
Lazy Verification in Fault-Tolerant Distributed Storage Systems

Michael Abd-El-Malek∗, Gregory R. Ganger∗, Garth R. Goodson†, Michael K. Reiter∗, Jay J. Wylie∗

∗Carnegie Mellon University, †Network Appliance, Inc.

Abstract

Verification of write operations is a crucial component of

Byzantine fault-tolerant consistency protocols for storage.

Lazy verification shifts this work out of the critical path of

client operations. This shift enables the system to amortize

verification effort over multiple operations, to perform ver-

ification during otherwise idle time, and to have only a sub-

set of storage-nodes perform verification. This paper intro-

duces lazy verification and describes implementation tech-

niques for exploiting its potential. Measurements of lazy

verification in a Byzantine fault-tolerant distributed storage

system show that the cost of verification can be hidden from

both the client read and write operation in workloads with

idle periods. Furthermore, in workloads without idle peri-

ods, lazy verification amortizes the cost of verification over

many versions and so provides a factor of four higher write

bandwidth when compared to performing verification dur-

ing each write operation.

1. Introduction

Fault-tolerant distributed storage involves storing data

redundantly across multiple storage-nodes. Some systems

support only replication, while others also use more space-

efficient (and network-efficient) erasure-coding approaches

in which a fragment, which is smaller than a full copy,

is stored at each storage-node. Client read and write op-

erations interact with multiple storage-nodes, according to

some consistency protocol, to implement consistency in the

face of client and storage-node faults and concurrent opera-

tions.

To implement strong consistency semantics (e.g., lin-

earizability [15]), before the system returns a value for a

read, it must be verified that this same value (or a later

value) will be returned to subsequent readers. In a crash

failure model, it is typically necessary that sufficiently

many other storage-nodes have received the value (or frag-

ment thereof). Tolerating Byzantine failures additionally re-

quires coping with poisonous writes—i.e., writes that lack

integrity, meaning that not all correct storage-node frag-

ments come from the same original value—and stuttering

clients that repeatedly write an insufficient subset of frag-

ments. Most consistency protocols perform such verifica-

tion proactively at write-time, incurring significant expense,

with extra rounds of communication or digital signatures

during every write operation.

In recent work [11], we proposed a read/write consis-

tency protocol that uses versioning storage to avoid proac-

tive write-time verification. Rather than verification occur-

ring during every write operation, it is performed by clients

during read operations. Read-time verification eliminates

the work for writes that become obsolete before being read,

such as occurs when the data is deleted or overwritten. Such

data obsolescence is quite common in storage systems with

large client caches, as most reads are satisfied by the cache

but writes must be sent to storage-nodes to survive fail-

ures. One major downside to read-time verification, how-

ever, is the potentially unbounded cost: a client may have to

sift through many ill-formed or incomplete write values. A

Byzantine client could degrade service by submitting large

numbers of bad values. A second practical issue is that our

particular approach to verification for erasure-coding, called

validating timestamps, requires a computation cost equiva-

lent to fragment generation on every read.

This paper introduces lazy verification, in which the

storage-nodes perform verification in the background. Lazy

verification avoids verification for data that has a short life-

time and is never read. In addition, it allows verification

to occur during otherwise idle periods, which can eliminate

all verification overhead in the common cases. Clients will

only wait for verification if they read a data-item before ver-

ification of the most recent write operation to it completes.

Our lazy verification implementation limits the number

of unverified write operations in the system and, thus, the

number of retrievals that a reader must perform to complete

a read. When the limit on unverified writes is reached, each

write operation must be verified until the storage-nodes re-

store some slack. Limits are tracked on a per-client basis,

a per-data-item basis, and on a storage-node basis (locally).

Combined, the different limits can mitigate the impact of

Byzantine clients (individually and collectively) while min-

imizing the impact on correct clients. In the worst case,

jdigney
Text Box
24th IEEE Symposium on Reliable Distributed Systems (SRDS 2005)October 26-28, 2005, Orlando, Florida



a collection of Byzantine clients can force the system to

perform verification on every write operation, which is the

normal-case operation for most other protocols.

This paper describes and evaluates the design and im-

plementation of lazy verification in the PASIS storage sys-

tem [11]. Several techniques are introduced for reducing

the impact of verification on client reads and writes, as

well as bounding the read-time delay that faulty clients

can insert into the system. For example, a subset of up-

dated storage-nodes can verify a write operation and notify

the others, reducing the communication complexity from

O(N2) to O(bN) in a system of N storage-nodes tolerating b

Byzantine failures; this reduces the number of messages by

33% even in the minimal system configuration. Appropri-

ate scheduling allows verification to complete in the back-

ground. Indeed, in workloads with idle periods, the cost of

verification is hidden from both the client read and write op-

eration. Appropriate selection of updates to verify can max-

imize the number of verifications avoided (for writes that

become obsolete). The overall effect is that, even in work-

loads without idle periods, the lazy verification techniques

implemented provide over a factor of four higher write

throughput when compared to a conventional approach that

proactively performs verification at write-time.

The remainder of this paper is organized as follows. Sec-

tion 2 provides context on fault-tolerant storage, read-time

and lazy verification, and related work. Section 3 describes

how lazy verification is performed and techniques for max-

imizing its efficiency. Section 4 describes our prototype

implementation. Section 5 evaluates lazy verification and

demonstrates the value of our techniques for tuning it and

for bounding faulty clients. Section 6 summarizes this pa-

per’s contributions.

2. Background and related work

This section outlines the system model on which we fo-

cus, the protocol in which we develop lazy verification, and

related work.

2.1. System model and failure types

Survivable distributed storage systems tolerate client

and storage-node faults by spreading data redundantly

across multiple storage-nodes. We focus on distributed

storage systems that can use erasure-coding schemes, as

well as replication, to tolerate Byzantine failures [16] of

both clients and storage-nodes. An m-of-N erasure-coding

scheme (e.g., information dispersal [20]) encodes a data-

item into N fragments such that any m allow reconstruc-

tion of the original. Generally speaking, primary goals for

Byzantine fault-tolerant storage systems include data in-

tegrity, system availability, and efficiency (e.g., [5, 6, 11]).

