stored in traditional

storage devices (i.e., hard disks or flash memory). By enabling

data persistence in main memory, applications can directly access

persistent data through a fast memory interface without paging data

blocks in and out of slow storage devices or performing context

switches for page faults. As such, persistent memory can dramatically

boost the performance of applications that require high reliability

demand, such as databases and file systems, and enable the design

of more robust systems at high performance. As a result, persistent

memory has recently drawn significant interest from both academia

and industry [1, 2, 16, 17, 37, 54, 60, 66, 70, 71, 88, 90]. Recent

works [54, 92] even demonstrated a persistent memory system with

performance close to that of a system without persistence support in

memory.

Various types of physical devices can be used to build persistent

memory, as long as they appear byte-addressable and nonvolatile
to applications. Examples of such byte-addressable nonvolatile

memories (BA-NVMs) include spin-transfer torque RAM (STT-

MRAM) [31, 93], phase-change memory (PCM) [75, 81], resis-

tive random-access memory (ReRAM) [14, 21], battery-backed

DRAM [13, 18, 28], and nonvolatile dual in-line memory mod-

ules (NV-DIMMs) [89].1

As it is in its early stages of development, persistent memory

especially serves applications that can benefit from reducing storage

(or, persistent data) access latency with relatively few or lightweight

changes to application programs, system software, and hardware [10].

Such applications include databases [90], file systems [1, 17], key-

value stores [16], and persistent file caches [8, 10]. Other types of

applications may not directly benefit from persistent memory, but

can still use BA-NVMs as their working memory (nonvolatile main

memory without persistence) to leverage the benefits of large capacity

and low stand-by power [45, 73]. For example, a large number of

recent works aim to fit BA-NVMs as part of main memory in the

traditional two-level storage model [22, 23, 33, 45, 46, 57, 72, 73,

74, 91, 94]. Several very recent works [38, 52, 59] envision that

BA-NVMs can be simultaneously used as persistent memory and

working memory. In this paper, we call applications leveraging BA-

NVMs to manipulate persistent data as persistent applications, and

those using BA-NVMs solely as working memory as non-persistent
applications.2

Most prior work focused on designing memory systems to ac-

commodate either type of applications, persistent or non-persistent.

Strikingly little attention has been paid to study the cases when these

two types of applications concurrently run in a system. Persistent

applications require the memory system to support crash consistency,

or the persistence property, typically supported in traditional storage

systems. This property guarantees that the system’s data will be in a

consistent state after a system or application crash, by ensuring that

persistent memory updates are done carefully such that incomplete

updates are recoverable. Doing so requires data duplication and

careful control over the ordering of writes arriving at memory (Sec-

tion 2.2). The sophisticated designs to support persistence lead to new

memory access characteristics for persistent applications. In particu-

lar, we find that these applications have very high write intensity and

very low memory bank parallelism due to frequent streaming writes
to persistent data in memory (Section 3.1). These characteristics lead

to substantial resource contention between reads and writes at the

1STT-MRAM, PCM, and ReRAM are collectively called nonvolatile random-access
memories (NVRAMs) or storage-class memories (SCMs) in recent studies [1, 52, 90]

2A system with BA-NVMs may also employ volatile DRAM, controlled by
a separate memory controller [22, 57, 73, 74, 91]. As we show in this paper,
significant resource contention exists at the BA-NVM memory interface of
persistent memory systems between persistent and non-persistent applications.
We do not focus on the DRAM interface.

shared memory interface for a system that concurrently runs persistent

and non-persistent applications, unfairly slowing down either or both

types of applications. Previous memory scheduling schemes, designed

solely for non-persistent applications, become inefficient and low-

performance under this new scenario (Section 3.2). We find that

this is because the heavy write intensity and low bank parallelism

of persistent applications lead to three key problems not handled

well by past schemes: 1) frequent write queue drains in the memory

controller, 2) frequent bus turnarounds between reads and writes,

both of which lead to wasted cycles on the memory bus, and 3)

low memory bandwidth utilization during writes to memory due to

low memory bank parallelism, which leads to long periods during

which memory reads are delayed (Section 3).

Our goal is to design a memory control scheme that achieves both
fair memory access and high system throughput in a system concur-
rently running persistent and non-persistent applications. We propose

FIRM, a fair and high-performance memory control scheme, which

1) improves the bandwidth utilization of persistent applications and 2)

balances the bandwidth usage between persistent and non-persistent

applications. FIRM achieves this using three components. First, it cat-

egorizes memory request sources as non-intensive, streaming, random

and persistent, to ensure fair treatment across different sources, and

forms batches of requests for each source in a manner that preserves

row buffer locality. Second, FIRM strides persistent memory updates

across multiple banks, thereby improving bank-level parallelism and

hence memory bandwidth utilization of persistent memory accesses.

Third, FIRM schedules read and write request batches from different

sources in a manner that minimizes bus turnarounds and write queue

drains. Compared to five previous memory scheduler designs, FIRM

provides significantly higher system performance and fairness.

This paper makes the following contributions:

• We identify new problems related to resource contention at

the shared memory interface when persistent and non-persistent
applications concurrently access memory. The key fundamental

problems, caused by memory access characteristics of persistent

applications, are: 1) frequent write queue drains, 2) frequent bus

turnarounds, both due to high memory write intensity, and 3)

memory bandwidth underutilization due to low memory write

parallelism. We describe the ineffectiveness of prior memory

scheduling designs in handling these problems. (Section 3)

• We propose a new strided writing mechanism to improve the

bank-level parallelism of persistent memory updates. This tech-

nique improves memory bandwidth utilization of memory writes

and reduces the stall time of non-persistent applications’ read

requests. (Section 4.3)

• We propose a new persistence-aware memory scheduling policy

between read and write requests of persistent and non-persistent

applications to minimize memory interference and reduce unfair

application slowdowns. This technique reduces the overhead of

switching the memory bus between reads and writes by reducing

bus turnarounds and write queue drains. (Section 4.4)

• We comprehensively compare the performance and fairness of

our proposed persistent memory control mechanism, FIRM, to

five prior memory schedulers across a variety of workloads and

system configurations. Our results show that 1) FIRM provides

the highest system performance and fairness on average and for

all evaluated workloads, 2) FIRM’s benefits are robust across

system configurations, 3) FIRM minimizes the bus turnaround

overhead present in prior scheduler designs. (Section 7)

2. BACKGROUND

In this section, we provide background on existing memory

scheduling schemes, the principles and mechanics of persistent mem-

ory, and the memory requests generated by persistent applications.

2.1. Conventional Memory Scheduling Mechanisms

A memory controller employs memory request buffers, physically

or logically separated into a read and a write queue, to store the

memory requests waiting to be scheduled for service. It also utilizes

a memory scheduler to decide which memory request should be

scheduled next. A large body of previous work developed various

memory scheduling policies [7, 26, 27, 34, 41, 42, 48, 49, 61, 62,

63, 64, 65, 67, 76, 77, 84, 85, 95]. Traditional commodity systems

employ a variant of the first-ready first-come-first-serve (FR-FCFS)

scheduling policy [76, 77, 95], which prioritizes memory requests

that are row-buffer hits over others and, after that, older memory

requests over others. Because of this, it can unfairly deprioritize

applications that have low buffer hit rate and that are not memory

intensive, hurting both fairness and overall system throughput [61,

64]. Several designs [41, 42, 63, 64, 65, 67, 84, 85] aim to improve

either system performance or fairness, or both. PAR-BS [65] provides

fairness and starvation freedom by batching requests from different

applications based on their arrival times and prioritizing the oldest

batch over others. It also improves system throughput by preserving

the bank-level parallelism of each application via the use of rank-

based scheduling of applications. ATLAS [41] improves system

throughput by prioritizing applications that have received the least

memory service. However, it may unfairly deprioritize and slow

down memory-intensive applications due to the strict ranking it

employs between memory-intensive applications [41, 42]. To address

this issue, TCM [42] dynamically classifies applications into two

clusters, low and high memory-intensity, and employs heterogeneous

scheduling policies across the clusters to optimize for both system

throughput and fairness. TCM prioritizes the applications in the low-

memory-intensity cluster over others, improving system throughput,

and shuffles thread ranking between applications in the high-memory-

intensity cluster, improving fairness and system throughput. While

shown to be effective in a system that executes only non-persistent

applications, unfortunately, none of these scheduling schemes address

the memory request scheduling challenges posed by concurrently-
running persistent and non-persistent applications, as we discuss in

Section 3 and evaluate in detail in Section 7.3

2.2. Persistent Memory

Most persistent applications stem from traditional storage system

workloads (databases and file systems), which require persistent

memory [1, 2, 16, 17, 88, 90, 92] to support crash consistency [6], i.e.,

the persistence property. The persistence property guarantees that

the critical data (e.g., database records, files, and the corresponding

metadata) stored in nonvolatile devices retains a consistent state in

case of power loss or a program crash, even when all the data in

volatile devices may be lost. Achieving persistence in BA-NVM

is nontrivial, due to the presence of volatile processor caches and

memory write reordering performed by the write-back caches and

memory controllers. For instance, a power outage may occur while

a persistent application is inserting a node to a linked list stored

in BA-NVM. Processor caches and memory controllers may reorder

3The recently developed BLISS scheduler [84] was shown to be more
effective than TCM while providing low cost. Even though we do not evaluate
BLISS, it also does not take into account the nature of interference caused
by persistent applications.

the write requests, writing the pointer into BA-NVM before writing

the values of the new node. The linked list can lose consistency

with dangling pointers, if values of the new node remaining in

processor caches are lost due to power outage, which may lead to

unrecoverable data corruption. To avoid such inconsistency problems,

most persistent memory designs borrow the ACID (atomicity, consis-

tency, isolation, and durability) concepts from the database and file

system communities [17, 54, 88, 90, 92]. Enforcing these concepts,

as explained below, leads to additional memory requests, which affect

the memory access behavior of persistent applications.

