Characterizing HEC Storage Systems at Rest

Shobhit Dayal

CMU-PDL-08-109
July 2008

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Acknowledgements: I'd like to thank my advisor Dr. Garth Gibson for working closely with me through this study and providing invaluable
guidance. I wish to acknowledge James Nunez from LANL for providing timely comments and feedback on the report and helping gather data from
LANL over several iterations, and Akbar Mokhtarani from NERSC and Evan Felix from PNNL for providing statistics from repeated runs over
months. This report will be revised into a paper for future submission to a conference and James Nunez, Akbar Mokhtarani and Evan Felix will
be coauthors on it. I also wish to thank the following people who ran fsstats on their respective sites and uploaded results to us: Brad Havel from
ARSC, Michael Stroucken from CMU, Alfred Torrez and Gary Grider from LANL, Katherine Vargo from PSC and Philip Roth from ORNL, and
the members and companies of the CyLab Corporate Partners and the PDL Consortium (including APC, Cisco, EMC, Google, Hewlett-Packard,
Hitachi, IBM, Intel, LSI, Microsoft, Network Appliance, Oracle, Seagate, Symantec, and VMware) for their interest, insights, feedback, and
support. This material is sponsored in part by the Department of Energy, under Award Number DE-FC02-06ER25767.

Keywords: filesystems, storage, HPC, HEC, statistics

Abstract

High-performance parallel file systems are a critical component of the largest computer systems, are primarily proprietary, and
are specialized to high end computing systems that have many access patterns known to be unusual in enterprise and productivity
workplaces. Yet little knowledge of even the basic distributions of file systems and file ages are publicly available, even though
significant effort and importance is increasingly associated with small files, for example. In this paper we report on the statistics of
supercomputing file systems at rest from a variety of national resource computing sites, contrast these to studies of the 80s and 90s
of academic and software development campuses and observe the most interesting characteristics in this novel data.

1 Introduction

In 2006 we started a project at CMU whose goal was to make available tools and services that facilitate
worldwide data collection on static file tree attributes and aggregate this data into a large database that
can be queried and viewed by anyone. In the past, people have collected data on how files within file
systems change in terms of file size, access time, modification time, filename length and various other
attributes [17, 13, 15, 4, 11, 19, 6, 16, 7, 20, 3, 2]. Our goal is for users to be able to gather this data
for themselves and to facilitate sharing of this data. In the process we collected statistics from several file
systems at various national laboratories and HPC sites, and some very large file systems at CMU.

In this paper we present statistics collected from 13 file systems from five supercomputing sites and
from 2 file system at a local file server in our department. We compare and contrast this data set with
previous studies and provide some insight to where data at HPC sites are different and where they are
similar to workstation data. A challenge in collecting these statistics has been that since these file systems
are large, data collection tools may take a very long time to complete and disrupt normal activity at the site.
It is also difficult to write one tool that may work at any supercomputing site. Often file system metadata in
high performance file systems are stored in Databases, and out of band querying of the data base is much
more efficient than using the normal POSIX interface to the file systems. Finally the system administrator
may already have the metadata we need in a flat file, that is also used for backup, and it would be less
disruptive for the site to run a tool against the flat file than the live file system. For this reason some of our
collaborators chose to use their own methods and tools in conjunction with our tool than just running our
tool in a straightforward manner.

We collected statistics on file size, capacity used, directory size, overhead, symbolic links, hard links,
access, modification and change time and filename length. Here we don’t present analysis and data for
symbolic links, hardlinks and filename length and concentrate on the remaining properties of files that are
more interesting.

Section 2 introduces our graphs and how to read them. Section 3 describes our tool used to collect
statistics and our data collection methodology. Section 4 provides a survey of related work. Section 5
describes in detail the hardware and software environment at each site where we gathered data. Section 6
presents our analysis of the gathered data. Section 7 summarizes our study and provides conclusion. Finally
section 8 expands and on what we would like to do next, and appendix A provides definitions for values
returned in stat system call.

