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Abstract

Fault-tolerant storage systems spread data redundantly across a set ofstorage-nodes in an

effort to preserve and provide access to data despite failures. One difficulty created by

this architecture is the need for a consistent view, across storage-nodes, of the most recent

update. Such consistency is made difficult by concurrent updates, partial updates made

by clients that fail, and failures of storage-nodes.

This thesis demonstrates a novel approach to achieving scalable, highly fault-tolerant

storage systems by leveraging a set of efficient and scalable, strong consistency protocols

enabled by storage-node versioning. Versions maintained by storage-nodes can be used to

provide consistency, without the need for central serialization, and despite concurrency.

Since versions are maintained for every update, even if a client fails partway through an

update, concurrency exists during an update, the latest complete versionof the data-item

being accessed still exists in the system—it does not get destroyed by subsequent updates.

Additionally, versioning enables the use of optimistic protocols.

This thesis develops a set of consistency protocols appropriate for constructing block-

based storage and metadata services. The block-based storage protocol is made space-

efficient through the use of erasure codes and made scalable by offloading work from the

storage-nodes to the clients. The metadata service is made scalable by avoiding the high

costs associated with agreement algorithms and by utilizing threshold voting quorums.

Fault-tolerance is achieved by developing each protocol in a hybrid storage-node fault-

model (a mix of Byzantine and crash storage-nodes can be tolerated), capable of tolerating

crash or Byzantine clients, and utilizing asynchronous communication.
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1 Introduction

1.1 Problem definition

Fault-tolerant storage systems (e.g., Petal [Lee and Thekkath 1996], Myriad [Chang et al.

2002], SwiftRAID [Long et al. 1994], and Cheops [Amiri et al. 2000a]) spread data re-

dundantly across a set of storage-nodes in an effort to preserve and provide access to

data despite failures. Figure 1.1 illustrates the abstract architecture of a fault-tolerant, or

survivable, distributed storage system. In these types of systems it is commonto break

the system (at least logically) into two components or services: a metadata service; and

a data service. To access or update a data-item, a client must obtain metadata about the

data-item (e.g., where and how it is stored) before it is able to access the data-item it-

self. In order for a storage-system to tolerate failures, both the data andmetadata must

be duplicated across a set of storage-nodes. Thus, an update is only complete once it has

completed successfully at a subset of the storage-nodes. While this scheme provides ac-

cess to data-items and their metadata even when subsets of the storage-nodes have failed,

it does create the difficulty of maintaining a consistent view, across the storage-nodes, of

the most recent update. In decentralized systems, this is problem is exacerbated since, due

to the lack of a central serialization point, updates may not be issued to the samesubset

of storage-nodes as are being read. Without consistency across the set of storage-nodes,

data loss is possible or even likely.

Although protocols exist for achieving such consistency, they generallyfall short in a

number of areas including fault-tolerance, efficiency, and scalability. The easiest solution

to this problem is to introduce a point of serialization. This is typically done by serializing
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Metadata

nodes

Clients

Storage

nodes

Figure 1.1:High-level architecture for survivable storage.Spreading data and metadata redun-
dantly across storage-nodes improves its fault-tolerance. Clients write and (usually) read data
from multiple storage-nodes and may contact multiple storage-nodes to perform metadata opera-
tions.

requests through a primary. However, this typically reduces the scalability of the system

and requires additional protocols to tolerate the failure of the primary. Othermore compli-

cated protocols exist, however they generally require a significant amount of overhead in

the common case of little or no concurrency. Most studies of distributed storage systems

(e.g., [Baker et al. 1991; Noble and Satyanarayanan 1994]) indicate that concurrency is

uncommon (i.e., writer-writer and writer-reader sharing occurs in well under 1% of oper-

ations). As well, many protocols do not scale in terms of messaging or protocol overhead,

or storage-node CPU utilization as number of faults tolerated increases.

This thesis demonstrates a novel approach to achieving scalable, highly fault-tolerant

(the ability to tolerate more than a single fault) storage systems by leveraging a set of

efficient and scalable, strong consistency protocols enabled by storage-node versioning.

Versioning storage-nodes keep a version of every update they receive (for some period of

time). These versions can be used to provide consistency, without the need for central se-

rialization, and despite concurrency. Since versions are maintained for every update, even

if a client fails part way through an update, or a reader performs a query during an update,

the latest complete version of the data-item being accessed still exists in the system—it

does not get destroyed by subsequent updates. The problem with versioning becomes one
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of the client locating the version it is interested in. The consistency protocolsdeveloped

in this thesis all use logical time as a means of naming versions. Additionally, versioning

enables the use of optimistic protocols. Since older versions are not overwritten by new

updates, there is no need to lock the data-item before performing an update. However,

in these protocols, concurrency may require the client to perform extra work to find the

set of versions in which they are interested (e.g., those that comprise the latest complete

update).

In particular, this thesis develops a set of consistency protocols appropriate to build-

ing block-based storage and metadata services. The block-based storage protocol is made

space-efficient through the use of erasure codes and made scalable by offloading work

from the storage-nodes to the clients. The metadata storage protocol is madescalable

by avoiding the high costs associated with agreement algorithms and by utilizing thresh-

old voting quorums. Fault-tolerance is achieved by developing each protocol in a hybrid

storage-node fault-model (a mix of Byzantine and crashed storage-nodes can be toler-

ated), capable of tolerating crash or Byzantine clients, and utilizing asynchronous com-

munication.

1.2 Thesis statement

Versioning storage-nodes enable the design of a set of scalable, efficient consistency pro-

tocols that provide a foundation for constructing scalable, highly fault-tolerant, distributed

storage systems.

1.2.1 Validation

This work is validated through the design and evaluation of three consistencyprotocols

that have been enabled by versioning storage-nodes. More precisely:

(1) It develops and demonstrates a read/write block storage consistencyprotocol that

enables highly fault-tolerant storage through the use of erasure codeddata and ver-

sioning storage-nodes. Its correctness is shown through proof sketches.
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(2) It develops and demonstrates a read/conditional-write block protocolthat allows

for stronger read–modify–write consistency semantics. Additionally, tradeoffs be-

tween tolerating Byzantine clients and erasure coding, as well as tradeoffs between

tolerating Byzantine storage-nodes and liveness are discussed.

(3) It extends the read/conditional-write block protocol to support operations on mul-

tiple, arbitrary objects and implements a scalable metadata service based upon this

and the read/write protocol.

(4) It evaluates a distributed file system that utilizes the scalability and fault-tolerance

of the developed consistency protocols in terms of the number of faults tolerated,

the maximum throughput the system can sustain, and its performance in degraded

operation modes (i.e., with concurrency and faults).

1.3 Overview

1.3.1 Consistency protocols

First, the Read/Write protocol (R/W) is developed. It provides strong consistency and

fault-tolerance for read/write block storage. Block storage-systems (e.g., SCSI, fibre-

channel) provide the backbone for most current storage solutions.

The R/W protocol works roughly as follows. To perform a write, clients write time-

stamped fragments to at least a write threshold of storage-nodes. Storage-nodes keep

all versions of fragments they are sent. To perform a read, clients fetchthe latest frag-

ment versions from a read threshold of storage-nodes. The client determines whether

the fragments comprise a consistent, complete write, based on timestamp ordering; usu-

ally, they do. If they do not, additional fragments or historical fragments are fetched, or

repair is performed, until a consistent, complete write is observed. Only in cases of fail-

ures (storage-node or client) or read-write concurrency is additionaloverhead incurred to

maintain consistency.

The second protocol, the Read/Conditional Write protocol (R/CW), extends the R/W
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protocol by only allowing write operations to complete if the object has not changed since

the last time it was read. Thus, the R/CW protocol is able to provide stronger consistency

semantics—similar to read–modify–write, rather than just read–write semantics.

Finally, a Query/Update protocol (Q/U) is developed. It is very similar to the R/CW

protocol but adds a few optimizations and extensions. Most notably, it provides strict

serializability of arbitrary operations through the use of replicated state machines.

These protocols are developed in detail, evaluated individually, and usedas a basis

for building a fault-tolerant, scalable storage-system.

1.3.2 Guiding assumptions

These consistency protocols achieve efficiency and scalability via a combination of opti-

mistic operation, versioning, and quorum-style redundancy. As such, there are a number

of assumptions that guide the use of versioning and optimism. As well, there area number

of assumptions in the system model for which these protocols are designed.

Optimism and versioning

The scalability features of quorums are well-known [Malkhi et al. 2000; Naor and Wool

1998], however the use of versioning and optimism is guided by three high-level assump-

tions.

First, we assume that client failures within the duration of an access protocol (on the

order of milliseconds) should be rare. That is, while we design to tolerate client failures

(indeed, arbitrary ones; see below), our protocols optimistically presume they will not

occur, and exploit this assumption heavily in order to improve throughput when it holds.

Second, we assume that comprehensive object versioning at each metadata node is

efficient. Previous studies have shown that versioning nodes can offer performance that

is typically within 10% of a non-versioning node [Strunk et al. 2000]. As well, modern

disks have the capacity required to version objects comprehensively [Strunk et al. 2000;

Soules et al. 2003].
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Third, we assume that objects exported through the protocols, designed properly, will

experience low access concurrency. Most file system studies conclude that file sharing

is rare. For example, our R/CW objects support conditional write operations that update

multiple objects atomically. This, in turn, permits us to utilize fine-grained metadata ob-

jects, which reduces access concurrency for these objects. Thus, aseparate attribute object

can be maintained for each file, rather than including file attributes in directoryobjects.

System model

There are a number of system model assumptions that hold for all protocolsdeveloped.

The system model is more formally described in Section 3.1, but can be summarized as

follows.

Each data-item is hosted by a static number of storage-nodes; i.e., once the data-item

has been created, the set of storage-nodes on which that data-item canexist is fixed. There

are an arbitrary number of clients in the system. Both storage-nodes and clients may suffer

Byzantine faults [Lamport et al. 1982].

All protocols are developed within an asynchronous model of time (i.e., no assump-

tions are made about message transmission delays or execution rates). Channels are as-

sumed to be point-to-point, authenticated, and adhere to finite duplication and fair loss

properties [Aguilera et al. 2000]; see 3.1 for a complete description of thesystem model.

1.3.3 Applying the protocols to the PASIS storage system

The PASIS storage system is layered above the consistency protocols described in the

previous subsection. It is split into two components: the PASIS Storage (PS) service and

the PASIS metadata (PMD) service. The storage service may be implemented using either

the Read/Write or the Read/Conditional Write protocol. The metadata service is isbuilt

upon the Query/Update protocol since the consistency semantics requiredfor metadata is

more stringent than that for data. Additionally, the Q/U protocol provides aninterface to

atomically perform arbitrary operations on multiple metadata objects.
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The R/W protocol underlies the PS service. It provides block granularityread/write

access to data objects. Data objects are variable length data containers named by a unique

object identifier. The R/W protocol allows for the use of space-efficientdata encodings.

To demonstrate that our protocol is efficient in practice, we compare its performance to

BFT [Castro and Liskov 2001; 2002], the Byzantine fault-tolerant replicated state ma-

chine implementation that Castro and Liskov have made available [Castro and Rodrigues

2003]. Experiments show that the PS scales better than BFT in terms of network utiliza-

tion at the server and in terms of work performed by the server. Experiments also show

that response times of PASIS and BFT are comparable. Additionally, experiments show

that the response time graphs of the PASIS R/W prototype are flat as the number of faults

tolerated is scaled up.

Two types of metadata objects are implemented: attributes and directories. Attributes

objects exist for both directory objects and for files. The attributes map directly to typical

UNIX file permissions. Directory objects hold multiple directory entries. Each directory

entry stores the names and access information for the files and directories stored within

the storage system. The access information specifies how the named object can accessed.

If the named object is a file, the access information is specific to the PS serviceimple-

mentation (e.g., where the file is located, the encoding of the file, etc.).

The PMD service is evaluated in the context of a complete file system implemented

as a NFS server. It can use either the PS service to store data, or it can be configured to

store data locally in its local file system. When storing data locally, experiments show

that the PMD service’s throughput scales as load (number of NFS servers) is increased

and response time only gradually increases as the number of faults toleratedis scaled up.

As well, experiments show that the performance degrades gracefully when concurrency

is introduced, even at very high concurrency levels. Finally, when the PS service is used

in conjunction with the PMD service in a configuration capable of tolerating a single

Byzantine fault, the run time of an OpenSSH build is within a factor of two of a non-fault

tolerant user-level NFS server.
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1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 describes background and

related work. It is broken into a discussion of atomic read/write objects (or registers) that

pertains to block based storage and a discussion of systems/protocols capable of providing

consistency and fault-tolerance for operations performed on arbitraryobjects. Chapter 3

develops the R/W protocol for block-based storage. The system model, constraints on

the number of storage-nodes, and the implementation and evaluation of the protocol are

described. Chapter 4 describes the R/CW protocol for block based storage. The proto-

col is developed similarly to the R/W protocol. Chapter 5 extends the R/CW protocol to

provide consistency for operations performed over arbitrary objects (i.e., the Q/U proto-

col). As well, the chapter describes the design and implementation of the PASISstorage

system that utilizes both the Q/U protocol and the R/W to provide strong consistency,

fault-tolerance, and scalability to its clients. The storage system is then evaluated in terms

of a distributed NFSv3 storage system. The last chapter, Chapter 6, concludes and pro-

vides future directions for this work. Finally, a set of appendices provide proofs of safety

for the consistency protocols developed within.



2 Background and Related Work

This chapter describes background and related work related to the construction of scal-

able and fault-tolerant distributed storage systems. First, the components that comprise a

storage system are described. Second, data encoding schemes that can be used to improve

space-efficiency are introduced. Third, consistency semantics and protocols for tolerating

benign and Byzantine faults are described. Fourth, and lastly, work related to the scala-

bility of metadata services is discussed.

2.1 Storage system overview

Traditionally, disk-based storage systems have been built around a centralized monolithic

disk array or mainframe. While these systems have been shown to provide good relia-

bility and performance, they have a number of weaknesses. First, the hardware is highly

customized and very expensive to build. Second, these systems are hardto scale to very

large sizes. Third, the range of faults they are able to handle is limited (e.g., benign single,

or possibly double, disk failures).

This thesis describes protocols that can be used to build a Byzantine fault-tolerant, de-

centralized storage architecture to help solve these problems. First, by tolerating Byzan-

tine faults cheaper, off-the-shelf, components can be used since hardware and software

bugs can be masked by the fault-tolerance provided by the underlying storage protocols.

Second, these systems are more scalable in that the addition of new storage-nodes yields

improvements in the capacity, throughput or fault-tolerance of the service.Third, fault-

tolerance is gained by designing the storage protocols to withstand arbitrary(Byzantine)
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failures of clients and a limited number of metadata-nodes, and by requiring notiming

(synchrony) assumptions for correctness. However, in this type of architecture, there is

no centralized control, making it difficult to provide consistency in the face of faults and

concurrency.

2.1.1 File service

This work focuses on developing protocols that can be used to construct a decentralized,

fault-tolerant file based storage-system. Traditional file systems are comprised of both

metadata and data services. The data service is responsible for storing filedata, while

the metadata service stores data about how and where the file data is stored (e.g., block

pointers within inodes), as well as other metadata that describes the file (e.g.,attributes,

access control information, etc.). Metadata is often stored within the data service and is

accessed by recursing through a set of structures rooted at a well-known location.

In these systems, fault-tolerance for both the data and metadata can be obtained by

distributing the data service in a fault-tolerant manner. Frangipani [Thekkath et al. 1997]

is an example of this type of system. It is a distributed file system that is built above a

virtual disk interface exported by Petal [Lee and Thekkath 1996] and adistributed lock

service. Petal can tolerate one or more disk or storage-node failures, as long as the major-

ity of the storage-nodes are up and communicating, and as long as at least one replica of

each data-item remains.

Other systems explicitly separate the metadata service from the data service. For ex-

ample, NASD [Gibson et al. 1998] demonstrated that by separating metadata access from

data access greater scalability could be achieved at a lower cost. Insteadof forcing all op-

erations through a centralized file server, NASD eliminated the file server from the data

flow path by allowing clients to directly access the data storage-nodes. To increase fault-

tolerance the centralized metadata server can be distributed as a fault-tolerant service. For

example, Farsite [Adya et al. 2002] utilizes a Byzantine fault-tolerant agreement protocol

(BFT [Castro and Liskov 1998a]) to protect the integrity of its metadata, whileallowing

file data to be stored on a user’s desktop machine.
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Consistency semantics

Consistency semantics can differ for data versus metadata. Most block based data ser-

vices, disk drives being the most common, expect whole block updates (i.e.,an entire

block is always overwritten). On the other hand, metadata services often allow arbitrary

data regions to be updated independently (e.g., a single directory entry may bealtered

within a directory).

For block updates, it is sufficient to supportread–writeupdate semantics. Read-write

update semantics make no guarantees about the value of the data block between the time

the block was read and later written. These semantics are sufficient for block stores, since

consistency is guaranteed on a block-level and blocks are usually readand written as

atomic units. The PASIS read–write (R/W) protocol is described in Chapter 3and pro-

vides the consistency semantics required for block based storage.

In order to support consistent updates to metadata, metadata objects (e.g., directories)

require update operations thatmodifytheir existing contents, rather than blindly overwrit-

ing their previous contents; otherwise, their integrity may not be preserved. Read–modify–

write semantics guarantee that the data region has not been modified between a read and

a successive write operation to the same data region. It is also necessaryto support atomic

updates across multiple objects (e.g., when renaming or moving files from one directory

to another). Metadata services are often built upon protocols that provide consistent ac-

cess to objects that can be manipulated through arbitrary operations (i.e., not just read

and write operations). In the PASIS metadata service, the underlyingread–conditional

write (R/CW) protocol is described in Chapter 4, while the query/update (Q/U) protocol,

that extends the R/CW protocol to provide replicated state-machine semantics,and the

metadata service itself is described in Chapter 5.

This thesis describes a set of protocols that provide the consistency necessary to im-

plement fault-tolerant data and metadata services.
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2.1.2 Storage-system goals

One central goal in the design of storage systems is to simultaneously provideefficiency,

scalability, and fault-tolerance. Current storage systems, and their underlying protocols,

fall short in one or more of the following areas:

– High fault-tolerance: To provide access to data in the event of multiple client and/or

server failures (in the case of both crash and Byzantine faults), as opposed to tol-

erating only a single failure as can be handled by most other distributed storage

systems. First, data must be spread redundantly across the set of storage-nodes.

Second, no central points of failure should exist. This can be achieved by using

decentralized consistency protocols with no single points of failure.

– Strong consistency: To provide strong consistency in the face of failures (of clients

or servers) and concurrent operations (e.g., read-write concurrency, write-write

concurrency). In decentralized storage systems, where data is spread across mul-

tiple storage-nodes, it is usually important to ensure that readers and writers always

see a consistent view of data, especially in the face of concurrency andfailures.

Although this is a goal that we want of our storage systems, not all applications re-

quire strong consistency. As well, the consistency semantics required of block level

storage versus metadata is different. At the metadata level, it is important to offer

consistency of metadata operations which may span multiple objects.

– Efficiency and scalability: To provide scalable access to data and low overheads

in the common case of fault-free, concurrency-free operation. Many protocols ex-

ist for providing consistency, however there is generally a significant amount of

overhead regardless of the state of the system (e.g., when concurrency and faults

do not exist). Current protocols are also generally inflexible in dealing efficiently

with different fault models (e.g., crash vs. Byzantine failures, number offailures

to be masked) and system models (e.g., synchronous vs. asynchronous); i.e., they

are designed to work for a single fault and timing model. Although designing for
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the worst case generally provides support for many system and failure model as-

sumptions, efficiency and scalability are always limited to that of the worst case

environment.

2.2 Data encodings

A common data distribution scheme used in distributed storage systems is replication,

in which a writer stores a replica of the new data-item value at each storage-node to

which it sends a write request. Since each storage-node has a complete instance of the

data-item, the main difficulty is identifying and retaining the most recent instance.It is

often necessary for a reader to contact multiple storage-nodes to ensure that it sees the

most recent instance. Examples of distributed storage systems that use this design in-

clude Harp [Liskov et al. 1991], Petal [Lee and Thekkath 1996], BFS[Castro and Liskov

1998a], and Farsite [Adya et al. 2002].

Alternately, more space-efficient encoding schemes can be used. This section pro-

vides an overview of some of the more well-known schemes, such as RAID,and some

other more general, more space-efficient erasure coding schemes. Withthese schemes,

reads require fragments from multiple servers. Moreover, to decode thedata-item, the set

of fragments read must correspond to the same write operation; thus write–write concur-

rency can be problematic.

2.2.1 RAID

In order to increase the performance of disk subsystems, data can be striped across a

set of disks. However, as the number of disks in each stripe is increased, the likelihood

of a single disk dying and the probability of data loss increases. In 1988 Paterson, et

al. [Patterson et al. 1988] designed Redundant Arrays of Inexpensive Disks (RAID) to

overcome these reliability challenges. They solved the problem by storing redundant data

in the form of parity on one or more of the disks in the array.

At the present time there are a number of different RAID levels. The most common
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are RAID 0, 1, and 5. Combinations of these levels also exist (e.g., RAID 10). RAID 0 is

the simplest, increasing performance by striping data across a set of devices, so that they

can be read and written in parallel. However, RAID 0 provides no extra redundancy.

RAID 1 provides mirroring of data onto two devices. This scheme can toleratea single

device failure, however it pays a huge cost in storage capacity—only half of the space is

usable to store data. RAID 5 uses parity with striping to improve space-efficiency. Like

in RAID 0, data is striped across a set of devices. A parity code is calculated simply by

performing an XOR over the blocks within each stripe and is stored on separate device.

In RAID 5 the parity block is rotated among the set of the storage devices.

2.2.2 Erasure-coding

The use of erasure codes can greatly improve the space-efficiency ofreplicating data.

Erasure codes were originally developed for communication channels in thenetworking

community and are sometimes known as forward-error correcting codes. Erasure codes

encode a data-item into a set of fragments and have the property that any subset of a

certain size can be used to reconstruct the original data-item. They have the nice property

that they can toleratem simultaneous failures with onlym extra data-fragments. RAID

schemes can typically only supportm= 1,2; i.e., they can only tolerate a single or double

disk failure.

In this work the focus is on systematic threshold erasure codes in which anym of

the n encoded data-fragments can decode the data-item. The firstm data-fragments are

stripes of the data-item. The remainingn−m code-fragments are generated using poly-

nomial interpolation within a Galois field. As such, each fragment is1
m the total data size.

Thus, the total size-blowup isnm. Replication can be thought of a subset of thesem-of-N

erasure codes, as could the different RAID schemes;m= 1 for replication. Examples of

such codes are Reed-Solomon codes [Berlekamp 1968], secret sharing [Shamir 1979],

information dispersal (IDA) [Rabin 1989], short secret sharing [Krawczyk 1994], and

“tornado” codes [Luby et al. 2001]. The tradeoff in using erasure codes over RAID like

schemes is the performance cost in generating the code fragments.
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Figure 2.1:Example 2-of-5 erasure coding scheme.An example 2-of-5 erasure code is shown
(i.e., m= 2, N = 5). The first 2 fragments are stripe fragments, while the last 3fragments are code
fragments. Each fragment is12 the total data size. The total storage overhead isN

m for N fragments.

An example 2-of-5 erasure code scheme is shown in Figure 2.1. The original data-

item is striped into 2 fragments, with 3 code fragments being generated. Each fragment is

written to a storage-node. Any 2 fragments can be used to decode the original data-item.

There exists much prior work (e.g., [Agrawal and El Abbadi 1990; Herlihy and Ty-

gar 1987; Mukkamala 1994]) that combines erasure coded data with quorum systems to

improve the confidentiality and/or integrity of data along with its availability. However,

these systems do not provide consistency (i.e., a synchronization mechanism is required)

and do not cope with Byzantine clients. Concurrently with our own work, Frølund et

al. [Frølund et al. 2004] have developed a decentralized protocol forlinearizable erasure

coded read/write registers that utilize a variant of threshold-quorums.

2.3 Consistency semantics

To provide reasonable semantics, storage systems must guarantee that readers see consis-

tent data-item values.

2.3.1 Linearizability

The linearizability of operations is desirable for block-based read-write storage. Since

linearizability is only defined for single object operations, it is not suitable for describing

multi-object operations that are sometimes required for metadata updates. Linearizability

is described by Herlihy and Wing in [Herlihy and Wing 1990]. Operations are lineariz-
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able if their return values are consistent with an execution in which each operation is

performed instantaneously at a distinct point in time between its invocation and comple-

tion. Frølund et al. [Frølund et al. 2004] have recently developed a block-based protocol

that provides a variant of linearizability they termstrict linearizability[Aguilera and Frol-

und 2003], in which an operation that crashes either takes effect within some limited time

frame or not at all.

The R/W protocol, described in Chapter 3, tolerates Byzantine faults of anynumber of

clients and a limited number of storage nodes while implementing linearizable [Herlihy

and Wing 1990] and wait-free [Herlihy 1991] read-write objects. As well,the R/CW

protocol, described in Chapter 4 also implements linearizable objects. In this protocol,

linearizability is adapted appropriately for Byzantine clients, and wait-freedom as in the

model of Jayanti et al. [Jayanti et al. 1998]. Since operations performed by Byzantine

clients have no clear start time, they are excluded from the set of linearizable operations.

2.3.2 Serializability

The consistency semantic of serializability can pertain to multi-object operationsthat

are required for updating metadata objects atomically. Traditionally serializabilityhas

been defined for transactions within database systems. A sequence of transactions are

serializableif their outcome is equivalent to some sequential execution of the individual

transactions [Papadimitriou 1979]. Strict serializability extends serializability toensure

that transactions already in the history in serial order (i.e., they have completed), remain

in that relative order. This provides a consistency semantic similar to that of linearizability.

A serializable execution satisfies theACID properties [Haerder and Reuter 1983] (i.e.,

atomicity, consistency, isolation, and durability). The serializability of transactions can

be ensured through a number of techniques. Typical techniques include: two-phase lock-

ing [Gray et al. 1976], in which locks are acquired in one phase and released in a separate

phase; optimistic concurrency control [Kung and Robinson 1981], in which operations

within a transaction are performed optimistically, with no locking, and validation ofseri-

alizability is done at commit time; and timestamp ordering [Bernstein et al. 1980], in these
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protocols timestamps are used to order operations. The query/update protocol described

in Chapter 5 implements metadata objects that conform to strict serializability.

2.3.3 Tolerating benign faults

To provide operation atomicity, concurrency and client failures must be tolerated. A chal-

lenge introduced by concurrency and client failures is partially completed write opera-

tions. Partial writes arise from both write operations in progress and write operations that

never completed (e.g., failed client).

Common approaches to dealing with partial writes in non-Byzantine-tolerant sys-

tems are two-phase commit [Gray 1978] and repair (write-back). Two-phase commit pro-

vides failure atomicity (although such protocols may block). Three phase commit proto-

cols [Skeen and Stonebraker 1983] provide failure atomicity without blocking by utilizing

failure detectors and/or recovery mechanisms. Alternately, many non-Byzantine-tolerant

systems (e.g., Harp [Liskov et al. 1991] and Petal [Lee and Thekkath 1996]) serialize

their actions through a primary storage-node, which becomes responsiblefor completing

the update.