Versioning and Write Ordering. While durability can be guaranteed

by BA-NVMs’ non-volatile nature, atomicity and consistency are

supported by storing multiple versions of the same piece of data

and carefully controlling the order of writes into persistent memory

(please refer to prior studies for details [17, 54, 88, 90, 92]). Figure 1

shows a persistent tree data structure as an example to illustrate

the different methods to maintain versions and ordering. Assume

nodes N3 and N4 are updated. We discuss two commonly-used

methods to maintain multiple versions and ordering. The first one

is redo logging [16, 90]. With this method, new values of the two

nodes, along with their addresses, are written into a log (logN ′
3

and logN ′
4) before their original locations are updated in memory

(Figure 1(a)). If a system loses power before logging is completed,

persistent memory can always recover, using the intact original data

in memory. A memory barrier is employed between the writes to

the log and writes to the original locations in memory. This ordering

control, with enough information kept in the log, ensures that the

system can recover to a consistent state even if it crashes before

all original locations are updated. The second method, illustrated in

Figure 1(b), is the notion of shadow updates (copy-on-write) [17, 88].

Instead of storing logs, a temporary data buffer is allocated to store

new values (shadow copies) of the nodes. Note that the parent node

N1 is also shadow-copied, with the new pointer N ′
1 pointing to the

shadow copies N ′
3 and N ′

4. Ordering control (shown as a memory

barrier in Figure 1(b)) ensures that the root pointer is not updated

until writes to the shadow copies are completed in persistent memory.

Root

N1

N2 N4N3

Root

N1

N2 N4N3

log
N3'

Log:

Root

N1

N2 N4'N3'

Memory
Barrier

Root

N1

N2 N4N3

Root

N1

N2 N4N3

Memory
Barrier

N1'

N4'N3'

Root

N1

N2 N4N3

N1'

N4'N3'

(b)(a)

(Persistent writes are updates of) Shadow Copies

log
N4'

log
N3'

log
N4'

and

Root

N1'

N2 N4'N3'

Fig. 1. Example persistent writes with (a) redo logging and (b) shadow
updates, when nodes N3 and N4 in a tree data structure are updated.

Relaxed Persistence. Strict persistence [53, 54, 70] requires main-

taining the program order of every write request, even within a single

log update. Pelley et al. recently introduced a relaxed persistence

model to minimize the ordering control to buffer and coalesce writes

to the same data [70].4 Our design adopts their relaxed persistence

model. For example, we only enforce the ordering between the writes

to shadow copies and to the root pointer, as shown in Figure 1(b).

Another recent work, Kiln [92] relaxed versioning, eliminating the

4More recently, Lu et al. [54] proposed the notion of loose-ordering
consistency, which relaxes the ordering of persistent memory writes even
more by performing them speculatively.

use of logging or shadow updates by implementing a nonvolatile

last-level cache (NV cache). However, due to the limited capacity

and associativity of the NV cache, the design cannot efficiently

accommodate large-granularity persistent updates in database and file

system applications. Consequently, we envision that logging, shadow

updates, and Kiln-like designs will coexist in persistent memory

designs in the near future.

2.3. Memory Requests of Persistent Applications

Persistent Writes. We define the writes to perform critical data

updates that need to be persistent (including updates to original

data locations, log updates, and shadow-copy updates), as persistent
writes. Each critical data update may generate an arbitrary number

of persistent writes depending on the granularity of the update. For

example, in a key-value store, an update may be the addition of

a new value of several bytes, several kilobytes, several megabytes,

or larger. Note that persistent memory architectures either typically

flush persistent writes (i.e., dirty blocks) out of processor caches

at the point of memory barriers, or implement persistent writes as

uncacheable (UC) writes [54, 88, 90, 92].

Non-persistent Writes. Non-critical data, such as stacks and data

buffers, are not required to survive system failures. Typically, persis-

tent memory does not need to perform versioning or ordering control

over these writes. As such, persistent applications not only perform

persistent writes but also non-persistent writes as well.

Reads. Persistent applications also perform reads of in-flight persis-

tent writes and other independent reads. Persistent memory can relax

the ordering of independent reads without violating the persistence

requirement. However, doing so can impose substantial performance

penalties (Section 3.2). Reads of in-flight persistent updates need

to wait until these persistent writes arrive at BA-NVMs. Conven-

tional memory controller designs provide read-after-write ordering by

servicing reads of in-flight writes from write buffers. With volatile

memory, such a behavior does not affect memory consistency. With

nonvolatile memory, however, power outages or program crashes can

destroy in-flight persistent writes before they are written to persistent

memory. Speculative reads of in-flight persistent updates can lead

to incorrect ordering and potential resulting inconsistency, because

if a read has already gotten the value of an in-flight write that

would disappear on a crash, wrong data may eventually propagate

to persistent memory as a result of the read.

3. MOTIVATION: HANDLING PERSISTENT MEMORY ACCESSES

Conventional memory scheduling schemes are designed based on

the assumption that main memory is used as working memory, i.e., a

file cache for storage systems. This assumption no longer holds when

main memory also supports data persistence, by accommodating

persistent applications that access memory differently from tradi-

tional non-persistent applications. This is because persistent memory

writes have different consistency requirements than working memory

writes, as we described in Sections 2.2 and 2.3. In this section, we

study the performance implications caused by this different memory

access behavior of persistent applications (Section 3.1), discuss the

problems of directly adopting existing memory scheduling methods

to handle persistent memory accesses (Section 3.2), and describe why

naı̈vely extending past memory schedulers does not solve the problem

(Section 3.3).

3.1. Memory Access Characteristics of Persistent Applications

An application’s memory access characteristics can be evaluated

using four metrics: a) memory intensity, measured as the number of

last-level cache misses per thousand instructions (MPKI) [19, 42]; b)

write intensity, measured as the portion of write misses (WR%) out

of all cache misses; c) bank-level parallelism (BLP), measured as the

average number of banks with outstanding memory requests, when

at least one other outstanding request exists [50, 65]; d) row-buffer
locality (RBL), measured as the average hit rate of the row buffer

across all banks [64, 77].

To illustrate the different memory access characteristics of persis-

tent and non-persistent applications, we studied the memory accesses

of three representative micro-benchmarks, streaming, random, and

KVStore. Streaming and random [42, 61] are both memory-intensive,

non-persistent applications, performing streaming and random ac-

cesses to a large array, respectively. They serve as the two extreme

cases with dramatically different BLP and RBL. The persistent

application KVStore performs inserts and deletes to key-value pairs

(25-byte keys and 2K-byte values) of an in-memory B+ tree data

structure. The sizes of keys and values were specifically chosen

so that KVStore had the same memory intensity as the other two

micro-benchmarks. We build this benchmark by implementing a

redo logging (i.e., writing new updates to a log while keeping the

original data intact) interface on top of STX B+ Tree [12] to provide

persistence support. Redo logging behaves very similarly to shadow

updates (Section 2.2), which perform the updates in a shadow version

of the data structure instead of logging them in a log space. Our

experiments (not shown here) show that the performance implications

of KVStore with shadow updates are similar to those of KVStore with

redo logging, which we present here.

Table 1 lists the memory access characteristics of the three micro-

benchmarks running separately. The persistent application KVStore,

especially in its persistence phase when it performs persistent writes,

has three major discrepant memory access characteristics in compar-

ison to the two non-persistent applications.

Table 1. Memory access characteristics of three applications running
individually. The last row shows the memory access characteristics of

KVStore when it performs persistent writes.

MPKI WR% BLP RBL
Streaming 100/High 47%/Low 0.05/Low 96%/High

Random 100/High 46%/Low 6.3/High 0.4%/Low

KVStore 100/High 77%/High 0.05/Low 71%/High

Persistence
Phase (KVStore) 675/High 92%/High 0.01/Low 97%/High

1. High write intensity. While the three applications have the same

memory intensity, KVStore has much higher write intensity than the

other two. This is because each insert or delete operation triggers a

redo log update, which appends a log entry containing the addresses

and the data of the modified key-value pair. The log updates generate

extra write traffic in addition to the original location updates.

2. Higher memory intensity with persistent writes. The last row of

Table 1 shows that while the KVStore application is in its persistence

phase (i.e., when it is performing persistent writes and flushing these

writes out of processor caches), it causes greatly higher memory

traffic (MPKI is 675). During this phase, writes make up almost all

(92%) the memory traffic.

3. Low BLP and high RBL with persistent writes. KVStore,

especially while performing persistent writes, has low BLP and high

RBL. KVStore’s log is implemented as a circular buffer, similar to

those used in prior persistent memory designs [90], by allocating (as

much as possible) one or more contiguous regions in the physical

address space. As a result, the log updates lead to consecutive writes

to contiguous locations in the same bank, i.e., an access pattern that

can be characterized as streaming writes. This makes KVStore’s write

behavior similar to that of streaming’s reads: low BLP and high RBL.

However, the memory bus can only service either reads or writes (to

any bank) at any given time because the bus can be driven in only one

direction [49], which causes a fundamental difference (and conflict)

between handling streaming reads and streaming writes.

We conclude that the persistent writes cause persistent applications

to have widely different memory access characteristics than non-

persistent applications. As we show next, the high write intensity

and low bank-level parallelism of writes in persistent applications

cause a fundamental challenge to existing memory scheduler designs

for two reasons: 1) the high write intensity causes frequent switching

of the memory bus between reads and writes, causing bus turnaround

delays, 2) the low write BLP causes underutilization of memory

bandwidth while writes are being serviced, which delays any reads in

the memory request buffer. These two problems become exacerbated

when persistent applications run together with non-persistent ones, a

scenario where both reads and persistent writes are frequently present

in the memory request buffer.

3.2. Inefficiency of Prior Memory Scheduling Schemes

As we mentioned above, the memory bus can service either reads

or writes (to any bank) at any given time because the bus can be

driven in only one direction [49]. Prior memory controllers (e.g., [26,

27, 41, 42, 49, 63, 64, 65, 76, 77, 95]) buffer writes in a write queue

to allow read requests to aggressively utilize the memory bus. When

the write queue is full or is filled to a predefined level, the memory

scheduler switches to a write drain mode where it drains the write

queue either fully or to a predetermined level [49, 78, 83], in order to

prevent stalling the entire processor pipeline. During the write drain
mode, the memory bus can service only writes. In addition, switching

into and out of the write drain mode from the read mode induces

additional penalty in the DRAM protocol (called read-to-write and

write-to-read turnaround delays, tRTW and tWTR, approximately

7.5ns and 15ns, respectively [43]) during which no read or write

commands can be scheduled on the bus, causing valuable memory bus

cycles to be wasted. Therefore, frequent switches into the write drain
mode and long time spent in the write drain mode can significantly

slow down reads and can harm the performance of read-intensive

applications and the entire system [49].