2 Reading our graphs

Most of our graphs show empirical cumulative distribution functions; that is, the fraction of samples (usually
files, sometimes total size) whose property of interest (often size, sometime overhead or age) is less than a
given size, age or overhead. It is common to see a clustering of a large amount of data point in the zero to ten
percentile range, or ninety to hundred percentile range. For this reason, wherever pertinent, we plot the zero
to hundred percentile range as 3 sections in the graph. The first section represents the zero to ten percentile
range where the Y-axis is a log scale, the second section represents the whole range from zero to hundred
percentile with a linear Y-axis and finally the third section represents the ninety to hundred percentile range
where the Y-axis is again log scale. The X-axis is always log scale. Not all graphs have all three sections,
their representation is chosen based on the need to expand. Since different sections of the same graph may
have linear or non linear Y-axis, the slope of lines in different sections may be different.

We did not attempt to curve fit our data as many previous studies for primarily two reasons. We wanted
our study to derive a simple models that researchers can use as parameters for designing file systems. For
instance, instead of deriving whether the HPC file size distribution is log-normal, we wanted to document

more simple values such as its mean and median and present a distribution that shows what fraction of files
are a given size or age. We also wanted to characterize very large storage systems, typically those used in
HPC environment, and so our sample space is small. For instance we collected data from about 13 HPC file
systems and one local file system at our department. This sample set is not large enough to subject to curve
fitting. Nevertheless, we would like to curve fit at least the file size distribution for completeness since it has
been curve fitted by various previous studies [17, 6, 8] that have each found a different analytical function
to best fit this distribution.

2.1 Legends

We use the following legends to represent lines in all our graphs:

e lanl-scratchl, lanl-scratch2, lanl-scratch3: These are 3 different volumes, all used as scratch space
by the LANL scientists. Their detailed description can be found at 5.1

e nersc-projects: This is a GPFS volume at NERSC, used for projects by NERSC scientists. Its de-
scribed in section 5.2

o pnnl-home: This is the home directory of users at the PNNL, described in section5.3
e pnnl-dtemp: This is the scratch space for users at the PNNL, described in section5.3
o pnnl-nwfs: This is the archival file system for users at the PNNL site, described in section5.3

e arsc-projects: A SAM-QFS file system at ARSC, described in section 5.4. It is used to for holding
projects running at ARSC.

e arsc-seaul, arsc-seau2, arsc-nanul: These are SAM-QFS file system volumes at ARSC, described
in section 5.4 They are used to archival HPC data at ARSC.

e psc-scratch: This is the scratch space for users at the PSC, described in section5.5

e psc-bessemer: This is another scratch file system, for more long term data. Described in detail in
section5.5

e pdll and pdl2: These are volumes at our storage lab, at CMU. Described in more detail in section 5.6

3 Data Collection Methodology

3.1 FSstats

To collect file statistics we built a tool called FSstats. FSstats is a perl tool that runs through a file system
and creates size statistics on file attributes such as file EOF (file size), file capacity used, file positive and
negative overhead (where file capacity used is more or less than file size), directory size in entries and in
bytes, file name length, hard links, symbolic link length and file age. We were careful that FSstats created
and uploaded only anonymous data for e.g. a distribution of file size but not file extension. This was done
to make our collaborators comfortable with running the tool and submitting results to us for analysis. For
this reason our analysis can not be extended to include distribution of file name extension and its corelation
to file usage. FSstats can checkpoint to a temporary file and resume from the checkpoint if killed midway.
It writes histograms of collected statistics in a CSV format that can be uploaded to our website. When the
user uploads, we also ask for a form to be filled that collects context information around the file system and

its users, such as: what type of data it is, what is its storage hardware and file system software, any data
redundancy schemes etc. FSstats was written to be fast and easy to run and be able to collect statistics with
minimal permissions on a file subtree (execute permission on all sub-directories).