Data integrity can be disrupted by faulty storage-nodes

and faulty clients. First, a faulty storage-node can cor-

rupt the fragments/replicas that it stores, which requires

that clients double-check integrity during reads. Doing so

is straightforward for replication, since the client can just

compare the contents (or checksums) returned from multi-

ple storage-nodes. With erasure-coding, this is insufficient,

but providing all storage-nodes with the checksums of all

fragments (i.e., a cross checksum [10]) allows a similar ap-

proach. Second, a faulty client can corrupt data-items with

poisonous writes. A poisonous write operation [18] gives

incompatible values to some of the storage-nodes; for repli-

cation, this means non-identical values, and, for erasure-

coding, this means fragments not correctly generated from

the original data-item (i.e., such that different subsets of m

fragments will reconstruct to different values). The result of

a poisonous write is that different clients may observe dif-

ferent values depending on which subset of storage-nodes

they interact with. Verifying that a write is not poisonous

is difficult with erasure-coding, because one cannot simply

compare fragment contents or cross checksums—one must

verify that fragments sent to storage-nodes were correctly

generated from the same data-item value.

Faulty clients can also affect availability and perfor-

mance by stuttering. A stuttering client repeatedly sends to

storage-nodes a number of fragments (e.g., m− 1 of them)

that is insufficient to form a complete write operation. Such

behavior can induce significant overheads because it com-

plicates verification and may create long sequences of work

that must be performed before successfully completing a

read.

Our work on lazy verification occurs in the context of

a protocol that operates in an asynchronous timing model.

But there is no correctness connection between the timing

model and verification model. Asynchrony does increase

the number of storage-nodes involved in storing each data-

item, which in turn increases the work involved in verifica-

tion and, thus, the performance benefits of lazy verification.

2.2. Read/write protocol and delayed verification

We develop the concept of lazy verification in the context

of the PASIS read/write protocol [11, 27]. This protocol

uses versioning to avoid the need to verify completeness and

integrity of a write operation during its execution. Instead,

such verification is performed during read operations. Lazy

verification shifts the work to the background, removing it

from the critical path of both read and write operations in

common cases.

The PASIS read/write protocol provides linearizable [15]

read and write operations on data blocks in a distributed

storage system [12]. It tolerates crash and Byzantine fail-

ures of clients, and operates in an asynchronous timing



model. Point-to-point, reliable, authenticated channels are

assumed. The protocol supports a hybrid failure model for

storage-nodes: up to t storage-nodes may fail, b ≤ t of

which may be Byzantine faults; the remainder are assumed

to crash. For clarity of presentation, we focus exclusively on

the fully Byzantine failure model in this paper (i.e., b = t),

which requires N ≥ 4b+1 storage-nodes. The minimal sys-

tem configuration (N = 4b+1) can be supported only when

the reconstruction threshold m satisfies m ≤ b + 1; in our

experiments we will consider m = b+1 only.

At a high level, the PASIS read/write protocol proceeds

as follows. Logical timestamps are used to totally order

all writes and to identify erasure-coded data-fragments per-

taining to the same write across the set of storage-nodes.

For each write operation, the client constructs a logical

timestamp that is guaranteed to be unique and greater than

that of the latest complete write (the complete write with

the highest timestamp). This is accomplished by querying

storage-nodes for the greatest timestamp they host and then

incrementing the greatest timestamp value received. The

client then sends the data-fragments to the storage-nodes.

Storage-nodes retain all versions (i.e., each written value or-

dered by logical timestamp) until they are garbage-collected

using the techniques developed in this paper.

To perform a read, a client issues read requests to a sub-

set of storage-nodes. Once a quorum of storage-nodes re-

ply, the client identifies the candidate—the response with

the greatest logical timestamp. The read operation clas-

sifies the candidate as complete, repairable, or incomplete

based on the number of responses that share the candidate’s

timestamp value. If the candidate is classified as complete,

timestamp validation is performed to ensure data integrity

and to protect against poisonous writes. If verification is

successful, the candidate’s value is decoded and returned;

the read operation is complete. Otherwise, the candidate is

reclassified as incomplete. If the candidate is classified as

repairable, it is repaired by writing data-fragments back to

the original set of storage-nodes. Prior to performing repair,

timestamp validation is done in the same manner as for a

complete candidate. If the candidate is classified as incom-

plete, the candidate is discarded, previous data-fragment

versions are requested (i.e., data-fragments with an earlier

timestamp), and classification begins anew. All candidates

fall into one of the three classifications, even those corre-

sponding to concurrent or failed writes.

The process of timestamp validation ensures that

erasure-coded data is not corrupted by Byzantine-faulty

storage-nodes or poisoned by Byzantine-faulty clients. To

perform timestamp validation, PASIS employs validating

timestamps, in which a cross checksum [10] is included

within the logical timestamp of a write operation. A cross

checksum is the set of collision-resistant hashes of the N

erasure-coded data-fragments for that write. Storage-nodes

verify that the data-fragment sent to them in a write request

corresponds to the appropriate hash in the cross checksum,

before accepting the write request, in order to prevent a

client from making it look like the storage-node corrupted

the data-fragment. Finally, clients validate the cross check-

sum at read-time by regenerating all the erasure-coded data-

fragments and then the cross checksum. Validating the

cross checksum at read-time completes timestamp valida-

tion, checking that the write was not poisonous.

Henceforth, the term “verification”, when used in the

context of our protocol, will denote the above two steps:

checking for write completeness and performing timestamp

validation.

Note that the majority of the verification work is per-

formed by the client during the read operation. The lazy

verification approach developed in this paper addresses this

issue by having the storage-nodes communicate, prior to the

next read operation if possible, to complete verification for

the latest complete write. Each storage-node that observes

the result of this verification can inform a client perform-

ing a read operation. If at least b+1 confirm verification for

the candidate, read-time verification becomes unnecessary.

Section 3 details how lazy verification works and techniques

for minimizing its performance impact.

Lazy verification also addresses the two other issues with

delayed verification: garbage collection and unbounded

read-time delays. To safely garbage collect unneeded ver-

sions, a storage-node must be sure that a newer value is part

of a complete and correct write; that is, it needs to verify

the newer value. Of perhaps greater concern are Byzan-

tine client behaviors (attacks) that can lead to an unbounded

but finite amount of work that must be completed during

subsequent read operations. Specifically, sequences of poi-

sonous or incomplete writes may have to be traversed in

order to identify the latest complete write value. Lazy ver-

ification enables storage-nodes to enforce bounds on such

latent work. Section 3.3 describes how such bounds are

achieved and the consequences.