This design of conventional memory schedulers is based on two

assumptions, which are generally sound for non-persistent applica-

tions. First, reads are on the critical path of application execution

whereas writes are usually not. This is sound when most non-

persistent applications abound with read-dependent arithmetic, logic,

and control flow operations and writes can be serviced from write

buffers in caches and in the memory controller. Therefore, most prior

memory scheduling schemes prioritize reads over writes. Second,

applications are usually read-intensive, and memory controllers can

delay writes without frequently filling up the write queues. Therefore,

optimizing the performance of writes is not as critical to performance

in many workloads as the write queues are large enough for such

read-intensive applications.

Unfortunately, these assumptions no longer hold when persistent

writes need to go through the same shared memory interface as non-

persistent requests. First, the ordering control of persistent writes

requires the serialization of the persistent write traffic to main

memory (e.g., via the use of memory barriers, as described in

Section 2.2). This causes the persistent writes, reads of in-flight

persistent writes, and computations dependent on these writes (and

potentially all computations after the persistent writes, depending on

the implementation) to be serialized. As such, persistent writes are
also on the critical execution path. As a result, simply prioritizing

read requests over persistent write requests can hurt system perfor-

mance. Second, persistent applications are write-intensive as opposed

to read-intensive. This is due to not only the persistent nature of data

manipulation, which might lead to more frequent memory updates,

but also the way persistence is guaranteed using multiple persistent

updates (i.e., to the original location as well as the alternate version of

the data in a redo log or a shadow copy, as explained in Section 2.2).

Because of these characteristics of persistent applications, existing

memory controllers are inefficient in handling them concurrently with

non-persistent applications. Figure 2 illustrates this inefficiency in a

system that concurrently runs KVStore with either the streaming or

the random application. This figure shows the fraction of memory

access cycles that are spent due to delays related to bus turnaround

between reads and writes as a function of the number of write queue

entries.5 The figure shows that up to 17% of memory bus cycles are

wasted due to frequent bus turnarounds, with a commonly-used 64-

entry write queue. We found that this is mainly because persistent

writes frequently overflow the write queue and force the memory

controller to drain the writes. Typical schedulers in modern processors

have only 32 to 64 write queue entries to buffer memory requests [30].

Simply increasing the number of write queue entries in the scheduler

is not a scalable solution [7].

20%
17%nd

10%

20%
KVStore+Streaming
KVStore+Random8%

s
Tu

rn
ar

ou
O

ve
rh

ea
d

0%
64 128 256 512

B
us

O

Write Queue Entries

Fig. 2. Fraction of memory access cycles wasted due to delays related to bus
turnaround between reads and writes.

In summary, conventional memory scheduling schemes, which pri-

oritize reads over persistent writes, become inefficient when persistent

and non-persistent applications share the memory interface. This

causes relatively low performance and fairness (as we show next).

3.3. Analysis of Prior and Naı̈ve Scheduling Policies

We have observed, in Section 2.3, that the persistent applications’

(e.g., KVStore’s) writes behave similarly to streaming reads. As

such, a natural idea would be to assign these persistent writes the
same priority as read requests, instead of deprioritizing them below

read requests, to ensure that persistent applications are not unfairly

penalized. This is a naı̈ve (yet simple) method of extending past

schedulers to potentially deal with persistent writes.

In this section, we provide a case study analysis of fairness

and performance of both prior schedulers (FR-FCFS [76, 77, 95]

and TCM [42]) and naı̈ve extensions of these prior schedulers

(FRFCFS-modified and TCM-modified) that give equal priority to

persistent reads and writes.6 Figure 3 illustrates fairness and system

performance of these schedulers for two workloads where KVStore

5Section 6 explains our system setup and methodology.
6Note that we preserve all the other ordering rules of FR-FCFS and TCM in

FRCFCS-modified and TCM-modified. Within each prioritization level, reads
and persistent writes are prioritized over non-persistent writes. For example,
with FRCFCS-modified, the highest priority requests are row-buffer-hit read
and persistent write requests, second highest priority requests are row-buffer-
hit non-persistent write requests.

is run together with streaming or random. To evaluate fairness, we

consider both the individual slowdown of each application [48] and

the maximum slowdown [20, 41, 42, 87] across both applications in

a workload. We make several major observations.

FR-FCFS FRFCFS-modified TCM TCM-modified
WL2WL1

2

3

4

3
4
5

Maximum Slowdown
Maximum Slowdown

ow
n

ow
n

WL2WL1

1.0

1.5

Sp
ee

du
p

29%23%

5% 0%

0

1

2

0
1
2

Sl
ow

do

Sl
ow

do

0 0

0.5

W
ei

gh
te

d
S 5% 0%

0
KVStore Streaming

0
KVStore Random

(a) (b) (c)

0.0
WL1 WL2

W

Fig. 3. Performance and fairness of prior and naı̈ve scheduling methods.

Case Study 1 (WL1 in Figure 3(a) and (c)): When KVStore
is run together with streaming, prior scheduling policies (FR-FCFS

and TCM) unfairly slow down the persistent KVStore. Because these

policies delay writes behind reads, and streaming’s reads with high

row-buffer locality capture a memory bank for a long time, KVStore’s

writes need to wait for long time periods even though they also

have high row buffer locality. When the naı̈ve policies are employed,

the effect is reversed: FRFCFS-modified and TCM-modified reduce

the slowdown of KVStore but increase the slowdown of streaming
compared to FRFCFS and TCM. KVStore performance improves

because, as persistent writes are the same priority as reads, its

frequent writes are not delayed too long behind streaming’s reads.

Streaming slows down greatly due to two major reasons. First, its

read requests are interfered much more frequently with the write

requests of KVStore. Second, due to equal read and persistent write

priorities, the memory bus has to be frequently switched between

persistent writes and streaming reads, leading to high bus turnaround

latencies where no request gets scheduled on the bus. These delays

slow down both applications but affect streaming a lot more because

almost all accesses of streaming are reads and are on the critical path,

and are affected by both read-to-write and write-to-read turnaround

delays whereas KVStore’s writes are less affected by write-to-read

turnaround delays. Figure 3(c) shows that the naı̈ve policies greatly

degrade overall system performance on this workload, even though

they improve KVStore’s performance. We find this system perfor-

mance degradation is mainly due to the frequent bus turnarounds.

Case Study 2 (WL2 in Figure 3(b) and (c)): KVStore and

random are two applications with almost exactly opposite BLP,

RBL, and write intensity. When these two run together, random
slows down the most with all of the four evaluated scheduling

policies. This is because random is more vulnerable to interfer-

ence than the mostly-streaming KVStore due to its high BLP, as

also observed in previous studies [42]. FRFCFS-modified slightly

improves KVStore’s performance while largely degrading random’s

performance due to the same reason described for WL1. TCM-

modified does not significantly affect either application’s performance

because three competing effects end up canceling any benefits. First,

TCM-modified ends up prioritizing the random-access random over

streaming KVStore in some time intervals, as it is aware of the high

vulnerability of random due to its high BLP and low RBL. Second,

at other times, it prioritizes the frequent persistent write requests

of KVStore over read requests of random due to the equal priority

of reads and persistent writes. Third, frequent bus turnarounds (as

discussed above for WL1) degrade both applications’ performance.

Figure 3(c) shows that the naı̈ve policies slightly degrade or not affect

overall system performance on this workload.

3.4. Summary and Our Goal

In summary, neither conventional scheduling policies nor their

naı̈ve extensions that take into account persistent writes provide high

fairness and high system performance. This is because they lead

to 1) frequent entries into write drain mode due to high intensity

of persistent writes, 2) resulting frequent bus turnarounds between

read and write requests that cause wasted bus cycles, and 3) memory

bandwidth underutilization during write drain mode due to low BLP

of persistent writes. These three problems are pictorially illustrated

in Figure 4(a) and (b), which depict the service timeline of memory

requests with conventional scheduling and its naı̈ve extension. This

illustration shows that 1) persistent writes heavily access Bank-1,

leading to high bandwidth underutilization with both schedulers,

2) both schedulers lead to frequent switching between reads and

writes, and 3) the naı̈ve scheduler delays read requests significantly

because it prioritizes persistent writes, and it does not reduce the

bus turnarounds. Our evaluation of 18 workload combinations (in

Section 7) shows that various conventional and naı̈ve scheduling

schemes lead to low system performance and fairness, due to these

three reasons. Therefore, a new memory scheduler design is needed to

overcome these challenges and provide high performance and fairness

in a system where the memory interface is shared between persistent

and non-persistent applications. Our goal in this work is to design

such a scheduler (Section 4).

Time

RBank 1 W W W W

Bank 2

W W

R

R R

Write
Queue

Full

W R

Read
Batch

Serviced

Write
Batch

Serviced

Time

RBank 1 W WW

WBank 2 WWR W

R
Saved Time

R R

Persistent write striding:
Increasing BLP of
persistent writes

NaÏve
Scheduling

(b)

FIRM
(c)

1 Persistence-aware
memory scheduling:

Reducing write queue drain
and bus turnarounds

2

Time

RBank 1 W W W W

Bank 2

Bus Turnaround
W W

R

R R

Write
Queue

Full

WR

Read
Batch

Serviced

Conventional
Scheduling

(a)
Write
Batch

Serviced

R

Write
Queue

Full

R

R

Persistent Writes

Streaming Reads
Random Reads
SR

R
W

Fig. 4. Example comparing conventional, naı̈ve, and proposed schemes.

4. FIRM DESIGN

Overview. We propose FIRM, a memory control scheme that aims

to serve requests from persistent and non-persistent applications in

a fair and high throughput manner at the shared memory interface.