A common approach to dealing with concurrency is to suppress it, either via

leases [Gray and Cheriton 1989] or optimistic concurrency control [Kung and Robinson

1981]. Ensuring operation atomicity in the face of Byzantine failures of clients requires

additional work.

An alternate approach to handling both partial writes and concurrency is tohave the

data stored on storage-nodes be immutable [Reed and Svobodova 1980; Reed 1983]. By

definition, this eliminates the difficulties of updates for existing data. In doing so, it shifts

the problem up one level; an update now consists of creating a new data-itemand modi-

fying the relevant name to refer to it. Decoupling the data-item creation from itsvisibility

simplifies both, but making the metadata service fault-tolerant often brings back the same

issues.

For example, SWALLOW [Reed and Svobodova 1980] utilizes immutable objectver-

sion logs (or histories) ordered bypseudo timeto guarantee strong consistency (i.e., serial-
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izability) of arbitrary sets of read/write operations performed on a set of objects. As well,

the Amoeba File Server [Mullender 1985] utilizes immutable data versions to implement

optimistic concurrency control, such that the file system is always kept in a consistent

state. More recently, peer-to-peer systems (e.g., Past [Rowstron and Druschel 2001] and

CFS [Dabek et al. 2001]), Farsite, and the archival portion of OceanStore [Kubiatowicz

et al. 2000] use immutable versions of data to simplify serialization of access to data.

Other systems, such as Ivy [Muthitacharoen et al. 2002], use immutable version logs

containing both data and metadata, however Ivy does not implement strong consistency

guarantees for its metadata (or data) in this fashion.

Frølund et al. [Frølund et al. 2004] recently developed a decentralizedconsistency

protocol for erasure coded data. Their algorithm relies on a quorum construction simi-

lar to threshold-quorums that they call “m-quorums” (any two quorums intersect in m

processes). They utilize client generated timestamps to totally order updates and utilize

server-side logs to track outstanding requests. Also, as described earlier, their protocol

provides a variant of linearizability they call strict linearizability [Aguilera and Frolund

2003]. However, their protocol does allow for read and write operations to abort, as such

they forgo strong liveness guarantees.

2.3.4 Tolerating Byzantine faults

Byzantine fault-tolerant protocols for implementing read-write objects using quorums are

described in [Herlihy and Tygar 1987; Malkhi and Reiter 1997; Martin etal. 2002; Pierce

2001]. Of these related quorum systems, only Martin et al. [Martin et al. 2002] achieve

linearizability in our fault model, and this work is also closest to ours in that it uses a type

of versioning. In our protocol, a reader may retrieve fragments for several versions of the

data-item in the course of identifying the return value of a read. Similarly, readers in [Mar-

tin et al. 2002] “listen” for updates (versions) from storage-nodes until a complete write

is observed. Conceptually, our approach differs by clients reading past versions, versus

listening for future versions broadcast by servers. In our fault model, especially in consid-

eration of faulty clients, our protocol has several advantages. First, our protocol works for
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erasure-coded data, whereas extending [Martin et al. 2002] to erasure coded data appears

nontrivial. Second, ours provides better message efficiency: [Martin et al. 2002] involves

a Θ(N2) message exchange among theN servers per write (versus no server-to-server

exchange in our case) over and above otherwise comparable (and linear in N) message

costs. Third, ours requires less computation, in that [Martin et al. 2002] requires digital

signatures by clients, which in practice is two orders of magnitude more costly than the

cryptographic transforms we employ. Advantages of [Martin et al. 2002]are that it tol-

erates a higher fraction of faulty servers than our protocol, and does not require servers

to store a potentially unbounded number of data-item versions. Our prior analysis of ver-

sioning storage, however, suggests that the latter is a non-issue in practice [Strunk et al.

2000], and even under attack this can be managed using a garbage collection mechanism

we describe in Section 3.6.

A metadata service, like any deterministic service, can be implemented in a surviv-

able fashion using state machine replication [Schneider 1990], whereby all operations are

processed by server replicas in the same order (atomic broadcast). While this approach

supports a linearizable, Byzantine fault-tolerant implementation ofanydeterministic ob-

ject, such an approach cannot be wait-free [Fischer et al. 1985; Herlihy 1991; Jayanti

et al. 1998]. Instead, such systems achieve liveness only under stronger timing assump-

tions, such as synchrony (e.g., [Cristian et al. 1995; Pittelli and Garcia-Molina 1989; Shri-

vastava et al. 1992]) or partial synchrony [Dwork et al. 1988] (e.g.,[Castro and Liskov

2002; Kihlstrom et al. 2001; Reiter and Birman 1994]), or probabilistically (e.g., [Cachin

et al. 2001]). An alternative is Byzantine quorum systems [Malkhi and Reiter 1997], from

which our protocol inherits techniques (i.e., our protocol can be considered a Byzantine

quorum system that uses the threshold quorum construction). Protocolsfor supporting a

linearizable implementation of any deterministic object using Byzantine quorums have

been developed (e.g., [Malkhi et al. 2001]), but also necessarily forsake wait-freedom to

do so. Additionally, most Byzantine quorum systems utilize digital signatures which are

computationally expensive.
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2.3.5 Metadata scalability

This section describes work related to building scalable metadata services. Numerous

previous systems have focused on horizontally scaling data services through the addition

of storage-nodes to obtain high data throughput. However, most systems either utilize a

centralized metadata service or partition metadata across a set of servers such that each

piece of metadata is handled by a single metadata server. The former approach is limited

in its ability to scale, and both approaches render a metadata operation susceptible to a

fault or compromise of the server responsible for it.

For example, NASD [Gibson et al. 1998] and Swift [Cabrera and Long 1991] cen-

tralize access to a metadata server. IBM’s Storage Tank [Menon et al. 2003] and Lus-

tre [Braam 2004] replace the central metadata server with a cluster of servers, partition-

ing metadata across the servers while supporting server fail-over. Likewise, some systems

partition certain metadata structures (e.g., the manager map in xFS [Anderson et al. 1996]

and the lock table in Frangipani [Thekkath et al. 1997]). Other systems make use of dis-

tributed protocols that communicate among the metadata servers to provide a replicated,

fault-tolerant metadata service (e.g., Paxos [Lamport 1998] in Frangipani and BFT [Cas-

tro and Liskov 2002] in Farsite [Adya et al. 2002]) and OceanStore [Kubiatowicz et al.

2000]. Lastly, in some systems the storage-devices export interfaces directly to the client

that provide serialized access to the device (e.g., device-served locks inGFS [Soltis et al.

1996] and base storage transactions by Amiri et al. [Amiri et al. 2000b]).

Survivable file systems have typically focused on the use of Byzantine fault-tolerant

replication to protect the metadata service (e.g., [Deswarte et al. 1991]). Modern examples

such as Farsite [Adya et al. 2002], OceanStore [Kubiatowicz et al. 2000], and BFS [Castro

and Liskov 2002] employ state machine replication [Schneider 1990] for thispurpose.

While a powerful paradigm, state machine replication suffers from fundamental scaling

limitations. First, all service nodes process all requests, so update throughput generally

does not improve with additional nodes. Second, since the message complexityin their

underlying agreement protocols isθ(n2) with n replicas, the effect of adding nodes can be
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to degrade metadata update throughput. As such, adding replicas to the service group is

of limited value: the throughput of read-only operations may improve, but thethroughput

of update operations at best would remain constant.

Consequently, to allow the metadata service in, e.g., Farsite to scale, the file system

name-space is partitioned across multiple metadata services [Adya et al. 2002]. However,

partitioning the name-space introduces another difficulty, namely implementing metadata

operations atomically across replica groups, particularly in a manner resilient to Byzan-

tine servers and clients. We are aware of no metadata service implementation that achieves

this.

Our protocols employ a different paradigm that permits better load-balancing of re-

quests across servers and linear-or-better message complexity per client request, and thus

better ability to scale throughput as new servers are added. Rather than partitioning the

name-space, we implement all metadata operations with a single replica group, and scale

via lighter-weight access protocols than those implementing state machine replication. In

the spirit of quorum protocols [Malkhi et al. 2000; Naor and Wool 1998], our approach

permits clients to involve only a subset of servers in each operation (with no server-to-

server communication). In particular, each read or update operation need only execute on

a subset of metadata-nodes. Since all metadata operations are served in the same replica

group, our approach can implement any metadata operation atomically. Thus,our meta-

data objects are, in effect, replicated state machines.

Extending our conditional write protocol to send update operations and to receive

operation results, rather than sending and receiving whole objects, is efficient for objects

with large state (e.g., directory objects). The optimistic nature of the conditionalwrite

protocol distinguishes it from other Byzantine quorum protocols. However, the protocol

does not achieve the lower bound onN for implementing a Byzantine-tolerant replicated

state-machine (i.e.,N≥ 4b+1 [Malkhi and Reiter 1998a]).

The protocols developed in this thesis are most closely related to threshold-quorum

systems (i.e., a majority voting system [Gifford 1979; Thomas 1979]), thoughour ap-

proach offers opportunities for exploring use of richer quorum constructions (e.g., [Malkhi
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and Reiter 1998a; Malkhi et al. 2000]). In a threshold-quorum system,the load [Naor and

Wool 1998; Malkhi et al. 2000] on each storage-node is at least one half. This means that

each storage-node must execute requests for at least one half of the operations applied to

objects it hosts. True Byzantine quorum systems [Malkhi and Reiter 1998a] scale better

than the one half bound. If Byzantine quorum construction techniques such as the M-Path

construction [Malkhi et al. 2000] are employed, then the lower bound on load isΩ(
√

b
N).



3 Read/Write Block Protocol

This chapter describes and evaluates a new consistency protocol that operates in an asyn-

chronous environment and tolerates Byzantine failures of clients and storage-nodes. The

protocol supports a hybrid failure model in which up tot storage-nodes may fail:b≤ t

of these failures can be Byzantine and the remainder can be crash. The protocol also sup-

ports use ofm-of-n erasure codes (i.e.,m-of-n fragments are needed to reconstruct the

data), which usually require less network bandwidth (and storage space) than full repli-

cation [Weatherspoon and Kubiatowicz 2002; Wylie et al. 2000].

Briefly, the protocol works as follows. To perform a write, a client determines the

current logical time (by querying a subset of the storage-nodes) and then writes time-

stamped fragments to at least a threshold quorum of storage-nodes. Storage-nodes keep

all versions of fragments they are sent until garbage collection frees them. To perform

a read, a client fetches the latest fragment versions from a threshold quorum of storage-

nodes and determines whether they comprise a completed write; usually, they do. If they

do not, additional and historical fragments are fetched, and repair may beperformed, until

a completed write is observed.

The protocol gains efficiency from five features. First, the space-efficiency ofm-of-n

erasure codes can be substantial, reducing communication overheads significantly. Sec-

ond, most read operations complete in a single round trip: reads that observe write con-

currency or failures (of storage-nodes or a client write) may incur additional work. Most

studies of distributed storage systems (e.g., [Baker et al. 1991; Noble andSatyanarayanan

1994]) indicate that concurrency is uncommon (i.e., writer-writer and writer-reader shar-
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ing occurs in well under 1% of operations). Failures, although tolerated,ought to be rare.

Third, incomplete writes are replaced by subsequent writes or reads (that perform repair),

thus preventing future reads from incurring any additional cost; when subsequent writes

do the fixing, additional overheads are never incurred. Fourth, most protocol processing is

performed by clients, increasing scalability via the well-known principle of shifting work

from servers to clients [Howard et al. 1988]. Fifth, the protocol only requires the use of

cryptographic hashes, rather than more expensive cryptographic primitives (e.g., digital

signatures).

This chapter describes the protocol in detail, develops bounds for thresholds in terms

of the number of failures tolerated (i.e., the protocol requires at least 2t +2b+1 storage-

nodes), and provides a proof sketch of its safety and liveness. The protocol requires at

least 2t +2b+1 storage-nodes (i.e., 4b+1 if t = b). It also describes and evaluates its use

in a prototype storage system called PASIS [Wylie et al. 2000]. To demonstrate that our

protocol is efficient in practice, we compare its performance to BFT [Castro and Liskov

2001; 2002], the Byzantine fault-tolerant replicated state machine implementation that

Castro and Liskov have made available [Castro and Rodrigues 2003]. Experiments show

that PASIS scales better than BFT in terms of network utilization at the server and in

terms of work performed by the server. Experiments also show that response times of

PASIS and BFT are comparable.

3.1 System model

We describe the system infrastructure in terms ofclientsandstorage-nodes. There areN

storage-nodes and an arbitrary number of clients in the system.

A client or storage-node iscorrect in an execution if it satisfies its specification

throughout the execution. A client or storage-node that deviates from itsspecification

fails. Both clients and storage-nodes may suffer Byzantine faults. We make no assump-

tions about the behavior of Byzantine storage-nodes and Byzantine clients (e.g., we as-

sume that Byzantine storage-nodes can collude with each other and with anyByzan-
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tine clients). We assume that Byzantine clients and storage-nodes are computationally

bounded so that we can benefit from cryptographic primitives (i.e., cryptographic hash

functions).

The protocol is developed with a hybrid storage-node failure model [Thambidurai

and Park 1988]. Under a traditional hybrid failure model, up tot storage-nodes could

fail, b≤ t of which may be Byzantine faults; the remainder could only crash. However,

we consider a hybrid failure model for storage-nodes that crash and recover. The crash-

recovery failure model is a strict generalization of the omission and crash failure models.

First, we review the crash-recovery model from Aguilera et al. [Aguilera et al. 2000].

In a system ofn processes, each process can be classified as always-up, eventually-up,

eventually-down, or unstable. A process that isalways-upnever crashes. A process that

is eventually-upcrashes at least once, but there is a time after which it is permanently up.

A process that iseventually-downcrashes at least once, and there is a time after which

it is permanently down. A process that isunstablecrashes and recovers infinitely many

times. These classifications are further refined: a process isgood if it is either always-up

or eventually-up.

We combine the crash-recovery model with the hybrid failure model as follows. Up

to b storage-nodes may ever be Byzantine; such storage-nodes do not recover and are

not good. There are at leastN− t good storage-nodes (whereb≤ t). A storage-node that

is not Byzantine is said to bebenign(i.e., benign storage-nodes are either always-up,

eventually-up, eventually-down, or unstable). We assume that storage-nodes have stable

storage that persists throughout the crash and recovery process.

The protocol tolerates crash and Byzantine clients. As in any practical storage system,

an authorized Byzantine client can write arbitrary values to storage. These writes only

affect the value of the data, but do not compromise the safety (linearizability) of the

object. A client that does not exhibit a Byzantine failure (it is either correct or crashes) is

benign

We assume an asynchronous model of time (i.e., we make no assumptions about mes-

sage transmission delays or the execution rates of clients and storage-nodes, except that it
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is non-zero). We assume point-to-point authenticated channels with properties similar to

those used by Aguilera et al. [Aguilera et al. 2000]. In summary, channels do not create

messages (no creation), channels may experiencefinite duplication, and channels arefair

loss. The finite duplication property ensures that if benign processp sends a message to

benign processq only a finite number of times, thenq receives the message only a finite

number of times. The fair loss property ensures that if benign processp sends infinitely

many messages to good processq, thenq receives infinitely many messages fromp.

There are two types ofoperationsin the protocol —read operationsandwrite op-

erations— both of which operate ondata-items. Clients perform read/write operations

that issue multiple read/writerequeststo storage-nodes. A read/write request operates

on a data-fragment. A data-item isencodedinto data-fragments. Clients may encode

data-items in an erasure-tolerant manner; thus the distinction between data-item and data-

fragment. Requests areexecutedby storage-nodes; a correct storage-node that executes a

write requesthoststhat write operation.

Clients may encode data-items in an erasure-tolerant manner; thus the distinction be-

tween data-item and data-fragment. We focus here on threshold erasurecodes in which

anym of then encoded data-fragments can decode the data-item. Whenm= 1, the repli-

cation is used. Examples of such codes are replication, Reed-Solomon codes [Berlekamp

1968], secret sharing [Shamir 1979], RAID 3/4/5/6 [Patterson et al. 1988], information

dispersal (IDA) [Rabin 1989], short secret sharing [Krawczyk 1994], and “tornado” or

LDPC codes [Luby et al. 2001].

Storage-nodes provide fine-grained versioning; correct storage-nodes host a version

of the data-fragment for each write request they execute. There is a well known zero

time, 0, and null value,⊥, which storage-nodes can return in response to read requests.

Implicitly, all stored data is initialized to⊥ at time0.
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Figure 3.1:Example of cross checksum generation for 5 data-fragments.To generate a cross
checksum, a cryptographic hash is taken of each data-fragment. These hashes are then concate-
nated, replicated, and stored with each data-fragment.

3.2 Mechanisms

This section describes mechanisms employed for encoding data, preventingByzantine

clients and storage-nodes from violating consistency, and authenticating client and storage-

node requests. We assume that storage-nodes and clients are computationally bounded

such that cryptographic primitives can be effective.

3.2.1 Erasure codes

We consider only threshold erasure codes in which anymof theN encoded data-fragments

can decode the data-item; moreover, everym data-fragments can be used to deterministi-

cally generate the otherN−mdata-fragments. We use a systematic information dispersal

algorithm [Rabin 1989], which stripes the data-item across the firstmdata-fragments and

generates erasure-coded data-fragments for the remainder. As such, each fragment is1m

the total data size. This leads to a total size-blowup ofN
m for N fragments. Other threshold

erasure codes (e.g., Secret Sharing [Shamir 1979] and Short Secret Sharing [Krawczyk

1994]) work as well.

3.2.2 Data-fragment integrity

Byzantine storage-nodes can corrupt their data-fragments. As such,it must be possible

to detect and mask up tob storage-node integrity faults. Cross checksums [Gong 1989]

enable read operations to detect corrupt data-fragments. A cryptographic hash of each

data-fragment is computed, and the set ofN hashes are concatenated to form thecross
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Figure 3.2:Example of a “poisonous write” by a Byzantine client. In this example data-
fragment 5 has been corrupted by a Byzantine client. Decoding different sets of fragments (i.e., 1
and 3 vs. 3 and 5) lead to data-item values that are not equivalent. Therefore, it is necessary to
protect good clients from observing differing data values written to the same timestamp.

checksumof the data-item. The cross checksum is stored with each data-fragment (i.e.,

it is replicatedN times), enabling corrupted data-fragments to be detected at read time.

Note, theN2 space overhead is small relative to the data size, given reasonable data sizes

(e.g., there is an 8.3% overhead forN = 17, m= 5, and a 16 KB block). An example of

generating a cross checksum is shown in Figure 3.1.

3.2.3 Write operation integrity

Mechanisms are required to prevent Byzantine clients from performing a write operation

that lacks integrity. If a Byzantine client generates arbitrary data-fragments (rather than

erasure coding a data-item correctly), then each of the
(N

m

)

subsets of data-fragments could

“recover” a distinct data-item. Additionally, a Byzantine client could partition the set of

N data-fragments into subsets that each decode to a distinct data-item. These attacks are

similar to poisonous writesfor replication, as described by Martin et al. [Martin et al.

2002]. An example of a poisonous write is shown in Figure 3.2.

To protect against such Byzantine client actions, read operations must only return

values that are written correctly (i.e., that aresingle-valued). To achieve this, the cross

checksum mechanism is extended in two ways: validating timestamps combined with

storage-node verification, and validated cross checksums.
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Validating timestamps

To ensure that only a single set of data-fragments can be written at any logical time, the

hash of the cross checksum is placed in the low order bits of the logical timestamp. Note,

the hash is used for space-efficiency; instead, the entire cross checksum could be placed

in the low bits of the timestamp.

On a write, each storage-node verifies its data-fragment against the corresponding

hash in the cross checksum. The storage-node also verifies that the cross checksum matches

the low-order bits of the validating timestamp. A correct storage-node only executes write

requests for which both checks pass. Thus, a Byzantine client cannotmake a correct

storage-node appear Byzantine—only Byzantine storage-nodes can return unverifiable

responses.

Validated cross checksums

Combining storage-node verification with validating timestamps ensures that the data-

fragments being considered by any read operation were not fabricatedby Byzantine

storage-nodes. To ensure that the client that performed the write operation acted correctly,

the cross checksum must be validated by the reader. For the reader to validate the cross

checksum, allN data-fragments are required. Given anymdata-fragments, the reader can

generate the full set ofN data-fragments a correct client should have written. The reader

can then compute the “correct” cross checksum from the generated data-fragments. If the

generated cross checksum does not match the validated cross checksum, then a Byzantine

client performed the write operation. The example in Figure 3.3 shows the steps necessary

to perform the validation described above.

Only a single-valued write operation can generate a cross checksum thatcan be vali-

dated. Instead of using validated cross checksums, our protocol coulduse Verifiable Se-

cret Sharing [Chor et al. 1985; Feldman 1987]. Verifiable Secret Sharing enables storage-

nodes to validate that the client acted correctly on each write request (instead of validating

the data-item on each read operation).
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Figure 3.3:Verification of a validating cross checksum at read time.This example shows the
necessary steps to validate a set of 3 fragments at read time using a validated cross checksum.
First, the full set of N data-fragments must be regenerated.Second, the cross checksum is com-
puted and validated against the cross checksum that were read. Third, the hash of the cross check-
sum is taken and validated against the hash in the timestamp.

3.2.4 Authentication

Clients and storage-nodes must be able to validate the authenticity of messages. RPC

requests and responses are authenticated using HMACs (i.e., clients and storage-nodes

have pair-wise shared secrets). Thus, the channels between clients and storage-nodes are

authenticated. We assume some infrastructure is in place to distribute shared secrets—our

implementation supports an existing Kerberos [Steiner et al. 1988] infrastructure.

3.3 Protocol

This section describes our Byzantine fault-tolerant consistency protocol that efficiently

supports erasure-coded data-items by taking advantage of versioning storage-nodes. It

describes, in detail, the protocol in pseudo-code form.

3.3.1 Overview

At a high level, the protocol proceeds as follows. Logical timestamps are used to totally

order all write operations and to identify data-fragments pertaining to the samewrite op-

eration across the set of storage-nodes. For each write, a logical timestamp is constructed

by the client that is guaranteed to be unique (given the data and the logical timeat which

the data is being written) and greater than that of thelatest complete write(the complete

write with the highest timestamp). This is accomplished by querying storage-nodes for
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the greatest timestamp they host, and then incrementing the greatest response. In order to

verify the integrity of the data, a hash performed over the data-fragment isappended to

the logical timestamp. Two clients may arrive at the same logical timestamp only if they

are both writing the same data concurrently to each other. In this case the writerequests

generated look identical to each other.

To perform a read operation, clients issue read requests to a subset ofstorage-nodes.

Once at least a read quorum of storage-nodes reply, the client identifies thecandidate—

the response with the greatest logical timestamp. The set of read responses that share

the timestamp of the candidate comprise thecandidate set. The read operationclassi-

fies the candidate ascomplete, repairable, or incomplete. If the candidate is classified

as complete, the data-fragments, timestamp, and return value are validated. Ifvalidation

is successful, the value of the candidate is returned and the read operation is complete;

otherwise, the candidate is reclassified as incomplete. If the candidate is classified as re-

pairable, it is repaired by writing data-fragments back to the original set ofstorage-nodes

(note, in [Malkhi and Reiter 1998b], repair, for replicas, is referredto as “write-back”).

Prior to performing repair, data-fragments are validated in the same manner as for a com-

plete candidate. If the candidate is classified as incomplete, the candidate is discarded,

previous data-fragment versions are requested, and classification begins anew. Classifi-

cation is performed according to a set of constraints dependent upon thefailure model

(see Section 3.4). All candidates fall into one of the three classifications, even those cor-

responding to concurrent or failed write operations.

3.3.2 Pseudo-code

The pseudo-code for the protocol is shown in Figures 3.5 and 3.6. The symbolLT denotes

logical time andLTc denotes the logical time of the candidate. The set{D1, . . . ,DN}

denotes theN data-fragments; likewise,{S1, . . . ,SN} denotes the set ofN storage-nodes.

In the pseudo-code, the binary operator ‘|’ denotes string concatenation. Simplicity and

clarity in the presentation of the pseudo-code was chosen over obvious optimizations that

are in the actual implementation.
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INITIALIZE() :
100: /∗ History tuples are〈LT, Data, CC〉 ∗/
101: /∗ History is stored in stable storage∗/
102: History := 〈0,⊥,⊥〉

RECEIVE READ LATEST() :
200: /∗ Note,Latestis a singleton∗/
201: Latest:= (X : X.LT = MAX[History.LT],X ∈History)
202: SEND(READ RESPONSE, S, Latest)

RECEIVE WRITE REQUEST(LT, D, CC) :
300: if (VALIDATE WRITE(LT, D, CC)) then
301: /∗ Execute the write request∗/
302: History := History ∪ 〈LT, D, CC〉
303: SEND(WRITE RESPONSE, S)
304: end if

VALIDATE WRITE(LT, D, CC) :
400: if ((HASH(CC) 6= LT.Verifier) OR (HASH(D) 6=

CC[S])) then
401: return (FALSE)
402: end if
403: /∗ Accept the write request∗/
404: return (TRUE)

RECEIVE TIME REQUEST() :
500: SEND(TIME RESPONSE, S, MAX[History.LT])

RECEIVE READ PREVIOUS(LT) :
600: PreHistory:= {X : X.LT < LT, X ∈ History}
601: /∗ Note,Latestis a singleton∗/
602: Latest:= MAX[PreHistory.LT]
603: SEND(READ RESPONSE, S, Latest)

Figure 3.4:Pseudo-code for storage-nodeS.

Storage-node interface

Storage-nodes offer interfaces to write a data-fragment at a specific logical time; to query

the greatest logical time of a hosted data-fragment; to read the hosted data-fragment with

the greatest logical time; and to read the hosted data-fragment with the greatest logical

time at or before some logical time. Each write request a storage-node executes creates a

new version of the data-fragment (indexed by its logical timestamp) at the storage-node

(i.e., the storage-node performs comprehensive versioning).