2.3. Related work

The notion of verifiability that we study is named after

a similar property studied in the context of m-of-N secret

sharing, i.e., that reconstruction from any m shares will

yield the same value (e.g., [8, 19]). However, to address

the additional requirement of secrecy, these works employ

more expensive cryptographic constructions that are effi-

cient only for small secrets and, in particular, that would

be very costly if applied to blocks in a storage system. The

protocols we consider here do not require secrecy, and so

permit more efficient constructions.

Most previous protocols perform verification proactively

during write operations. When not tolerating Byzantine



faults, two- or three-phase commit protocols are sufficient.

For replicated data, verification can be made Byzantine

fault-tolerant in many ways. For example, in the BFT sys-

tem [6], clients broadcast their writes to all servers, and

then servers reach agreement on the hash of the written data

value by exchanging messages. In other systems, such as

Phalanx [17], an “echo” phase like that of Rampart [21] is

used: clients propose a value to collect signed server echos

of that value; such signatures force clients to commit the

same value at all servers. The use of additional communi-

cation and digital signatures may be avoided in Byzantine

fault-tolerant replica systems if replicas are self-verifying

(i.e., if replicas are identified by a collision-resistant hash

of their own contents) [18].

Verification of erasure-coded data is more difficult, as

described earlier. The validating timestamps of the PASIS

read/write protocol, combined with read-time or lazy verifi-

cation, are one approach to addressing this issue. Cachin

and Tessaro [5] recently proposed an approach based on

asynchronous verifiable information dispersal (AVID) [4].

AVID’s verifiability is achieved by having each storage-

node send their data fragment, when it is received, to all

other storage-nodes. Such network-inefficiency reduces the

benefits of erasure-coding, but avoids all read-time verifica-

tion.

Lazy verification goes beyond previous schemes, for

both replication and erasure-coding, by separating the ef-

fort of verifying from write and read operations. Doing so

allows significant reductions in the total effort (e.g., by ex-

ploiting data obsolescence and storage-node cooperation) as

well as shifting the effort out of the critical path.

Unrelated to content verification are client or storage-

node failures (attacks) that increase the size of logical time-

stamps. Such a failure could significantly degrade system

performance, but would not effect correctness. Bazzi and

Ding recently proposed a protocol to ensure non-skipping

timestamps for Byzantine fault-tolerant storage systems [1]

by using digital signatures. Cachin and Tessaro [5] incor-

porate a similar scheme based on a non-interactive thresh-

old signature scheme. Validating timestamps do not ensure

non-skipping timestamps, but we believe that lazy verifica-

tion could be extended to provide bounded-skipping time-

stamps without requiring digital signatures. This will be an

interesting avenue for future work.

3. Lazy verification

An ideal lazy verification mechanism has three proper-

ties: (i) it is a background task that never impacts fore-

ground read and write operations, (ii) it verifies values of

write operations before clients read them (so that clients

need not perform verification), and (iii) it only verifies the

value of write operations that clients actually read. This sec-

Data

Erasure code data to 

generate N fragments

Hash each fragment

and concatenate to

form cross checksum

Put cross checksum

in logical timestamp

Hash(F1)

Hash(F2)

Hash(F
N
)

• • •CC =

CCLT

Write: Construct timestamp Read: Given any m fragments with the 

same timestamp, validate the timestamp

CCLT

Generate N fragments

given m fragments

Generate cross

checksum

CC`

Compare with cross 

checksum in timestamp

CC = CC`
?

F
N
`• • •F

2
`F

1
`

F
m• • •F

2
F

1

F
N• • •F

2
F

1

Figure 1. Illustration of the construction and
validation of timestamps

tion describes a lazy verification mechanism that attempts to

achieve this ideal in the PASIS storage system. It also de-

scribes the use of lazy verification to bound the impact of

Byzantine-faulty clients (Section 3.3) and its application to

the garbage collection of unneeded versions (Section 3.4).

3.1. Lazy verification basics

Storage-nodes perform verification using a similar pro-

cess to a read operation, as described in Section 2.2. First, a

storage-node finds the latest complete write version. Sec-

ond, the storage-node performs timestamp validation. If

timestamp validation fails, the process is repeated: the

storage-node finds the previous complete write version, and

performs timestamp validation on that version. Figure 1 il-

lustrates the construction and validation of a timestamp in

the PASIS read/write protocol. Timestamp validation re-

quires the storage-node to generate a cross checksum based

on the erasure-coded fragments it reads. If the generated

cross checksum matches that in the timestamp, then the

timestamp validates.

Once a block version is successfully verified, a storage-

node sets a flag indicating that verification has been per-

formed. (A block version that fails verification is poisonous

and is discarded.) This flag is returned to a reading client

within the storage-node’s response. A client that observes

b + 1 storage-node responses that indicate a specific block

version has been verified need not itself perform timestamp

validation, since at least one of the responses must be from

a correct storage-node.

When possible, lazy verification is scheduled during idle

time periods. Such scheduling minimizes the impact of

verification on foreground requests. Significant idle peri-

ods exist in most storage systems, due to the bursty nature

of storage workloads. Golding et al. [9] evaluated various

idle time detectors and found that a simple timer-based idle



read-request

read-reply

(a) Without cooperation.

 
read-request

read-reply

notify

(b) With cooperation.

Figure 2. Communication pattern of lazy verification (a) without and (b) with cooperation

time detector accurately predicts idle time periods for stor-

age systems. Another study showed that this type of idle

time detector performs well even in a heavily loaded stor-

age system [3].

Although pre-read verification is the ideal, there is no

guarantee that sufficient idle time will exist to lazily ver-

ify all writes prior to a read operation on an updated block.

Then, there is the question of whether to let the client per-

form verification on its own (as is done in the original

PASIS read/write protocol), or to perform verification on-

demand, prior to returning a read response, so that the client

need not. The correct decision depends on the workload and

current load. For example, in a mostly-read workload with

a light system load, it is beneficial if the storage-nodes per-

form verification; this will save future clients from having

to perform verification. In situations where the workload is

mostly-write or the system load is high, then it is more ben-

eficial if the clients perform verification; this increases the

overall system throughput.