FIRM introduces two novel design principles to achieve this goal,

which are illustrated conceptually in Figure 4(c). First, persistent
write striding ensures that persistent writes to memory have high

BLP such that memory bandwidth is well-utilized during the write
drain mode. It does so by ensuring that consecutively-issued groups of

writes to the log or shadow copies in persistent memory are mapped

to different memory banks. This reduces not only the duration of the

write drain mode but also the frequency of entry into write drain
mode compared to prior methods, as shown in Figure 4(c). Second,

persistence-aware memory scheduling minimizes the frequency of

write queue drains and bus turnarounds by scheduling the queued up

reads and writes in a fair manner. It does so by balancing the amount

of time spent in write drain mode and read mode, while ensuring

that the time spent in each mode is long enough such that the wasted

cycles due to bus turnaround delays are minimized. Persistence-aware
memory scheduling therefore reduces: 1) the latency of servicing

the persistent writes, 2) the amount of time persistent writes block

outstanding reads, and 3) the frequency of entry into write queue
drain mode. The realization of these two principles leads to higher

performance and efficiency than conventional and naı̈ve scheduler

designs, as shown in Figure 4.

FIRM design consists of four components: 1) request batching,

which forms separate batches of read and write requests that go to the

same row, to maximize row buffer locality, 2) source categorization,

which categorizes the request sources for effective scheduling by

distinguishing various access patterns of applications, 3) persistent
write striding, which maximizes BLP of persistent requests, and

4) persistence-aware memory scheduling, which maximizes perfor-

mance and fairness by appropriately adjusting the number of read

and write batches to be serviced at a time. Figure 5(a) depicts an

overview of the components, which we describe next.

4.1. Request Batching

The goal of request batching is to group together the set of requests

to the same memory row from each source (i.e., process or hardware

thread context, as described below in Section 4.2). Batches are formed

per source, similarly to previous work [7, 65], separately for reads and

writes. If scheduled consecutively, all requests in a read or write batch

(except for the first one) will hit in the row buffer, minimizing latency

and maximizing memory data throughput. A batch is considered to

be formed when the next memory request in the request buffer of a

source is to a different row [7].

4.2. Source Categorization

To apply appropriate memory control over requests with various

characteristics, FIRM dynamically classifies the sources of memory

requests into four: non-intensive, streaming, random, persistent. A

source is defined as a process or thread during a particular time

period, when it is generating memory requests in a specific manner.

For example, a persistent application is considered a persistent source

when it is performing persistent writes. It may also be a non-intensive,

a streaming, or a random source in other time periods.

FIRM categorizes sources on an interval basis. At the end of an

interval, each source is categorized based on its memory intensity,

RBL, BLP, and persistence characteristics during the interval, pre-

dicting that it will exhibit similar behavior in the next interval.7

The main new feature of FIRM’s source categorization is its detec-

tion of a persistent source (inspired by the discrepant characteristics

of persistent applications described in Section 2.3). Table 2 depicts the

rules FIRM employs to categorize a source as persistent. FIRM uses

program hints (with the software interface described in Section 5)

to determine whether a hardware context belongs to a persistent

application. This ensures that a non-persistent application does not

get classified as a persistent source. If a hardware context belonging

to such an application is generating write batches that are larger

than a pre-defined threshold (i.e., has an average write batch size

greater than 30 in the previous interval) and if it inserts memory

barriers between memory requests (i.e., has inserted at least one

memory barrier between write requests in the previous interval),

FIRM categorizes it as a persistent source.

7We use an interval size of one million cycles, which we empirically find to provide a
good tradeoff between prediction accuracy, adaptivity to workload behavior, and overhead
of categorization.

W

Request Batching

Persistent Write Striding
Persistence-aware Memory Scheduling

Memory Requests

Offset

W W

Buffer Group (Row-buffer Size)

... W ...

A
 B

at
ch

Data Buffer
(Log or Shadow Copies)

W W W W W W... ...

A
 B

at
ch

Persistent writes
issued to

a contiguous
memory space

Strided persistent
writes scheduled

to memory

Persistence-aware memory scheduling policy.(c)(b) Persistent write striding.FIRM components.(a)
Bank 1 Bank 2

Write Queue

W2
W2
W2
W1
W1
W1

W2
W2
W1
W1

Bank 3

W2
W1
W1 W1

W2

Bank 4

Ti
m

e

Read Queue

Bank 1 Bank 2

R2

R1

R2
R2
R2
R1

R2

Bank 3

R3
R1
R1

R3
R3

R1
Bank 4

R3
R3

Ti
m

e

tw
1

tw
2

tr
1

tr
2

tr
3 Ready read batches: R1, R2, R3

Possible batch groups:
1. [R1]
2. [R1, R2]
3. [R1, R2, R3]
Which batch group to schedule?

tr
max = tr3

tw
max = tw2 Ready persistent write batches: W1, W2

Possible batch groups:
1. [W1]
2. [W1, W2]
Which batch group to schedule?

R Streaming Reads R Random Reads
W Persistent Writes (Strided)

tr
j

tw
j

Schedule 1 read batch group and 1 persistent
write batch group in each time interval.

Source Categorization
Non-

intensive Random Streaming Persistent

Fig. 5. Overview of the FIRM design and its two key techniques.

Table 2. Rules used to identify persistent sources.

A thread is identified as a persistent source, if it
1: belongs to a persistent application;
2: is generating write batches that are larger than a

pre-defined threshold in the past interval;
3: inserts memory barriers between memory requests.

Sources that are not persistent are classified into non-intensive,

streaming, and random based on three metrics: MPKI (memory

intensity), BLP, RBL. This categorization is inspired by previous

studies [42, 63], showing varying characteristics of such sources. A

non-intensive source has low memory intensity. We identify these

sources to prioritize their batches over batches of other sources;

this maximizes system performance as such sources are latency

sensitive [42]. Streaming and random sources are typically read

intensive, having opposite BLP and RBL characteristics (Table 1).8

This streaming and random source classification is used later by

the underlying scheduling policy FIRM borrows from past works

to maximize system performance and fairness (e.g., TCM [42]).

4.3. Persistent Write Striding

The goal of this mechanism is to reduce the latency of servicing

consecutively-issued persistent writes by ensuring they have high

BLP and thus fully utilize memory bandwidth. We achieve this goal

by striding the persistent writes across multiple memory banks via

hardware or software support.

The basic idea of persistent write striding is simple: instead of

mapping consecutive groups of row-buffer-sized persistent writes to

consecutive row-buffer-sized locations in a persistent data buffer (that

is used for the redo log or shadow copies in a persistent application),

which causes them to map to the same memory bank, change the

mapping such that they are strided by an offset that ensures they

map to different memory banks.

Figure 5(b) illustrates this idea. A persistent application can still

allocate a contiguous memory space for the persistent data buffer. Our

method maps the accesses to the data buffer to different banks in a

strided manner. Contiguous persistent writes of less than or equal

to the row-buffer size are still mapped to contiguous data buffer

space with of a row buffer size (called a “buffer group”) to achieve

high RBL. However, contiguous persistent writes beyond the size of

the row-buffer are strided by an offset. The value of the offset is

determined by the position of bank index bits used in the physical

8In our experiments, a hardware context is classified as non-intensive if its MPKI< 1.
A hardware context is classified as streaming if its MPKI>1, BLP<4 and RBL>70%.
All other hardware contexts that are not persistent are classified as random.

Higher-order address bits 20 19 18 17 16 15 14 013

Fig. 6. Physical address to bank mapping example.

address mapping scheme employed by the memory controller. For

example, with the address mapping scheme in Figure 6, the offset

should be 128K bytes if we want to fully utilize all eight banks

with persistent writes (because a contiguous memory chunk of 16KB

gets mapped to the same bank with this address mapping scheme,

i.e., the memory interleaving granularity is 16KB across banks). This

persistent write striding mechanism can be implemented in either the

memory controller hardware or a user-mode library, as we describe

in Section 5.

Note that the persistent write striding mechanism provides a

deterministic (re)mapping of persistent data buffer physical addresses

to physical memory addresses in a strided manner. The remapped

physical addresses will not exceed the boundary of the original data

buffer. As a result, re-accessing or recovering data at any time from

the persistent data buffer is not an issue: all accesses to the buffer go

through this remapping.

Alternative Methods. Note that commodity memory controllers

randomize higher-order address bits to minimize bank conflicts

(Figure 6). However, they can still fail to map persistent writes to

different banks because as we showed in Section 3.1, persistent writes

are usually streaming and hence they are likely to map to the same

bank. It is impractical to improve the BLP of persistent writes by

aggressively buffering them due to two reasons: 1) The large buffering

capacity required. For example, we might need a write queue as large

as 128KB to utilize all eight banks of a DDR3 channel with the

address mapping shown in Figure 6. 2) The region of concurrent

contiguous writes may not be large enough to cover multiple banks

(i.e., there may not be enough writes present to different banks).

Alternatively, kernel-level memory access randomization [69] may

distribute writes to multiple banks during persistent application

execution. However, the address mapping information can be lost

when the system reboots, leaving the BA-NVM with unrecoverable

data. Finally, it is also prohibitively complex to randomize the bank

mapping of only persistent writes by choosing a different set of

address bits as their bank indexes, i.e., maintaining multiple address

mapping schemes in a single memory system. Doing so requires

complex bookkeeping mechanisms to ensure correct mapping of

memory addresses. For these very reasons, we have developed the

persistent write striding technique we have described.

4.4. Persistence-Aware Memory Scheduling

The goal of this component is to minimize write queue drains and

bus turnarounds by intelligently partitioning memory service between

reads and persistent writes while maximizing system performance

and fairness. To achieve this multi-objective goal, FIRM operates

at the batch granularity and forms a schedule of read and write

batches of different source types: non-intensive, streaming, random,

and persistent. To maximize system performance, FIRM prioritizes

non-intensive read batches over all other batches.