All stored data is initialized to⊥ at time0, and has a cross checksum of⊥. The zero

time, 0, and the null value,⊥, are well known values which the clients understand. The

storage-node pseudo-code is shown in Figure 3.4. TheHistory which contains the ver-

sion history for the data-item is kept in stable storage such that it persists during a crash

and subsequent recovery. Storage-nodes validate write requests before executing them (to

protect against Byzantine clients). This is performed by the functionVALIDATE WRITE

called byRECEIVE WRITE REQUEST. The value returned byRECEIVE READ LATEST and

RECEIVE READ PREVIOUS, Latest, is guaranteed to be unique, since timestamps are unique

(i.e., two distinct write operations cannot have the same timestamp).
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WRITE(Data) :
100: /∗ Encode data, construct timestamp, and write data-

fragments∗/
101: {D1, . . . ,DN} := ENCODE(Data)
102: CC := MAKE CROSS CHECKSUM({D1, . . . ,DN})
103: Time:= READ TIMESTAMP()
104: LT := MAKE TIMESTAMP(Time,CC)
105: DO WRITE({D1, . . . ,DN}, LT, CC)

READ TIMESTAMP() :
200: ResponseSet:= /0
201: repeat
202: for all Si ∈ {S1, . . . ,SN}\ResponseSet.Sdo
203: SEND(Si , TIME REQUEST)
204: end for
205: if (POLL FOR RESPONSE() = TRUE) then
206: 〈S, LT〉 := RECEIVE TIME RESPONSE()
207: if (S /∈ ResponseSet.S) then
208: ResponseSet:= ResponseSet∪ 〈S, LT〉
209: end if
210: end if
211: until (|ResponseSet|= N− t)
212: return (MAX[ResponseSet.LT.Time]+1)

MAKE CROSS CHECKSUM({D1, . . . ,DN}) :
300: for all Di ∈ {D1, . . . ,DN} do
301: Hi := HASH(Di)
302: end for
303: CC := H1| . . . |HN

304: return (CC)

MAKE TIMESTAMP(Time,CC) :
400: LT.Time:= Time
401: LT.Verifier := HASH(CC)
402: return (LT)

DO WRITE({D1, . . . ,DN}, LT, CC) :
500: ResponseSet:= /0
501: repeat
502: for all Si ∈ {S1, . . . ,SN}\ResponseSet.Sdo
503: SEND(Si , WRITE REQUEST, LT, Di , CC)
504: end for
505: if (POLL FOR RESPONSE() = TRUE) then
506: 〈S〉 := RECEIVE WRITE RESPONSE()
507: if (S /∈ ResponseSet.S) then
508: ResponseSet:= ResponseSet∪ 〈S〉
509: end if
510: end if
511: until (|ResponseSet|= N− t)

Figure 3.5:Client-side write operation pseudo-code.

Write operation

The WRITE operation, shown in Figure 3.5 consists of determining the greatest logical

timestamp, constructing write requests, and issuing the requests to the storage-nodes.

First, a timestamp greater than, or equal to, that of the latest complete write must be

determined. CollectingN− t responses, on line 211 ofREAD TIMESTAMP, ensures that the

response set intersects a complete write at a correct storage-node. Since the environment

is asynchronous, a client can wait for no more thanN− t responses. Fewer thanN− t

responses are actually required to observe the timestamp of the latest completewrite,

since a single correct response is sufficient; in fact, this bound ist +b+1.

Next, theENCODE function, on line 101 ofWRITE, encodes the data-item intoN data-

fragments. The data-fragments are used to construct a cross checksum from the con-

catenation of the hash of each data-fragment (line 102). The functionMAKE TIMESTAMP,

called on line 104, generates a logical timestamp to be used for the current write oper-
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ation. This is done by incrementing the high order bits of the greatest observed logical

timestamp from theResponseSet(i.e.,LT.TIME) and appending theVerifier. TheVerifier

is just the hash of the cross checksum.

Finally, write requests are issued to all storage-nodes. Each storage-node is sent a spe-

cific data-fragment, the logical timestamp, and the cross checksum. A storage-node vali-

dates the cross checksum with the verifier and validates the data-fragmentwith the cross

checksum before executing a write request (i.e., storage-nodes callVALIDATE WRITE

listed in their pseudo-code). The write operation returns to the issuing clientonceN− t

WRITE RESPONSE messages are received (line 511 ofDO WRITE).

Read operation

The read operation, shown in Figure 3.6, iteratively identifies and classifies candidates,

until a repairable or complete candidate is found. Once a repairable or complete candidate

is found, the read operation validates its correctness and returns the data. Note that the

read operation returns a〈timestamp, value〉 pair; in practice, a client only makes use of

the value returned.

The read operation begins by issuingREAD LATEST commands to all storage-nodes

(via theDO READ function). Each storage-node responds with the data-fragment, logical

timestamp, and cross checksum corresponding to the greatest timestamp it hasexecuted.

The integrity of each response is individually validated through theVALIDATE func-

tion, called on line 207 ofDO READ. This function checks the cross checksum against the

Verifier found in the logical timestamp and the data-fragment against the appropriate hash

in the cross checksum.

A second type of validation is performed on read responses (also on line 207). For re-

sponses toREAD PREV commands, the logical timestamp is checked to ensure it is strictly

less than the timestamp specified in the command. This check ensures that improperre-

sponses from Byzantine storage-nodes are not included in the response set.

Since, in an asynchronous system, slow storage-nodes cannot be differentiated from

crashed storage-nodes, onlyN− t read responses can be collected (line 211 ofDO READ).
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READ() :
100: ResponseSet:= DO READ(READ LATEST,⊥)
101: loop
102: 〈CandidateSet, LTc〉 :=

SELECT CS(ResponseSet)
103: if (|CandidateSet| ≥ INCOMPLETE then
104: /∗ Complete or repairable write found∗/
105: {D1, . . . ,DN} := GEN FRAGS(CandidateSet)
106: CC := MAKE CROSS CHECKSUM({D1, . . . ,DN})
107: if (CC= CandidateSet.CC) then
108: /∗ Cross checksum is validated */
109: if (|CandidateSet|< COMPLETE) then
110: /∗ Repair is necessary∗/
111: DO WRITE({D1, . . . ,DN}, LTc, CC)
112: end if
113: Data := DECODE({D1, . . . ,DN})
114: return (〈LTc, Data〉)
115: end if
116: end if
117: /∗ Incomplete or validation failed, loop again∗/
118: ResponseSet:= DO READ(READ PREV, LTc)
119: end loop

DO READ(READ COMMAND, LT) :
200: ResponseSet:= /0
201: repeat
202: for all Si ∈ {S1, . . . ,SN}\ResponseSet.Sdo
203: SEND(Si , READ COMMAND, LT)
204: end for
205: if (POLL FOR RESPONSE() = TRUE) then
206: 〈S, Resp〉 := RECEIVE READ RESPONSE()
207: if ((READ COMMAND = READ LATEST OR

Resp.LT < LT) AND
(S /∈ ResponseSet.S) AND
(VALIDATE(Resp.D, Resp.CC, Resp.LT, S)))

then
208: ResponseSet:= ResponseSet∪ 〈S, Resp〉
209: end if
210: end if
211: until (|ResponseSet|= N− t)
212: return (ResponseSet)

VALIDATE(D, CC, LT, S) :
300: if ((HASH(CC) 6= LT.Verifier) OR (HASH(D) 6=

CC[S])) then
301: return (FALSE)
302: end if
303: return (TRUE)

Figure 3.6:Client-side read operation pseudo-code.

Since correct storage-nodes perform the same validation before executing write requests,

the only responses that can fail the client’s validation are those from Byzantine storage-

nodes. For every discarded Byzantine storage-node response, anadditional response can

be awaited.

After sufficient responses have been received, a candidate for classification is chosen.

The functionSELECT CS, called on line 102 ofREAD, determines the candidate timestamp,

denotedLTc, which is the greatest timestamp found in the response set. All data-fragments

that shareLTc are identified and returned as the candidate set. At this point, the candidate

set contains a set of validated data-fragments that share a common cross checksum and

logical timestamp.

Once a candidate has been chosen, it is classified as either complete, repairable, or

incomplete based on the size of theCandidateSet. The rules for classifying a candidate as

INCOMPLETE orCOMPLETE are given in the following subsection. If the candidate is classi-
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fied as incomplete, aREAD PREV message is sent to each storage-node with its timestamp.

Candidate classification begins again with the new response set.

If the candidate is classified as either complete or repairable, the candidate set contains

sufficient data-fragments written by the client to decode the original data-item. To validate

the observed write’s integrity, the candidate set is used to generate a new set of data-

fragments (line 105 ofREAD). A validated cross checksum,CCvalid, is computed from the

newly generated data-fragments. The validated cross checksum is compared to the cross

checksum of the candidate set (line 107 ofREAD). If the check fails, the candidate was

written by a Byzantine client; the candidate is reclassified as incomplete and the read

operation continues. If the check succeeds, the candidate was written bya correct client

and the read enters its final phase. Note that this check either succeeds or fails for all

correct clients regardless of which storage-nodes are representedwithin the candidate set.

If necessary, repair is performed: write requests are issued with the generated data-

fragments, the validated cross checksum, and the logical timestamp (line 109 ofREAD).

Storage-nodes not currently hosting the write execute the write at the given logical time;

those already hosting the write are safe to ignore it. Finally, the functionDECODE, on

line 113 ofREAD, decodesmdata-fragments, returning the data-item.

It should be noted that, even after a write completes, it may be classified as repairable

by a subsequent read, but it will never be classified as incomplete. For example, this could

occur if the read set (ofN− t storage-nodes) does not fully encompass the write set (of

N− t storage-nodes).

3.4 Constraints

The symbolQC denotes a complete write operation: the number of benign storage-nodes

that must execute write responses for a write operation to be complete. Note that since

threshold quorums are used,QC is a scalar value. To ensure that linearizability and live-

ness are achieved,QC and N must be constrained with regard tob, t, and each other.

As well, the parameterm, used inDECODE, must be constrained. We sketch safety and
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liveness proofs for the protocol in Appendix A.

3.4.1 Read classification

To classify a candidate asCOMPLETE, a candidate set of at leastQC benign storage-nodes

must be observed. In the worst case, at mostb members of the candidate set may be

Byzantine, thus,

|CandidateSet|−b≥QC⇒ COMPLETE. (3.1)

To classify a candidate asINCOMPLETE a client must determine that a complete write

does not exist in the system (i.e., fewer thanQC benign storage-nodes host the write). For

this to be the case, the client must have queried all possible storage-nodes(N− t), and

must assume that nodes not queried host the candidate in consideration. So,

|CandidateSet|+ t < QC⇒ INCOMPLETE. (3.2)

3.4.2 Real repairable candidates

To ensure that Byzantine storage-nodes cannot fabricate a repairable candidate, a candi-

date set of sizeb must be classifiable as incomplete. Substitutingb into (3.2),

b+ t < QC. (3.3)

3.4.3 Decodable repairable candidates

Any repairable candidate must be decodable. The lower bound on candidate sets that

are repairable follows from (3.2) (since the upper bound on classifyinga candidate as

incomplete coincides with the lower bound on repairable):

1≤m≤QC− t. (3.4)
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Protocol Asynchronous repairable

N 2t +2b+1≤ N
QC t +b+1≤QC ≤ N− t−b
m 1≤m≤QC− t
Complete |CandidateSet| ≥QC +b
Incomplete |CandidateSet|< QC− t

Table 3.1:Protocol constraint summary

3.4.4 Write termination

To ensure write operations are able to complete in an asynchronous environment in the

face ofb Byzantine storage-nodes,

QC +b≤ N− t,QC ≤ N− t−b. (3.5)

Since slow storage-nodes cannot be differentiated from crashed storage-nodes, onlyN− t

responses can be awaited. As well,b responses received may be from Byzantine storage-

nodes.

3.4.5 Constraint summary

The summary of constraints is given in Table 3.1. The bounds onN (i.e., N > 2t + 2b)

have been shown to be optimal for systems with single round-trip write operations [Abra-

ham et al. 2004]. A diagram that more intuitively shows the constraint onN is shown in

Figure 3.7.

3.5 Implementation

PASIS consists of clients and storage-nodes. Storage-nodes store data-fragments and their

versions. Clients execute the protocol to read and write data-items.

3.5.1 Storage-node implementation

Storage-nodes use the Comprehensive Versioning File System (CVFS) [Soules et al.

2003] to retain data-fragments and their versions. CVFS uses a log-structured data or-
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t t2b+ 1

N

Read set

Write set

Read/write intersection

N - tN - t

Figure 3.7:Illustration of constraint on N. This figure shows the intuitive reasoning behind the
constraint on N= 2t +2b+1. As shown, a write executes at any N− t storage-nodes, and a read
executes at a set of N− t storage-nodes that has the minimum overlap with the write.The read
only observes the data value on the storage-nodes within theintersection of the read and write.
Since b of these storage-nodes may be Byzantine b+ 1 matching values must be observed. This
leads to an intersection of size2b+1. Thus, t+(2b+1)+ t = N = 2t +2b+1.

ganization to reduce the cost of data versioning. Experience indicates that retaining ev-

ery version and performing local garbage collection comes with minimal performance

cost (a few percent) and that it is feasible to retain complete version histories for several

days [Soules et al. 2003; Strunk et al. 2000].

We extended CVFS to provide an interface for retrieving the logical timestamp of a

data-fragment. Implicitly, each write request creates a new version of the data-fragment

(indexed by its logical timestamp) at the storage-node. In addition to data, each write

request contains a cross checksum, a logical timestamp, and alinkage record[Amiri et al.

1999]. The linkage record consists of descriptions of the encoding scheme, and addresses

of theN storage-nodes for a specific data-item; it is fixed upon data-item creation.

By default, a read request returns the most current data-fragment version, ordered by

logical timestamp. Read responses may also contain a limited version history contain-

ing logical timestamps of previously executed write requests. The version history allows

clients to identify and classify additional candidates without issuing extra read requests.

Storage-node can also return read responses that contain no data other than version histo-

ries, which makes candidate classification more network-efficient.
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3.5.2 Garbage collection

Pruning old versions, or garbage collection (GC), is necessary to prevent capacity ex-

haustion of the storage-nodes. A storage-node in isolation cannot determine which local

data-fragment versions are safe to garbage-collect, because write completeness is a prop-

erty of a set of storage-nodes. A data-fragment version can be garbage-collected only

if there exists a later complete write for the corresponding data-item. Storage-nodes can

classify writes by executing the read protocol in the same manner as a client. However, no

data need be returned for protocol members that do not tolerate Byzantineclients (since

the cross checksum need not be validated). Linkage records providesufficient information

for the storage-nodes to know which other nodes host relevant data-fragments.

Garbage collection is implemented in the current prototype and it requires no addi-

tional RPCs. We have implemented a heuristic to invoke GC whenever idle time is de-

tected. Periodically, a thread wakes up and checks the system load. If thesystem load is

low, then GC will be invoked. We use a timer-based idle-time detector, as described by

Golding et al.[Golding et al. 1995]. This type of idle time detector was successfully used

in cleaning heuristics for LFS, even in heavily loaded systems [Blackwell etal. 1995].

We also have a method for invoking GC externally of the system (e.g., by a CRON job).

It is usually inefficient to perform GC for every block, since most blocks do not have

old versions that need to be reclaimed (e.g., in a system with a read-heavy workload). We

address this by adding a counter to the PASIS per-block metadata to track thenumber of

writes to a block. This counter is incremented during each write operation andreset after

GC has run. If the the block’s write-count rises above certain threshold, an entry identi-

fying the block is added to an in-memoryhigh-write-counttable. When GC is executed,

it first searches this table. If an entry is found, it is removed and GC is executed on that

block. If no entries are found, GC can scan the block-space sequentially. Although this

heuristic works, further research into policy issues, such as the appropriate frequency and

order of garbage collection, is warranted.
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3.5.3 Client implementation

Our client implementation follows the pseudo-code described above. The client module

is accessed through a set of library interface calls. These calls allow an application to

control the encoding scheme, the threshold values, and the failure and timingmodels.

The client protocol routines are implemented such that different protocolfamily members

and thresholds may be specified for different data-items. Likewise, the storage-nodes for

any given data-item are also specified via these interfaces, thus externalizing control (and

responsibility) for such bootstrapping information; for our experiments weuse a static set

of N storage-nodes. Clients communicate with storage-nodes through a TCP-based RPC

interface.

In an asynchronous environment, the client implementation issuesTIME REQUEST

requests to onlyN+b−QC storage-nodes, since this ensures overlap with the latest com-

plete write. To improve the responsiveness of write operations, clients return after the first

QC+b storage-nodes respond; the remainder of the requests complete in the background.

To improve the read operation’s performance, onlym read requests fetch the lat-

est data pertaining to the data-fragment, while all receive version histories; this makes

the read operation more network-efficient. The limited data-fragment version history re-

turned by read requests, allows clients to classify earlier writes without issuing additional

storage-node requests. If necessary, after classification, extra data-fragments are fetched

according to the candidate’s timestamp. Once the data-item is successfully validated and

decoded, it is returned.

3.5.4 Erasure codes

In our erasure coding implementation, ifm= 1, then replication is employed, otherwise

an information dispersal algorithm [Rabin 1989] is used. Our information dispersal imple-

mentation stripes the data-item across the firstmdata-fragments (i.e., each data-fragment

is 1
m of the original data-item’s size). This makes the erasure code asystematic encoding;

Thus, concatenation of the firstm data-fragments produce the original data-item. These
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stripe-fragmentsare used to generate thecode-fragmentsvia polynomial interpolation

within a Galois Field, which treats the stripe-fragments and code-fragments aspoints

on somem−1 degree polynomial. Our implementation of polynomial interpolation was

originally based on [Dai 2003] (which conceptually follows [Rabin 1989]). We modified

the source to use stripe-fragments and added an implementation of Galois Fieldsof size

28 that use lookup tables for multiplication.

Beyond our base erasure code implementation, we implemented secret sharing [Shamir

1979] and short secret sharing [Krawczyk 1994]. Our implementation of short secret shar-

ing closely follows [Krawczyk 1994], using AES for the cipher. Such erasure codes can

also provide a degree of confidentiality with regard to storage-nodes.

Our implementation of cross checksums closely follows Gong [Gong 1989]. Our

implementation uses a publicly available implementation of MD5 [Rivest 1992] for all

hashes. Each MD5 hash is 16 bytes long; thus, each cross checksum isN×16 bytes long.

3.6 Evaluation

This section evaluates protocol family performance in the context of the prototype block

storage system.

3.6.1 Experimental setup

We use a cluster of 20 machines to perform experiments. Each storage-node is a dual

1GHz Pentium III machine with 384 MB of memory and a 9GB Quantum Atlas 10K

disk. Each client is a single processor 2GHz Pentium IV machine. The machines are

connected through a 100Mb switch. All machines run the Linux 2.4.20 SMP kernel.

In all experiments, clients keep a fixed number of read and write operationsoutstand-

ing; when an operation completes, a new operation is issued immediately. Unlessother-

wise specified, requests are for random 16 KB blocks. Unless otherwise specified,QC and

N are the minimum allowable values for the protocol member, as given in Table 3.1,and

m is the maximum allowable value. Authentication costs (i.e., HMAC computations) are
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included in all experiments.

3.6.2 Performance and scalability of PASIS protocol members

PASIS configuration

Each storage-node is configured with 128 MB of data cache, and no caching is done

on the clients. Storage-nodes use write-back caching, mimicking availability of16 MB

of non-volatile RAM. All experiments focus on the protocol costs: the working sets fit

into memory and all caches are warmed up beforehand. Results from suchexperiments

highlight the overheads introduced by the protocol and not those introduced by the disk

system. It is, however, a full system implementation: each storage-node is backed by a

real persistent data store, and compulsory cache flushes are serviced by the disk system.

Space-efficiency of protocol members

All protocol members can employm-of-n erasure codes. Increasingm improves space-

efficiency, since each data-fragment is1
m the size of the data-item. Space-efficiency re-

duces the network bandwidth needed, which reduces the response time ofoperations.

To perform a write operation,N data-fragments are sent over the network. With each

data-fragment, a cross checksum and linkage record are sent. Respectively, these areN

times the size of a MD5 digest (16 bytes) andN times the size of a storage-node ID (4

bytes). Thus, the network bandwidth consumed by cross checksums is 20·N2 bytes. RPC

headers and arguments consume negligible bandwidth. Thus, the total amount of data sent

over the network by a write operation is: 16 KB× N
m +20 B×N2.

Computation costs

Computation costs are incurred to erasure code data. Additional computationcosts are

incurred to authenticate messages and protect against non-crash failures. The majority of

such computation costs are paid by clients in the system, rather than storage-nodes.
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Figure 3.8:Computational cost of erasure coding.Block size, N, and m dictate the computa-
tional cost of erasure coding.

Erasure coding costs.Figure 3.8 shows the trends in the cost of encoding data with our

erasure code implementation. For comparison, the performance ofN-fold replication (i.e.,

N memcpys) is shown. Lines are shown for fixedm values of two and three. These lines

illustrate that, as expected, the cost of an erasure code for a givenm grows linearly with

N, since the number of code-fragments grows withN.

Two other lines are shown in Figure 3.8 to illustrate the interesting impact ofmon per-

formance: the space-efficiency of an erasure code is inversely proportional tom whereas

the cost of generating some aggregate amount of code-fragment is proportional tom. Con-

sider them= N
2 line. For each point on the line, erasure coding generates, in total, 16 KB

of code-fragments, although the number and individual sizes of the code-fragments differ.

When generating some aggregate amount of code-fragments, the cost oferasure coding

grows linearly withm. For m= N−1, a single code-fragment is needed for each write;

as expected, the cost of generating one fragment decreases withN, since the size of the

fragment also decreases (to1N−1).

COMPUTATION COST BREAKDOWN: Table 3.2 enumerates the client and storage-node

computation costs for the protocol tolerating one and four Byzantine storage-node faults

(i.e.,b = t = 1 and forb = t = 4).

CLIENTS: All protocol family members place the majority of the computational work on
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b= t = 1 b= t = 4

Storage-node: write operation costs

Verify timestamp 1.56µs 3.78µs
Verify data-fragment 72.2 29.4

Client: write operation costs

Encode: generateN−mcode-fragments 163 546
Generate one code-fragment 54.2 45.5

Generate cross checksum: hashN data-fragments 359 512
Hash one data-fragment 71.2 30.1

Generate validating timestamp 1.60 3.72

Client: read operation costs

Verify data-fragments: hashmdata-fragments 143 150
Best case decode:memcpy mstripe-fragments 6.84 7.86
Worst case decode: generatemcode-fragments 108 228
Validate cross checksum (to tolerate Byz. clients)522 1060

Table 3.2:Client and storage-node computation costs.Costs are broken down for the asyn-
chronous repairable protocol member with Byzantine storage-nodes for: b= t = 1 and b= t = 4
(N = 5, m= 2 and N= 17, m= 5, respectively).

clients in the system. Erasure-coding is done by the client and requires nothing of the

storage-node. The difference in computation costs for the two instances of the protocol

member listed is due to their respective values ofN andm. The cost of erasure coding

with regard toN andm is discussed above. The cost of generating cross checksums grows

with N
m.

Read operations in protocol members with only crash clients are computationally

less demanding than write operations. A read operation requires fewer hashes of data-

fragments and generation of fewer code-fragments. In the best case,themstripe-fragments

can be concatenated and no code-fragments need be generated. In protocol members that

tolerate Byzantine clients, read operations performs almost the same computation as write

operations to validate the cross checksum (i.e.,N−m code-fragments are generated and

N data-fragments hashes are taken).

Short secret sharing can be used in place of our default erasure code. Doing so adds



46 · Efficient, scalable consistency for highly fault-tolerant storage

≈550µs to the base erasure code costs for encrypting the data-item under the AES cipher

and less than 20µs for generating and secret sharing the encryption key (this cost depends

onmandN). Both write and read operations incur these costs.

STORAGE-NODES: For each write request, a storage-node must verify both the timestamp

and the data-fragment. Validating the data-fragment is roughly1
N the work the client does

in creating the cross checksum. A hash of the cross checksum is taken to verify the hash

within the timestamp. Read requests require no significant computation by the storage-

node (for the protocol).

AUTHENTICATION: Clients and storage-nodes must authenticate each RPC request and

response. Authentication is performed over the RPC header and some RPCarguments.

Cross checksums and data-fragments are not directly included in the authentication; how-

ever, the validating timestamp is included, and it indirectly authenticates the remainder.

In all cases, authentication of an RPC message requires less than 2.5 µs.

3.6.3 Performance and scalability comparison with BFT

BFT configuration

We compare the PASIS implementation of our protocol with the BFT library implementa-

tion [Castro and Rodrigues 2003] of the BFT protocol for replicated statemachines [Cas-

tro and Liskov 1998a], since it is generally regarded as efficient. The semantics provided

by BFT are stronger than those provided by the PASIS read/write protocol. Since BFT

implements a Byzantine fault-tolerant replicated state machine, arbitrary operations are

linearizable, not just block reads and writes (as in PASIS). Additionally, the bounds on

the number of storage-nodes required to tolerate an equivalent number offaults are lower

than in PASIS (3b+1 for BFT as compared with 4b+1 in PASIS). However, BFT incurs

the cost of multiple rounds of server communication.

Operations in BFT require agreement among the replicas (storage-nodesin PASIS).

Agreement is performed in four steps: (i) the client broadcasts requeststo all replicas; (ii)

the primary broadcasts pre-prepare messages to all replicas; (iii) all replicas broadcast



3.6 Evaluation · 47

prepare messages to all replicas; and, (iv) all replicas send replies back to the client and

then broadcast commit messages to all other replicas. Commit messages are piggy-backed

on the next pre-prepare or prepare message to reduce the number of messages on the

network.Authenticators, lists of MACs, are used to ensure that broadcast messages from

clients and replicas cannot be modified by a Byzantine replica. All clients andreplicas

have public and private keys that enables them to exchange symmetric cryptography keys

used to create MACs. Logs of commit messages are checkpointed (garbage collected)

periodically. View changes, in which a new primary is selected, are suppressed in all

experiments.

An optimistic fast path for read operations (i.e., operations that do not modifystate) is

implemented in BFT. The client broadcasts its request to all replicas. Each replica replies

once all messages previous to the request are committed. Only one replica sends the full

reply (i.e., the data and digest), and the remainder just send digests that canverify the

correctness of the data returned. If the replies from replicas do not agree, the client re-

issues the read operation—for the replies to agree, the read-only request must arrive at

2b+1 of the replicas in the same order (with regard to other write operations). Re-issued

read operations perform agreement using the base BFT algorithm.

The BFT configuration does not store data to disk: instead, it stores all data in mem-

ory and accesses it via memory offsets (i.e., we implemented a simple block interface

using BFT). As such, the storage-component of BFT is much faster than PASIS’ storage

component, which provides true disk-based storage. The difference instorage-component

latency can be seen in the BFT vs. PASIS breakdown graph shown in Figure 3.10.

BFT uses UDP connections rather than TCP. BFT’s retransmission policy isstatic

(i.e., it does not adapt with the detection of congestion as does TCP’s policy) and can

only be set at a coarse granularity (milliseconds). We have observed high rates of retrans-

mission at high load when running write workloads using BFT on our LAN. Webelieve

this causes the dropoff in write throughput as shown in Figure 3.11. Due tothe BFT li-

brary’s code structure, it would require significant work to change thetransport to use

TCP instead of UDP in order to achieve a fairer comparison.
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Figure 3.9:Mean response time vs. total failures tolerated.Mean response times of read and
write operations of random 16 KB blocks in PASIS and BFT. Lines are shown for PASIS that
correspond to both b= t and b= 1 (a hybrid fault model). Multicast was not used for these BFT
experiments.

The BFT implementation defaults to using IP multicast. In our environment, like

many, IP multicast broadcasts to the entire subnet, thus making it unsuitable forshared

environments. We found that the BFT implementation code is fairly fragile when using IP

multicast in our environment, making it necessary to disable IP multicast in some cases

(where stated explicitly). The BFT implementation authenticates broadcast messages via

authenticators, and point-to-point messages with MACs.

Response time

Figure 3.9 shows the mean response time of a single request from a single client as a

function of tolerated number of storage-node failures. Due to the fragility of the BFT

implementation withb > 1, IP multicast was disabled for BFT during this experiment.

The focus in this plot is the slopes of the response time lines: the flatter the line themore

scalable the protocol is with regard to the number of faults tolerated. In our environment, a

key contributor to response time is network cost, which is dictated by the space-efficiency

of the protocol.