3.2. Cooperative lazy verification

Each storage-node can perform verification for itself.

But, the overall cost of verification can be reduced if

storage-nodes cooperate. As stated above, a client requires

only b + 1 storage-nodes to perform lazy verification for it

to trust the result. Likewise, any storage-node can trust a

verification result confirmed by b + 1 other storage-nodes.

Ideally, then, only b + 1 storage-nodes would perform lazy

verification. Cooperative lazy verification targets this ideal.

With cooperative lazy verification, once a storage-node

verifies a block version, it sends a notify message to the

other storage-nodes. The notify message is a tuple of 〈block

number, timestamp, status〉, where “status” indicates the re-

sult of the verification. Figures 2(a) and 2(b) illustrate the

messages exchanged without and with cooperative lazy ver-

ification, respectively.

We first describe the common-case message sequences

for cooperative lazy verification, in concurrency- and fault-

free operation. A single storage-node initiates lazy verifi-

cation by performing verification and sending a notify mes-

sage to the other storage-nodes. Another b storage-nodes

then perform verification and send notify messages to the

remaining storage-nodes. The remaining storage-nodes will

thus receive b+1 identical notify messages, allowing them

to trust the notify messages, since at least one storage-node

must be correct. To reduce the number of messages required

and to distribute the work of performing verification among

storage-nodes, each storage-node is responsible for leading

the cooperative lazy verification of a distinct range of block

numbers.

If a storage-node needs to verify a block before enough

notify messages are received, it will perform verification

(and send notify messages), even for blocks that are out-

side the range it is normally responsible for. In the event of

faulty storage-nodes or concurrency, the notification mes-

sages may not match. The remaining storage-nodes will

then perform verification and send notify messages to the

other storage-nodes, until all storage-nodes have either per-

formed verification or received identical b + 1 notify mes-

sages. In the worst case, all storage-nodes will perform ver-

ification.

The benefit of cooperative lazy verification is a reduc-

tion in the number of verification-related messages. With-

out cooperation, each storage-node must independently per-

form verification (i.e., effectively perform a read operation).

This means each of the N storage-nodes sends read requests

to, and receives read responses from, N − b storage-nodes;

this yields O(N2) messages without cooperation. In con-

trast, the common case for cooperative lazy verification

is for just b + 1 storage-nodes to perform read requests

(to N − b storage-nodes) and then send N − 1 notify mes-

sages. Even in the worst case in which 2b + 1 must per-

form read requests, the communication complexity is still

O(bN). For example, even in a minimal system configu-



ration (N = 4b + 1) with b = 1, cooperation saves 33% of

messages (20 messages with cooperation, versus 30 with-

out), and this benefit improves to over 50% (128 vs. 260)

at b = 3. Note that storage-nodes that perform coopera-

tive lazy verification need not send notify messages back to

storage-nodes from which they received a notify message.

3.3. Bounding Byzantinefaulty clients

Byzantine faulty-clients may perform poisonous writes

and may stutter. Each poisonous or incomplete write in-

troduces latent potential work into the system that may

require subsequent read operations to perform additional

round trips. Lazy verification, as described above, provides

some protection from these degradation-of-service attacks.

Storage-nodes setting the verification flag (Section 3.1) and

discarding poisonous writes can decrease the cost of toler-

ating poisonous writes by reducing or eliminating the client

verification cost. As well, if b + 1 storage-nodes identify

a client as having performed a poisonous write, then the

faulty client’s authorization could be revoked.

Additional steps can be taken to limit the number of write

requests accepted by a storage-node but that the storage-

node cannot classify as complete. This will then limit the

number of latent incomplete writes a client may have to

sift through before finding a correct block version during

a read operation. To accomplish this, each storage-node

tracks how many block versions it hosts but has not classi-

fied as complete; these versions are possible block versions.

(Versions that are classified as complete but do not suc-

cessfully verify are detected as poisonous and discarded.)

Storage-nodes have per-client-per-block and per-client pos-

sible block version thresholds. If a storage-node receives a

write request and the number of possible block versions ex-

ceeds one of these thresholds, then the storage-node blocks

the write request and performs on-demand verification to

see if it can remove any versions. A block version can be

removed if a storage-node discovers another version with a

higher timestamp that passes verification (see Section 3.4).

If on-demand verification leads to some block versions be-

ing removed, the storage-node accepts the write request.

Otherwise, the storage-node rejects the write request; this

continues until some of these versions are classified as com-

plete or removed.

In most environments, idle time should be sufficient to

keep up with the write workload of correct clients such

that the possible block version counts will not approach

the thresholds unless there are significant occurrences of ac-

tively faulty clients. Section 5.4 evaluates the costs and ben-

efits associated with different values for these thresholds. In

general, higher threshold values allow higher performance

during intense workloads but leave the system vulnerable to

higher quantities of latent work.

3.4. Garbage collection

If lazy verification passes for a block version, i.e., the

block version is complete and its timestamp validates,

then block versions with earlier timestamps are no longer

needed. The storage-node can delete such obsolete ver-

sions. This application of lazy verification is called garbage

collection. Garbage collection allows memory and storage

capacity at storage-nodes to be reclaimed by deleting un-

necessary versions.

In the original presentation of the PASIS read/write pro-

tocol, capacity is assumed to be unbounded. In practice, ca-

pacity is bounded, and garbage collection is necessary. We

distinguish between useful storage, which is the user-visible

capacity (i.e., number of blocks multiplied by fragment

size), and the history pool. The history pool is the capac-

ity used for possible versions. Since the useful storage ca-

pacity must usually be determined at system configuration

time (e.g., during FORMAT), the maximum size of the his-

tory pool will usually be fixed (at raw storage-node capacity

minus useful storage capacity). Thus, whenever the history

pool’s capacity is exhausted, the storage-node must perform

garbage collection (i.e., verification plus space reclamation)

before accepting new write requests. (Notice that this is ef-

fectively a storage-node-wide bound on the number of pos-

sible versions, similar to the per-client-per-block and per-

client limitations used to bound degradation-of-service at-

tacks.)