For the remaining batches of requests, FIRM employs a new policy

that determines 1) how to group read batches and write batches

and 2) when to switch between servicing read batches and write

batches. FIRM does this in a manner that balances the amount of

time spent in write drain mode (servicing write batches) and read
mode (servicing read batches) in a way that is proportional to the

read and write demands, while ensuring that time spent in each mode

is long enough such that the wasted cycles due to bus turnaround

delays are minimized. When the memory scheduler is servicing read

or persistent write batches, in read mode or write drain mode, the

scheduling policy employed can be any of the previously-proposed

memory request scheduling policies (e.g., [26, 41, 42, 49, 64, 65, 76,

77, 95]) and the ordering of persistent write batches is fixed by the

ordering control of persistent applications. The key novelty of our

proposal is not the particular prioritization policy between requests,

but the mechanism that determines how to group batches and when to

switch between write drain mode and read mode, which we describe

in detail next.9

To minimize write queue drains, FIRM schedules reads and per-

sistent writes within an interval in a round-robin manner with the

memory bandwidth (i.e., the time interval) partitioned between them

based on their demands. To prevent frequent bus turnarounds, FIRM

schedules a group of batches in one bus transfer direction before

scheduling another group of batches in the other direction. Figure 5(c)

illustrates an example of this persistence-aware memory scheduling

policy. Assume, without loss of generality, that we have the following

batches ready to be scheduled at the beginning of a time interval: a

random read batch R1, two streaming read batches R2 and R3, and

two (already-strided) persistent write batches W1 and W2. We define a

batch group as a group of batches that will be scheduled together. As

illustrated in Figure 5(c), the memory controller has various options

to compose the read and write batch groups. This figure shows three

possible batch groups for reads and two possible batch groups for

writes. These possibilities assume that the underlying memory request

scheduling policy dictates the order of batches within a batch group.

Our proposed technique thus boils down to determining how many

read or write batches to be grouped together to be scheduled in the

next read mode or write drain mode.

We design a new technique that aims to satisfy the following two

goals: 1) servicing the two batch groups (read and write) consumes

durations proportional to their demand, 2) the total time spent servic-

ing the two batch groups is much longer than the bus turnaround time.

The first goal is to prevent the starvation of either reads or persistent

writes, by fairly partitioning the memory bandwidth between them.

The second goal is to maximize performance by ensuring minimal

mount of time is wasted on bus turnarounds.

Mathematically, we formulate these two goals as the following

9Note that most previous memory scheduling schemes focus on read requests and
do not discuss how to handle switching between read and write modes in the memory
controller, implicitly assuming that reads are prioritized over writes until the write queue
becomes full or close to full [49].

following two inequalities:{
tr

tw
≈ trmax

twmax
tRTW+tWTR

tr+tw
≤ μturnaround

(1)

where tr and tw are the times to service a read and a persistent

write batch group, respectively (Figure 5(c)). They are the maximum

service time for the batch group at any bank i:{
tr = maxi{Hr

i t
rhit
i +Mr

i t
rmiss
i },

tw = maxi{Hw
i twhit

i +Mw
i twmiss

i } (2)

where trhit, twhit, trmiss, and twmiss are the times to service a row

buffer hit/miss read/write request; Hr
i and Hw

i are the number of

row-buffer read/write hits; Mr
i and Mw

i are row-buffer read/write

misses. trmax and twmax are the maximum times to service all the

in-flight read and write write requests (illustrated in Figure 5 (c)).

μturnaround is a user-defined parameter to represent the maximum

tolerable fraction of bus turnaround time out of the total service time

of memory requests.

The goal of our mechanism is to group read and write batches (i.e.,

form read and write batch groups) to be scheduled in the next read
mode and write drain mode in a manner that satisfies Equation 1.

Thus, the technique boils down to selecting from the set of possible

read/write batch groups such that they satisfy trnext (the duration of

the next read mode) and twnext (the duration of the next write drain
mode) as indicated by the constraints in Equation 3 (which is obtained

by solving the inequality in Equation 1). Our technique, Algorithm 1,

forms a batch group that has a minimum service duration that satisfies

the constraint on the right hand side of Equation 3.10

⎧⎨
⎩

trnext = min
j

trj , trj ≥ (tRTW+tWTR)/μturnaround
1+twmax/trmax

twnext = min
j

twj , twj ≥ (tRTW+tWTR)/μturnaround
1+trmax/twmax

(3)

Algorithm 1 Formation of read and write batch groups.

Input: tRTW , tWTR, and μturnaround.
Output:
The read batch group to be scheduled, indicated by trnext;
The persistent write batch group to be scheduled, indicated by twnext.
Initialization:
kr ← number of read batch groups;
kw ← number of persistent write batch groups;
for j ← 0 to kr − 1 do

Calculate trj with Equation 2;
end for
for j ← 0 to kw − 1 do

Calculate twj with Equation 2;
end for
trmax ← kr−1

max
j=0

trj ; twmax ← kw−1
max
j=0

twj ;

Calculate trnext and twnext with Equation 3;

5. IMPLEMENTATION

5.1. Software-Hardware Interface

FIRM software interface provides memory controllers with the

required information to identify persistent sources during the source

categorization stage. This includes 1) the identification of the persis-

tent application, 2) the communication of the execution of memory

10This algorithm can be invoked only once at the beginning of each interval
to determine the duration of consecutive read and write drain modes for the
interval.

barriers. We offer programmers two options to define persistent

applications: 1) declaring an entire application as persistent, or 2)

specifying a thread of an application to perform persistent updates,

i.e., a persistent thread. With the first option, programmers can

employ the following software interface (similar to Kiln [92]):

#pragma persistent_memory

With the second option, programmers can annotate a particular

thread with a persistent attribute when they create the thread.

The software interface is translated to ISA instructions with simple

modifications to compilers and the ISA. Similar ISA extensions have

been employed by previous studies [32, 35, 92]. Once a processor

reads software’s input of designating a persistent application/thread,

it signals each memory controller by setting persistent thread reg-
isters to indicate the presence of such an application/thread. Each

persistent thread register stores log2Nhwthreads-bit hardware thread

identifiers (IDs).

The mechanism to detect memory barriers depends on the CPU

architecture and is already present in many processors [56].11 The

processor communicates the execution of a barrier needs to the

memory controller.

5.2. Implementing Persistent Write Striding

Our persistent write striding mechanism can be implemented

by modifying memory controller hardware or the logging/shadow

update operations in a user-mode library (e.g., employed by

Mnemosyne [90]). The two methods trade off between hardware

overhead and low-level software implementation effort.

To implement persistent write striding in the memory controller,

we employ a pair of registers and a counter for each persistent

hardware thread. The two registers, referred to as start address and

end address, initially record the starting and the end addresses of a

contiguous persistent memory region (a data buffer storing the redo

log or shadow copies) allocated by a persistent application/thread

and currently being accessed. With the two registers, the memory

controller can identify the boundary of the data buffer when the

persistent application starts writing to it. These registers are reset

when a new data buffer is allocated. A 6-bit counter, referred to

as the intra-group index, is used to determine when a buffer group

(Figure 5(b)) is fully occupied. It records the number of appended log

or shadow updates within a group. When the value of the intra-group

index reaches the end of a buffer group, the memory controller will

map the coming write requests to the next group in the data buffer

by striding the physical address with an offset. At this time point,

we also update the start address register with the starting address of

its neighboring buffer group. When the next strided physical address

exceeds the end of the entire data buffer, the corresponding persistent

update will start to write to the first empty buffer group indicated by

the start address register.

We can avoid the above hardware overhead by implement-

ing persistent write striding in a user-mode library. For exam-

ple, with logging-based persistent applications, we can modify the

log_append() function(s) [90] to stride for an offset with each

log append request defined by programmers.

5.3. Tracking Memory Access Characteristics

Table 3 lists the parameters to be tracked for each executing thread

at the beginning of each time interval. We employ a set of counters

and logic in memory controllers to collect the parameters. Some of

11For example, x86 processors use the memory fence instruction mfence, which
prevents progress of the thread until the store buffer is drained [56].

the counters have already been implemented in previous work [42,

65], which also need to track MPKI, BLP, and RBL. Our design adds

a set of request counters in each memory controller, each belonging

to a hardware thread context, to track the read and write batch sizes

of each source. We reset the counters at the beginning of each time

interval, after the memory request scheduling decision is made.

Table 3. Parameters tracked for each executing thread.

Parameters Usage
MPKI, BLP, RBL To categorize non-intensive,

streaming, and random sources

Size of each write batch To categorize persistent sources;
to calculate tw (Section 4.4)

Size of each read batch To calculate tr (Section 4.4)

5.4. Area Overhead

Each memory controller maintains its own per-thread hardware

counters and registers. Thus, it can independently make scheduling

decisions for its local requests. Consequently, our design does not

require a centralized arbiter to coordinate all the controllers. Table 4

lists the storage required by registers and counters described in this

section, in each memory controller. FIRM requires adding 1192

(2400) bits in each memory controller, if the processor has 8 (16)

hardware threads. The complexity of the scheduling algorithm is

comparable to those of prior designs [42, 65].

Table 4. Storage required by FIRM in each memory controller. Nhwthreads

is the number of hardware contexts.

Register/Counter Name Storage (bits)
Persistent thread registers log2Nhwthreads ×Nhwthreads

Start address registers 64×Nhwthreads

End address registers 64×Nhwthreads

Intra-group index counters 6×Nhwthreads

Request counters 2× 6×Nhwthreads

6. EXPERIMENTAL SETUP

6.1. Simulation Framework

We conducted our experiments using McSimA+ [4], a Pin-

based [55] cycle-level multi-core simulator. Table 5 lists the param-

eters of the processor and memory system used in our experiments.

Each processor core is similar to one of the Intel Core i7 cores [3].

The processor incorporates SRAM-based volatile private and shared

caches. The cores and L3 cache banks communicate with each other

through a crossbar interconnect. The processor employs a two-level

hierarchical directory-based MESI protocol to maintain cache coher-

ence. The BA-NVM is modeled as off-chip DIMMs compatible with

DDR3.12 Except for sensitivity studies, we conservatively employ

the worst-case timing parameters of the BA-NVM generated by

NVSim [24].