Figure 3.10 breaks the mean response times of read and write operations, from Fig-

ure 3.9, into the costs at the client, on the network, and at the storage-node for b = 1 and
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Figure 3.10:Protocol cost breakdown.The bars illustrate the cost breakdown of read and write
operations for PASIS and BFT for b= 1 and b= 4. Each bar corresponds to a single point on
the mean response time graph in Figure 3.9. BFT does not storedata to disk, as such no server
storage cost is shown for BFT.

b = 4. Since measurements are taken at the user-level, kernel-level timings forhost net-

work protocol processing (including network system calls) are attributedto the “network”

cost of the breakdowns. To understand the response time measurements and scalability of

these protocols, it is important to understand these breakdowns.

PASIS has better response times than BFT for write operations due to the space-

efficiency of erasure codes and the nominal amount of work storage-nodes perform to

execute write requests. Forb = 4, BFT has a blowup of 13× on the network (due to

replication), whereas our protocol has a blowup of17
5 = 3.4× on the network. With IP

multicast the response time of the BFT write operation would improve significantly,since

the client would not need to serialize 13 replicas over its link. However, IP multicast does

not reduce the aggregate server network utilization of BFT—forb = 4, 13 replicas must

be delivered.

PASIS has longer response times than BFT for read operations. This can be attributed

to two main factors: First, the PASIS storage-nodes store data in a real file system; since

the BFT-based block store keeps all data in memory and accesses blocks via memory

offsets, it incurs almost no server storage costs. We expect that a BFTimplementation

with actual data storage would incur server storage costs similar to PASIS (e.g., around
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0.7 ms for a write and 0.4 ms for a read operation, as is shown for PASIS withb = 1

in Figure 3.10). Indeed, the difference in read response time between PASIS and BFT at

b = 1 is mostly accounted for by server storage costs. Second, for our protocol, the client

computation cost grows as the number of failures tolerated increases because the cost of

generating data-fragments grows asN increases.

In addition to theb = t case, Figure 3.9 shows one instance of PASIS assuming a

hybrid fault model withb = 1. For space-efficiency, we setm = t + 1. Consequently,

QC = 2t + 1 andN = 3t + 2. At t = 1, this configuration is identical to the Byzantine-

only configuration. Ast increases, this configuration is more space-efficient than the

Byzantine-only configuration, since it requirest − 1 fewer storage-nodes. As such, the

response times of read and write operations scale better.

Some read operations in PASIS can require repair. A repair operation must perform

a “write” operation to repair the value before it is returned by the read. Interestingly, the

response time of a read that performs repair is less than the sum of the response times

of a normal read and a write operation. This is because the “write” operation during re-

pair does not need to read logical timestamps before issuing write requests.Additionally,

data-fragments need only be written to storage-nodes that do not alreadyhost the write

operation.

Throughput

Figure 3.11 shows the throughput in 16 KB requests per second as a function of the num-

ber of clients (one request per client) forb = 1. Read and write operations are evaluated

separately. Sinceb = 1 in this experiment, BFT uses multicast (which greatly improves

its network efficiency). PASIS was run in two configurations: one with the thresholds set

to that of the minimum system withm= 2, N = 5 (write blowup of 2.5×) and one, more

space-efficient, withm= 3, N = 6 (write blowup of 2×). For these experiments, the data

working set fit within the PASIS storage-node caches. Results indicate that, at high client

load, throughput is limited by the server network bandwidth. If the working set were to

exceed the cache size, PASIS would experience capacity misses that would incur disk
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Figure 3.11:Throughput vs. number of clients (b= 1). Throughput of read and write operations
of random 16 KB blocks in PASIS and BFT for b= 1. Each client had one request outstanding. For
PASIS, lines corresponding to both m= 2,N = 4 and m= 3,N = 5 are shown. For BFT, multicast
was used.

accesses. At this point, the disk subsystem would become the bottleneck.

At high load, PASIS has greater write throughput than BFT. BFT’s write throughput

peaks at 456 requests per second. But, we observed BFT’s write throughput drops off

significantly as client load increased; during these drop-offs, we observed a large increase

in request retransmissions. We believe that this is due to the use of UDP and acoarse-

grained retransmit policy in BFT’s implementation. The write throughput of PASIS begins

to flatten out at 675 requests per second form= 2 and 806 req/sec form= 3, significantly

outperforming BFT. PASIS provides higher write throughput than BFT, because server

links become bottlenecks, even though multicast is used.

Even with multicast enabled, each BFT server link sees a full 16 KB replica,whereas

each PASIS server link sees16
m KB. Similarly, due to network space-efficiency, the PASIS

configuration usingm = 3 outperforms the minimal PASIS configuration (806 requests

per second). Both PASIS and BFT have roughly the same network utilizationper read

operation (16 KB per operation). To be network-efficient, PASIS usesread witnesses and

BFT uses “fast path” read operations. However, PASIS makes use ofmore storage-nodes

than BFT does servers. As such, the aggregate bandwidth available forreads is greater

for PASIS than for BFT, and consequently PASIS has a greater read throughput than
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BFT. Although BFT could add servers to increase its read throughput, doing so would not

increase its write throughput (indeed, write throughput would likely drop due to the extra

inter-server communication).

BFT vs PASIS scalability summary

For PASIS and BFT, scalability is limited by either the server network utilization orserver

CPU utilization. Figure 3.10 shows that PASIS scales better than BFT in both. Consider

write operations. Each BFT server receives an entire replica of the data, whereas each

PASIS storage-node receives a data-fragment1
m the size of a replica. The work performed

by BFT servers for each write request grows withb. In PASIS, the server protocol cost

decreases from 90µs for b = 1 to 57 µs for b = 4, whereas in BFT it increases from

0.80 ms to 2.1 ms. The server cost in PASIS decreases becausem increases asb increases,

reducing the size of the data-fragment that is validated. We believe that the server cost

for BFT increases because the number of messages that must be sent to all other servers

increases.

3.6.4 Other results

Garbage collection

We assume a large window of storage version capacity, so garbage collection usually oc-

curs during idle periods. But, even when it competes with real requests, garbage collection

is inexpensive. Garbage collection requests are just batched read requests, except that no

data need be returned for members that do not tolerate Byzantine clients. When Byzan-

tine clients are tolerated, garbage collection must validate the cross checksum, which does

require data-fragments.

Concurrency

Read-write concurrency can lead to client read operations observing repairable writes

or aborting. To explore the effect of concurrency on the system, we measure multi-
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client throughput when accessing overlapping block sets. The experiment consists of four

clients, each with four operations outstanding. Each client accesses a range of eight data

blocks, some overlapping with other clients and some not, and no outstanding requests

from the same client going to the same block.

At the highest concurrency level—all eight blocks in contention by all clients—we ob-

served neither significant drops in throughput nor significant increases in mean response

time. For example, the asynchronous repairable protocol member classifiedthe initial

candidate as complete 88.8% of the time, and found repair was necessary only 3.3% of

the time. Since repair occurs rarely, the effect on average response timeand throughput is

minimal.

Impact of faults

Storage-node failures.For clients, storage-node failures have minimal impact on perfor-

mance.

Client crash failures. Client crash failures appear as partially written data. Subsequent

reads may observe these writes as incomplete or unclassifiable. If they areunclassifiable,

the read must either abort or attempt repair. Repair adds much of the cost of performing a

write, though, the round-trip to obtain a logical timestamp in an asynchronous system is

not needed.

3.7 Discussion

3.7.1 Byzantine clients

In a storage system, Byzantine clients can write arbitrary values. The use of fine-grained

versioning (e.g., self-securing storage [Strunk et al. 2000]) facilitatesdetection, recovery,

and diagnosis from storage intrusions [Strunk et al. 2002]. Once discovered, arbitrarily

modified data can be rolled back to its pre-corruption state.

Byzantine clients can also attempt to exhaust the resources available to the PASIS

protocol. Issuing an inordinate number of write operations could exhauststorage space.
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However, continuous garbage collection frees storage space prior to the latest complete

write. If a Byzantine client were to intentionally issue incomplete write operations, then

garbage collection may not be able to free up space. In addition, incomplete writes re-

quire read operations to roll-back behind them, thus consuming client computation and

network resources. In practice, storage-based intrusion detection [Pennington et al. 2003]

is probably sufficient to detect such client actions.

3.7.2 Timestamps from Byzantine storage-nodes

Byzantine storage-nodes can fabricate high timestamps that must be classified as incom-

plete by read operations. Worse, in each subsequent round of a readoperation, Byzantine

storage-nodes can fabricate more high timestamps that are just a bit smaller than the pre-

vious. In this manner, Byzantine storage-nodes can “attack” the performance of the read

operation, but not its safety. To protect against such denial-of-service attacks, the read

operation can consider all unique timestamps, up to a maximum ofb+ 1, present in a

ResponseSetas candidates before soliciting anotherResponseSet. In this manner, each

“round” of the read operation is guaranteed to consider at least one candidate from a

correct storage-node and no more thanb candidates from Byzantine storage-nodes.

3.7.3 Garbage collection

The proof of liveness (i.e., of wait-freedom) given in Appendix I assumes unbounded

storage capacity. In practice, storage capacity is bounded; if storage capacity is exhausted,

wait-freedom cannot be guaranteed. Prior experience indicates that ittakes weeks of nor-

mal activity to exhaust the capacity of modern disk systems that version all write re-

quests [Strunk et al. 2000].

Garbage collection is used to avoid storage exhaustion. In doing so, it caninteract with

concurrent read operations and concurrent write operations in sucha manner that a read

operation must be retried. Specifically a read operation could classify a concurrent write

operation as incomplete, the write operation could then complete, and garbage collection
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could then delete all previous complete writes. If this occurs, the read operation’s next

round will observe an incomplete write with no previous history. Effectively, the read

operation has “missed” the complete write operation that it would have classified as such.

When it discovers this fact, the read operation retries (i.e., restarts by requesting a new

ResponseSet). Thus, in theory, a read operation faced with perpetual write concurrency

and garbage collection may never complete. In practice, such perpetual interaction of

garbage collection and read-write concurrency for a given data-item isnot realistic.

3.8 Summary

This chapter has developed an efficient Byzantine-tolerant protocol for reading and writ-

ing blocks of data by leveraging the versioning capabilities of storage-nodes. This proto-

col provides read–write semantics of full data blocks. As such, it is suitable as the basis for

the data storage component within a survivable storage system. The subsequent chapters

develop protocols that can provide more powerful read–modify–write semantics which

are more suitable for constructing metadata services.

The R/W protocol is made space-efficient through the use of erasure codes and made

scalable (in terms of faults tolerated) by offloading work from the storage-nodes to the

clients. The protocol is work-efficient, since additional overheads onlyoccur in cases

of failures or read-write concurrency. Experiments demonstrate that PASIS, a prototype

block storage system that uses the R/W protocol, scales well in the number offaults

tolerated, supports 60% greater write throughput than BFT, and requires significantly less

server computation than BFT.



56 · Efficient, scalable consistency for highly fault-tolerant storage



4 Read/Conditional Write Block Protocol

Unlike data blocks that support read and write (R/W) operations only, metadata objects

(e.g., directories), in order to preserve their integrity, require update operations that mod-

ify their existing contents, rather than those that blindly overwrite their previous contents.

For example, two concurrent insertions into a directory using write operations can result

in one being overwritten by the other. To support such operations, this chapter develops a

conditional write(CW) operation that performs a write to an object only if the value of

the object has not changed since the client last read it. As such, we refer to these objects

as read/conditional write (R/CW) objects (vs. R/W). Moreover, read and conditional write

operations are linearizable, thus ensuring atomicity for those that succeed.

The focus in this chapter is on techniques we have employed in the design of R/CW

objects. The protocol is developed in the context of reading and writing full objects, or

blocks (as was the R/W protocol). Since storage system data rarely requires the consis-

tency provided by R/CW objects, the next chapter develops a metadata service based

on an extension to this protocol. The extension provides a more general operation based

interface that allows for finer-granularity access to objects.

Our R/CW protocols are designed around a hybrid fault model, in which different

tolerances for Byzantine and benign (crash-recovery) failures canbe specified, so that the

cost of the protocol can be tuned to the number of each type of failure anticipated. The

R/CW protocol, like the R/W protocol, is extremely optimistic: it is optimized for the

common file system workload in which concurrent sharing is low and failuresare rare.

This optimism leads to a design for the R/CW protocols that, in the common case, requires
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just a single round of communication to perform a read operation and one additional round

of communication for a conditional write (that can usually be optimized away). If client

failures are encountered, or concurrency is observed, more rounds of communication may

be necessary. As well, expensive cryptography, notably digital signatures, is avoided.

4.1 Overview

We describe the system in terms ofN storage-nodes and an arbitrary number of clients and

objects. Clients perform operations on objects. Storage-nodes host object replicas. Note,

this is different from R/W objects which can use erasure coding for space-efficiency. The

impact of using erasure coding is discussed in Section 4.6.1.

The R/CW protocol is comprised ofread operationsandCW operations. Both read

operations and CW operations issue requests to sets of storage-nodes.CW requests are

executedby storage-nodes. As in the R/W protocol, logical timestamps are used to totally

order all CW operations and to identify CW requests from the same CW operation across

storage-nodes. Each storage-node maintains a replica history, denotedReplicaHistory, for

each object it hosts. The replica history contains the entire set of CW requests executed on

the object replica, ordered by logical timestamp (pruning the replica history isdiscussed

in Section 4.3).

4.1.1 R/CW semantics

Before describing the R/CW protocol itself, this section describes the semantics achieved

by the protocol. Conditional-write operations are a form of read–modify–write (RMW)

operation. Read–modify–write semantics [Kruskal et al. 1988] are stronger than read–

write semantics. More generally, as described in [Kruskal et al. 1988],a RMW operation

is equivalent to the atomic execution of the follow function:
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RMW(X, f )

1 : temp← X

2 : X← f (X)

3 : return (temp)

In this operation, the registerX is read, an operationf is performed onX, and the

resulting transformation is stored back inX. It has been shown that many other more

powerful operations can be implemented as an RMW operation; e.g., test-and-set, fetch-

and-add, etc. In a CW operation, an update ofX is performed only if the value ofX has

not changed since it was previously read; thus, the write is conditioned-on the previously

read value not having changed.

As in the R/W protocol, the protocol is optimistic, thus an operation may be complete,

incomplete, or repairable. Every CW operation is preceded by a read operation that iden-

tifies the latest complete candidate. A CW operation is conditioned-on the latest complete

candidate. R/CW semantics ensure that a singleconditioned-on chainexists from any

candidate back through all previous complete candidates to the initialized object. There-

fore, no two complete writes can be conditioned on candidates such that the links formed

between the complete write and the conditioned-on candidate overlap. Figure4.1 more

clearly illustrates the conditioned-on chain. R/CW semantics ensure that the conditioned-

on time of the current candidate “points” at a complete candidate or at a well-known

initial value. As well, since complete CW operations may only be observed as repairable,

all repairable candidates must be repaired to maintain the integrity of the conditioned-on

chain.

One of the main challenges of the R/CW protocol is to protect the integrity of the

conditioned-on chain, especially from Byzantine clients. Byzantine clients can not be

trusted to follow the protocol, thus they may attempt to break the conditioned-on chain

by conditioning on an incorrect value (e.g., an incomplete CW operation or not the latest

complete CW operation), see Figure 4.1(b). Briefly, to prevent these Byzantine attacks,
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Figure 4.1:Examples illustrating the conditioned-on chain. For each example, the complete
object history and each version’s classification for a CW object is shown. As well, the logical
timestamp for each version is given, as is the logical time for the version on which it conditions
(shown as a subscript to the logical timestamp). Note, the CWoperation at logical time 3 is
incomplete. Since both the version at logical time 2 and 3 condition on the version at time 1 (e.g.,
the may have been concurrent), only one version can completesuccessfully. Example (a) shows a
valid conditioned-on chain. The version at logical time 3 isignored. Example (b) shows an invalid
conditioned-on chain. At logical time 4, a (Byzantine) client incorrectly conditions on the version
at time 3 even though it is incomplete, thus corrupting the conditioned-on chain.

clients must send “proof” with each CW operation supporting their action. Each client

sends anobject history setfor each CW object being updated. The object history set

contains the replica history of each storage-node that replied during the read phase. As

well, each of the replica histories is “signed” (digital signatures may be used, but for

performance we useauthenticators, see Section 4.2.2) and acts as proof that the client is

acting correctly. The “signed” object history set can then be validated byindividually by

each storage-node (this validation is discussed in detail in Section 4.3.3).

4.1.2 Read operation overview

At a high level, the R/CW protocol proceeds as follows. To perform a readoperation,

a client issues read requests to the set of storage-nodes. At leastN− t storage-nodes

eventually respond to read requests. Due to the failure model and the asynchronous system

model, onlyN− t read responses can be collected by a client. The storage-node returns
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Figure 4.2:Read requests and candidate classification.Clients A and B perform read oper-
ations in a system that tolerates one benign failure. Storage-nodes return object histories. Due
to asynchrony, each client only receives responses from a subset of storage-nodes. Each client
constructs an object history set from the object histories.In this example, client A classifies the
candidate with logical timestamp 5 as repairable; client B classifies the candidate with logical
timestamp 6 as incomplete, and 5 as complete.

the replica history in response to a read request.

The client combines the replica histories returned by the storage-nodes intothe object

history set (denotedObjectHistorySet). For example,ObjectHistorySet[S] contains the

replica history returned from storage-nodeS. Classification is performed on the times-

tamps within the object history set. The purpose of classification is to determine the

timestamp of the latest complete (successful) update. A CW operation is complete once

a threshold number of benign storage-nodes have executed CW requests. This thresh-

old permits the R/CW protocol to ensure that no subsequent operation can return (or

condition-on) a previous object value; as well, it defines classification. Classification

identifies acandidate—a candidate is eithercompleteor repairable. If the candidate is

complete, then the read operation returns the object value associated with thecandidate.

If the candidate is repairable, the client performs a CW operation to repair the candidate.

Once the repairable candidate is complete, its value is returned.

Aspects of the read operation are illustrated in Figure 4.2. In response to read requests,

storage-nodes return object histories to the clients. In the example, each client constructs
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a different object history set since each client received responsesfrom a different subset

of storage-nodes. Classification is performed on the object history set. In the example,

clientA andB classify the candidate with logical timestamp 5 as repairable and complete

respectively. ClientBclassified the candidate with logical timestamp 6 as incomplete prior

to classifying 5 as complete. The exact rules for classification are given inSection 4.4.

4.1.3 CW operation overview

All CW operations are preceded by a read operation that identifies the candidate. Recall,

a CW operation is conditioned-on the latest complete candidate (actually, on theobject

history set for which classification yields the candidate). R/CW semantics ensure that a

single conditioned-on chain exists from any candidate back through all previous complete

candidates to the initialized object. Each entry in a replica history is a〈logical timestamp,

conditioned-on logical timestamp, value〉 tuple. The elements of this tuple are denoted

〈LT, LTconditioned, Data〉 and replica histories are initialized to〈0, 0,⊥〉.

The largest timestamp in the object history set is used by the client to create a times-

tamp for the CW operation. As discussed later, hashes of the object historyset and the

object value are also placed in the timestamp (these hashes ensure that all CWoperations

have a unique timestamp and protect against Byzantine entities). The client sends CW re-

quests to all storage-nodes. The CW request contains the timestamp of the CWoperation,

the object history set constructed by the preceding read operation, the candidate (found

from classification of the object history set), and the object value.

Correct storage-nodes execute a CW request only if the timestamp, value,and replica

history can all be validated. Validation ensures failure atomicity, concurrency atomicity,

and, as discussed below, protects against Byzantine entities. If sufficient storage-nodes

execute CW requests, the CW operation completes; otherwise, it aborts. CW operations

may abort due to concurrency. Since repair is a CW operation, and may bepart of a read

operation, read operations may also abort.

To ensure that only one CW operation completes that is conditioned upon another CW

operation, abarrier may be written to ensure that outstanding concurrent CW operations
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cannot complete. Barriers mark a point in time without inserting a value into the system.

Thus, a completed barrier written infront of an incomplete value prevents (or bars) the

incomplete operation from ever completing; storage-node validation will fail since the

barrier’s timestamp is larger than the timestamp being conditioned on by the incomplete

operation. Barriers allow CW operations to be issued that may complete in the face of

concurrency or client failure.

4.2 Mechanisms

This section describes various mechanisms employed to guarantee safety within the the

R/CW protocol.

4.2.1 Validating timestamps

Logical timestamps are structured values with three members: the primary timestamp

(Time), the object history set verifier (Verifier OHS), and the value verifier (Verifier Data).

The verifiers are collision-resistant hashes over the object history setand the object’s value

respectively. In comparing two logical timestamps, to determine which is greater, the ma-

jor timestamps are first compared, and then the verifiers are compared. Since verifiers are

guaranteed to be unique (for unique object values) all timestamps are guaranteed to be

unique.

The use of the collision-resistant hash cryptographic primitive protects against Byzan-

tine entities. Byzantine storage-nodes cannot undetectably corrupt values written to them,

because the hash of the object’s value is in the timestamp. Byzantine clients cannot per-

form poisonous writes[Martin et al. 2002]. In a poisonous write, a Byzantine client writes

different values to different storage-nodes with the same timestamp. Storage-nodes vali-

date the value sent in a CW request with the value verifier. Since in the R/CW protocol

client’s transmit full replicas, as opposed to erasure coded fragments in the R/W proto-

col, storage-node validation prevents poisonous writes. As well, validationensures that a

Byzantine client cannot make a correct storage-node appear Byzantine (i.e., only Byzan-
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tine storage-nodes return values that cannot be validated by the client).

4.2.2 Authenticators

To ensure R/CW semantics, the conditioned-on relationship between the valuein the CW

request and the candidate in the object history set must be maintained. This conditioned-

on relationship is validated by a storage-node before it executes a CW request. For a

storage-node to validate the conditioned-on relationship, it must “know” that the replica

histories in the object history set are indeed those returned by other storage-nodes.

Generally, digital signatures are used for such purposes. However,digital signatures

are computationally expensive to compute and verify. Keyed cryptographic hash functions

can be evaluated approximately three orders of magnitude faster than digitalsignatures.

To make Byzantine fault-tolerant agreement efficient, Castro and Liskov usedauthenti-

catorsin lieu of digital signatures in BFT [Castro and Liskov 1998b]. Authenticatorsare

vectors of keyed hashes: theith element in the vector is used to prove the authenticity of

the message to entityi. To enable authenticators, all pairs of entities that need to prove

message authenticity to one another must share distinct secret keys. Authenticators are

not as strong a primitive as signatures: any entity can verify an entire signature, whereas

only entities in the vector of keyed hashes can validate the authenticator (and, at that, only

its own entry in the authenticator).

Authenticators are used by storage-nodes in the R/CW protocol to “sign” replica his-

tories returned in read responses. If authenticator validation fails, the storage-node cannot

tell if a Byzantine client corrupted a valid replica history, or if a Byzantine storage-node

constructed an invalid replica history, since the object history set is constructed by the

client. Invalid authenticators are discussed in Section 4.6.2.

During repair, authenticators allow clients with read-only access to an object to per-

form repair on the object. In many systems, there is an asymmetry between writepriv-

ileges and read privileges. Authenticators provide sufficient proof to storage-nodes that

the object history set is valid and thus that some candidate is repairable. Consequently,

storage-nodes can execute “repair” CW requests from read-only clients.
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4.3 Protocol

This section pseudo-code for classifying candidates, performing conditional write opera-

tions, and validating CW requests. As well, read operations and storage-node actions are

discussed in detail.

4.3.1 Read operation

Figure 4.3 shows the pseudo-code for the read operation. The read operation begins by

issuing read requests to the set ofN storage-nodes. Given the asynchronous nature of the

protocol, and the crash-recovery failure model for storage-nodes,no more thanN− t read

responses are collected.

In response to a read request, the storage-node returns its replica history. A client can

explicitly request a specific version of the object (based on candidate classification), and

the storage-node returns its value. This functionality is used to implementread witnesses:

only one storage-node need return the value of its object replica, the replica histories of

other storage-nodes act as witnesses [Pâris 1986] that validate the correctness of the value

(through the object’s value hash).

The client uses the returned replica histories to construct theObjectHistorySet(cf.

line 100). Recall, each entry in a replica history is a〈logical timestamp, conditioned-on

logical timestamp, value〉 tuple. For simplicity of presentation, data corresponding to each

entry in the replica history is returned. However, in practice, only the data value associated

with the latest logical timestamp is returned. Optimistically, the latest timestamp is usually

classified as complete and this data is sufficient, otherwise an extra read round-trip is

required to fetch the appropriate data version (as in the R/W protocol).

A storage-node also attaches an authenticator to the replica history it returns. When

the client constructs the object history set,ObjectHistorySet, each replica history in the

set has an authenticator. The client can cache the object history set andauthenticators and

use them in a future CW request.

The pseudo-code for the CWDO READ operation is very similar to the code shown
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READ() :
100: ObjectHistorySet:= DO READ()
101: 〈Candidate, Status〉 := CLASSIFY(ObjectHistorySet)
102: if (Status= CLASSIFIED COMPLETE) then
103: return (SUCCESS, 〈Candidate.LT, Candidate.Data〉)
104: else
105: /∗ Status= CLASSIFIED REPAIRABLE ∗/
106: return (CONDITIONAL WRITE(Candidate, Candidate.LTconditioned,Candidate.Data, ObjectHistorySet))
107: end if

DO READ() :
200: ResponseSet:= /0
201: repeat
202: for all S∈ {S1, . . . ,SN}\ResponseSet.Sdo
203: SEND(S, READ REQUEST)
204: end for
205: if (POLL FOR RESPONSE() = TRUE) then
206: 〈S, ReplicaHistory〉 := RECEIVE READ RESPONSE()
207: if ((S /∈ ResponseSet.S) AND VALIDATE(ReplicaHistory) = SUCCESS)) then
208: ObjectHistorySet[S] := ReplicaHistory
209: ResponseSet:= ResponseSet∪ 〈S〉
210: end if
211: end if
212: until (|ResponseSet|= N− t)
213: return (ObjectHistorySet)

CLASSIFY(ObjectHistorySet) :
300: 〈Candidate, Count〉 := SELECT CS(ObjectHistorySet,⊥)
301: loop
302: if (Count≥ COMPLETE) then
303: return (〈Candidate, CLASSIFIED COMPLETE〉)
304: else if(Count≥ INCOMPLETE) then
305: return (〈Candidate, CLASSIFIED REPAIRABLE〉)
306: end if
307: /∗ Incomplete candidate: find new candidate and loop again.∗/
308: 〈Candidate, Count〉 := SELECT CS(ObjectHistorySet, Candidate.LT)
309: end loop

Figure 4.3:Client read and classification pseudo-code.

in the R/W protocol chapter (Figure 3.6). First, theDO READ function discards any re-

sponses that cannot be validated (cf. line 207). Since data is assumed to be replicated,

the value verifier (stored in the timestamp) is simply the hash over the data. Second, the

ObjectHistorySetis constructed from the set of storage-node responses (cf. line 208).