Capacity bounds, garbage collection, and liveness. Ca-

pacity bounds and garbage collection can impact the live-

ness semantic of the PASIS read/write protocol. With-

out capacity bounds, reads and writes are wait-free [13].

With a capacity bound on the history pool, however, un-

bounded numbers of faulty clients could collude to exhaust

the history pool with incomplete write operations that can-

not be garbage collected—this effectively denies service.

This possibility can be eliminated by bounding the num-

ber of clients in the system and setting the history pool size

appropriately—the history pool size must be the product of

the maximum number of clients and the per-client possible

version threshold. With this approach, a faulty client can

deny service to itself but not to any other client.

Garbage collection itself also affects the liveness seman-

tic, as it can interact with reads in an interesting manner.

Specifically, if a read is concurrent to a write, and if garbage

collection is concurrent to both, then it is possible for the

read not to identify a complete candidate. For example,

consider a read concurrent to the write of version-3 with

version-2 complete and all other versions at all storage-

nodes garbage collected. It is possible for the read to clas-

sify version-3 as incomplete, then for the write of version-3

to complete, then for garbage collection to run at all storage-

nodes and delete version-2, and finally for the read to look



for versions prior to version-3 and find none. Such a read

operation must be retried. Because of this interaction,

the PASIS read/write protocol with garbage collection is

obstruction-free [14] (assuming an appropriate history pool

size) rather than wait-free.

Performing garbage collection. Garbage collection and

lazy verification are tightly intertwined. An attempt to ver-

ify a possible version may be induced by history pool space

issues, per-client-per-block and per-client thresholds, or the

occurrence of a sufficient idle period. Previous versions of a

block may be garbage-collected once a later version is ver-

ified.

Cooperative lazy verification is applicable to garbage

collection. If a storage-node receives notify messages from

b + 1 storage-nodes, agreeing that verification passed for a

given version of a given block, then the storage-node can

garbage collect prior versions of that block. Of course,

a storage-node may receive b + 1 notify messages for a

given block that have different timestamp values, if different

storage-nodes classify different versions as the latest com-

plete write. In this case, the timestamps are sorted in de-

scending order and the b + 1st timestamp used for garbage

collection (i.e., all versions prior to that timestamp may be

deleted). This is safe because at least one of the notify mes-

sages must be from a correct storage-node.

There is an interesting policy decision regarding garbage

collection and repairable candidates. If a client perform-

ing a read operation encounters a repairable candidate, it

must perform repair and return it as the latest complete

write. However, a storage-node performing garbage col-

lection does not have to perform repair. A storage-node can

read prior versions until it finds a complete candidate and

then garbage collect versions behind the complete candi-

date. Doing so is safe, because garbage collection “reads”

do not need to fit into the linearizable order of operations.

By not performing repair, storage-nodes avoid performing

unnecessary work when garbage collection is concurrent to

a write. On the other hand, performing repair might enable

storage-nodes to discard one more block version.

Prioritizing blocks for garbage collection. Careful selec-

tion of blocks for verification can improve efficiency, both

for garbage collection and lazy verification. Here, we fo-

cus on two complementary metrics on which to prioritize

this selection process: number of versions and presence in

cache.

Since performing garbage collection (lazy verification)

involves a number of network messages, it is beneficial

to amortize the cost by collecting more than one block

version at a time. Each storage-node remembers how

many versions it has for each block. By keeping this list

sorted, a storage-node can efficiently identify its high-yield

blocks: blocks with many versions. Many storage work-

loads contain blocks that receive many over-writes [23, 24],

which thereby become high-yield blocks. When performing

garbage collection, storage-nodes prefer to select high-yield

blocks. In the common case, all but one of the block’s ver-

sions will have timestamps less than the latest candidate that

passes lazy verification and hence can be deleted (and never

verified). Selecting high-yield blocks amortizes the cost of

verification over many block versions. This is particularly

important when near the per-client possible version thresh-

old or the history pool size, since it minimizes the frequency

of on-demand verification.

Block version lifetimes are often short, either because of

rapid overwrites or because of create-delete sequences (e.g.,

temporary files). To maximize the value of each verification

operation, storage-nodes delay verification of recently writ-

ten blocks. Delaying verification is intended to allow rapid

sequences to complete, avoiding verification of short-lived

blocks and increasing the average version yield by verify-

ing the block once after an entire burst of over-writes. As

well, such a delay reduces the likelihood that verification of

a block is concurrent with writes to the block. Running ver-

ification concurrent to a write, especially if only two local

versions exist at a storage-node, may not yield any versions

to garbage collect.

Storage-nodes prefer to verify versions while they are in

the write-back cache, because accessing them is much more

efficient than when going to disk. Moreover, if a block is in

one storage-node’s cache, it is likely to be in the caches

of other storage-nodes, and so verification of that block

is likely to not require disk accesses on the other storage-

nodes. Garbage collecting versions that are in the write-

back cache, before they are sent to the disk, is an even big-

ger efficiency boost. Doing so eliminates both an initial disk

write and all disk-related garbage collection work. Note that

this goal matches well with garbage collecting high-yield

blocks, if the versions were created in a burst of over-writes.

In-cache garbage collection raises an interesting possi-

bility for storage-node implementation. If only complete

writes are sent to disk, which would restrict the history pool

size to being less than the cache size, one could use a non-

versioning on-disk organization. This is of practical value

for implementers who do not have access to an efficient ver-

sioning disk system implementation. The results from Sec-

tion 5.3 suggest that this is feasible with a reasonably large

storage-node cache (e.g., 500 MB or more).

4. Implementation

To enable experimentation, we have added lazy verifi-

cation to the PASIS storage system implementation [11].

PASIS consists of storage-nodes and clients. Storage-nodes

store fragments and their versions. Clients execute the pro-

tocol to read and write blocks. Clients communicate with

storage-nodes via a TCP-based RPC interface.



Storage-nodes. Storage-nodes provide interfaces to write

a fragment at a logical time, to query the greatest logical

time, to read the fragment version with the greatest logical

time, and to read the fragment with the greatest logical time

before some logical time. With lazy verification, storage-

nodes do not return version history or fragments for writes

that have been classified as poisonous. In the common case,

a client requests the fragment with the greatest logical time.

If a client detects a poisonous or incomplete write, it reads

the previous version history and earlier fragments.

Each write request creates a new version of the frag-

ment (indexed by its logical timestamp) at the storage-node.