6.2. Benchmarks

Table 6 lists the characterization results of our benchmarks when

run alone. We select seven non-persistent applications with different

memory intensity, BLP, and RBL: four single-threaded applications

from SPEC CPU2006 [82] (mcf, lbm, leslie3d, and povray) and three

multithreaded benchmarks from PARSEC 3.0 [11] (x264, ferret, and

12Everspin recently launched DDR3-compatible STT-MRAM components [36], which
transfer data at a speed comparable to current DDR3-1600.

Table 5. Parameters of the evaluated multi-core system.

Processor Similar to Intel Core i7 / 22 nm

Cores 4 cores, 2.5GHz, 2 threads per core
L1 Cache (Private) 64KB, 4-way, 64B lines, 1.6ns latency
L2 Cache (Private) 256KB, 8-way, 64B lines, 4.4ns latency
L3 Cache (Shared) Multi-banked, 2MB/core, 16-way,

64B lines, 10ns latency
Memory Controller 64-/64-entry read/write queues

STT-MRAM, 8GB, 8 banks,
BA-NVM DIMM 2KB row, 36ns row-buffer hit,

65/76ns read/write row-buffer conflict

dedup). Currently, persistent applications are not available in public

benchmark suites. Similar to recent studies on persistent memory [16,

38, 52, 70, 92], we constructed three benchmarks with persistent

applications on common data structures used in file systems and

databases. Each persistent application searches for a node with a

randomly generated key in three different data structures (a B+ tree,

a hash table, and an array), deletes the node if it exists, and inserts

it otherwise. Redo logging is used to maintain versioning, although

FIRM is applicable to shadow copies, too, since its techniques are

orthogonal to versioning and write order control mechanisms.

Table 6. Benchmarks. The second numbers in the last three rows belong to
the persistence phase.

MPKI WR% BLP RBL
mcf 32.0 25.6% 6.0 41.1%

lbm 28.2 42.0% 2.8 78.7%

leslie3d 15.7 4.0% 1.7 90.8%

povray 0.1 6.0% 1.2 77.6%

x264 22.5 26.2% 0.7 87%

ferret 12.6 13.9% 4.6 58.2%

dedup 20.2 20.8% 1.6 90.1%

Btree 26.2, 71.9 22.0%, 92.2% 0.4, 0.2 57.6%, 97.6%

Hash 37.1, 62.7 42.6%, 95.3% 0.2, 0.1 95.6%, 98.0%

SPS 11.0, 60.5 35.2%, 89.0% 0.2, 0.1 65.1%, 93.4%

Table 7 shows the evaluated workload combinations. W1 trough

W6 are non-persistent workloads with three threads. W1 through

W3 consist of single-threaded workloads with different fractions of

streaming and random memory accesses. W4 through W6 each runs

four threads. We constructed 18 workloads mixed by persistent and

non-persistent applications to be used in our experiments: W1 through

W3 are combined with persistent applications running one thread

(each application is mapped to one processor core). W4 through

W6 are combined with persistent applications running four threads,

leading to a total of eight threads mapped to four two-threaded cores.

6.3. Metrics

We evaluate system throughput with weighted speedup [29, 80]:

WeightedSpeedup =
∑
i

Throughputsharedi

Throughputalone
i

For SPEC CPU2006, Throughputi is calculated as instruction

throughput, i.e., number of executed instructions per cycle. The

throughput of x264 is calculated by frame rate. The throughput

of the rest of PARSEC benchmarks and persistent applications is

calculated by operation throughput, e.g., the number of completed

search, insert, and delete operations per cycle. We evaluate unfairness

using maximum slowdown [20, 41, 42, 87]:

MaximumSlowdown = max
i

Throughputalone
i

Throughputsharedi

7. RESULTS

We present our evaluation results and their analyses. We set

μturnaround = 2% in all our experiments.

7.1. Performance and Fairness

We demonstrate system throughput and fairness of FIRM by

comparing it with various prior memory scheduling mechanisms in

Figure 7. FR-FCFS [76, 77, 95], PAR-BS [65] and TCM [42] are

conventional memory scheduling schemes. TCM-modified is a naı̈ve

extended scheduling policy discussed in Section 3.3. NVMDuet is a

memory scheduling policy recently proposed for persistent memory

systems [52]. It resolves the contention between only persistent

and non-persistent writes. To illustrate the performance and fair-

ness benefits of FIRM’s two components, persistent write striding
and persistence-aware memory scheduling, we collect the results

of applying only persistent write striding (FIRM-Strided) and both

(FIRM-Strided-Scheduling) separately. In both cases, we assume the

request prioritization policy in FIRM is TCM, which offers the

best performance and fairness across various conventional and naı̈ve

schemes. We make three major observations.

First, because writes are already deprioritized in our baseline

schedulers, NVMDuet, which mainly tackles the contention between

persistent and non-persistent writes, can improve system performance

by only 1.1% (a maximum of 2.6%) and reduces unfairness by 1.7%

on average compared to TCM (see Section 9 for more detail). It

shifts the most slowed down application from non-persistent ones

to the persistent ones in workload combinations Btree-W1, Btree-
W2, SPS-W1, and SPS-W2.13 Second, FIRM-Strided can effectively

accelerate persistent writes by scheduling them to multiple banks.

It increases system performance by 10.1% on average compared to

TCM.Third, FIRM, with both of its components, provides the highest

performance and fairness of all evaluated scheduling policies on

all workloads. Hence, the benefits of FIRM are consistent. Overall,

compared to TCM, FIRM increases average system performance and

fairness by 17.9% and 23.1%, respectively. We conclude that FIRM

is the most effective policy in mitigating the memory contention

between persistent and non-persistent applications.

7.2. Bus Turnaround Overhead

Figure 8 compares the bus turnaround overhead (i.e., the frac-

tion of total memory access time spent on bus turnarounds) of

FIRM and TCM. With conventional and naı̈ve scheduling schemes,

including TCM, the frequency of bus turnarounds is determined

by the read/write request batch sizes and the frequency of write

queue drains. Both smaller request batches and frequent write queue

drains lead to frequent bus turnarounds. We observe that FIRM’s

two components can effectively reduce the bus turnaround overhead.

FIRM-Strided reduces the bus turnaround overhead of a subset of

workloads, where the frequency of bus turnarounds is dictated by the

frequency of write queue drain. On average, FIRM-Strided reduces

bus turnaround overhead by 12% over TCM. Our persistence-aware

memory scheduling policy can reduce the bus turnaround frequency

even further by dividing bandwidth carefully between read and write

batch groups. Therefore, FIRM-Strided-Scheduling, which combines

the two FIRM components, reduces bus turnaround overhead by

84% over TCM. We conclude that FIRM can effectively minimize

wasted cycles due to bus turnarounds caused by ineffective handling

of persistent applications by past memory schedulers.

13The low performance and fairness benefits are consistent, so we do not show results
of NVMDuet in the rest of this section.

Table 7. Workloads mixed with various persistent and non-persistent applications.

Non-persistent Workloads Mix of Persistent and Non-persistent Applications
Index Benchmarks Index Benchmark W1 W2 W3 W4 W5 W6
W1 mcf, lbm, povray W4 x264 Btree Btree-W1 Btree-W2 Btree-W3 Btree-W4 Btree-W5 Btree-W6

W2 mcf, lbm, leslie3d W5 ferret Hash Hash-W1 Hash-W2 Hash-W3 Hash-W4 Hash-W5 Hash-W6

W3 mcf(2), leslie3d W6 dedup SPS SPS-W1 SPS-W2 SPS-W3 SPS-W4 SPS-W5 SPS-W6

3 4
FR-FCFS PAR-BS TCM TCM-modified NVMDuet FIRM-Strided FIRM-Strided-Scheduling

up w
n2.0

2 2
2.6
3.0
3.4

Sp
ee

d

ow
do

w

1 4
1.6
1.8

1 0
1.4
1.8
2.2

… … … … … … … … … … … …ht
ed

S

um
 S

lo

1 0
1.2
1.4

1.0

tre
e-

…

tre
e-

…

tre
e-

…

tre
e-

…

tre
e-

…

tre
e-

…

as
h-

…

as
h-

…

as
h-

…

as
h-

…

as
h-

…

as
h-

…

S-
W

1

S-
W

2

S-
W

3

S-
W

4

S-
W

5

S-
W

6

AV
G

W
ei

g h

ax
im

u1.0

e-
W

1

e-
W

2

e-
W

3

e-
W

4

e-
W

5

e-
W

6

h-
W

1

h-
W

2

h-
W

3

h-
W

4

h-
W

5

h-
W

6

S-
W

1

S-
W

2

S-
W

3

S-
W

4

S-
W

5

S-
W

6

AV
G

Bt Bt Bt Bt Bt Bt H H H H H H

SP
S

SP
S

SP
S

SP
S

SP
S

SP
S A

(a) (b)

M
a

B
tre

e

B
tre

e

B
tre

e

B
tre

e

B
tre

e

B
tre

e

H
as

h

H
as

h

H
as

h

H
as

h

H
as

h

H
as

h

SP
S

SP
S

SP
S

SP
S

SP
S

SP
S A

Fig. 7. System performance and fairness of FIRM versus various memory scheduling schemes.

rn
ar

ou
nd

ea
d

(%
)

6
8

10
12
14

TCM FIRM-S

B
us

 T
ur

O
ve

rh

0
2
4
6

e-
W

1
e-

W
2

e-
W

3
e-

W
4

e-
W

5
e-

W
6

h-
W

1

B
tre

B
tre

B
tre

B
tre

B
tre

B
tre H
as

Strided FIRM-Strided-Scheduling

h
W

1
h-

W
2

h-
W

3
h-

W
4

h-
W

5
h-

W
6

S-
W

1
S-

W
2

S-
W

3
S-

W
4

S-
W

5
S-

W
6

AV
G

H
as

H
as

H
as

H
as

H
as

H
as SP

S
SP

S
SP

S
SP

S
SP

S
SP

S

Fig. 8. Bus turnaround overhead.