FSstats uses the POSIX ’stat’ system call to collect summary on individual files. It walks a file tree
recursively gathering stat information on all files encountered in the file sub-tree. From the stat returned
values we use: number of hard links, total size of file in bytes, number of blocks allocated to file, time of
last access, time of last modification and time of last status change to build file statistics. We use the Inode
number returned to detect hard-links. See appendix A for an exact definitions of these fields. Below is a
description of the size distributions we present in the paper.

e File size histogram: This histogram bins data based on size of regular files on the target file-tree.
The size calculation is based on the length of the file in KBs. We define this as the end of file address
(EOF), as against capacity used by a file which is defined as the number of disk blocks allocated to
a file, times block size. For instance on a file system with 4KB block sizes at least 2 disk blocks, or
more if file system does preallocation, must be allocated for storing 5 KBs of file data. In this case
5KB is the file size (EOF) and the blocks allocated times 4KB is its capacity used. File size is not
necessarily less than capacity used, for e.g. in sparse files, where ranges of file are assumed to be zero
filled and so do not have any physical disk blocks allocated to them. Hard links are counted just once
for this histogram. We show fraction of files smaller than given size and fraction of total user bytes
(sum of EOF of all files) in files smaller than given size. On the graphs, the given bin size includes
all files up to that size but not including that size. For e.g. xtic 2K in figure 2 represents all files less
than 2K but not those that are exactly 2K in size. They are accounted in the next bucket. for a POSIX
definition of the stat field used to calculate file size, see appendix A.

e Capacity used histogram: This is a histogram that bins data based on the actual space that a file
occupies on disk in terms of disk blocks. Bins are capacity used of files. We show fraction of total
files using given capacity and fraction of total capacity used in files of given capacity. As mentioned
above, capacity used may be more than file size when file systems do preallocation, or due to internal
fragmentation. There is another contributor to capacity overhead, use of data redundancy schemes,
e.g. RAID in storing files. Most file systems leave redundancy mechanisms to the disk subsystem,
and so stat calls on those files will not show overhead due to redundant data. Some file systems,
e.g. Panasas, do RAID per file and thus end up reporting parity overhead in capacity used. Such
file systems will typically show a higher overhead in capacity used as compared to others. On the
graphs, the given bin size includes all files up to that size but not including that size. For e.g. xtic
2K in figure 4 represents all files less than 2K but not those that are exactly 2K in size. They are
accounted in the next bucket. For a POSIX definition of the stat field used to calculate capacity used,
see appendix A.

¢ Directory size histogram: We size directories in two ways, by the number of entries in it and by
its size in bytes. Since directories are treated as files on UNIX systems, its size in bytes is the same
as the size of a regular file (EOF). Figures 16 and 17 show directory distribution by entries whereas
figures 18 and 19 show directory distribution by size in bytes. Bins are size of directory in entries or
bytes. On the graphs that plot distribution of directory by size in entries, the given bin size includes
all directories up to and including that size. For e.g. xtic 32 in figure 16 represents all directories
whose size is less than or equal to 32 entries. On the graphs that plot distribution of directory by size
in bytes, the given bin size includes all directories up to that size but not including that size. For e.g.
xtic 32K in figure 18 represents all directories less than 32K but not those that are exactly 32K in size.
for a POSIX definition of the stat field used to calculate directory size in bytes, see appendix A.

e atime, mtime and ctime histogram: We collect time statistics of files by recording their atime,
mtime and ctime and show distribution of files by age, i.e. fraction of files older than given age, and
distribution of user bytes by age, i.e. fraction of total user bytes (sum EOF of all files) older than a
given age. To see how POSIX defines atime, mtime and ctime for files and the system calls that affect
these fields, see appendix A. Briefly, atime is time of last access or read but other system calls may
also change it like execve, mtime is time of last modification or write but other system calls such as
mknod may change it and change time defined as time of time of last attribute change like changing
link count or time of last write. Again, this histogram considers only regular file and ignores duplicate
hard-links. Bins are days since last access, modification or change to file. On the graphs, the given bin
size includes all files up to that age but not including that age. For e.g. xtic 32D in figure 10 represents
all files less than 32 days but not those that are exactly 32 days in age. They are accounted in the next
bucket.