The client then performs classification on the object history set (cf. line 101). The

pseudo-code for classification is also shown in Figure 4.3. The function iteratively iden-

tifies and classifies potential candidates until a valid complete or repairable candidate

is found. The functionSELECT CS, on line 300, identifies the potential candidate with

the highest timestamp, and setsCandidateaccordingly. The valueCount returned from
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SELECT CS is the count of the number of storage-nodes in theObjectHistorySetthat host

the potential candidate. Note, only candidates that can be validated with the value verifier

in the timestamp are chosen; as well, barrier-writes are ignored.

Once a potential candidate has been chosen, it is classified as either complete, re-

pairable, or incomplete. To classify a potential candidate,Count is compared with the

constantsCOMPLETE andINCOMPLETE. The derivation of these constants are described in

Section 4.4.

If the potential candidate is classified as complete, the read operation returns the

value associated with the candidate. If the potential candidate is classified asincomplete,

SELECT CS is called again, but with the potential candidate’s timestamp (cf. line 308).

A new potential candidate, with a lower timestamp, is identified. Candidate classification

begins again.

If the potential candidate is classified as repairable, the client performs repair. It does

so by issuing a CW operation (shown in Figure 4.5) with the value of the repairable can-

didate, see line 106 in Figure 4.3. If the repairable candidate contains the latest timestamp

observed by the client (i.e., itsLT = MAX[ObjectHistorySet]), then the client can attempt

repair by completing the operation at repairable’s logical time. Otherwise, a barrier is

needed to block any competing incomplete operations from completing. When a barrier

is needed, a new (higher) logical timestamp is generated. The condition on timestamp

(LTconditioned) is set to the timestamp of the latest complete write. The latest complete

write is the CW conditioned on by the repairable candidate. If the repair operation fails,

then the read operation aborts and must be retried. An example of a repair that requires a

barrier-write is shown in Figure 4.4.

4.3.2 CW operation

The pseudo-code for the CW operation is shown in Figure 4.5. First, the logical times-

tamp for the CW operation,LT, is constructed. The major part ofLT is determined by

incrementing the major part of the largest timestamp in theObjectHistorySet. The veri-

fiers are determined by taking the hash of the object history set and the object value for
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Figure 4.4:Example of repair requiring a barrier-write. For this setup: N= 4,COMPLETE =
3,INCOMPLETE = 2. The object history is shown at 4 storage-nodes during the progression of
a read operation. The subscript to each version’s timestampcorresponds to the timestamp on
which the version is conditioned. First, the client classifies LT 2 as repairable (although it is
actually complete). However, an incomplete operation exists at LT3. To block this operation from
completing, a barrier is written at LT4. Finally, repair is attempted at LT= 5, LTconditioned= 1.
Note, that the condition on time is the same as the repairablecandidate’s.

the CW operation. It is important to note that every logical timestamp generated isat least

1 larger than the latest complete write that currently exists in the system.

Before the CW operation is issued with the value, the object history set is checked

to see if abarrier is needed (cf. line 407). Barriers ensure that multiple CW operations

conditioned-on the same candidate do not complete. A barrier is needed if any of the

replica histories in the object history set contain timestamps that are greater than that of

the candidate’s timestamp (and are not themselves barriers). If such a timestamp exists,

then there may be another CW operation concurrent to this CW operation. Ifthe barrier

completes, then the concurrent CW operation cannot complete.

To create a barrier, the client performs aDO WRITE with the⊥ value, a⊥ verifier,

andLT.Barrier set toTRUE (called abarrier-write). This allows the CW operation to be

executed at storage-nodes that host its barrier. TheDO WRITE function issues CW requests

to all storage-nodes. The object history set is updated with each responseDO WRITE re-

ceives, line 508. As inDO READ, the replica history is first validated. However, one should

note that even if the operation failed, the replica history is returned. This allows the client
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CONDITIONAL WRITE(Candidate, LTconditioned, Data, ObjectHistorySet) :
400: /∗ Construct the logical timestamp for the CW operation.∗/
401: LTlatest:= MAX TIMESTAMP(ObjectHistorySet)
402: LT.Time:= LTlatest.Time+1
403: LT.Verifier OHS:= HASH(ObjectHistorySet)
404: LT.Verifier Data := HASH(Data)
405: LT.Barrier := FALSE

406: /∗ If necessary, write a barrier.∗/
407: if (LTlatest> Candidate.LT) then
408: LTbarrier := LT
409: LTbarrier.Verifier Data :=⊥
410: LTbarrier.Barrier := TRUE

411: 〈Count, ObjectHistorySet〉 := DO WRITE(LTbarrier, LTconditioned, ObjectHistorySet,⊥)
412: if (Count< COMPLETE) then
413: return (ABORT, 〈⊥, 0〉)
414: else
415: /∗ Re-classify based on returned object history set∗/
416: 〈Candidatenew, Status〉 := CLASSIFY(ObjectHistorySet)
417: if (Candidatenew6= Candidate) then
418: /∗ Abort if classification yields different result∗/
419: return (ABORT, 〈⊥, 0〉)
420: end if
421: end if
422: end if
423: /∗ Perform the CW operation.∗/
424: 〈Count, ObjectHistorySet〉 := DO WRITE(LT, LTconditioned, ObjectHistorySet, Data)
425: if (Count< COMPLETE) then
426: return (ABORT, 〈⊥, 0〉)
427: end if
428: return (SUCCESS, 〈Data, LT〉)

DO WRITE(LT, LTconditioned, ObjectHistorySet, Data) :
500: ResponseSet:= /0
501: repeat
502: for all S∈ {S1, . . . ,SN}\ResponseSet.Sdo
503: SEND(S, WRITE REQUEST, LT, LTconditioned, ObjectHistorySet, Data)
504: end for
505: if (POLL FOR RESPONSE() = TRUE) then
506: 〈S, ReplicaHistory, Status〉 := RECEIVE WRITE RESPONSE()
507: if ((S /∈ ResponseSet.S) AND VALIDATE(ReplicaHistory) = SUCCESS)) then
508: ObjectHistorySet[S] := ReplicaHistory
509: ResponseSet:= ResponseSet∪ 〈S〉
510: if (Status= SUCCESS) then
511: Count:= Count+1
512: end if
513: end if
514: end if
515: until (|ResponseSet|= N− t)
516: return (〈Count, ObjectHistorySet〉)

Figure 4.5:Client-side CW operation pseudo-code.

to retry a write without performing a read to obtain the latest object history. OnceN− t

responses have been received (line 515),DO WRITE returns.

Once the barrier-write has completed successfully it is necessary to perform classi-
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The object history is shown at 4 storage-nodes during the progression of a CW operation. First,
the client classifies LT2 as incomplete. Next, it attempts to write a barrier at LT= 3, however the
barrier-write is concurrent with the completion of2. Once the barrier-write completes, the client
re-classifies LT2 as complete. The CW operation is aborted and retried at LT= 4,LTconditioned=
2.

fication over the new object history set, line 416. This is necessary, sincebarrier-writes

may be executed at storage-nodes hosting the CW operation that they are trying to block

(i.e., an incomplete operation may complete just prior to the execution of the barrier). If

classification yields the same candidate (cf. line 417), the client can perform the value-

write. And, if the value-write completes, then theCandidateis returned (in case the CW

operation is called for repair). If either the barrier-write or value-write do not complete,

then the CW operation aborts, and must be retried (including the read phase). Figure 4.6

shows an example of a barrier-write that necessitates re-classification.

4.3.3 CW requests at storage-nodes

Receiving CW requests

Pseudo-code describing the reception of a CW request at a storage-node is shown in

Figure 4.7. First, the request must be validated. Due to the complexity of validation, it

is described fully in the next sub-section. If validation succeeds, the request is inserted
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RECEIVE WRITE REQUEST(LT, LTconditioned, ObjectHistorySet, Data) :
600: if (VALIDATE CW REQ(LT, LTconditioned, ObjectHistorySet, Data)) then
601: /∗ Execute the CW request∗/
602: Request:= 〈LT, LTconditioned, Data〉
603: ReplicaHistory:= ReplicaHistory∪ Request
604: /∗ Prune history∗/
605: if (Data 6=⊥) then
606: PRUNE HISTORY SET(ReplicaHistory,LTconditioned)
607: end if
608: SEND(WRITE RESPONSE, S, ReplicaHistory, SUCCESS)
609: return
610: end if
611: SEND(WRITE RESPONSE, S, ReplicaHistory, FAIL)
612: return

Figure 4.7:Reception of a CW at storage-nodeS.

into the storage-node’s local history, line 603. The request is comprisedof the tuple:

〈LT, LTconditioned, Data〉.

If an object history set contains a complete candidate, the storage-node can prune its

replica history up to the complete candidate’s timestamp (cf. line 606). A validatedobject

history set always contains a candidate that is complete (although such a candidate may

be earlier in the object history set than a repairable candidate returned from classifica-

tion); note, the initial timestamp 0 can be considered the earliest complete candidate. All

versions prior to the latest complete (non-barrier) CW (i.e., prior to the CW’sLTconditioned)

can be pruned; however, no pruning occurs on barrier-writes. Theuse of authenticators

obviates the need for distributed garbage collection as was necessary in the RW protocol.

Finally, a response is sent back to the client. Note that the storage-node’slocal history is

always transmitted in the response. This allows the client to update the object history set

and re-perform classification if necessary (e.g., if the CW operation failed).

Validating CW requests

Storage-nodes must validate CW requests. If validation succeeds, the storage-node exe-

cutes the CW request: it executes the value-write and updates its replica history to include

the CW request. Remember, the replica history is stored in stable storage that endures the

crash-recovery cycle. If validation fails, the storage-node rejects theCW request.

With the object history set, the storage-node can perform the exact same logic as the
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VALIDATE CW REQ(LT, LTconditioned, ObjectHistorySet, Data) :
700: /∗ Validate LT.Time, ensures logical time is always increasing∗/
701: if (LT.Time 6= ((MAX TIMESTAMP[ObjectHistorySet]).Time+1)) then
702: return (FAIL)
703: end if
704: /∗ Validate authenticators for each history set∗/
705: if (VALIDATE AUTHENTICATORS(ObjectHistorySet) = FAIL) then
706: return (FAIL)
707: end if
708: /∗ Validate verifiers∗/
709: if (HASH(Data) 6= LT.Verifier Data) then
710: return (FAIL)
711: else if(HASH(ObjectHistorySet) 6= LT.Verifier OHS) then
712: return (FAIL)
713: end if
714:
715: /∗ Perform classification to find latest logical timestamps∗/
716: 〈LTlatestcompnb, LTlatestcompnb bd, LTlatestnb,

LTlatestbarrier, LTlatestni nb, Classifylatestbarrier〉 := CLASSIFY(ObjectHistorySet)
717:
718: /∗ Check if a barrier is needed, and not writing a barrier∗/
719: if ((LTlatestcompnb bd 6= LTlatestnb) AND

((LTlatestbarrier< LTlatestnb) OR (Classifylatestbarrier 6= COMPLETE)) then
720: /∗ Barrier is needed, make sure this is a barrier∗/
721: if (LT.Barrier = FALSE) then
722: return (FAIL)
723: end if
724: else if(LT.Barrier = TRUE) then
725: return (FAIL)
726: end if
727:
728: /∗ Validate replica acceptance policy∗/
729: if (MAX[ReplicaHistory] > MAX[LTlatestnb, LTlatestbarrier]) then
730: return (FAIL)
731: end if
732:
733: if (LT.Barrier = FALSE) then
734: /∗ Validate condition on relationship, conditioning on a complete∗/
735: if ((LTlatestnb = LTlatestcompnb) AND (LTconditioned6= LTlatestcompnb)) then
736: /∗ Classified complete as latest timestamp, butLTconditionednot conditioned on latest complete∗/
737: return (FAIL)
738: end if
739:
740: /∗ Validate condition on relationship, performing repair∗/
741: if (((LTlatestnb 6= LTlatestcompnb) AND (LTlatestnb = LTlatestni nb)) AND

(LT.Verifier Data 6= LTlatestni nb.Verifier Data) OR (LTconditioned6= LTlatestcompnb bd)) then
742: return (FAIL)
743: end if
744: end if
745: return (SUCCESS)

Figure 4.8:Validation of a CW request at storage-nodeS.

client, and validate that the client is acting correctly. The pseudo-code forvalidation is

shown in Figure 4.8.

First, a sanity check is performed on the primary time within the logical timestamp,
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Logical timestamps returned from classifying the object history set on thestorage-node:
• LTlatestbarrier: Latest barrier logical timestamp;

• LTlatestnb: Latest non-barrier logical timestamp;

• LTlatestni nb: Latest non-incomplete, non-barrier logical timestamp;

• LTlatestcompnb: Latest complete, non-barrier logical timestamp;

• LTlatestcompnb bd: Latest complete, non-barrier, by deduction logical timestamp.
Note:LTlatestcompnb bd = MAX[LTlatestcompnb, LTlatestni nbconditioned]

Figure 4.9:Logical timestamps returned from classification.

line 701. Next, the authenticators for the object history set is validated (cf.line 705). Re-

call, the object history set is comprised of history sets from each of the storage-nodes

queried during the read operation phase. Each of these history sets hasa corresponding

authenticator that must be validated. The impact of failed authenticator validation is dis-

cussed in Section 4.6.2.

Next, the verifiers, stored within the timestamp, are validated (cf. lines 708 - 713).

Again, the storage-node is replicating client logic to ensure that the validatingtimestamp

is well-formed. The object history set verifier determines the conditioned-on relationship

for a the CW operation and the value verifier determines the value of the CW operation,

thus limiting the actions a Byzantine client can perform.

By performing classification on the object history set, line 716, the storage-node can

validate that the candidate is the correct candidate, and that the timestamp is the correct

timestamp (since both are deterministic given an object history set). As well, the storage-

node can check to see if abarrier is required (cf. line 719). To make these checks, storage-

node classification returns multiple logical timestamps, each set to a logical timestamp

within the object history set. These timestamps are described within Figure 4.9.

The descriptions of most of the timestamps returned from classification are clear.

However, theLTlatestcompnb bd timestamp deserves further discussion. As described, this

timestamp represents a version that is complete by deduction. A candidate that iscomplete

by deduction is a candidate that is necessarily complete, but has not been observed as

such. This occurs when a repairable (non-barrier) candidateA is observed (in the object

history set) to have conditioned upon another, earlier, repairable (non-barrier) candidateB.

Recall, a complete candidate may be viewed as repairable. SinceA is repairable, it has
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passed validation at≥QC− t storage-nodes, of which at leastQC− t−b are benign (see

the constraint derivations for more details, Section 4.4). The only possibleway thatA can

pass validation at a benign storage-node is by conditioning on a complete (non-barrier)

candidate. Thus,B must be complete (by deduction).

Barriers are required to squash pending CW requests (e.g., incomplete CWoperations

from failed clients). A barrier is required if there exists any non-barrier, non-complete

CW request that exists within the object history set at a later logical timestamp than any

other complete CW write or barrier operation (i.e., there exists a pending incomplete CW

operation). If theBarrier portion of the logical timestamp is set toTRUE, the storage-

node knows that the CW request is part of a barrier-write. The only further validation that

occurs for barrier-writes is that of theacceptance-checkagainst the replica’s history.

The acceptance-check, line 728 ensures that a CW request has not been executed

locally that is later than the latest logical timestamp present within the object historyset.

If the CW is not a barrier-write, the conditioned-on relationship is then validated

(cf. lines 734 - 743). There are two cases for validation. First, a completecandidate is

classified as the latest non-barrier. In this case, the conditioned-on timestamp is verified

against the latest complete, non-barrier CW (cf. line 735).

Second, a repairable candidate is classified as the latest non-barrier. That is, the latest

non-barrier is the same as the latest non-incomplete, non-barrier operation and the latest

non-barrier is not the latest complete, line 741. If the candidate is repairable, two vali-

dations are performed. First, the storage-node validates that the object value for the CW

request is the same as the repairable candidates (this ensures that the repair occurs cor-

rectly). Second, the CW’s conditioning on timestamp is checked against the repairable’s

conditioning on timestamp (note, in this caseLTlatestcompnb bd = LTlatestni nbconditioned);

this ensures the continuity of the conditioning chain.

A summary of the conditions that hold if storage-node validation succeeds is pre-

sented in Figure 4.10. These are derived from the pseudo-code shown in Figure 4.8.
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Postulates that hold if validation succeeds (3 and 4 only hold ifLT.Barrier is FALSE):
i (LTlatestcompnb bd = LTlatestnb) OR ((LTlatestbarrier> LTlatestnb) AND (Classifylatestbarrier= COMPLETE))

ii MAX[ReplicaHistory]≤MAX[LTlatestnb, LTlatestbarrier]

iii if (LTlatestnb = LTlatestcompnb) then LTconditioned= LTlatestcompnb

iv if ((LTlatestnb 6= LTlatestcompnb) AND (LTlatestnb = LTlatestni nb)) then
(LT.Verifier Data= LTlatestni nb.Verifier Data) AND (LTconditioned= LTlatestcompnb bd)

Figure 4.10:Validation postulates.

4.4 Constraints

This section presents bounds onN andQC, the definition of a complete CW operation (in

terms oft andb), and constraints onCOMPLETE andINCOMPLETE. The derivation of con-

straints is similar to that for the protocol for R/W objects in Section 3.4. The differences

in bounds arise mainly from the added constraint that repairable candidates must inter-

sect with complete candidates for the R/CW protocol to be safe. A formal proof of the

safety and liveness of the R/CW protocol and its extension to the Q/U protocol is given

in [Abd-El-Malek et al. 2004].

4.4.1 Read classification rules

Recall that thecandidateis the data-item version, returned by a read request, with the

greatest logical timestamp. The set of read responses that share the candidate’s timestamp

are thecandidate set. Constraints onCOMPLETE andINCOMPLETE are required to ensure

two properties. The first property is that if a candidate is ever classified as complete, then

any subsequent read operation observes the complete candidate as repairable. The second

property is that if candidateA is complete and conditioned-on candidateB, any repairable

candidate with a timestamp greater thanA either conditioned-onA or can traverse the

conditioned-on chain back toA.

To classify a candidate as complete, a candidate set of at leastQC benign storage-

nodes must be observed. In the worst case, at mostb members of the candidate set may

be Byzantine, thus,

|CandidateSet|−b≥QC⇒ COMPLETE = QC +b. (4.1)
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To classify a candidate as incomplete, the candidate must be incomplete (i.e., fewer

thanQC benign storage-nodes have executed the CW). We consider a rule for classifying

incomplete candidates that takes advantage ofN− t responses from storage-nodes. In the

crash-recovery model, eventually, a client is guaranteed to receive thismany responses—

even though, there may be periods during which more thant storage-nodes are crashed.

Moreover, a client cannot expect more than this many responses, sinceup to t storage-

nodes may never recover (and in an asynchronous environment crash failures are unde-

tectable). Thus, the rule for classifying a candidate incomplete is,

|CandidateSet|+ t < QC⇒ INCOMPLETE = QC− t. (4.2)

Candidates that cannot be classified as complete or incomplete are classifiedas repairable.

Given these constraints onCOMPLETE andINCOMPLETE, consider the examples illus-

trated in Figure 4.2. In this example,t = 1 andb= 0, soCOMPLETE= 3,INCOMPLETE= 2,

andN = 4. Since clientA observes a candidate with timestamp 5 in two replica histories,

and this is not less than the incomplete threshold, it classifies 5 as repairable.Whereas

candidate 6 is observed by clientB in one replica history and classified incomplete.

4.4.2 Real repairable candidates

This property ensures that colluding Byzantine storage-nodes are unable to fabricate a

candidate that a correct client deems repairable. To achieve this property, a candidate set

of sizeb must be classifiable as incomplete. Substituting|CandidateSet|= b into (4.2),

b+ t < QC. (4.3)

4.4.3 Complete candidate—repairable candidate intersection

This property prevents multiple CW operations conditioned on the same candidate (i.e.,

with the sameLTconditioned) performed by correct clients from completing. A complete

candidate cannot be allowed to co-exist with a repairable candidate. Sincea complete can-
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didate may be observable as repairable, a client may observe two repairable candidate’s

(even though one is complete) and not know which candidate to repair. If the “wrong can-

didate” (i.e., the one that is not complete) is repaired, the condition on chain is violated.

To achieve this property, it is necessary that a complete candidate and repairable can-

didate intersect at at least one benign storage-node. Thus, from the lower bounds of re-

pairable and complete candidates,

COMPLETE+INCOMPLETE > N+b,

QC +b+QC− t > N+b,

2QC > N+ t. (4.4)

4.4.4 Read set intersection

The intersection between a complete and a candidate set ofQC benign storage-nodes must

result in at least a repairable being observed. Thus,

N+INCOMPLETE≤QC +COMPLETE,

N+Qc− t ≤QC +(QC +b),

N≤QC +b+ t. (4.5)

4.4.5 CW termination

A CW operation is defined to be complete once a total ofQC benign storage-nodes have

executed the CW.

There must be sufficient good storage-nodes in the system for a CW operation by a

correct client to complete. A client must terminate after it receivesN− t responses. As

well, up tob responses may be from Byzantine storage-nodes (who lie about executing

the operation), similar to the R/W protocol (see Section 3.4.4).

However, there is another action a Byzantine storage-node can take thatwas not pos-

sible in the R/W protocol. A Byzantine storage-node can lie that it could not execute the
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CW request because validation failed (e.g., it hosts a CW request with a timestamp greater

thanLT), see Section 4.3.3. This action requires that a CW operation can complete in the

face of b storage-nodes that reject the operation. If the reject message alwaysreaches

the client before some accept message from a benign storage-node, theclient will always

abort the CW operation (since in an asynchronous crash-recovery model it cannot await

all responses). In the case that Byzantine storage-nodes do not control the network, then,

probabilistically, the CW operation will eventually successfully complete.

Thus, for the CW operation to be guaranteed to complete (i.e., for a client to ensure

that it is possible forQC benign storage-nodes to execute CW requests during the CW

operation),

QC +b≤ N− t−b,

QC≤ N− t−2b. (4.6)

4.4.6 Constraint summaries

Constraints (4.4) and (4.6) lead to a constraint onQc that supersedes (4.3):

QC + t +2b≤ N < 2QC− t,

QC + t +2b < 2QC− t,

2t +2b < QC. (4.7)

Adding (4.4) and (4.5) leads to a constraint onN:

2N < 3QC +b,

N <
3QC +b

2
. (4.8)
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And so, the overall constraints onQC andN can be written as,

2t +2b+1≤QC≤ N− t−2b;

QC + t +2b≤ N < MIN

[

2QC− t,
3QC +b

2

]

.

Which leads to the minimal bounds of:

QC = 2t +2b+1;

N = 3t +4b+1.

4.4.7 Improving the bounds on N and QC

If we relax the liveness guarantee provided in 4.4.5, the bounds onN andQc can be sig-

nificantly improved. Recall, the bounds presented above arise from guaranteeing CW op-

erationsalwaysterminate despite the false rejection of operations by Byzantine storage-

nodes. By relaxing this guarantee, the constraint onQC becomes:

QC +b≤ N− t,

QC≤ N− t−b. (4.9)

Which leads to:

QC + t +b≤ N < 2QC− t,

QC + t +b < 2QC− t,

2t +b < QC. (4.10)
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So, the overall constraints onQC andN are:

2t +b+1≤QC≤ N− t−b;

QC + t +2b≤ N < MIN

[

2QC− t,
3QC +b

2

]

.

And the minimal constraints are:

QC = 2t +b+1;

N = 3t +2b+1.

The differences between the two sets of constraints translate to slightly different live-

ness properties of write operations that incur no write concurrency in theface of Byzantine

storage-node faults. However, in both cases, safety is never compromised.

The first derivation (4.6) guarantees that, in the absence of write concurrency, writes

will alwayscomplete. The second derivation (4.9) provides slightly weaker livenessguar-

antees than the first. It provides that in the absence of write concurrency and in the pres-

ence of Byzantine storage-node faults, writesmaycomplete; it depends on whether re-

sponses from Byzantine storage-nodes are in the set of theN− t responses collected by

the client.

4.4.8 Liveness

If multiple CW operations are ongoing, storage-nodes may execute CW requests for dis-

tinct CW operations and thus prevent any CW operation from completing. Insuch a sce-

nario, some form of “back off” and retry is required to allow forward progress. Techniques

such as randomized exponential back off or some form of prioritized request queues at

storage-nodes (if the storage-node “detects” contention) could work.

There is a trade-off between the liveness guarantee of the R/CW protocol and the

minimum number of storage-nodes required. In practice, it is probably worth living with

the reduced liveness properties in order to save 2b storage-nodes. This is especially true,
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since the power of a Byzantine storage-node can be mitigated through some synchrony

assumptions (waiting for more responses—within some time bounds), or assumptions of a

fair network (on which Byzantine entities cannot control message ordering). Under either

assumption, it is likely that responses from a set of benign storage-nodes will eventually

be collected, and that the operation will therefore complete. A more thoroughdiscussion

to the malicious rejection of CW operations is given in Section 4.6.3.

4.4.9 Safety

Read operations only return the value of the latest complete CW operation. They are

linearized after the CW operation whose value they return.

CW operations only complete if they are conditioned on the latest complete CW op-

eration. A complete CW operation is always observed as repairable or complete; if it is

repairable, its value is written “forward” to a new timestamp preserving the conditioned-

on version chain.

4.5 Protocol scalability

Consider a failure model witht = b= 1. The smallest configuration for this failure model

is N = 6, COMPLETE = 5, andINCOMPLETE = 3. Larger configurations, which reduce

the load on any given storage-node, are possible. For example, giventhe same failure

model, another valid configuration isN = 9,COMPLETE= 7, andINCOMPLETE= 5. In the

smallest configuration, each storage-node must execute requests for5
6 of the operations

performed. In the larger configuration, each storage-node need onlyexecute requests for

7
9 of the operations performed. Thus, it is possible to add storage-nodes to the system

to increase its throughput. If 3∆ storage-nodes are added to the system to improve the
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throughput, then the R/CW constraints (from Section 4.4.7), for∆ > 0, become:

|Quorum|= QC +b;

QC = 2t +b+2∆+1 (= INCOMPLETE+ t);

N = 3t +2b+3∆+1 (= QC + t +b+∆).

The ability to increase system throughput in this manner is because the R/CW proto-

col is a threshold (or majority voting [Gifford 1979; Thomas 1979]) Byzantine quorum

system [Malkhi and Reiter 1998a]. SinceN is bound from above by3QC
2 , the greatest

throughput that can be achieved via threshold quorums is 1.5×. The lower bound on the

load of each storage-node is23. Intuitively, the load measure indicates the fraction of op-

erations for which each storage-node must execute requests.

If other quorum construction techniques are employed (e.g., the M-Path construc-

tion [Malkhi et al. 2000]), then the lower bound on load isΩ(
√

b
N). For the scale of

the prototype metadata service, the use of threshold-quorums demonstratesthe benefits

of quorum techniques. The benefits of true quorum constructions, such as the M-Path

construction, are only prominent once systems are very large.

4.6 Discussion

4.6.1 Erasure codes

Thus far the use of erasure codes within the R/CW protocol has been elided from the dis-

cussion. When using erasure coded data, themparameter (used in decode) is constrained

by the bound onINCOMPLETE; thus,m<= QC− t. However, there are two main problems

that arise from the use of erasure coded data.