7.3. Sensitivity to BA-NVM Latency

Recently published results on BA-NVM latencies [15, 39, 68, 86]

suggest that the range of read latency is between 32ns and 120ns
across various BA-NVM technologies, and the range of write latency

is between 40ns and 150ns. Therefore, we sweep the read and write

row-buffer conflict latencies from 0.5× to 2× of the parameters

listed in Table 5. For example, R2W2 represents doubled read and

write latencies (for row-buffer conflicts). As shown in Figure 9 and

Figure 10, FIRM provides the best average system performance and

fairness of all studied scheduling schemes regardless of the BA-NVM

latency. We conclude that FIRM can be effective with a wide variety

of BA-NVM technologies and design points.

ee
du

p

3 0
3.5

FR-FCFS
TCM
FIRM-Strided

ei
gh

te
d

Sp
e

0.0
0.5
1.0
1.5
2.0
2.5
3.0

W
e

R0.5W0.5 R0.5W

PAR-BS
TCM-modified
FIRM-Strided-Scheduling

W1 R1W1 R1W2 R2W2
Fig. 9. System performance with various BA-NVM latencies.

do
w

n FR-FCFS
TCM
FIRM St id d

m
um

 S
lo

w
d

0.5
1.0
1.5
2.0

FIRM-Strided

M
ax

i

0.0
R0.5W0.5 R0.5

PAR-BS
TCM-modified

d FIRM St id d S h d lid FIRM-Strided-Scheduling

5W1 R1W1 R1W2 R2W2
Fig. 10. Fairness with various BA-NVM latencies.

7.4. Sensitivity to BA-NVM Row-buffer Size

BA-NVMs can adopt various row-buffer sizes [45, 58]. We perform

a sensitivity study with 1KB, 2KB (our default), 4KB, and 8KB row-

buffer sizes. With each row-buffer size, we tune the granularity of

persistent updates (the size of one log entry or one shadow update) to

be 0.5×, 1×, 1.5×, and 2× of row-buffer size as shown in the x-axis

of Figure 11. We investigated persistent applications implemented

with redo logging and shadow updates, respectively. Logging-based

persistent applications allocate log entries in the contiguous physical

address space. Therefore, persistent writes fill the BA-NVM row

by row, regardless of the variation of value/element size. As a

result, we observe that FIRM yields similar results with various

row-buffer sizes for workloads that contain logging-based persistent

applications (shown in Figure 11). The large performance and fairness

improvements of FIRM are consistent, regardless of the row buffer

size for such workloads.

FR FCFS PAR BS TCM

2 6

FR-FCFS PAR-BS TCM
TCM-modified FIRM-Strided FIRM-Strided-Scheduling

1.8

1 8
2.2
2.6

1 4
1.6

um ow
n

ht
ed

du
p

1.4
1.8

1.2
1.4

M
ax

im
lo

w
do

W
ei

gh
Sp

ee
d

1.0
0.5x 1x 1.5x 2x

1.0
0.5x 1x 1.5x 2x

M SW S

Fig. 11. Effect of BA-NVM row-buffer size.

FIRM’s benefits with shadow update based persistent applications

(not shown) depend on the relationship between the size of a per-

sistent update and the row-buffer size. When the size of a persistent

update is larger than the row-buffer size, the persistent update will

fill the row buffer. Therefore, we observe similar results in such

workloads as with logging-based persistent applications. We conclude

that the benefits of FIRM are robust to variation in row buffer

sizes, assuming persistent applications fully utilize the full row buffer

during persistent updates.

7.5. Scalability with Number of Threads

Figure 12 demonstrates that FIRM outperforms all evaluated mem-

ory scheduling schemes on both system performance and fairness,

when the number of threads varies from two to 16 (by employing one

to eight processor cores).14 In fact, FIRM benefits increase with more

threads, due to increased interference between persistent and non-

persistent applications. FIRM effectively reduces such interference.

We conclude that FIRM benefits are robust to thread count.

14These average results are generated using multithreaded workloads, i.e., various
persistent applications combined with W4, W5, and W6. Each persistent application and
each of W4, W5, W6 executes the same number of threads as the number of cores when
thread count changes.

8
6
7

do
w

n

du
p

2

4

6

1
2
3
4
5
6

m
um

 S
lo

w
d

gh
te

d
Sp

ee
d

0
2 4 8 16

0
1

2M
ax

i

W
ei

Number of Threa

FR-FCFS

PAR-BSS

TCM

TCM-modified

FIRM StridedFIRM-Strided

FIRM-Strided-
Scheduling

2 4 8 16
ads

Fig. 12. Effect of different number of threads.

8. DISCUSSION

BA-NVM Endurance. Among various BA-NVM technologies,

STT-MRAM has near-SRAM endurance (> 1015) [25, 44]. There-

fore, endurance is not an issue in our implementation. Furthermore,

FIRM does not apply any memory relocation in BA-NVM. Persistent
write striding remaps memory accesses within the range of the phys-

ical address space allocated by persistent applications. Consequently,

FIRM can be integrated with address-relocation based wear leveling

mechanisms [72, 79] to address endurance issues, if the system adopts

BA-NVMs with worse endurance, e.g., PCRAM (105-109) [5] and

ReRAM (105-1011) [40, 51].

Use Cases. Many scenarios are possible in general-purpose com-

puting where persistent and non-persistent applications run concur-

rently. We provide two examples. First, in a multithreaded memory-

hungry web browser application, BA-NVM can accommodate two

types of threads concurrently: a front-end browser tab that uses

the BA-NVM as working memory; a backend browser thread that

caches user data to a persistent database [38]. Second, such mixing

of applications can exist in consolidated cloud computing workloads,

where various applications are packed in a limited number of servers.

For example, one server can concurrently execute 1) a text search

across terabyte-scale documents using in-memory indices and 2)

a backend in-memory persistent file system. Many other examples

abound in various domains of computing.

9. RELATED WORK

Hardware resource contention in persistent memory systems re-

ceived attention only in very recent works, which studied shared

processor caches [38] and shared memory interface [52].

Kannan et al. observed that concurrently-running persistent and

non-persistent applications tend to compete for the shared processor

caches due to the doubled write requests issued by persistent ap-

plications to maintain versioning [38]. The study proposed a cache

partitioning mechanism to address this issue.15 Since FIRM addresses

the contention at the memory interface, it can be combined with the

mechanisms from [38]. Since all persistent writes need to go through

the shared memory interface at some point, contention in shared

memory can be a more common case in future memory-bandwidth-

limited persistent memory systems.

Liu et al. studied the contention between persistent writes and

non-persistent writes at the shared memory interface [52]. This study

considers mainly writes and therefore does not take a comprehensive

view of all memory scheduling problems in a system with persistent

and non-persistent memory accesses. Because conventional memory

scheduling policies deprioritize writes, manipulating the schedule

of only writes may not effectively improve system performance

(as we show in our evaluation of NVMDuet in Section 7.1). In

contrast, we show that the contention between persistent writes and

the traditionally-prioritized reads is critically important, leading to

15Contention in shared caches may not exist in all persistent memory systems,
however. Some persistent memory designs update data logs with uncacheable writes [90].

significant performance loss and unfairness with existing scheduling

policies that do not handle this contention well. FIRM, which

comprehensively considers the many problems caused by persistent

application requests, therefore, provides higher system performance

and fairness than NVMDuet [52], as shown in Section 7.1.

10. CONCLUSIONS

Emerging byte-addressable nonvolatile memory technologies open

up promising opportunities for the creation of persistent applications
that can directly and quickly manipulate persistent data via load and

store instructions. This paper showed that when such applications

contend with traditional non-persistent applications at the memory

interface, existing memory scheduler designs lead to low system

performance and low fairness across applications, since they cannot

efficiently handle the intensive streaming write traffic commonly

caused by persistent memory updates. We devised FIRM, which

solves this problem with two novel key mechanisms: 1) striding

of persistent memory writes such that they more effectively utilize

memory parallelism and thus become less disruptive, 2) intelligent

balanced scheduling of read and write requests of different types such

that memory bandwidth loss is minimized and system performance

and fairness are maximized. Our experimental evaluations across a

variety of workloads and systems show that FIRM provides signif-

icantly higher system performance and fairness than five previous

memory schedulers. We conclude that FIRM can provide an effective

substrate to efficiently support applications that manipulate persistent

memory in general-purpose systems. We also hope that the problems

discovered in this paper can inspire other new solutions to shared

resource management in systems employing persistent memory.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.

Zhao and Xie were supported in part by NSF grants 1218867,

1213052, 1409798, and Department of Energy under Award Number

DESC0005026. Mutlu was supported in part by NSF grants 0953246,

1065112, 1212962, 1320531, SRC, and the Intel Science and Tech-

nology Center for Cloud Computing.

REFERENCES

[1] “Intel, persistent memory file system,” https://github.com/linux-pmfs/pmfs.
[2] “Intel, a collection of linux persistent memory programming examples,”

https://github.com/pmem/linux-examples.
[3] “Intel Core i7,” http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html.
[4] J. H. Ahn et al., “McSimA+: a manycore simulator with application-

level+ simulation and detailed microarchitecture modeling,” in ISPASS,
2013.

[5] S. Ahn et al., “Highly manufacturable high density phase change
memory of 64Mb and beyond,” in IEDM, 2004.

[6] R. Arpaci-Dusseau et al., Operating Systems: Three Easy Pieces, 2014.
[7] R. Ausavarungnirun et al., “Staged memory scheduling: Achieving high

performance and scalability in heterogeneous systems,” in ISCA, 2012.
[8] A. Badam, “How persistent memory will change software systems,”

IEEE Computer, 2013.
[9] K. Bailey et al., “Operating system implications of fast, cheap, non-

volatile memory,” in HotOS, 2011.
[10] P. v. Behren, “SNIA NVM programming model,” in SNIA Education,

2013.
[11] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,

Princeton University, January 2011.
[12] T. Bingmann, “STX B+ Tree, 2008,” http://panthema.net/2007/stx-btree.
[13] T. C. Bressoud et al., “The design and use of persistent memory on the

DNCP hardware fault-tolerant platform,” in DSN, 2001.
[14] C. Cagli, “Characterization and modelling of electrode impact in HfO2-

based RRAM,” in Workshop on Innovative Memory Technologies, 2012.
[15] Y. Choi et al., “A 20nm 1.8V 8Gb PRAM with 40MB/s program

bandwidth,” in ISSCC, 2012.
[16] J. Coburn et al., “NV-heaps: making persistent objects fast and safe with

next-generation, non-volatile memories,” in ASPLOS, 2011.