The storage-node implementation is based on the S4 object

store [25, 26]. A log-structured organization [22] is used to

reduce the disk I/O cost of data versioning. Multi-version

b-trees [2, 25] are used by the storage-nodes to store frag-

ments; all fragment versions are kept in a single b-tree in-

dexed by a 2-tuple 〈blocknumber, timestamp〉. The storage-

node uses a write-back cache for fragment versions, emu-

lating non-volatile RAM.

We extended the base PASIS storage-node to perform

lazy verification. Storage-nodes keep track of which blocks

have possible versions and perform verification when they

need the history pool space, when a possible version thresh-

old is reached, or when idle time is detected. If verification

is induced by a per-client-per-block possible version thresh-

old, then that block is chosen for verification. Otherwise,

the storage-node’s high-write-count table is consulted to se-

lect the block for which verification is expected to eliminate

the highest number of versions. The high-write-count table

lists blocks for which the storage-node is responsible in de-

scending order of the number of unverified versions associ-

ated with each.

Each storage-node is assigned verification responsibility

for a subset of blocks in order to realize cooperative lazy

verification. Responsibility is assigned by labelling storage-

nodes from 0...(N − 1) and by having only storage-nodes

k mod N, (k + 1) mod N, · · · , (k + b) mod N be respon-

sible for block k. In the event of failures, crash or Byzan-

tine, some storage-nodes that are responsible for a partic-

ular block may not complete verification. Therefore, any

storage-node will perform verification if it does not receive

sufficient notify messages before they reach a possible ver-

sion threshold or exceed history pool capacity. So, while

b + 1 matching notify messages about a block will allow a

storage-node to mark it as verified, failure to receive them

will affect only performance.

Client module. The client module provides a block-level

interface to higher-level software. The protocol implemen-

tation includes a number of performance enhancements that

exploit its threshold nature. For example, to improve the

responsiveness of write operations, clients return as soon as

the minimum number of required success responses are re-

ceived; the remainder of the requests complete in the back-

ground. To improve the read operation’s performance, only

m read requests fetch the fragment data and version history;

the remaining requests only fetch version histories. This

makes the read operation more network-efficient. If nec-

essary, after classification, extra fragments are fetched ac-

cording to the candidate’s timestamp.

PASIS supports both replication and an m-of-N erasure

coding scheme. If m = 1, then replication is employed. Oth-

erwise, our base erasure code implementation stripes the

block across the first m fragments; each stripe-fragment is
1
m

the length of the original block. Thus, concatenation of

the first m fragments produce the original block. (Because

“decoding” with the m stripe-fragments is computation-

ally less expensive, the implementation always tries to read

from the first m storage-node for any block.) The stripe-

fragments are used to generate the N −m code-fragments,

via polynomial interpolation within a Galois Field. The im-

plementation of polynomial interpolation is based on pub-

licly available code [7] for information dispersal [20]. This

code was modified to make use of stripe-fragments and to

add an implementation of Galois Fields of size 28 that use

lookup tables for multiplication. MD5 is used for all hashes;

thus, each cross checksum is N ×16 bytes long.

We extended the PASIS client module to use the flag de-

scribed in Section 3.1 to avoid the verification step normally

involved in every read operation, when possible. It checks

the “verified” flag returned from each contacted storage-

node and does its own verification only if fewer than b + 1

of these flags are set. In the normal case, these flags will be

set and read-time verification can be skipped.

5. Evaluation

This section quantifies benefits of lazy verification. It

shows that significant increases in write throughput can be

realized with reasonably small history pool sizes. In fact,

lazy verification approaches the ideal of zero performance

cost for verification. It also confirms that the degradation-

of-service vulnerability inherent to delayed verification can

be bounded with minimal performance impact on correct

clients.

5.1. Experimental setup

All experiments are performed on a collection of Intel

Pentium 4 2.80 GHz computers, each with 1 GB of mem-

ory and an Intel PRO/1000 NIC. The computers are con-

nected via an HP ProCurve Switch 4140gl specified to per-

form 18.3 Gbps/35.7 mpps. The computers run Linux ker-

nel 2.6.11.5 (Debian 1:3.3.4-3).

Micro-benchmark experiments are used to focus on per-

formance characteristics of lazy verification. Each experi-



1 2 3 4 5
0

1

2

3

4

5

6

7

8

Server faults tolerated (b)

W
ri

te
 l

a
te

n
c

y
 (

m
s

)

Write−time verification

Read−time verification

Lazy verification

(a) Write latency

1 2 3 4 5
0

0.5

1

1.5

2

2.5

Server faults tolerated (b)

R
e
a
d

 l
a
te

n
c
y
 (

m
s
)

Write−time verification

Read−time verification

Lazy verification

(b) Read latency

Figure 3. Operation latencies for different verification policies

ment consists of some number of clients performing oper-

ations on a set of blocks. Experiments are run for 40 sec-

onds and measurements are taken after 20 seconds. (The

20 second warm-up period is sufficient to ensure steady-

state system operation.) For the benchmarks in this pa-

per, the working set and history pool are sized to fit in the

storage-nodes’ RAM caches. Given that the storage-node

cache is assumed to be non-volatile, this eliminates disk ac-

tivity and allows focus to stay on the computation and net-

working costs of the protocol.

5.2. Verification policies and operation latencies

A storage system’s verification policy affects client read

and write operation latencies. We ran an experiment to mea-

sure the operation latencies for three different verification

policies: proactive write-time verification, read-time veri-

fication, and lazy verification. The write-time verification

policy is emulated by having each storage-node perform

verification for a block immediately after it accepts a write

request—this is similar to the system described by Cachin

and Tessaro [5]. With the read-time verification policy, the

client incurs the cost of verification on every read operation.

We ran experiments for different numbers of tolerated

server faults (from b = 1 to b = 5). For each experiment,

we used the minimal system configuration: N = 4b + 1.

The erasure coding reconstruction threshold m equals b+1

in each experiment. This provides the maximal space- and

network-efficiency for the value of N employed. A single

client performs one operation at a time. The client work-

load is an equal mix of read and write operations. After

each operation, the client sleeps for 10 ms. This introduces

idle time into the workload.