First, additional mechanisms are required to ensure that Byzantine clients cannot per-

form poisonous writes (see Section 4.2.1). Detection of poisonous writes within the R/CW

protocol hinges upon storage-nodes validating the data value associatedwith the CW op-

eration with its verifier (the hash present in the timestamp). On the other hand, the client
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is responsible for the detection of poisonous writes in the R/W protocol (which utilizes

erasure coding). As described in Section 3.2.3, the client detects poisonous writes through

the regeneration of allN data-fragments, from which the cross checksum is recomputed

and verified. For this approach to work in the R/CW protocol, the client wouldhave to

perform this validation on each value contained within the conditioned-on chain all the

way back to the initial value (or until an agreed upon “correct” value, e.g.,one that had

been decided upon through garbage collection); this is impractical. One possibility is to

use some type of verifiable sharing scheme (e.g., Verifiable Secret Sharing [Chor et al.

1985; Feldman 1987]), in which storage-nodes are able to validate the integrity of each

CW operation; however, these schemes are currently very computationallyand space in-

efficient.

The other limitation of using erasure coded data is that it requires the client to com-

pute (and erasure code) the update before transmitting it to the storage-nodes. As will be

discussed in Chapter 5, the R/CW protocol is extended to support arbitrary operations

that are executed solely on the storage-node; e.g., if a CW object implements adirec-

tory, the client need only transmit the name it wishes to insert—the storage-node does

the work of inserting the name into the directory. This approach implements replicated

state-machines, as such it is not amenable to erasure coding.

Regardless of the limitations, erasure coding within the R/CW protocol may still be

useful depending on the application’s requirements. If the system model permits/prevents

Byzantine clients from performing poisonous writes and if block storage is required, the

R/CW protocol provides stronger semantics than does the R/W protocol.

4.6.2 Invalid authenticators

If the authenticator does not pass validation at a storage-node, the storage-node cannot

tell if a Byzantine storage-node is involved, or if a Byzantine client corrupted a correct

authenticator (or object history set). Digital signatures do not have this problem. As such,

the storage-node can “reject” the CW request, and place the onus on the client to retry the

R/CW operation using digital signatures. Other options include allowing the storage-node
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to reject the CW request outright (this gives a Byzantine storage-node the power to force a

CW operation to abort) or allowing storage-nodes to perform a read operation to directly

validate the object history set (this could requireO(n2) messages in limited situations).

4.6.3 Storage-nodes rejecting CW requests

Byzantine storage-nodes may arbitrarily reject CW requests (based on the failure of object

history set validation). As discussed in Section 4.4.8, a tradeoff in reducing the liveness

of the protocol versus the constraints onN andQC exists. With the reduction in liveness

Byzantine storage-nodes may be able to force clients to abort.

In addition to the ’solutions’ described previously (also in Section 4.4.8), i.e.,the

increased constraints onN and the assumption of a fair network, a third solution exists.

This solution requires storage-nodes to provide sufficient evidence in the form of a valid

object history set that supersedes the rejected CW request.

To provide this evidence, the storage-node must be modified in a number of ways.

First, the replica history returned by storage-nodes in response to readrequests must in-

clude the client ID of the client who issued the read request. The storage-node should

generate the authenticator over the〈ClientID, ReplicaHistory〉 tuple. Second, upon suc-

cessfully executing a CW request, the storage-node should retain the object history set

on which the CW is based. Third, in response to a rejected CW request the storage-node

should reply with the set of “signed”〈ClientID, ReplicaHistory〉 tuples as evidence that

the rejected CW request is being rejected correctly.

Unfortunately, authenticators do not allow the client to directly validate the re-

turned replica histories; signatures do not have this problem. If using authentica-

tors, the client must validate the returned replica histories by sending the returned

〈ClientID, ReplicaHistory〉 tuple to the storage-node that originally authenticated the tu-

ple. One additional modification must now be placed on storage-nodes; theymust track

the client IDs of all read operations (these logs can be purged similar to version pruning,

as well this modification is not needed if using digital signatures). This modification is

required for the storage-node to validate that the client ID present in the authenticated
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tuple is indeed correct. The use of the client ID ensures that a Byzantine storage-nodes

cannot “reuse” replica histories, sent to them from correct clients, to arbitrarily reject re-

quests (i.e., a client must have performed the read that resulted in the replicahistory).

This prevents Byzantine storage-nodes from generating arbitrary, verifiable replica histo-

ries. Once enough replica histories have been validated the client can verify whether or

not the request was rejected appropriately.

For example: withN = 3t + 2b+ 1, Qc= 2t + b+ 1, thenCOMPLETE = 2t + 2b+ 1

andINCOMPLETE= t +b+1: For a storage-node to correctly accept a CW request at time

T it would have to have observed an object history set with at leastCOMPLETE logical

timestamps of timeT. Of those replica histories, validations fromCOMPLETE− t can be

awaited. Of the validations that occur, at mostb may fail due to Byzantine storage-nodes,

COMPLETE− t−b pass validation. Since,COMPLETE− t−b = t + b+ 1 = INCOMPLETE,

Byzantine storage-nodes can make complete operations appear to be repairable. Rejecting

a CW operation on the basis of hosting a repairable at a later timestamp is a valid action.

4.7 Evaluation

Since the R/CW protocol provides consistency more suitable to a metadata service than

a block store, the majority of the evaluation is presented in the next chapter (where the

R/CW protocol is extended for use in a metadata service). However, the R/CW protocol

is not precluded from being used as a block based storage protocol. Thus, a brief evalua-

tion of the protocol response time, when providing consistency for the storage of erasure

coded data, is described below. Results pertaining to system throughput, concurrency, and

scalability are presented in the Chapter 5.

The experimental setup is as follows. A rack of Intel P4 2.66 GHz machines with

1 GB of memory were used for the experiment. Each storage-node utilizes a dedicated

33.6 GB Seagate Cheetah 10K RPM SCSI disk. All nodes are connected through a single

gigabit Ethernet switch.

Figure 4.11 shows the mean response time of read and write operations as thenumber
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Figure 4.11:Mean response time vs. total failures .This figure shows the mean response of the
R/CW protocol when using erasure coded data. Separate linesare shown for reads vs. writes, as
well plots for b= t,N = 5t +1 and b= 1,N = 3t +3, as t is scaled up, are shown. A block size,
before erasure coding, of 16 KB was used.

of tolerated failures (t) is increased. Separate plots forb = t andb = 1, with N = 3t +

2b+1,m= t +b+1 are shown. Recall, the total storage blowup for erasure coded blocks

is N
m. A block size of 16 KB, before encoding, was used for all data points.

As can be seen the slope of theread operation response time lines are very flat; this

is similar to the slope of reads performed by the R/W protocol. This is because reads are

space preserving; only 16 KB of data is ever transferred. Each operation is issued to allN

storage-nodes, however, reads request onlymdata-fragments, the rest are read witnesses.

As in the R/W protocol, read witnesses, can validate the returned data-fragments through

the hash of the cross checksum stored within the timestamp.

As is expected, the slope of thewrite operation response times are steeper than those

of the reads, since writes are not space preserving. As well, the difference in response time

between theb = t and theb = 1 write operation lines grow faster than it does for reads.
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This is due to the rapid growth ofN at b = t. As N increases, so does client computa-

tion time (to perform the encoding), as do communication costs. An increase inN also

reduces network efficiency since smaller packets are being transmitted to a larger number

of storage-nodes; recall, each data-fragment is of size1
m, so asN increases, so doesm,

thus data-fragment size is reduced.. The space-efficiency of both linesis almost the same;

for example, withb = t = 4: N = 21 andm= 9 the total blowup is 37.3 KB, while with

b = 1, t = 4: N = 12 andm= 6 the total blowup is 32 KB.

4.8 Summary

This chapter has developed a novel protocol that provides linearizabilityof R/CW opera-

tions. A conditional write operation performs a write to an object only if the value of the

object has not changed since the object was last read. The R/CW protocol is useful for

providing consistency of updates to metadata objects, although it can also beto provide

consistency of block updates. The R/CW protocol provides read–modify–write semantics.

It has been shown that many more powerful operations can be built with RMW seman-

tics than with RW semantics (e.g., test-and-set). These operations are crucial to building

fault-tolerant metadata services.

The R/CW protocol shares many features with the R/W protocol. It is designed around

a hybrid fault model; it is extremely optimistic, optimized for low concurrency; and it is

enabled by storage-node versioning. However, in order to fully tolerateByzantine clients,

replication must be employed. As well, the constraints onN and QC are higher. This

chapter also showed that the R/CW protocol scales well as the number of faults tolerated

is increased and when using erasure coded data. The next chapter extends the R/CW

protocol into a query/update protocol and shows how a scalable metadata service and

storage-system can be built.
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5 Metadata Service

Scalability is a primary focus of many networked storage systems, including NASD [Gib-

son et al. 1998], Lustre [Braam 2004], and many recent SAN file system products. These

systems all share a common design: a distinct metadata service managing a scalable col-

lection of data storage servers. A similar high-level architecture is sharedby recent re-

search systems like Farsite [Adya et al. 2002] and Pond [Rhea et al. 2003], which logically

separate metadata management from data storage.

For all of these systems, scalability and fault-tolerance of the metadata service are

key challenges. The most common fault-tolerance solutions are agreement algorithms

that perform state machine replication (e.g., using a protocol like [Bracha and Toueg

1985]). Unfortunately, such an approach does not scale as replicasare added. To make

this approach scale, it is common to partition metadata across separate metadata servers

(or replica sets). Unfortunately, unlike with data, this solution often comes witha visible

change in semantics: loss of ability to perform atomic operations, such as rename, across

directories stored on distinct metadata servers.

This chapter develops an alternate design for survivable, scalable, metadata services

that maintains strong semantics. The architecture of this system is shown in Figure 5.1.

Our PASIS metadata service(PMD) is “survivable” in that it relies on few assumptions

about the environment in which it runs: it is designed to withstand arbitrary (Byzan-

tine [Lamport et al. 1982]) failures of clients and a limited number of metadata-nodes,

and requires no timing (synchrony) assumptions for correctness. In addition, it is “scal-

able” in that the addition of new metadata-nodes yields improvements in the capacity,
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Figure 5.1:Architecture of scalable storage systems.Traditionally, the focus of scalable storage
systems has been scaling read–write storage to improve throughput, capacity, or fault-tolerance.
The PASIS metadata service scales in a similar fashion: its throughput, capacity, or fault-tolerance
can be improved by adding more metadata-nodes. Note that themetadata and storage processes
can execute on the same hardware, even though the picture andmost designs have them logically
separated.

throughput or fault-tolerance of the service; we refer to this as “horizontal scalability”.

The PASIS metadata service is constructed of metadata objects that utilize the R/CW

protocol described in Chapter 4. While the R/CW protocol focused on reading and writing

entire objects, this chapter extends the R/CW protocol to allow for more general queryand

updateoperations. These operations provide access to objects at a finer-granularity (e.g.,

reading/inserting directory entries vs. reading/writing full directories) (Sections 5.2.1

and 5.2.2). In addition, atomic updates across multiple objects are required: e.g., mov-

ing a file from one directory to another requires that the removal and insertion be per-

formed atomically on the source and destination directories. Thus, a single conditional

write operation that can modify multiple objects and can be conditioned on a superset of

these objects being unchanged is introduced in Section 5.2.3. However, these extensions

do not fundamentally alter how the R/CW protocol behaves. The bounds in terms of N

and the thresholds remain the same, as does the optimistic nature of the protocoland its
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guarantees, all while avoiding expensive cryptography.

Moreover, by avoiding heavyweight agreement protocols, the PASIS metadata service

offers horizontal scalability that has not yet been achieved for such aservice. Our proto-

cols derive from threshold voting protocols [Gifford 1979; Thomas 1979]. In such an

approach, only subsets (i.e., a majority) of metadata-nodes need be accessed to complete

an operation. As such, metadata-nodes can be added to improve capacity,throughput, or

fault-tolerance. Moreover, the threshold voting approach employed canbe extended to

quorum systems that offer greater throughput scalability [Malkhi et al. 2000; Naor and

Wool 1998].

5.1 Overview

Metadata objects are a type of R/CW object that provide metadata-specific interfaces.

Read operations of R/CW objects are extended to bequeryoperations of metadata ob-

jects; read operations read the R/W object, whereas query operations return the result of

a deterministic read-only function performed on the metadata object. CW operations of

R/CW objects are extended to beupdateoperations of metadata objects; CW operations

send an object replica in each request, whereas update operations invoke a deterministic

function on the metadata object.

Since each metadata node performs the operation on its replica, metadata objects

provide replicated state machine [Schneider 1990] semantics. These semantics prevent

Byzantine clients from corrupting the state of metadata objects, since all updates are veri-

fied by the metadata servers. For example, metadata-nodes can prevent aByzantine client

from inserting an existing name into a directory object, because the metadata-nodes can

only be manipulated by the appropriate operations (and the results can be verified by the

metadata-node).

Two optimizations have been implemented to improve the efficiency of metadata ob-

jects. First, operations can be performed on metadata objects optimistically by sending

only the operation and object history set to metadata-nodes; entire objects need not be
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transmitted across the network, thus reducing bandwidth. This is optimistic because, if

the metadata-node does not host the candidate version on which the operation is to be

performed, the metadata-node must re-sync its replica of the object (requiring an addi-

tional round-trip). Second, large metadata objects are broken into blocks, this aids in the

reduction of bandwidth when syncing large replicas. When replica valuesmust be fetched,

only modified portions of the replica need be sent.

5.2 Metadata operations

To perform operations correctly, metadata-nodes must perform the operation on the ver-

sion of the object replica that corresponds to the latest complete candidate.As in the

R/CW protocol, the metadata-node requires the object history set to classifythe complete

candidate. As such, metadata operations build closely upon the R/CW protocol devel-

oped in the previous chapter. However, instead of shipping the data values (the results of

client-side operations), the operations themselves are transmitted.

Metadata operations can be performed atomically on multiple objects. Since some

operations span metadata objects, to provide failure atomicity it is necessary toperform

these operations on multiple objects atomically. For example,rename removes a file from

one directory object and adds it to another directory object.

This subsection describes two classes of metadata operations:queryoperations and

updateoperations. As well, multi-object operations are discussed.

5.2.1 Query operations

Like read operations on R/CW objects, query operations on metadata objectsare opti-

mistic and complete in a single round in the common case. However, unlike read oper-

ations on R/CW objects, query operations do not return the contents of the entire ob-

ject. This has a number of subtle implications. First, read witnesses (as described in Sec-

tion 4.3.1) cannot be used for the results of query operations, since the value verifier (i.e.,

the object’s hash) does not validate such results. Second, since the value verifier is com-
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QUERY(Operation) :
100: 〈ObjectHistorySet, QueryResultSet〉 := DO QUERY(Operation,QUERY LATEST,⊥)
101: 〈Candidate, Status〉 := CLASSIFY(ObjectHistorySet)
102: /∗ Iterate through returned object history set∗/
103: CandidateResultSet:= /0
104: for all (Mi ∈MetadataNodeSet) do
105: /∗ Add results from responses whose latest element matches the candidate∗/
106: if MAX[ObjectHistorySet[Mi ]] = Candidatethen
107: CandidateResultSet:= CandidateResultSet∪QueryResultSet[Mi ]
108: end if
109: end for
110: /∗ Perform voting on the set of matching data results, need b+1 matching responses∗/
111: 〈Count, Data〉 := VOTE(CandidateResultSet)
112: if (Count< b+1) then
113: /∗ If less than b+1 results match, redo the query at the candidate’s timestamp∗/
114: CandidateResultSet:= DO QUERY(Operation,QUERY LTIME,Candidate.LT)
115: 〈Count, Data〉 := VOTE(CandidateResultSet)
116: end if
117: /∗ If classification yields a complete candidate, return any of the matching votes∗/
118: if (Status= CLASSIFIED COMPLETE) then
119: return (SUCCESS, 〈Candidate.LT, Data〉)
120: else
121: /∗ Status= CLASSIFIED REPAIRABLE, perform repair∗/
122: return (REPAIR OPERATION(Operation, Candidate, Candidate.LTconditioned,ObjectHistorySet))
123: end if

Figure 5.2:Client query pseudo-code.

puted over the entire object, it can not be used to validate the data associatedwith a read

response; instead, a voting scheme must be used.

The pseudo code for a read operation is shown in Figure 5.2. To perform a query

operation, the metadata-node returns its replica history as well as the resultof the query

operation applied to the latest version of the object replica (cf. line 100). The client iden-

tifies the candidate by performing classification on the object history set, on line 101.

Once the candidate is classified as complete, the client must determine the resultof the

query operation. Since only results pertaining to the latest timestamp in a replica’s his-

tory are returned, the set of results corresponding to the candidate’s timestamp must be

constructed (cf. line 107).

The client then counts the votes in this set of results, see line 111. Matching results

from b+1 metadata-nodes are sufficient “votes” for a client to use the result. Of course,

more thanb+ 1 object histories are required to identify the latest complete candidate.

Since query operation results are returned optimistically based on the latest version hosted

by the metadata-node, it is possible that no response attains a sufficient number of “votes”.
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If this is the case, the client performs the query metadata operation at a specific timestamp

(the candidate’s timestamp); see line 114. Finally, if the candidate is classified as com-

plete, the result of the “voting” can be returned. Otherwise, repair is needed. Since the

client does not hold a full copy of the object, repair is more complicated than described in

the R/CW protocol and will be discussed later in the context of multi-object operations.

As an optimization if the query operation results are large, some metadata-nodes can

act as witnesses by returning a hash of the operation’s result. Voting canthen be per-

formed over the resultant set of hashes. Since the result of most queryoperations are

small, the tradeoff between the computation time required to perform the hashingand the

transmitting and comparison of the data value is in favor of the latter. (An exception may

be thereaddir operation as it returns a large number of directory entries).

5.2.2 Update operations

The CW operation of the R/CW protocol is extended for metadata objects to include up-

date operations (e.g.,setattr would update the attributes for an object). As in query op-

erations, update operations do not transmit the object’s new data value; only the operation

to be applied to the replica and the object history set is sent. Allowing the metadata-nodes

to perform update operations locally ensures the validity of the update. As inthe R/CW

protocol, updates are conditioned on the latest complete candidate, which is determined

through classification of the object history set. Similar to query operations, client count

“votes” on the results returned from the update operations.

If a metadata-node does not host the candidate, then it cannot safely perform the

operation. In this case, the metadata-node must synchronize its object replica by fetching

the state associated with the latest candidate. Object replica synchronizationis discussed

in Section 5.3.2.

Since the client does not have a local copy of the metadata object to update,it cannot

construct the timestamp of the update operation (specifically, the verifiers in the times-

tamp). However, the timestamp can be constructed deterministically from the object his-

tory set and the resulting value of the updated metadata object. Since metadata-nodes have
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all of this information, they can be relied upon to deterministically construct the times-

tamp of the update operation (and it can be returned as part of the result).The calculated

timestamp is then inserted into the replica’s history.

5.2.3 Multi-object operations

Since all metadata object replicas are stored on the same set of metadata-nodes, the

metadata-nodes can locally lock the set of object replicas being operated upon. Thus,

a metadata-node can perform validation for each object replica accessed by the operation,

and then, only if validation passes for all objects, execute the operation. This approach

of validation has similarities to the validation phase performed in optimistic concurrency

control [Kung and Robinson 1981]. However, one extra step is required in the validation

of multi-object update operations. To prevent malicious clients from executing different

operations across different objects at different metadata-nodes, thehash of the operation

(including it’s arguments and the set of objects the operation operates on) isincluded in

the logical timestamp. This fixes the result of a multi-object update operation to a specific

timestamp.

Multi-object operations complicate repair. Pseudo-code for the repair ofmulti-object

operations is shown in Figure 5.3. If a repairable candidate is identified, then the client

must request the operation that resulted in the repairable candidate (cf. line 200). Note

that, since barrier-writes are always followed by an update operation, they need not be re-

paired. In response to theREAD OPERATION query, a metadata-node returns the operation

and the object replica histories for all objects updated by the operation at the specified

logical timestamp. Recall, theQUERY operation requiresb+1 votes to return a result. The

client constructs an object history set for each object updated by the operation by issu-

ing aREAD HISTORIES query operation containing the object history sets of interest (cf.

line 206).

Next, a check is made to verify if a barrier-write across the sets of objects isrequired

(cf. line 207). If a barrier is required then the client performs a barrier-write conditioned-

on these object history sets (cf. line 208). If the barrier-write completes,the client re-
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REPAIR OPERATION(Object,LT) :
200: RepairOperation:= QUERY(〈READ OPERATION, Object, LT〉)
201: /∗ Iterate through all objects in the returned operation∗/
202: ObjectSet:= /0
203: for all (Oi ∈ RepairOperation) do
204: ObjectSet:= ObjectSet∪Oi

205: end for
206: ObjectHistorySets:= QUERY(〈READ HISTORIES, ObjectSet〉)
207: if (BARRIER NEEDED(ObjectHistorySets) = TRUE) then
208: 〈ObjectHistorySets, Status〉 := UPDATE(〈BARRIER OPERATION, ObjectSet〉, ObjectHistorySets)
209: if (Status= FAIL) then
210: return FAIL

211: end if
212: end if
213: 〈Candidate, Status〉 := REPAIR NEEDED(ObjectHistorySets)
214: if (Status= FALSE) then
215: return (FAIL)
216: end if
217: Status:= UPDATE(RepairOperation, ObjectHistorySets)
218: return (Status)

Figure 5.3:Client multi-obj repair pseudo-code.

constructs the object history sets and performs reclassification to ensurethat repair is

still required. A few cases exist in which repair is not required—the most obvious is

when the operation being repaired has completed (or has been repaired by another client).

More subtle cases are discussed a little later. If the client determines that repair is still

required, an update operation corresponding the operation that is to be repaired is per-

formed, line 217.

As mentioned repair may not be necessary for a few reasons. Usually, itwill be the

case that the histories returned from the barrier-write indicate that theRepairOperation

has completed (or been repaired by another client). However, it is possible for some ob-

jects involved in a multi-object operation to be classified as repairable and others to be

classified as incomplete (depending on the client’s system view). If this is the case, it is

not possible to repair all the candidates involved in the multi-object operation.The client

can deduce, since some candidates involved in the multi-object operation areincomplete,

that no candidate involved in the multi-object operation is complete (thus safely reclas-

sifying the repairable candidate as incomplete). Likewise, by sending the set of object

history sets for all objects updated by the multi-object operation to the metadata-nodes,

the metadata-nodes can reach the same conclusion and allow such repairable candidates
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Figure 5.4:Example of multi-object repair. For this setup: N= 4,COMPLETE= 3,INCOMPLETE=
2. (a) Initially an update operation is performed on Objects Aand B. However, it fails part-way
through. (b) A read history operation is issued to read the object history set associated with Object
A. Logical timestamp 1 is classified as incomplete. (c) An update is performed, and completes, on
Object A at logical time 2 (conditioned on timestamp 0). (d) Aquery operation is performed on
Object B. Logical timestamp 1 is classified as repairable, thus repair must be performed. First, the
operation resulting in the version at timestamp 1 must be read. It returns the original operation
that updated Objects A and B. The history of Object A is then read and classified. Object A’s
timestamp 2 is classified as complete. From this, the client can deduce that Object B’s version at
time 1 could never have completed (otherwise Object A’s version at 2 would have conditioned on
time 1).

to be over-written.

Similarly, it may be the case that some objects (in a multi-object operation) appearas

complete, while others appear incomplete or repairable. Again, the client andmetadata-

nodes can come to the same conclusion by examining the object history sets of each object

involved in the repair. Figure 5.4 shows an example of how multi-object repairworks.

5.2.4 Summary

This section as described a number of extensions to the R/CW protocol that enables query

and update operations to be performed against metadata objects. Instead of clients trans-

mitting entire objects, query and update operations can be used to perform operations that
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Figure 5.5:Example metadata operations.Metadata objects support query and update opera-
tions. Both types of metadata operations may need to performrepair. The requests a client sends to
metadata-nodes to perform metadata operations are shown.(a) Query operations may complete
in a single round trip. If insufficient results are returned at the candidate’s timestamp, a second
request is sent to collect results at the candidate’s timestamp.(b) For update operations, a client
first requests replica histories to identify the candidate.Then, the client issues the update opera-
tion with an object history set constructed from replica histories returned by a recent query.(c)
To perform repair a client requires the operation that resulted in the candidate. Since operations
may span multiple objects, metadata-nodes potentially return many replica histories.

are executed by each metadata-node. When metadata-nodes perform these operations they

are able verify the integrity of the request and the result. Query operations require an ob-

ject history set constructed from the replica histories returned by a recent query operation.

To increase efficiency, object history sets can be cached by clients. Both query and update

operations may require repair.

Figure 5.5 describes query, updates, and repair operations. Figure 5.5(a) illustrates

the requests and replies a client exchanges with a metadata-node to perform a query op-

eration. Figure 5.5(b) illustrates the requests and responses a client exchanges with a

metadata-node to perform an update operation. Figure 5.5(c) illustrates therequests and

responses a client exchanges with a metadata-node to perform repair.
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5.3 Improving efficiency

Two additional considerations for metadata objects are presented within this section. The

first is an optimization to handle large metadata objects. The second details an approach

to efficiently synchronize object replicas.

5.3.1 Breaking large objects into blocks

Metadata objects could be very large (e.g., a directory object with thousands of files). To

efficiently handle large metadata objects, metadata object replicas can be broken into fixed

sized blocks. Even though the metadata object replica is broken into blocks,metadata

operations still occur atomically on the metadata object.

If metadata objects can be stored in a structured fashion, update operations can be

implemented to be considerate of block boundaries (e.g., not allowing directory entries

to span blocks). In so doing, the number of blocks modified by an update operation can

be minimized. If the state of metadata objects cannot be stored in a structured fashion,

then techniques like those used in the Low Bandwidth File System [Muthitacharoen et al.

2001] could be employed to minimize the number of “chunks” that a metadata update

operation modifies.

The value verifier of the logical timestamp for a CW operation on a large metadata

object is a collision-resistant hash of the list of the replica’s block hashes. The cost of

generating the verifier is linear in the number of blocks that comprise the object. For

extremely large objects, Merkle hash trees [Merkle 1987] should be considered.

5.3.2 Object synchronization

Since update operations only execute at a subset of metadata-nodes, it ispossible for

some metadata-nodes to become “out-of-sync” (i.e., to not host the most recent complete

candidate). To perform an update operation, the metadata-node requires the version of

the object at the candidate’s timestamp. A metadata-node can “sync” its objectreplica by

fetching the value corresponding to the latest complete candidate directly from another
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metadata-node. There is enough information in the object history set for themetadata-

node to know which other metadata-nodes host the candidate. As well, the metadata-node

can validate the correctness of the object value received with the verifierin the candidate’s

timestamp.

To sync a large metadata object, a metadata-node requests the hash list (or tree) for the

candidate object from another metadata-node that hosts the candidate. The value verifier

in the timestamp validates the correctness of the hash list returned. Given the hash list for

the candidate object version, the metadata-node can request only the out-of-date blocks.

The hashes in the hash list validate each block of the metadata object.