[17] J. Condit et al., “Better I/O through byte-addressable, persistent mem-
ory,” in SOSP, 2009.

[18] G. Copeland et al., “The case for safe RAM,” in VLDB, 1989.
[19] R. Das et al., “Application-to-Core Mapping Policies to Reduce Memory

System Interference in Multi-Core Systems,” in HPCA, 2013.
[20] R. Das et al., “Application-aware prioritization mechanisms for on-chip

networks,” in MICRO, 2009.
[21] R. Degraeve et al., “Dynamic hourglass model for SET and RESET in

HfO2 RRAM,” in VLSI, 2012.
[22] G. Dhiman et al., “PDRAM: A hybrid PRAM and DRAM main memory

system,” in DAC, 2009.
[23] X. Dong et al., “Simple but effective heterogeneous main memory with

on-chip memory controller support,” in SC, 2010.
[24] X. Dong et al., “NVSim: A circuit-level performance, energy, and area

model for emerging nonvolatile memory,” TCAD, 2012.
[25] A. Driskill-Smith, “Latest advances in STT-RAM,” in NVMW, 2011.
[26] E. Ebrahimi et al., “Prefetch-aware shared resource management for

multi-core systems,” in ISCA, 2011.
[27] E. Ebrahimi et al., “Parallel application memory scheduling,” in MICRO,

2011.
[28] F. Eskesen et al., “Software exploitation of a fault-tolerant computer

with a large memory,” in FTCS, 1998.
[29] S. Eyerman et al., “System-level performance metrics for multiprogram

workloads,” IEEE Micro, 2008.
[30] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs,” An

optimization guide for assembly programmers and compiler makers.
Copenhagen University College of Engineering, 2011.

[31] M. Hosomi et al., “A novel nonvolatile memory with spin torque transfer
magnetization switching: spin-RAM,” in IEDM, 2005.

[32] Intel Corporation, “Intel architecture instruction set extensions program-
ming reference, 319433-012 edition,” 2012.

[33] E. Ipek et al., “Dynamically replicated memory: Building reliable
systems from nanoscale resistive memories,” in ASPLOS, 2010.

[34] E. Ipek et al., “Self-optimizing memory controllers: A reinforcement
learning approach,” in ISCA, 2008.

[35] C. Jacobi et al., “Transactional memory architecture and implementation
for IBM System Z,” in MICRO, 2012.

[36] J. Janesky, “Device performance in a fully functional 800MHz DDR3
Spin Torque Magnetic Random Access Memory,” in IMW, 2013.

[37] J.-Y. Jung et al., “Memorage: Emerging persistent RAM based malleable
main memory and storage architecture,” in ICS, 2013.

[38] S. Kannan et al., “Reducing the cost of persistence for nonvolatile heaps
in end user devices,” in HPCA, 2014.

[39] W. Kim et al., “Extended scalability of perpendicular STT-MRAM
towards sub-20nm MTJ node,” in IEDM, 2011.

[40] Y.-B. Kim et al., “Bi-layered RRAM with unlimited endurance and
extremely uniform switching,” in VLSI, 2011.

[41] Y. Kim et al., “ATLAS: A scalable and high-performance scheduling
algorithm for multiple memory controllers,” in HPCA, 2010.

[42] Y. Kim et al., “Thread cluster memory scheduling: Exploiting differences
in memory access behavior,” in MICRO, 2010.

[43] Y. Kim et al., “A case for exploiting subarray-level parallelism (SALP)
in DRAM,” in ISCA, 2012.

[44] E. Kultursay et al., “Evaluating STT-RAM as an energy-efficient main
memory alternative,” in ISPASS, 2013.

[45] B. C. Lee et al., “Architecting phase change memory as a scalable
DRAM alternative,” in ISCA, 2009.

[46] B. C. Lee et al., “Phase change memory architecture and the quest for
scalability,” CACM, 2010.

[47] B. C. Lee et al., “Phase-change technology and the future of main
memory,” IEEE Micro, 2010.

[48] C. J. Lee et al., “Prefetch-Aware DRAM Controllers,” in MICRO, 2008.
[49] C. J. Lee et al., “DRAM-aware last-level cache writeback: Reducing

write-caused interference in memory systems,” HPS Tech. Report, 2010.
[50] C. J. Lee et al., “Improving memory bank-level parallelism in the

presence of prefetching,” in MICRO, 2009.
[51] W. S. Lin et al., “Evidence and solution of over-RESET problem for

HfOx based resistive memory with sub-ns switching speed and high
endurance,” in IEDM, 2010.

[52] R.-S. Liu et al., “NVM Duet: Unified working memory and persistent
store architecture,” in ASPLOS, 2014.

[53] Y. Lu et al., “LightTx: A lightweight transactional design in flash-based
SSDs to support flexible transactions,” in ICCD, 2013.

[54] Y. Lu et al., “Loose-ordering consistency for persistent memory,” in
ICCD, 2014.

[55] C.-K. Luk et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in PLDI, 2005.

[56] P. E. McKenney, “Memory barriers: a hardware view for software
hackers,” 2009, http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf.

[57] J. Meza et al., “Enabling efficient and scalable hybrid memories using
fine-granularity DRAM cache management,” IEEE CAL, 2012.

[58] J. Meza et al., “A case for small row buffers in non-volatile main
memories,” in ICCD, 2012.

[59] J. Meza et al., “A case for efficient hardware/software cooperative
management of storage and memory,” in WEED, 2013.

[60] I. Moraru et al., “Consistent, durable, and safe memory management for
byte-addressable non volatile main memory,” in TRIOS, 2013.

[61] T. Moscibroda et al., “Memory performance attacks: Denial of memory
service in multi-core systems,” in USENIX Security, 2007.

[62] T. Moscibroda et al., “Distributed Order Scheduling and its Application
to Multi-Core DRAM Controllers,” in PODC, 2008.

[63] S. P. Muralidhara et al., “Reducing memory interference in multicore
systems via application-aware memory channel partitioning,” in MICRO,
2011.

[64] O. Mutlu et al., “Stall-time fair memory access scheduling for chip
multiprocessors,” in MICRO, 2007.

[65] O. Mutlu et al., “Parallelism-aware batch scheduling: Enhancing both
performance and fairness of shared DRAM systems,” in ISCA, 2008.

[66] D. Narayanan et al., “Whole-system persistence,” in ASPLOS, 2012.
[67] K. J. Nesbit et al., “Fair queuing memory systems,” in MICRO, 2006.
[68] W. Otsuka et al., “A 4Mb conductive-bridge resistive memory with

2.3GB/s read-throughput and 216MB/s program-throughput,” in ISSCC,
2011.

[69] H. Park et al., “Regularities considered harmful: Forcing randomness to
memory accesses to reduce row buffer conflicts for multi-core, multi-
bank systems,” in ASPLOS, 2013.

[70] S. Pelley et al., “Memory persistency,” in ISCA, 2014.
[71] S. Pelley et al., “Storage management in the NVRAM era,” VLDB, 2013.
[72] M. K. Qureshi et al., “Enhancing lifetime and security of PCM-based

main memory with start-gap wear leveling,” in MICRO, 2009.
[73] M. K. Qureshi et al., “Scalable high performance main memory system

using phase-change memory technology,” in ISCA, 2009.
[74] L. E. Ramos et al., “Page placement in hybrid memory systems,” in ICS,

2011.
[75] S. Raoux et al., “Phase-change random access memory: A scalable

technology,” IBM JRD, 2008.
[76] S. Rixner, “Memory controller optimizations for web servers,” in MI-

CRO, 2004.
[77] S. Rixner et al., “Memory access scheduling,” in ISCA, 2000.
[78] V. Seshadri et al., “The dirty-block index,” in ISCA, 2014.
[79] A. Seznec, “A phase change memory as a secure main memory,” IEEE

CAL, 2010.
[80] A. Snavely et al., “Symbiotic jobscheduling for a simultaneous multi-

threaded processor,” in ASPLOS, 2000.
[81] V. Sousa, “Phase change materials engineering for RESET current

reduction,” in Workshop on Innovative Memory Technologies, 2012.
[82] SPEC CPU, “SPEC CPU2006,” http://www.spec.org/cpu2006/.
[83] J. Stuecheli et al., “The virtual write queue: Coordinating DRAM and

last-level cache policies,” in ISCA, 2010.
[84] L. Subramanian et al., “The blacklisting memory scheduler: Achieving

high performance and fairness at low cost,” in ICCD, 2014.
[85] L. Subramanian et al., “MISE: Providing performance predictability and

improving fairness in shared main memory systems,” in HPCA, 2013.
[86] R. Takemura et al., “A 32-Mb SPRAM with 2T1R memory cell,

localized bi-directional write driver and ‘1’/‘0’ dual-array equalized
feference scheme,” JSSC, 2010.

[87] H. Vandierendonck et al., “Fairness metrics for multi-threaded proces-
sors,” IEEE CAL, 2011.

[88] S. Venkataraman et al., “Consistent and durable data structures for non-
volatile byte-addressable memory,” in FAST, 2011.

[89] Viking Technology, “Understanding non-volatile memory technology
whitepaper,” 2012, http://www.vikingtechnology.com/uploads/nv whitepaper.pdf.

[90] H. Volos et al., “Mnemosyne: lightweight persistent memory,” in ASP-
LOS, 2011.

[91] H. Yoon et al., “Row buffer locality aware caching policies for hybrid
memories,” in ICCD, 2012.

[92] J. Zhao et al., “Kiln: Closing the performance gap between systems with
and without persistence support,” in MICRO, 2013.

[93] W. Zhao et al., “Macro-model of spin-transfer torque based magnetic
tunnel junction device for hybrid magnetic-CMOS design,” in BMAS,
2006.

[94] P. Zhou et al., “A durable and energy efficient main memory using phase
change memory technology,” in ISCA, 2009.

[95] W. K. Zuravleff et al., “Controller for a synchronous DRAM that
maximizes throughput by allowing memory requests and commands to
be issued out of order,” U.S. Patent Number 5,630,096, 1997.