Figure 3(a) shows the client write latency for the differ-

ent verification policies. The write-time verification policy

has a higher write latency then the two other verification

policies. This is because the storage-nodes perform verifi-

cation in the critical path of the write operation. For both the

read-time and lazy verification policies, the client write la-

tency increases slightly as more faults are tolerated. This is

due to the increased computation and network cost of gen-

erating and sending fragments to more servers.

Figure 3(b) shows the client read latency for the different

verification policies. For the read-time verification policy,

the client read latency increases as more faults are toler-

ated. This is because the computation cost of generating

the fragments to check the cross checksum and validate the

timestamp increases as b increases. For the write-time ver-

ification policy, verification is done at write-time, and so

does not affect read operation latency. For the lazy verifi-

cation policy, sufficient idle time exists in the workload for

servers to perform verification in the background. As such,

the read latency for the lazy verification policy follows that

for the write-time verification policy.

These experiments show that, in workloads with suffi-

cient idle time, lazy verification removes the cost of verifi-

cation from the critical path of client read and write oper-

ations. Lazy verification achieves the fast write operation

latencies associated with read-time verification, yet avoids

the overhead of client verification for read operations.



70 140 210 280 350 420 490 560 630 700
0

10

20

30

40

50

60

70

80

90

100

History pool size (MB)

T
o

ta
l 
w

ri
te

 t
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Ideal (no verify)

Lazy + coop

Lazy

Write−time verification

Figure 4. Write throughput, as a function of
history pool size, for four verification policies

5.3. Impact on foreground requests

In many storage environments, bursty workloads will

provide plenty of idle time to allow lazy verification and

garbage collection to occur with no impact on client opera-

tion performance. To explore bounds on the benefits of lazy

verification, this section evaluates lazy verification during

non-stop high-load with no idle time. When there is no idle

time, and clients do not exceed the per-client or per-block-

per-client thresholds, verification is induced by history pool

exhaustion. The more efficient verification and garbage col-

lection are, the less impact there will be on client operations.

In this experiment, four clients perform write opera-

tions on 4096 32 KB blocks, each keeping eight operations

in progress at a time and randomly selecting a block for

each operation. Also, the system is configured to use N=5

storage-nodes, while tolerating one Byzantine storage-node

fault (b = 1) and employing 2-of-5 erasure-coding (so, each

fragment is 16 KB in size, and the storage-node working set

is 64 MB).

Figure 4 shows the total client write throughput, as a

function of history pool size, with different verification poli-

cies. The top and bottom lines correspond to the perfor-

mance ideal (zero-cost verification) and the conventional

approach of performing verification during each write op-

eration, respectively. The ideal of zero-cost verification is

emulated by having each storage-node replace the old ver-

sion with the new without performing any verification at

all. As expected, neither of these lines is affected by the

history pool size, because versions are very short-lived for

these schemes. Clearly, there is a significant performance

gap (5×) between the conventional write-time verification

approach and the ideal.

The middle two lines correspond to use of lazy verifica-

tion with (“Lazy + coop”) and without (“Lazy”) coopera-

tive lazy verification. Three points are worth noting. First,

with lazy verification, client write throughput grows as the

history pool size grows. This occurs because a larger his-

tory pool allows more versions of each block to accumu-

late before history pool space is exhausted. As a result,

each verification can be amortized over a larger number of

client writes. (Recall that all earlier versions can be garbage

collected once a later version is verified.) Second, with

a reasonably-sized 700 MB history pool size, cooperative

lazy verification provides client write throughput within 9%

of the ideal. Thus, even without idle time, lazy verification

eliminates most of the performance costs of verification and

garbage collection, providing a factor of four performance

increase over conventional write-time verification schemes.

Third, cooperative lazy verification significantly reduces the

impact of verification, increasing client write throughput by

53–86% over non-cooperative lazy verification for history

pool sizes over 200 MB.

5.4. Performance with faulty clients

In the absence of lazy verification, unverified versions

build up, and there is a possibility that Byzantine clients

have inserted poisonous writes. A client performing a read

operation will discover, during its verification phase, that

the writes are poisonous and read an earlier version. To

measure the cost of read operations in the presence of poi-

sonous writes, we ran an experiment in which a single client

performed a single outstanding read operation as we var-

ied the number of poisonous writes. Figure 5(a) shows the

client’s read latency.

On the second and seventh data values, there is a slightly

higher than normal increase in the client’s read latency. This

is due to our implementation of client history reading. Be-

ing optimistic, on an initial read, clients request both the

latest timestamp and its associated data value. If the client’s

verification results in the client needing to read more ver-

sions, it will first have to read more history from the storage-

nodes. Currently, storage-nodes return history in 5-version

units. This explains the slight increase in read latency that

occurs every time a client reads past another five versions.

In order to bound the impact of a Byzantine client, one

can set a per-client-per-block limit on the number of pos-

sible versions. Given such a limit, Figure 5(a) can be used

to determine the worst case client read operation latency.

For example, if the per-client-per-block bound is 3, and

there is a single Byzantine faulty client performing poi-

sonous writes, then a read operation is expected to take no

more than 4.5 ms. However, such limits can adversely affect

write throughput, as it limits the verification amortization as

well as decreases the chances of waiting long enough for an



0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Number of poisonous writes

R
e
a
d

 l
a
te

n
c
y
 (

m
s
)

(a) Read latency versus number of poisonous writes in ab-

sence of lazy verification.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Per−client−per−block possible versions threshold

S
in

g
le

 c
li

e
n

t 
w

ri
te

 t
h

ro
u

g
h

p
u

t 
(M

B
/s

)

(b) Write throughput versus the per-client-per-block possible

versions threshold.

Figure 5. Dealing with faulty clients

idle time period. Figure 5(b) shows the impact on a single

client’s write throughput, as we vary the limit on the number

of possible versions per block. The client has 8 outstanding

requests. As can be seen, a limit of five or six possible ver-

sions leads to good client write throughput, while bounding

the harm a Byzantine client can inflict via poisonous writes.

6. Summary

Lazy verification can significantly improve the perfor-

mance of Byzantine fault-tolerant distributed storage sys-

tems that employ erasure-coding. It shifts the work of ver-

ification out of the critical path of client operations and al-

lows significant amortization of work.