e Positive and negative overhead histogram: Files may have their EOF greater or less than their
capacity used. We create a distribution of such files in two histograms: positive and negative overhead.
Positive overhead records each file whose EOF is greater than or equal to its capacity used, whereas
negative overhead records each file whose EOF is less than its capacity used. Using a distribution of
positive and negative overhead we show fraction of sparse files or dense files in the file system and
the amount of overhead in terms of space (fraction of total positive or negative overhead bytes in files
whose size is less than given). These histograms bin not just regular files, but also directories and
symbolic links and thus cannot directly be compared with the file-size or capacity-used histograms.
Bins are size of file(EOF). On the graphs, the given bin size includes all files up to that size but not
including that size. For e.g. xtic 2K in figure 6 represents all files less than 2K but not those that are
exactly 2K in size. They are accounted in the next bucket. Overheads are calculate using file size and
file capacity used. For a POSIX definition of stat fields used to calculate these value see appendix A

4 Related Work

File size distributions are a well studied phenomena because of their importance to file system design param-
eters. Atleast once every decade a study reviews how sizes have changed [17, 13, 15,4, 5, 11, 19, 6, 20, 3, 2].
Similarly, there has also been an extensive study of usage patterns of file systems which also covered some
aspect of file size distribution [4, 9, 15, 21, 16, 7]. In the past these studies have significantly impacted the
design of file system[12, 14]. This paper presents the first significant collection of statistics on the largest
and highest bandwidth file systems, those used in supercomputing systems. Common wisdom is that these
systems are primarily huge, short-lived files. Our evidence suggests that this is too simplistic a model;
supercomputer file systems have surprisingly many small files and a complex concept of file size.

Perhaps the most widely cited early study examined a single DEC PDP10 running TOPS-10 and sup-
porting the entire computer science department at Carnegie Mellon University [17]. With only 1.6 GB of
disk space, space was in demand and staff performed periodic archive and purge exercises leading to 36,000
online files and 50,000 archived files. This study also defined the term ’file functional life time’ which is
the difference in time from last modification to last access and is considered a measure of the usefulness
of the file’s data. The (cumulative) file size distribution on this machine is shown on the left in Figure 1.
Interestingly later studies [21, 19, 6] found the associated time attributes of the file to be unreliable and
completely under the control of the application. This is something that we observe too and treat our analysis
of file age with caution.

In 1984 Mullender and Tanenbaum conducted a study of file size distribution on a file server belonging
to the computer science department at Vrije university [13]. This study was repeated in 2006 and the results
were compared with the previous study [20]. They found that most storage still went to large files though

4

.999999

fraction of files whose size is < X

.99999
.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

Irlam93-Satya81-sfs-vu-files-cdf.eps

100 . i
& ins
B = i - res
- y L web
B == ol 8 80| A nt
ic ~ - sprite
s 5
<, 3)
¥ / % 60 |
[}
1in s g
v g
- o 40
=
=
=1
A E
/ INam93 —+— o 0
Satyanarayanang8l —e— |
i sfs97 —x—
z sfs08 —&—
/ vug4 0 . . .
SRR = T T T A SRR wis 1k 10k 100k M
32 1K 32K 1M 32M 1G Unique File Size (Bytes)

File size in bytes

Figure 1: This figure summarizes file size data reported in earlier papers. Satyanarayanan81 refers to a 1981
study by Satayanarayanan [17], Irlam93 refers to the 93 study by Gordon Irlam [11], sfs97 and sfsO8 refer
to file size data gathered from the SFS publications [2] and vu84 and vu05 refer to a file size distribution
study by Mullender et al. in 1984 [13] and Tanenbaum et al. in 2005 [20]. On the left is very similar file
size data captured in 1981, 1984, 1993 and 2005 studies and the file size distributions used in the SPEC
benchmark for NFS file servers, SFS97 and SFS2008. The 1981 study examined a 1970s era PDP-10 file
system on 8 disks of 200 MB each supporting a computer science department’s software development and
paper writing [17]. The 1984 and 2005 papers gathered and compared data from a local UNIX file server
at the computer science department at Vrije university [20, 13]. The 1993 study examined an anonymous
collection of contributed file systems from November 1993 [11]. The SFS benchmark documentation reports
industry gathered data on NFS file system distributions appropriate to 1997 and 2008 workloads [2]. On
the right is Roselli’s Figure 7 ”Unique File Size” which is the cumulative distribution function of the files
accessed at least once during their tracing periods [16]. The five data sets are "ins”, a coursework cluster of
20 machine, ”’
a local police station, and "sprite”, a similar 8-day trace study done a decade earlier in the same computer
science department [4]. The traces gathered for this paper were mostly taken over 31 days (24 for the web
server) in 1997 (2000 for the police station desktops).