5.4 PASIS metadata objects

The PASIS metadata service (PMD service) exports a number of metadata objects. Each

type of metadata object consists of internal state and provides a set of deterministic oper-

ations that can be performed on the object, as described in Section 5.3. Someoperations

span multiple objects—for example, a rename operation is performed on a pair of direc-

tory objects. Others may be read-only. This subsection describes the design of four types

of metadata objects: directory objects, attribute objects, lock/lease objects, and authoriza-

tion objects. Directory and attribute objects are fully implemented. Lock and authoriza-

tion objects are designed but not yet implemented. Implementation details of directory

and attribute objects are described within this section. The implementation of the PMD

service, in the context of a distributed NFS framework, is described in Section 5.5.

The design of the PASIS metadata objects focuses on minimizing the access concur-

rency experienced by any one metadata object. Reducing the amount of update concur-

rency experienced by metadata objects improves the efficiency of the underlying R/CW

protocol actions.
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5.4.1 Attribute objects

An attribute object exists for each file stored in the PASIS storage service.The attribute

object contains the per-file information expected by the clients (e.g., the NFS server and

the NFS clients). In our implementation, these attributes map directly to typical UNIX

file attributes (e.g.,mode, link count, uid, gid, size, mtime, ctime, etc.).

There is a tradeoff between storing attributes in separate objects versus storing them

within their parent directory entry. If stored within the directory, operations that access

attributes and directories need only access a single metadata object. However, storing

attributes within directory entries increases the false sharing of the directory object for any

operation that operates on the attributes without operating on the directory (e.g.,setattr

andgetattr). Since there may be many files managed by each directory object, the read

and update traffic for these attributes could generate frequent concurrent accesses to the

directory object. Additionally, hard links (i.e., multiple names for the same object) cannot

be easily supported if attributes are stored within directory entries.

5.4.2 Directory objects

Directory objects store the names and access information for files and other directories.

Access information specifies how the named object can be accessed (e.g.,where the ob-

jects are located and their encodings, not access control information). The access infor-

mation for directories is PMD service specific. The access information for files is storage

service specific. For example, if the R/W protocol is being used as the protocol underly-

ing the storage-service, the access information will contain the protocol parameters (e.g.,

N,m,QC, etc.) and the encoding scheme being used (e.g., replication, IDA, etc.).

The attributes of a directory are stored in the directory object itself—a separate at-

tribute object is not used. Since most operations that access a directory object also access

the directory’s attributes, this design decision does not contravene the design goal of sepa-

rating objects to minimize access concurrency. Indeed, directories maintaining their own

attribute information allows for greater efficiency at the storage-node andover the net-
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work: object histories need only be maintained (and returned) for the directory objects.

On the other hand, since files can use a separate storage-service protocol, attributes and

data must be updated independently.

The directory object, since it may be large, is stored as a collection of blocks(see

Section 5.3.1). The directory object block size is 4 KB, in our implementation. A simple

structure is used in the implementation of the directory objects; it is just a list of directory

entries. Each directory entry is a〈name, access〉 pair. The access information encodes

the object’s ID, the set of node IDs that host the named object, and the scheme which

describes the encoding of the object (e.g., the replication factor). The object encoding

is specific to the service owning the named object (i.e., either the PMD or the PASIS

storage-service).

To look up a name in the directory object, a linear search of its directory entries is

performed. When entries are added to the directory object, care is taken toavoid splitting

them across block boundaries. When entries are deleted, no compaction isperformed, but

the free space created may be used for future entry insertions. Standard improvements

to directory implementations, such as using b-trees to avoid linear searching,could be

applied.

5.4.3 Lock (lease) objects

Lock objects provide serialization points. Locks are not needed for metadata object con-

sistency, since the Q/U protocol ensures that all metadata operations occuratomically.

However, lock objects may be desired by clients wishing to control access todata. As

such the design and implementation of the lock objects is dependent on their use. By pro-

viding the ability to implement lock objects using the Q/U protocol, locks are guaranteed

to have the same fault-tolerance, consistency, and scalability guarantees as the metadata.

If lock objects are implemented in this manner, the storage service must be able to

validate locks presented to it. Recall, the storage service is implemented by a distinct set of

storage-nodes. We envision three possible scenarios for lock validation. First, capabilities

are generated as the result of lock operations; these capabilities can be verified by storage-
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nodes (as in NASD [Gibson et al. 1998]). Second, all accesses to the storage service are

serialized through the metadata service. Third, each storage-node verifies each access

before performing it; i.e., each storage-node issues a query operation tothe PMD service

that returns the lock status.

There are two basic uses of lock/lease objects in distributed file systems: to maintain

client cache consistency within the storage service and to provide application locking

of data (i.e., file locking). To maintain client cache consistency, clients must benotified

of changes to cached data. In such an approach, callbacks from the metadata service

would be needed to notify holders of cached data that the data is stale. To maintain the

fault-tolerance of the system, the application server ought to wait forb+ 1 callbacks

before acting; however, since caching is done for performance, notcorrectness, it is safe

to invalidate cache entries based on a single callback.

Since fault-tolerant systems should not rely on potentially faulty clients to release

locks, lock objects should provide lease semantics. Achieving lease semantics requires

that locks timeout. The R/CW protocol is developed in an asynchronous model of time,

so that invalid timing assumptions cannot break the properties provided by theR/CW

protocol. In practice, loosely synchronized clocks are common and, if used wisely, can

expire acquired locks.

5.4.4 Authorization objects

Authorization objects manage the privileges associated with metadata objects. There are

two standard approaches to managing privileges: access control lists (ACLs) and capabili-

ties. ACLs manage privileges on a per-object basis whereas capabilities manage privileges

on a per-client/user basis. Either approach to privilege management can be implemented

with authorization objects. An authorization object can be associated with each metadata

object, and operations on the metadata object will only be performed if authorized.

Authorization objects may be needed for the storage service as well. Validation of au-

thorization objects can occur similarly to the validation of locks. For example, thestorage

service can perform a read of the authorization object before permitting data to be read or
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Figure 5.6:PASIS storage system.Components of the PASIS storage system are shown above.
The PASIS storage system is split into two components: a client and a set of storage-nodes. The
client implements an NFSv3 server. The NFS server consists of a PASIS metadata (PMD) com-
ponent and a PASIS storage (PS) component. A single NFS server is able to support multiple
concurrent NFS clients. Alternatively, the NFS server may be mounted via loop-back on the same
machine as the NFS client.

written. Or, the application server can provide a capability to the storage service to read

or write specific data.

5.5 Storage-system implementation

This section describes the metadata objects and storage service that comprise the pro-

totype file system. For the storage service in the prototype file system, we use the PA-

SIS read–write protocol from Chapter 3. The PASIS storage service (PS service) runs

on storage-nodes (similar in nature to the metadata-nodes the PMD service runs on). An

example configuration is shown in Figure 5.6. Each NFS server interacts withmetadata

objects implemented by the PMD service, as well as data objects stored within the stor-

age service. Many distinct NFS servers exporting the same file system imagecan operate

concurrently against the PMD service and PS service.
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Operation Type Objects Description

readhist Query Attr. or Dir. Read object history
create Update Attr. & Dir. Create a file
remove Update Attr. & Dir. Remove a file
mkdir Update Dir. & Dir. Create a directory
rmdir Update Dir. & Dir. Remove a directory
symlink Update Dir. & Attr. Create a symbolic link
readlink Query Directory Read a symbolic link
getattr Query Attribute Read file attributes
setattr Update Attribute Write file attributes
lookup Query Directory Read file’s access info.
readdir Query Directory Read entire directory
rename Update 2 Dir. & 2 Attr. or 3 Dir. Move a file/directory
link Update Dir. & Attr. Create a hard link

Table 5.1:Implemented PMD service operations.

5.5.1 Metadata operations

Table 5.1 lists the set of metadata operations that are currently implemented by thePMD

service. The operations are inspired by NFS, but are generic enoughto support many file

system instances. TheType field specifies whether the operation is an update or query op-

eration. Example query operations include:getattr, lookup, readdir, andreadlink.

TheObject field specifies the number and types of metadata objects on which that oper-

ation operates. In the case of operations that span multiple objects, more thanone meta-

data object is listed. For example,remove modifies the parent directory object and the

link count attribute stored within the file’s attribute object.

As can be seen, many operations operate on directory objects. Many of these oper-

ations modify directory attributes as well as modifying directory entries (e.g.,create,

remove, etc.), thus justifying our design decision to encapsulate attributes within the di-

rectory object.

5.5.2 PMD metadata-nodes

The metadata-nodes use the Comprehensive Versioning File System (CVFS) [Soules et al.

2003] to store data objects and their versions. The query/update extensions to the R/CW

protocol, as described in Section 5.3, have been implemented, as have object synchroniza-

tion and multi-object repair. Additionally, each metadata operation described inTable 5.1
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has been fully implemented.

CVFS objects

On the metadata-node, each metadata object is associated with three CVFS objects. One

CVFS object is used to store the metadata object’s internal state (e.g., the directory struc-

ture). Attributes are stored within the extended attribute field of this CVFS object’s at-

tributes. Another CVFS object stores the metadata object’s history, while the third stores

a hash tree computed over the object’s internal state (to support large objects, see Sec-

tion 5.3.1). The metadata object’s history and internal state are versioned onevery update.

These versions can be garbage collected once the metadata-node classifies a later update

operation as complete (i.e., on the next successful update of the metadata object). Note,

completed barrier operations do not result in this version history compaction.

Object histories

Along with the metadata object’s history, query operations optimistically return there-

sult of the operation performed on the latest version of the metadata’s internal state (as

described in Section 5.2.1). A special query operation,readhist, is used to read only an

object’s history. Batching ofreadhist results is supported (i.e., history from multiple

objects can be returned by a single call). As well, all update operations alsoreturn the

history associated with each object present in the operation. This history can be cached

by clients to reduce the number of read history queries. Each metadata-node generatesN

authenticators over the object histories using HMACs based on pair-wise symmetric keys.

We use a publicly available implementation of MD5 for all hashes [Rivest 1992]. Each

HMAC is 16 bytes long.

Object locking

Upon receiving an update operation, the metadata-nodes locally lock eachobject replica

accessed by the operation. When locking an object’s replica, care is taken to preserve



5.5 Storage-system implementation · 107

operation ordering at that storage-node. This can help prevent unnecessary object syncing

from occurring when objects are executed out-of-order, as is described in the following

example.

Imagine the following sequence of operations pending at a single metadata-node at

the same time: 1)create (a, /), 2)create (b, /), 3) setattr (b). It should be noted,

that, if a correct client performed the operations, it is only possible for operations (2) and

(3) to be pending concurrently if operation (2) has completed successfully and operation

(3) is conditioned on (2); this can occur on a slow storage-node, since only a subset of

the updates need to complete for the operation to complete, but updates are transmitted

everywhere. If only object locking is performed without preserving operation ordering:

operation (1) locks the ’/’ directory; operation (2) blocks on the lock heldby the ’/’ direc-

tory; operation (3) attempts thesetattr although thecreate has not yet completed on

this metadata-node—in this case object syncing would attempt the create.

Update operation validation

After each replica within the operation has been locked, each object history set is vali-

dated. Once validation has successfully completed (for all objects), the update operation

is performed. Validation is the same as for the R/CW protocol, with two exceptions. First,

since the conditioned-on timestamp is calculated from the object history set (passed in by

the client), no validation is performed on the condition-on timestamp (line 735 and 741

of Figure 4.8). Second, since update operations are transmitted, as opposed to full data

objects in the R/CW protocol, there is noVerifier Data to validate. However, if repair is

being performed, metadata-nodes must validate that the correct operationis being per-

formed. To do this the operation hash is compared to the repairable candidate’s operation

hash; recall, the operation hash is stored within the timestamp.

If the operation completes successfully, a hash is generated over the replica’s updated

contents and is added to the object’s hash tree. Each replica history is updated with the

new timestamp computed from a hash of the object’s hash tree, the operation’shash, and

the hash of the object history set (which was used to validate the operation—as described
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in Section 5.2.2).

Object name uniqueness

Each object within the PMD service is given a unique object ID (OID). Likewise, each file

stored by the storage service is also identified by an OID. Object IDs are stored within

directory entries to uniquely identify the file or directory to which the entry is linked.

Within the PASIS storage system, OIDs are similar to the inode numbers used by tradi-

tional file systems (or filehandles used by NFS). However, unlike traditional file systems,

OIDs are not be centrally assigned. This complicates the validation performed during

object creation.

In the PASIS storage system, the client is responsible for generating a 256bit OID.

The client generates a 256 bit random number that it uses as the OID. Theclient then

performs a read history query operation on the newly generated OID. Ifa metadata-node

hosts the OID, it returns the replica history associated with the OID, if not, themetadata-

node returns a specialnull replica history(a history with a single timestamp of 0). As

well, the history of the parent directory object is also read.

When performing acreate or a mkdir operation, the metadata-node validates the

object history set to ensure that the create OID’s latest complete timestamp is 0.If a create

operation succeeds (i.e., it receives successful responses fromQC + b metadata-nodes),

the client is ensured that the OID it generated is globally unique. If a createoperation fails

(i.e., is classifiable as incomplete), the metadata-node is free to accept a create operation

from a different client of the same OID; since the latest complete timestamp is still 0. The

null history entry remains part of the replica’s history until it is pruned by a subsequent

update operation that observes a completed create. Validation is similar for therepair of a

create operation: 0 must be the latest complete timestamp; and the operation hashof the

repair operation must match the operation hash stored within the repairable candidate’s

timestamp.

To remove an OID (e.g., through aunlink or armdir operation), the replica history

associated with the OID must be reset to the initial null value. Thus, the OID is only free
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once a remove operation has completed successfully.

5.5.3 PMD clients

A client library has been implemented to facilitate interfacing with the PMD service.

The library’s interface consists of the set of metadata operation service calls (with the

exception ofreadhist, which is not exported externally). The implementation of the

query and update operations follows the presentation in Section 5.3.

NFS server

A NFSv3 server has been implemented that uses the client library. All NFS metadata oper-

ations have been mapped to PMD service operations. NFS data operations (file read/write)

are mapped to calls within the storage-service. There is a one-to-one mapping between

NFS filehandles and PASIS OIDs.

Some NFS operations require multiple PMD operations. For example, there is a dis-

connect between the arguments of the NFSunlink operation and the PMDunlink op-

eration. The NFSunlink operation takes a filename and a directory file handle as argu-

ments, while the PMDunlink operation requires an additional argument, the filename’s

OID. The filename’s OID maps to the attributes of the file, which may be updated by

the unlink (e.g., the link count would be decremented). In order to performthis update

operation, validation must be performed over the object’s history set. Thus, the OID of

the filename’s attributes is required to construct its object history set. Therefore, a PMD

lookup is performed prior to the unlink operation. Additionally, during the PMD unlink

operation, the metadata-node validates that the filename matches the OID passed in.

Client history caching

To reduce the number of read history operations, object history sets arecached by the

client. Every metadata operation request in the PMD service returns a replica history

from each metadata-node executing the request. Histories are returned even if the request
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fails to execute. Since histories are cached, they may become out-of-date,or stale. A stale

replica history will cause the request to fail validation at the metadata-node from which

the replica history originated (see line 728 in Figure 4.8). An up-to-date replica history

is returned by the metadata in response to receiving a stale history; thus, theclient can

update its cache and retry the operation.

Retry and concurrency

Although the NFS server locks each filehandle associated with each operation at the PMD

client, operations may still abort due to concurrency. Thus, operation retry is necessary.

Upon retry, new object histories must be obtained and classified. The operation is based

upon these new histories. Many different policies regarding backoff and retry may be im-

plemented to avoid retrying operations concurrently. This is particularly relevant in the

face of repair, since repairs issued concurrently may cause livelock ifthey execute at

metadata-nodes in an interleaved order that prevents any repair from completing success-

fully. This work does not focus on the policies regarding backoff and retry, however it is

discussed further in the evaluation section.

5.5.4 Storage service

The PMD service is one part of a complete system, the storage service and the application

server complete the system. In the case of a file server application, there is much flexibility

in how the metadata objects are used to provide file services. For example, locks, access

privileges, and client caching of stored files involve the PMD service andthe storage

service. This subsection briefly describes the selection of a storage service.

The interface and access protocol used by the storage service is independent of the

protocol that underlies the metadata service. For example, the storage service may use

either a block based (e.g., iSCSI or Fibre Channel) or an object based protocol to access

storage. However, some coordination is required in the design of the metadata objects and

the interfaces provided by the storage service. For example, if objects (i.e., files in a flat
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namespace rather than blocks) are exported by the storage service, themetadata objects

need not implement inodes or other structures to track block allocations.

Although we reject partitioning the namespace as a means to scale the metadata ser-

vice, partitioning data for the storage service is reasonable. A storage system need not

provide any guarantees about operations performed across multiple dataobjects; as such,

partitioning is an appropriate technique for stored data. Partitioning allows different files

to have different performance and reliability properties (e.g.,/tmp need not be highly

replicated).

Implementation

The PASIS read–write protocol, described in Chapter 3, underlies our storage service. It

provides block granularity read/write access to objects. The R/W protocolprovides strong

consistency (linearizability of block read/write operations) and fault-tolerance of erasure

coded data (e.g., data encoded with Rabin’s information dispersal [Rabin 1989]). A PS

service, implemented using the R/W protocol, can be relied upon to serialize all accesses

to stored data. Such an approach is suitable for an application that controls concurrency

itself. Alternately, locks could be provided by the PMD service so that the application

does not need to provide concurrency control. Our PS service implementation also uses

CVFS as its backing store; storage-nodes can either run collocated with metadata-nodes

or not.

Another option is to use the R/CW protocol. The R/CW protocol offers stronger con-

sistency semantics in that writes not based on the most current version will be rejected.

This has the nice property that the application server can implement very weak cache

consistency (since writes based on stale reads will be rejected by the storage service).

However, these semantics come at an increased cost in terms ofN and space-efficiency.

Instead, the versioning capability of the R/W protocol could be used to provide strong

consistency across the entire file system through the use of immutable files. Clients that

write files through the PS service could be required to update the associatedmetadata

attribute object with the version of the latest completed write operation; thus ensuring
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consistency between the data and the attributes. However, this requires alldata transfers

to be serialized through the metadata.

5.6 Evaluation

5.6.1 Experimental setup

All experiments are performed on a rack of 30 Intel P4 2.66 GHz machines with 1 GB

of memory. Each computer has two 33.6G Seagate Cheetah 10K RPM SCSI diskdrives

and an Intel Gb Ethernet NIC. The computers are connected with a 24-port Gb switch.

Debian testing Linux kernel 2.4.22 is installed.

Many experiments use NFS servers as clients to the PMD service, while others com-

municate directly to through the PMD library interface. Multiple NFS servers are able to

access the same PMD service simultaneously. The NFS servers are mountedvia loopback

on the same machines as the NFS client. The NFS servers implement the NFSv3 proto-

col. The NFS servers use buffer cache of 128 MB. Unless otherwise specified, the buffer

cache is write-through and data is expired after 10 seconds. No attributesor metadata is

cached by the NFS servers.

The storage-nodes use CVFS as the backing data store. Each storage-node has a fron-

tend that communicates with CVFS over IPC. Each CVFS instance uses a 512 MB buffer

cache. All experiments show results using write-back caching at the storage nodes, mim-

icking availability of 16 MB of non-volatile RAM. This allows us to focus experiments on

the overheads introduced by the protocol and not those introduced by the disk subsystem.

5.6.2 Cryptography performance

Authenticators are HMACs, based on MD5 hashes, taken over object histories. In the

common case, the object history will have one or two entries. An object history with two

timestamp entries is 112 bytes in size. It takes 1.33µs to generate a single entry in the

authenticator vector. For a very large object history, with 32 entries, a single entry in the

authenticator vector takes 11µs to generate.
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Directory objects are implemented with 4 KB blocks (the large objects optimization).

On update operations, MD5 hashes of modified blocks are taken. Such hashes take 24.4µs

to generate over a full block. However, the hash is only taken over the utilized portion of

the block.

5.6.3 PMD micro-benchmarks

This subsection describes a number of micro-benchmarks performed against the PMD

service. No file data is involved for any of these experiments, they only testthe PMD

service. The first set of experiments examine NFS micro-benchmarks. The second set ex-

amines the impact of concurrency on PMDcreate operations and the third set examines

the impact of a fault on the response time distribution of a run ofcreate operations.

PMD NFS micro-benchmarks

All the PMD operations described in Table 5.1 have been implemented. Most ofthe

NFSv3 operations map to corresponding PMD service operations, although a few re-

quire multiple PMD operations. NFS micro-benchmarks were performed against some of

the NFS metadata operations. The mean response times for these operations are listed in

Table 5.2. The PMD service was configured to tolerate one Byzantine fault;therefore six

storage nodes were used. In addition to the end-to-end response time forthe PMD service,

the response times as observed by the PMD storage-nodes are also listed.

The response time for thecreate operation represents a create that occurs within a

directory comprised of a single block. Due to the implementation of directory objects, a

linear search is performed to ensure the name being inserted into the directory does not

exist; thus, the larger the directory is in size, the longer the create takes. Likewise, the

performance of thereaddir operation is also dependent upon the size of the directory

(since each directory block is being transmitted back to the client). Thus, two results for

readdir are shown: one for a small directory containing 5 entries and one for a large

directory containing 500 entries.
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Operation PMD end-to-end (ms) PMD time on S-N (ms)

create (in a single block) 1.73 1.00
getattr 0.34 0.02
link 1.05 0.71
lookup 0.74 0.26
readdir (small) 0.79 0.06
readdir (large) 1.38 0.09
remove 1.48 0.60
rename 2.83 1.19
setattr 0.58 0.22
readhist 0.72 0.09

Table 5.2:Micro-benchmarks of NFS operations.

Concurrency

The impact of concurrency is examined in the context of PMDcreate operations. Three

graphs show the results of performing PMDcreate operations with varying degrees of

concurrency witht = 1,b = 0,N = 4. Two clients simultaneously perform create opera-

tions within a set of shared directories. Recall,create is a multi-object operation. In this

experimental setup, the parent directory is the source of concurrency. To increase the like-

lihood of concurrency the set of shared directories is decreased between each run. In each

run, each client randomly picks a directory to use as the parent by thecreate operation.

Each client has only one outstanding request at a time. Care was taken to fully overlap

the execution of both clients.

The first graph, Figure 5.7(a), shows the mean response time and standard deviation

as concurrency is increased. The “None” bar represents a run with sixteen directories

and only one client (i.e., there is no concurrency). It is not surprising that as the amount

of concurrency increases, so does the response time as does the standard deviation. As

concurrency is increased, repair and barrier operations become morecommon, as do the

number of operations that must be retried due to stale object histories. Evenat high con-

currency levels (two clients sharing two directories), the mean response timeand standard

deviations are within a factor of two or three of a run with no concurrency.

The second graph, Figure 5.7(b), shows the total number of barrier and repair op-

erations attempted at each concurrency level. These counts are normalized to the total

number of create operations performed. Again, as concurrency is increased, the number
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(c) Stale histories.

Figure 5.7:Concurrency experiments. These three graphs show the results of performing
create operations with varying degrees of concurrency. Two clients simultaneously perform cre-
ate operations into a fixed set of directories. For each operation each client randomly picks a
parent directory from the directory set. To increase the degree of concurrency the directory set
size is decreased between each run. (a) Shows the mean response time and its standard deviation
as concurrency is increased. (b) Shows the total number of barrier and repair operations per-
formed at each concurrency level normalized to the number ofcreate operations issued by the
client. (c) Shows the total number of times an operation was rejected due to stale object histories,
again normalized to the number of create operations.

of barrier and repair operations also increase. It is interesting to note that there is a large

step increase from the very low concurrency configurations (“None”and “16”) to the

higher concurrency levels (“4” and “2”).

The third graph, Figure 5.7(c), shows the number of total operations (including repairs

and barriers) that are rejected due to stale object histories. Recall, the client caches replica

histories returned by recent operations to construct the object history set for a subsequent

update operation. As well, every operation returns an updated replica history (even if that

operation failed). Examining the steep increase in stale object histories at thevery high

concurrency levels, one notices that there is often a race between the twoclients trying to

repair the same parent directory. Both clients try to write barriers, but neither client quite

succeeds in completing a barrier (since the barrier is rejected from a subset of the nodes

because the other client just wrote its barrier there). This observation requires the designer

to carefully consider the back-off and repair policies when using optimistic protocols that

can result in livelock. More work is required in this area.
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Tolerating faults

This experiment shows the impact of a fault occurring at a random point during a run

of create operations. The system was configured witht = 1, b = 0, N = 4 and a single

client that performed uniquecreate operations continuously into one of sixteen directo-

ries (picked at random). The client had only a single request outstanding, so there is no

concurrency. Each run lasted for 10 seconds. Randomly during eachfault-induced run,

one of the storage-nodes was killed. Seven fault-induced runs were performed. There

were no correctness problems present in any of the fault-induced runs. The remainder of

this subsection quantifies the performance consequences of running witha failed server.

Figure 5.8 shows the mean response time and standard deviation of a single fault-free

run and the accumulation of the response times from the seven fault-induced runs. The

mean response time for the fault-free run is 2.17ms with a standard deviation of0.34ms.

The mean response time across all fault-induced runs is 2.47ms with a standard deviation

of 0.35ms. Although the standard deviations of the fault-free and the set offault-induced

runs are similar, the standard deviation of each individual fault-induced run was between

0.52ms and 0.66ms. In general, fault-induced runs with a higher mean response time also

had a higher standard deviation. Runs with higher mean response times also generally

have a larger number of outlier response times (response times> 3ms).

In a fault-free run, the client only waits for the fastestN− t responses. Once a fail-

ure has occured, the client still waits forN− t responses, but there are now onlyN− t

servers, so it is waiting for all responses (rather than the fastest subsets). Thus, varia-

tions in individual storage-node response times are not masked. This accounts for the

observed increases in the averages and standard deviations of response times within the

fault-induced runs.

5.6.4 PMD service macro-benchmarks

We use the Postmark benchmark [Katcher 1997] to benchmark the performance of the

PMD service. Postmark is a metadata intensive benchmark and provides useful infor-
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Figure 5.8:Response time distributions of a fault-free and multiple fault-induced runs. This
figure shows the mean and standard deviation of response times for a fault-free run and multiple
fault-induced runs for thecreate operation. At a random point during each of the other runs, the
PMD process on one of the storage-nodes is killed. As can be seen, the mean response time for
the fault-induced runs is higher than in the fault-free run.Although the standard deviations are
almost the same (between the fault-free and the all fault-induced runs), the standard deviation in
a single fault-induced run is higher than the standard deviation in the fault-free run.

mation about the performance of the PMD service. Postmark was designed tomeasure

the performance of a file system used for electronic mail, netnews, and webbased ser-

vices. Postmark is comprised of two phases: (i) in thecreationphase, it creates a large

number of small randomly-sized files (between 512 B and 9 KB); and, (ii) in the trans-

action phase, it performs a specified number of transactions. Each transactionconsists

of two sub-transactions, with one being a create or delete and the other being a read or

append. Three Postmark configuration parameters are important to our experiment:files

(determines the creation phase),transactions(determines the transaction phase), anddi-

rectories(determines degree of access contention). Results from Postmark experiments

are given in transactions per second over both phases.
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PMD service base throughput

The first experiment determines the maximum throughput of the PMD service.The PMD

service is configured to tolerate a single benign metadata-node fault and Byzantine clients:

t = 1, b = 0, andN = 4. Postmark is run on an increasing number of NFS servers to

determine the maximum throughput of the PMD service in this configuration. To ensure

that the PMD service is as loaded as possible, the NFS server uses local storage for the

storage service. Postmark is designed to benchmark a single NFS server.However, it is

being used to benchmark a decentralized service behind an NFS interface. As such, we

“scale” the number of files, transactions, and directories for each Postmark/NFS server

down, as we scale the number of Postmarks/NFS servers up. This is done tomaintain a

consistent working set across runs. Each NFS server runs Postmarkin a different directory

of the PMD service. The working set fits within the cache on the metadata-nodes.