Measurements show that, for workloads with idle peri-

ods, the cost of verification can be hidden from both the

client read and write operation. In workloads without idle

periods, lazy verification and its concomitant techniques—

storage-node cooperation and prioritizing the verification of

high-yield blocks—provides a factor of four greater write

bandwidth than a conventional write-time verification strat-

egy.

Acknowledgements

We thank Gregg Economou and Eno Thereska for tech-

nical assistance and Dushyanth Narayanan for flexible in-

ternship work hours. We thank the CyLab Corporate Part-

ners for their support and participation. This work is

supported in part by Army Research Office grant num-

ber DAAD19-02-1-0389, by NSF grant number CNS-

0326453, and by Air Force Research Laboratory grant

number FA8750-04-01-0238. We thank the members and

companies of the PDL Consortium (including APC, EMC,

Equallogic, Hewlett-Packard, Hitachi, IBM, Intel, Mi-

crosoft, Network Appliance, Oracle, Panasas, Seagate, and

Sun) for their interest, insights, feedback, and support.

References

[1] R. A. Bazzi and Y. Ding. Non-skipping timestamps

for Byzantine data storage systems. DISC, 2004.

[2] B. Becker, S. Gschwind, T. Ohler, P. Widmayer, and

B. Seeger. An asymptotically optimal multiversion b-

tree. VLDB Journal, 5(4):264–275, 1996.

[3] T. Blackwell, J. Harris, and M. Seltzer. Heuris-

tic cleaning algorithms in log-structured file systems.

USENIX Annual Technical Conference, pages 277–

288. USENIX Association, 1995.

[4] C. Cachin and S. Tessaro. Asynchronous verifiable

infromation dispersal. Symposium on Reliable Dis-

tributed Systems. IEEE, 2005.

[5] C. Cachin and S. Tessaro. Brief announcement:

Optimal resilience for erasure-coded Byzantine dis-

tributed storage. International Symposium on Dis-

tributed Computing. Springer, 2005.

[6] M. Castro and B. Liskov. Practical Byzantine fault tol-

erance and proactive recovery. ACM Transactions on

Computer Systems, 20(4):398–461, November 2002.



[7] W. Dai. Crypto++. http://www.cryptopp.com/.

[8] P. Feldman. A practical scheme for non-interactive

verifiable secret sharing. IEEE Symposium on Foun-

dations of Computer Science, pages 427–437. IEEE,

1987.

[9] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and

J. Wilkes. Idleness is not sloth. Winter USENIX Tech-

nical Conference, pages 201–212. USENIX Associa-

tion, 1995.

[10] L. Gong. Securely replicating authentication services.

International Conference on Distributed Computing

Systems, pages 85–91. IEEE Computer Society Press,

1989.

[11] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K.

Reiter. Efficient Byzantine-tolerant erasure-coded

storage. International Conference on Dependable Sys-

tems and Networks, 2004.

[12] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K.

Reiter. The safety and liveness properties of a proto-

col family for versatile survivable storage infrastruc-

tures. Technical report CMU–PDL–03–105. Parallel

Data Laboratory, Carnegie Mellon University, Pitts-

burgh, PA, March 2004.

[13] M. Herlihy. Wait-free synchronization. ACM Trans-

actions on Programming Languages, 13(1):124–149.

ACM Press, 1991.

[14] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-

free synchronization: double-ended queues as an ex-

ample. International Conference on Distributed Com-

puting Systems, pages 522–529. IEEE, 2003.

[15] M. P. Herlihy and J. M. Wing. Linearizability: a

correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Sys-

tems, 12(3):463–492. ACM, July 1990.

[16] L. Lamport, R. Shostak, and M. Pease. The Byzantine

generals problem. ACM Transactions on Program-

ming Languages and Systems, 4(3):382–401. ACM,

July 1982.

[17] D. Malkhi and M. K. Reiter. An architecture for

survivable coordination in large distributed systems.

IEEE Transactions on Knowledge and Data Engineer-

ing, 12(2):187–202. IEEE, April 2000.

[18] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal

Byzantine storage. International Symposium on Dis-

tributed Computing, 2002.

[19] T. P. Pedersen. Non-interactive and information-

theoretic secure verifiable secret sharing. Advances

in Cryptology - CRYPTO, pages 129–140. Springer-

Verlag, 1991.

[20] M. O. Rabin. Efficient dispersal of information for

security, load balancing, and fault tolerance. Journal

of the ACM, 36(2):335–348. ACM, April 1989.

[21] M. K. Reiter. The Rampart toolkit for building high-

integrity services. Theory and Practice in Distributed

Systems (Lecture Notes in Computer Science 938),

pages 99–110, 1995.

[22] M. Rosenblum and J. K. Ousterhout. The design

and implementation of a log-structured file system.

ACM Transactions on Computer Systems, 10(1):26–

52. ACM Press, February 1992.

[23] C. Ruemmler and J. Wilkes. UNIX disk access pat-

terns. Winter USENIX Technical Conference, pages

405–420, 1993.

[24] C. Ruemmler and J. Wilkes. A trace-driven analysis

of disk working set sizes. HPL–OSR–93–23. Hewlett-

Packard Company, April 1993.

[25] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and

G. R. Ganger. Metadata efficiency in versioning file

systems. Conference on File and Storage Technolo-

gies, pages 43–58. USENIX Association, 2003.

[26] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz,

C. A. N. Soules, and G. R. Ganger. Self-securing stor-

age: protecting data in compromised systems. Sym-

posium on Operating Systems Design and Implemen-

tation, pages 165–180. USENIX Association, 2000.

[27] J. J. Wylie, G. R. Goodson, G. R. Ganger, and M. K.

Reiter. A protocol family approach to survivable stor-

age infrastructures. FuDiCo II: S.O.S. (Survivability:

Obstacles and Solutions), 2nd Bertinoro Workshop on

Future Directions in Distributed Computing, 2004.


	. Introduction
	. Background and related work
	. System model and failure types
	. Read/write protocol and delayed verification
	. Related work

	. Lazy verification
	. Lazy verification basics
	. Cooperative lazy verification
	. Bounding Byzantine-faulty clients
	. Garbage collection

	. Implementation
	. Evaluation
	. Experimental setup
	. Verification policies and operation latencies
	. Impact on foreground requests
	. Performance with faulty clients

	. Summary