res”, 13 researchers’ desktops, "web”, a single digital library web server, "nt”, 8 desktops in

the median file size had changed from 1080 to 2475 bytes. Surprisingly the median file size in the 81 study
by Satanarayanan is almost as big as the later study in 2005 and slightly bigger than the median size from
97 data collected by SFS [2] and the 93 study by Irlam [11].

In November 1993 a Usenet posted request for a script to be widely run and reported back led to a
largely anonymous data set of 12 million file sizes [11]. Shown in the same graph as the 1981 data, on the
left in Figure 1, This study summarized:

o file size distribution is heavily skewed toward small files,
e median file size is less than 2 KB,
o files larger than 512 KB comprise more than 50% of the total size of the files, and

e Roughly 89% of files take up 11% of the total size, and 11% of files take up 89% of the total size.

10M

Starting in the mid 80s a number of file systems studies interested in designing memory-based file
caches focused on the dynamic patterns; that is, the characteristics of the data accessed, including the sizes
of file accesses [15, 4, 16, 7]. While these differ significantly from the statistics of stored files because large
fractions of the storage are not accessed during the relatively short periods studied (days to weeks rather
than years), they nevertheless report a related file size distribution, the size distribution of accessed files.
The data on the right in Figure 1 is drawn from a 3-day trace in the late 1980s and a few 30-day traces in
1997 and 2000 [16]. Interestingly, these distribution curves are quite similar to those of the earlier studies.

In September of 1998 researchers at Microsoft captured the file system statistics on 4,801 desktops
with the help of 4,418 volunteers (22% of employees at Microsoft’s main campus). This provided data on
10,568 file systems, 141 million files totaling 10.5 TB in size [6]. While much of this paper addressed
fitting the observed data to standard distributions, it did present a lot of data and comparisons to prior data.
For example, in contrast to even the 1981 data, their study looked at files smaller than 1 KB, and reported
that, except for an impulse of 1.7% zero sized files, the lower half of a log-normal distribution is present in
their data; that is, prior studies (and this study as well) tend to group a very large fraction of the files in the
smallest bucket (at say, 1 KB, 2 KB or 4 KB), obscuring the variation in file size frequencies for very small
files.

A 2002 study by Kylie M. Evans and Geoffrey H. Kuenning [8], focused mainly on multimedia files,
found that a simple log-normal distribution did not fit the size distribution of media files and suggested
that a more complex lambda distribution may be used. This study was also unique in that it gathered data
from a heterogeneous environment of Windows, Linux, MacOS and UNIX file servers. They also found the
mean and median to have gone up considerably in a two year period since the 1999 study of Douceur and
Bolosky [6].

More recent studies of static file size distributions have been used to re-examine the appropriate disk
allocation block size, such as the 2005 dataset VU2005 [20] and to construct the file size distribution of the
widely used SPEC SFS benchmark for NFS file server machines [2]. SPEC SFS97 and SPEC SFS2008 file
size distributions are shown, along with the 2005 VU2005 distribution, in the left graph of Figure 1. The
dramatic increase in file sizes in the SFS2008 file size distribution is most interesting; we shall see that it
falls inside the variation of our HPC file size distributions.