Figure 5.9 shows the throughput of the PMD service with up to 16 distinct NFS

servers. For a single NFS server, Postmark is configured for 32768 transactions, 1024

files, and 64 directories. Each NFS server has a single Postmark benchmark run against

it. The Postmark configuration is scaled down as the number of clients is scaledup, thus

keeping the working set size the same. For example, with 16 NFS servers, Postmark

scales down to 2048 transactions, 64 files, and 4 directories. The PMD service saturates

just below 350 transactions per second.

Scaling fault-tolerance

In this experiment we evaluate the impact on throughput of adding metadata-nodes to

scale the fault-tolerance of the PMD service. A single NFS server runningpostmark with

a configuration of 4096 transactions, 128 files, and 1 directory generates load (note this

configuration for Postmark differs from the above experiment).

This experiment is performed with two configurations: abenign configuration in

which the number of crash recovery failures tolerated is scaled fromt = 1 to t = 3,

while b = 0; and, aByzantineconfiguration in which the number of Byzantine failures
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Figure 5.9:Postmark throughput vs. client load.This graph compares the total system through-
put of a Postmark workload as the number of NFS servers (PMD clients) increase in fault-free
operation. Each client runs a single instance of Postmark against a NFS server mounted via loop-
back on the same machine. The sets of bars represent a configuration with b= 0, t = 1,N = 4 and
b = 1, t = 1,N = 6.

tolerated is scaled fromb = t = 1 to b = t = 3. Figure 5.10 demonstrates that as the

number of failures tolerated scales, the responsiveness of the PMD service is fairly flat

for the benign configuration and degrades only moderately for the Byzantine configura-

tion. This degradation is expected, for a number of reasons. First, more cryptography is

being performed by metadata-nodes (e.g., forb = 3 authenticators are comprised of 16

entries, sinceN = 5b+1). Second, all storage-nodes are being communicated with, thus

the communication costs grow asN increases. Additionally, this experiment shows the

performance cost of a fully Byzantine-tolerant system is not prohibitive(at least for low

values ofb).
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Figure 5.10:Postmark run time vs. total failures tolerated (t). This graph compares the runtime
of a Postmark workload as the number of tolerated faults (t) is scaled upward. The two lines
represent a wholly crash environment with b= 0, while the other represents a wholly Byzantine
environment with b= t.

Scaling throughput using threshold quorums

Recall, Section 4.5 describes techniques that can be used to scale the system’s throughput

by adding storage-nodes. For example, the smallest configuration witht = 1,b = 1 is

N = 6, COMPLETE = 5, andINCOMPLETE = 3. It is possible to increase the bounds on the

R/CW constraints in the following way: by adding 3∆ to N, 2∆ must be added toQC,

COMPLETE, andINCOMPLETE. Thus, as∆ increases the lower bound on the load of the

system is2
3.

This experiment validates this hypothesis for∆ = 0 to ∆ = 7. Table 5.3 shows the

experimental setup for the threshold quorum based experiment. The table’s first column

shows∆. The second column shows the value ofN corresponding to that∆ value (for

t = 1, b = 1, N = 6 + 3∆). The third column shows the size of each threshold quorum.

The threshold quorum represents the set of storage-nodes a single client will communicate
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∆ N Threshold
quorum size

Percentage of reqs each
storage-node executes

Normalized system throughput (to
∆ = 0

0 6 5 5
6 = 83.3% 1

1 9 7 7
9 = 77.8% 1.07

2 12 9 9
12 = 75% 1.11

3 15 11 11
15 = 73.3% 1.14

4 18 13 13
18 = 72.2% 1.15

5 21 15 9
14 = 71.4% 1.17

6 24 17 17
24 = 70.8% 1.18

7 27 19 19
27 = 70.4% 1.18

Table 5.3:Threshold quorum experiment parameters (b = t = 1). This table shows the derived
parameters when using theshold quorums. The first column shows ∆. The second column shows
the value of N. The third column shows the size of each threshold quorum (|Quorum| = QC +b).
The fourth column gives the quorum load of each storage-node(i.e., the fraction of operations for
which a storage-node must execute a request). Lastly, the fifth column shows the calculated system
throughput normalized to the throughput of∆ = 0.

with. Note, that as∆ increases, the ratio of the size of the threshold quorum toN decreases.

For threshold quorums to work without requiring frequent repair or object syncing, it is

necessary for all clients accessing a data-item to interact with that data-itemthrough the

same quorum. If many distinct quorums are used to update/or query a data-item, repair

and/or object syncing will be necessary (this is not always the case if allstorage-nodes

are always updated—as is the default in all other experiments where∆ = 0). The fourth

column shows the expected load of a single storage-node (i.e.,quorumsize
N ). Column five

shows the expected system throughput normalized to∆ = 0.

Figure 5.11 shows the throughput of the PMD service when using a threshold quorum

construction, as∆ increases. The throughput is normalized to the throughput obtained at

∆ = 0. Two curves are plotted on the graph. The first line shows the calculatedthroughput

(see column 5 in Table 5.3). The second line shows the maximum throughput attained

by running a heavy weight synthetic update operation containing a 4 KB argument and a

10 ms storage-node think time.

To measure the throughput, many clients, each with multiple outstanding queries or

updates are employed. The reported throughput measurements are for asaturated system

(i.e., adding more clients does not increase throughput) We employ an access strategy

based on a deterministic function of the object ID. Such an access strategyresults in

updates for a given object preferentially accessing the same quorum (i.e., thepreferred
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Figure 5.11:Throughput of threshold quorum system vs.∆. This graph shows the normalized
system throughput as∆ is increased. Throughput is normalized to that of∆ = 0. See Table 5.3 for a
description of the relationship between∆, N, and throughput. Two curves are shown. The first line
shows the calculated throughput as described in Table 5.3. The second line shows the throughput
attained when running a 4KB update operation.

quorum). Accessing a service that is implemented by an ensemble of Q/U objects, via

each objects preferred quorum, approximates a traditional quorum access strategy. As

can be seen, the synthetic update line closely follows the calculated throughput curve.

An additional experiment was run using a recursive threshold construction [Malkhi

et al. 1997]. For the recursive threshold construction (witht = b), N = (5b+ 1)∆+1 and

|Quorum| = (4b+1)∆+1 (i.e., ∆ indicates recursion depth). Witht = b = 1 (∆ = 1, N =

36, |Quorum|= 25), the achieved throughput, normalized to∆ = 0, was 1.19 versus 1.20

for the normalized theoretical throughput.

5.6.5 PASIS file system: SSH-build

The SSH-build benchmark was constructed as a replacement for the Andrew file sys-

tem benchmark [Howard et al. 1988]. This experiment also demonstrates the effect of
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Figure 5.12:Run time of SSH build for Linux, PMD, and PMD + PS.

the PMD service operating in unison with the PS service. This benchmark consists of

three phases: unpacking the OpenSSH archive, runningconfigure, and compiling the

OpenSSH binaries. The unpack phase stresses metadata operations on files of varying

sizes by uncompressing and untaring the OpenSSH (v3.8p1) tar archive. The configure

phase consists of the automatic generation of header files and Makefiles, which involves

building various small programs that check the existing system configuration. The build

phase compiles, links, and removes temporary files. This last phase is the most CPU inten-

sive, but it also generates a large number of object files and a few executables. Figure 5.12

shows the runtime of theSSH-build benchmark for four configurations.

None of the NFS configurations use the synchronous mount option. However, all NFS

configurations use a 128 MB write-back cache with no data expiration time. The first set

of bars show a user-level NFSv3 server that stores files in the local ext3 file system.

The second set of bars show the performance of the same user-level NFSv3 server just

described, however the data is stored across the network to a single CVFSstorage-node.

This shows the overhead of using CVFS across an additional network link. However,
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in this configuration metadata is treated as data (i.e., attributes and directory entries are

stored within data blocks). The third set of bars show the cost of using thePASIS metadata

service (witht = b = 1,N = 6) storing file data in the local file system. The fourth, and

last, set of bars show theSSH-build benchmark run against the complete PASIS metadata

and storage service. Both the metadata and storage service are configured witht = b = 1;

N = 6 for the metadata service andN = 5 for the storage service. As can be seen there

is almost a 2x performance difference between an user-level NFS server with no fault-

tolerance and an NFS server backed by a Byzantine fault-tolerant metadata and storage

service that provides strong consistency. The majority of the overhead isdue to the extra

communication required (11 storage-nodes in the PMD+PS case vs. 1 without), as well

there is a non-zero cost in our CVFS and storage-node implementations.

5.7 Summary

This chapter describes the PASIS metadata (PMD) service. It uses a novel quorum-style

query/update (Q/U) protocol to provide horizontal scalability for metadata,as is enjoyed

for data in scalable storage systems. The PMD service extends the read/conditional write

protocol, described in Chapter 4, to support more general query and update operations.

These operations provide access to objects at a finer-granularity than do block-based pro-

tocols (e.g., reading/inserting directory entries vs. reading/writing full directories). In ad-

dition, atomic updates across multiple objects are supported.

Similar to the other protocols developed thus far, the Q/U protocol uses optimism

and versioning to achieve efficiency while tolerating asynchronous communications and

Byzantine failures of clients and servers. Experiments with a decentralizedNFS file ser-

vice demonstrate feasibility and efficiency. As well, performance under concurrency and

faults is examined. Experiments also show that threshold quorum constructions can be

used to significantly increase throughput without requiring the partitioning of the meta-

data service.



6 Conclusions and Future Work

6.1 Conclusion

This thesis has demonstrated a novel approach to achieving scalable, highly fault-tolerant

storage systems by leveraging a set of efficient and scalable, strong consistency proto-

cols enabled by storage-node versioning. These consistency protocols achieve efficiency

and scalability via a combination of optimistic operation, versioning, and quorum-style

redundancy.

Three consistency protocols have been developed that offer varyingsemantics use-

ful for building different components within a survivable, decentralizedstorage-system.

The first protocol, the read/write protocol (R/W), provides read–write semantics of full

data blocks. This protocol is suitable as the basis for the data storage component within

a survivable storage system, since most block based data services expect whole block

updates.

The second protocol, the read/conditional-write (R/CW) protocol, provides read–

modify–write semantics of full data blocks. While this protocol also assumes blocks (or

data objects) are read and written as atomic units, it offers stronger consistency guaran-

tees. These semantics guarantee that the data region has not been modifiedbetween a read

and a successive write operation to the same data region.

The third protocol, the query/update (Q/U) protocol, extends the R/CW protocol to

more fully support the semantics required by metdata. In order to preservethe consistency

of metadata, metadata objects (e.g., directories) require update operations that modify

existing contents (such as inserting a new directory entry), rather than overwriting their
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previous contents. As well, metadata usually requires atomic update operations across

multiple metadata objects (e.g., when performing a rename, or moving files). The Q/U

protocol provides for the serializability of multiple, arbitrary operations through the use

of replicated state machines.

These protocols were developed in detail, evaluated individually, and used as a basis

for building a fault-tolerant, scalable storage-system. Results show that thePASIS file

system configured to tolerate one Byzantine fault is within a factor of two in theresponse

time unpacking, configuring, and building OpenSSH as compared to an unreplicated user-

level NFS server. The storage service component of the file system, using the R/W pro-

tocol, was shown to scale well in terms of both throughput and response time as number

of faults tolerated is scaled up. As well, it performs well when compared to a Byzantine

fault-tolerant agreement protocol (BFT) and by offloading work fromstorage-nodes to

clients increases its scalability. Results also show that the PASIS metadata service, using

the query/update protocol, scales with as the number clients is increased andreponse time

increases slightly as the number of faults tolerated is scaled up. Additionally, the use of

quorum thresholds enables the system’s throughput to scale close to its theoretical bounds

and it is expected that other quorum constructions can further increasethe system’s scal-

ability.

6.2 Contributions

This main contribution of this thesis is the design and evaluation of three consistency

protocols that have been enabled by versioning storage-nodes. These contributions are:

(1) The development and demonstration of a read/write block storage consistency pro-

tocol that enables highly fault-tolerant storage through the use of erasure coded data

and versioning storage-nodes. Its correctness is shown through proof sketches.

(2) The development and demonstration of a read/conditional-write block protocol that

allows for stronger read–modify–write consistency semantics. Additionally,trade-
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offs between tolerating Byzantine clients and erasure coding, as well as tradeoffs

between tolerating Byzantine storage-nodes and liveness have been discussed.

(3) The extention of the read/conditional-write block protocol (in the query/update pro-

tocol) to support operations on multiple, arbitrary objects and the implementation

of a scalable metadata service based upon the query/update and the read/write pro-

tocol.

(4) The evaluation of a distributed file system that utilizes the scalability and fault-

tolerance of the developed consistency protocols in terms of the number of faults

tolerated, the maximum throughput the system can sustain, and its performance in

degraded operation modes (i.e., with concurrency and faults).

6.3 Future directions

While this thesis has demonstrated the feasibility of using versioning storage-nodes to

provide consistency through the use of scalable, optimistic protocols, thereare many

tradeoffs and design decisions that remain unanswered.

There exist additional system models that use stronger assumptions to reduce the

constraints (in terms ofN, QC, andm) of the protocol in use. For example, we have devel-

oped a family of R/W protocols that enable the client to choose between a synchronous

or asynchronous timing model, Byzantine or crash fault models (for both clients and

storage-nodes), and repair or non-repair [Goodson et al. 2003].There is a tradeoff be-

tween when to use which of the protocol family members. Additionally, alternative fault

models could be examined. The focus, in the work so far, has been on Byzantine and crash

faults. Additional fault models between these two extremes exist. For example,many ap-

plications may not require the expensive cost of Byzantine faults, but require protection

from integrity or value faults, which may lead to lower constraints. As well, non-colluding

Byzantine faults may be considered.

For the block-based protocols there is the tradeoff between when to use the differ-

ent encoding schemes. There exists the option to increase space-efficiency by increasing
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the m parameter. However, increasingm also requires an increase inN andQC, which

requires communicating with a larger number of storage-nodes and thus leads to higher

disk head utilization. Different workloads may require different configurations and en-

coding schemes (e.g., the use of replication over the striping of data, or the combination

of replication and erasure coding). Identifying the correct configuration to use for each

application is an interesting problem. Similarly, different quorum constructionshave dif-

ferent properties in terms of load and scalability. Thus, knowing when to transition be-

tween different quorum constructions could prove to be of great benefit to the system.

Additionally, an examination of the availability and reliability of the system when using

different encoding schemes can be made.

There are also a number of protocol optimizations that can be used. For example, au-

thenticators could be used the R/W protocol to enable garbage collection without the need

for storage-nodes to communicate. Additionally, write witnesses may be used toincrease

space-efficiency in many of the protocols. Similar to read witnesses, write witnesses hold

only a timestamp with no data, but have the ability to vote for a specific piece of databy

use of the data hash contained within the timestamp.

In terms of the file system, a number of tradeoffs and open questions exist. In order

to provide true file sharing between clients, the issue of client cache coherency must

be addressed. There are traditional methods such as locks and leases with (or without)

callbacks that solve this problem. However, synchrony assumptions are often introduced

to detect clients who fail while holding locks. The impact of these assumptions have not

been examined. As well, a fully functional file system requires the enforcement of access

control. While an overview of lock/lease and access control objects was discussed, they

have not been implemented. Lastly, a thorough examination of the tradeoffs involved in

desiging a storage-service can be made (e.g., the use of the R/W protocol vs. the R/CW

protocol in providing the storage-service).
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A Read/write safety and liveness

A.1 Proof of safety

This section presents a proof that our protocol implements linearizability [Herlihy and

Wing 1990] as adapted appropriately for a fault model admitting operations by Byzantine

clients.

A.1.1 Safety guarantees

Intuitively, linearizability requires that each read operation return a valueconsistent with

some execution in which each read and write is performed at a distinct point intime be-

tween when the client invokes the operation and when the operation returns. The adapta-

tions necessary to reasonably interpret linearizability in our context arisefrom the fact that

Byzantine clients need not follow the read and write protocols and that readoperations

may abort in non-repair member protocols. We consider four distinct safety guarantees:

Linearizability

Repairable protocol members with crash-only clients achieve linearizability asoriginally

defined by Herlihy and Wing [Herlihy and Wing 1990].

Byzantine-operation linearizability

Read operations by Byzantine clients are excluded from the set of linearizable operations.

Write operations are only included if they are well-formed (i.e., if they are single-valued
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as in Section 3.2).

Write operations by Byzantine clients do not have a well-defined start time. Such

operations are concurrent to all operations that begin before they complete and to all

operations that are also performed by Byzantine clients. A Byzantine clientcan write

“back in time” by using a lower logical timestamp than a benign client would have used.

Since write operations by Byzantine clients are concurrent to all operations that started

before it completed, they can be linearized just prior to some concurrent write operation

(if there is one). Such a linearization ensures that the Byzantine “back in time” write

operation has no effect since the value written is never returned by a read operation.

In summary, there are two types of Byzantine write operations that are of concern:

writes that are not well-formed and “back in time” writes. In the case that the Byzantine

write operation is not well-formed, read operations by benign clients exclude it from

the set of linearized operations. In the case that the Byzantine write operation is “back

in time”, the protocol family achieves something similar, in that such Byzantine write

operations are linearized so that they have no effect.

A.1.2 Proof

Because return values of reads by Byzantine clients obviously need notcomply with any

correctness criteria, we disregard read operations by Byzantine clientsin reasoning about

linearizability, and define the duration of reads only for those executed bybenign clients

only.

DEFINITION 1 A read operation executed by a benign clientbeginswhen the client in-

vokesREAD locally. A read operation executed by a benign clientcompleteswhen this

invocation returns〈timestamp,value〉. A read operation by a benign client that crashes

before the read completes, does not complete.

Before defining the duration of write operations, it is necessary to definewhat it means

for a storage-node toacceptand thenexecutea write request.
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DEFINITION 2 Storage-nodeS, acceptsa write request with data-fragmentD, cross check-

sumCC, and timestamptsupon successful return of the functionVALIDATE WRITE(ts, D, CC)

at the storage-node.

DEFINITION 3 Storage-nodeS, executesa write request once the write request is ac-

cepted. An executed write request is stored in stable storage.

It is not well defined when a write operation by a Byzantine client begins. Therefore,

we settle for merely a definition of when writes by Byzantine clients complete.

DEFINITION 4 A write operation with timestampts completesonceQC benign storage-

nodes have executed write requests with timestampts.

In fact, Definition 4 applies to write operations by benign clients as well as “write

operations” by Byzantine clients. In this section, we use the labelwts as a shorthand for

the write operation with timestampts. In contrast to Definition 4, Definition 5 applies

only to write operations by benign clients.

DEFINITION 5 wts beginswhen a benign client invokes theWRITE operation locally that

issues a write request bearing timestampts.

LEMMA 1 Let c1 and c2 be benign clients. If c1 performs a read operation that returns

〈ts1,v1〉, c2 performs a read operation that returns〈ts2,v2〉, and ts1 = ts2, then v1 = v2.

Proof: Sincets1 = ts2, each read operation considers the same verifier. Since each

read operation considers the same verifier, each read operation considers the same cross

checksum (remember, a collision resistant hash function is employed). A read operation

does not return a value unless the cross checksum is valid and there aremore thanb read

responses with the timestamp (since only candidates classified as repairable or complete

are considered). Thus, only a set of data-fragments resulting from theerasure-coding of

the same data-item that are issued as write requests with the same timestamp can validate

a cross checksum. As such,v1 andv2 must be the same. 2
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Let vts denote the value written bywts which, by Lemma 1, is well-defined. We use

rts to denote a read operation by a benign client that returns〈ts,vts〉.

DEFINITION 6 Let o1 denote an operation that completes (a read operation by a benign

client, or a write operation), and leto2 denote an operation that begins (a read or write by

a benign client).o1 precedes o2 if o1 completes beforeo2 begins. The precedence relation

is written aso1→ o2. Operationo2 is said to follow, or to be subsequent to, operationo1.

LEMMA 2 If wts→ wts′ , then ts< ts′.

Proof: A complete write operation executes at at leastQC benign storage-nodes (cf. Def-

inition 4). Sincewts→wts′ , theREAD TIMESTAMP function forwts collectsN−t TIME RESPONSE

messages, and sowts′ observes at leastb+ 1 TIME RESPONSE messages from benign

storage-nodes that executedwts (remember,t + b < QC for all asynchronous protocol

family members). As such,wts′ observes some timestamp greater than or equal tots and

constructsts′ to be greater thants. A Byzantine storage-node can return a logical times-

tamp greater than that of the preceding write operation; however, this still advances logical

time and Lemma 2 holds. 2

OBSERVATION 1 Timestamp order is a total order on write operations. The timestamps

of write operations by benign clients respect the precedence order among writes.

LEMMA 3 If some read operation by a benign client returns〈ts,vts〉, with vts 6= ⊥, then

wts is complete.

Proof: For a read operation to return valuevts, the value must have been observed at

at leastQC + b storage-nodes (given the complete classification rule for candidate sets).

Since, at mostb storage-nodes are Byzantine, the write operationwts has been executed

by at leastQC benign storage-nodes. By definition,wts is complete. 2

OBSERVATION 2 The read operation from Lemma 3 could have performed repair be-

fore returning. In a repairable protocol member, a candidate that is neither classifiable as

incomplete or complete is repaired. Once repaired, the candidate is complete.
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DEFINITION 7 wts iswell-formedif ts.Verifierequals the hash of cross checksumCC, and

for all i ∈ {1, . . . ,N}, hashCC[i] of the cross checksum equals the hash of data-fragment

i that results from the erasure-encoding ofvts.

LEMMA 4 If wts is well-formed, and if wts→ rts′ , then ts≤ ts′.

Proof: Sincewts is well-formed it can be returned by a read operation. By Lemma 3,

read operations only return values from complete write operations. As such, rts′ must

either return the value with timestampts or a value with a greater timestamp. Therefore,

ts≤ ts′. 2

OBSERVATION 3 It follows from Lemma 4 that for any readrts, eitherwts→ rts andwts

is the latest complete write that precedesrts, or wts 6→ rts andrts 6→wts (i.e.,wts andrts are

concurrent).

OBSERVATION 4 It also follows from Lemmas 3 and 4 that ifrts→ rts′ , thents≤ ts′.

As such, there is a partial order≺ on read operations by benign clients defined by the

timestamps associated with the values returned (i.e., of the write operations read). More

formally, rts≺ rts′ ⇐⇒ ts< ts′.

Since Lemma 2 ensures a total order on write operations, ordering reads according

to the timestamps of the write operations whose values they return yields a partialorder

on read operations. Lemma 4 ensures that this partial order is consistent with precedence

among reads. Therefore, any way of extending this partial order to a total order yields

an ordering of reads that is consistent with precedence among reads. Thus, Lemmas 2

and 4 guarantee that this totally ordered set of operations is consistent withprecedence.

This implies the natural extension of linearizability to our fault model (i.e., ignoring reads

by Byzantine clients and the begin time of writes by Byzantine clients); in particular, it

implies linearizability as originally defined by Herlihy [Herlihy and Wing 1990] for the

read/write protocol if all clients are benign.
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A.2 Proof of liveness

This section presents the proof of the liveness properties of protocol members.

A.2.1 Liveness guarantees

There are two distinct liveness guarantees: wait-freedom and single-client wait-freedom.

These guarantees hold so long as the storage capacity on storage-nodes is not exhausted.

Wait-freedom

Wait-freedom is a desirable liveness property [Herlihy 1991]. Informally, achieving wait-

freedom means that each client can complete its operations in finitely many stepsre-

gardless of the actions performed or failures experienced by other clients. For a formal

definitions see [Herlihy 1991].

Unbounded storage capacity

In the proof of liveness for read operations, we assume that storage-nodes have unbounded

storage capacity (i.e., that the entire version history back to the initial value⊥ at time0 is

available at each storage-node). To prevent capacity exhaustion, some garbage collection

mechanism is required. Garbage collection reduces the liveness of readoperations. A read

operation that is concurrent to write operations and to garbage collection may not observe

a complete candidate. The read operation can observe a series of incomplete candidates

that complete and are garbage collected within the duration of the read operation. In such

a situation, the read operation would observe⊥ at some timestamp other than0 from

storage-nodes, indicating that the client has “skipped” over a complete write operation.

The read operation then must be retried. The implementation details of garbagecollection

and its impact on liveness properties is given in Section 3.7.3.

A.2.2 Proof

All liveness properties hinge on the following lemma.
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LEMMA 5 All operations eventually receive at least N− t responses.

Proof: In the crash-recovery model, there are at leastN− t good storage-nodes (i.e.,

storage-nodes that are always-up or eventually-up). By definition, eventually, all good

storage-nodes will be up. Since all requests to storage-nodes, from clients, are retried until

N−t responses are received, eventually,N−t responses will be received (seeREAD TIMESTAMP,

DO WRITE, andDO READ). 2

OBSERVATION 5 It is possible for progress to be made throughout the duration of a run,

not just once all good storage-nodes are up. Lemma 5 guarantees that eventuallyN− t

responses will be received. During any period in whichN− t storage-nodes are up, oper-

ations may receiveN− t responses and thus complete. In fact, responses can be collected,

over time, fromN− t storage-nodes, during a period in which fewer thanN− t storage-

nodes are ever up (but during which some storage-nodes crash and some recover).

Asynchronous repairable

The asynchronous repairable protocol member provides a strong liveness property, namely

wait-freedom [Herlihy 1991; Jayanti et al. 1998]. Informally, each operation by a correct

client completes with certainty, even if all other clients fail, provided that at most b servers

suffer Byzantine failures and no more thant servers are not good.

LEMMA 6 A write operation by a correct client completes.

Proof: A write operation by a correct client waits forN− t responses from storage-

nodes before returning. By Lemma 5,N− t responses can always be collected. Since,

QC ≤ N− t−b (cf. (3.5) in Section 3.4) for repairable protocol members, thenN− t ≥

QC + b. Since at mostb storage-nodes are Byzantine, then at leastQC benign storage-

nodes execute write requests, which completes the write operation. 2

LEMMA 7 A read operation by a correct client completes.
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Proof: GivenN− t READ RESPONSE messages, a read operation classifies a candidate

as complete, repairable, or incomplete. The read completes if a candidate is classified

as complete. As well, the read completes if a candidate is repairable. Repair is initi-

ated for repairable candidates—repair performs a write operation, whichby Lemma 6

completes—which lets the read operation complete. In the case of an incomplete,the

read operation traverses the version history backwards, until a completeor repairable

candidate is discovered. Traversal of the version history terminates if⊥ at logical time0

is encountered atQC storage-nodes. 2