S File Systems Studied

5.1 LANL

Los Alamos National Lab (LANL) is a supercomputing site in New Mexico. We collected file statistics from
this site on three different file systems labeled lanl-scratchl, lanl-scratch2 and lanl-scratch3. See a summary
of these volumes in table 1. All three are scratch space and use the Panasas PanFS [22] file system. PanFS
is a fault tolerant high performance cluster file system that supports per file RAID. The lanl-scratch space is
a general purpose file system used mainly for I/O testing, but can be used as scratch space on preproduction
clusters, i.e. consisting of user who were porting and testing their code. There is no active purge policy
for this file system. It has predominately RAIDS files with 64 KB stripe size, but may have some RAID10
files on them. The storage nodes are organized as 7 shelves each with 10 OSDs (Object Store Device). A
single OSD has 500 GB raw space created using two 7200 RPM 250 GB SATA drives. The compute main
cluster that uses lanl-scratch has 246 dual processor 1.6 Opteron nodes. The lanl-scratch2 and lanl-scratch3
are used by a different cluster called Flash/Gordon and the Yellow Rail system. These file system use RAID
5 with a stripe unit of 64KB. The lanl-scratch2 has 8 shelves of 800 GB OSDs and lanl-scratch3 has 16
shelves of 500GB OSDs. They’re both purged periodically (60 days or older) or on a need basis (to keep
capacity used below 90 %) and users are encouraged to archive the files they want to keep. Though users
can set RAID levels on a per file basis, in reality, very few do this.

Total | Total # # max | max max max | avg | avg
Label Date Type File Size | Space | files | dirs size | space dir name | file | dir
(2008) System TB TB M K GB GB ents bytes | MB | ents
Satyanarayanan§1 1981 Home TOPS10 i-0016 | .086 .012
Irlam93 Nov 1993 .259 12 .022
SFES97 1997 NFS .001 30 027 | 30
Douceur99 Sept 98 | Desktops NTFS 10.5 141 .079
VU2005 2005 Home UNIX 1.7 2 327
SFS2008 ;2008 NFS .032 30 531 30
CMU ggl 4/10 oS HFS+ .044 .046 1.0 258 2.1 2.1 100,344 | 252 | .046 5
CMU gg2 4/10 Home HFS+ .0098 | .0099 | .028 | 3.2 328 328 448 123 .37 10
CMU gg3 4/10 Media HFS+ .065 066 | .042 | 2.6 2.2 2.2 536 129 1.6 17
CMU pdil 4/9 Project WAFL 3.93 3.68 11.3 | 821 37.7 | 234 | 56,960 255 37 15
CMU pdI2 4/9 Project WAFL 1.28 1.09 | 8.11 | 694 37.7 | 234 | 89,517 255 17 14
NERSC 4/8 Project GPFS 107 107 20.5 | 917 616 523 | 143,365 | 152 53 23
PNNL nwfs 3/17 Archival Lustre 265 264 13.7 | 1,824 | 1,074 | 1,074 | 57,114 232 | 193 9
PNNL home 3/17 Home ADVFS 4.7 4.3 10.1 | 682 268 35 23,556 255 46 16
PNNL dtemp 3/17 Scratch Lustre 22.5 19.2 2.2 51 1,074 | 1,075 8,004 89 103 | 44
PSC scratch 3/27 Scratch Lustre 32 32 2.07 | 451 173 173 64,010 160 | 15.6 6
PSC bessemer 3/27 Project Lustre 3.7 3.7 0.38 15 51 51 8,226 89 9.6 26
LANL scratchl 4/1 Scratch PanFS 9.2 10.7 1.52 120 134 154 14,420 90 6.0 14
LANL scratch2 4/10 Scratch PanFS 25 26 330 | 241 978 | 1,076 | 50,000 73 8.2 15
LANL scratch3 4/10 Scratch PanFS 26 29 2.58 374 998 1,099 | 45,002 65 10.9 8
ARSC seaul 3/13 Archival | SAM-QFS | 305 4.3 10.5 | 326 386 13.7 | 62,803 245 29 34
ARSC seau2 3/14 Archival | SAM-QFS | 115 4.6 5.3 116 366 7.0 25,008 144 | 21.7 | 47
ARSC nanul 3/12 Archival | SAM-QFS 69 4.5 6.7 338 601 13.6 | 58,648 234 | 104 | 21
ARSC projects 3/13 Archival | SAM-QFS 32 93 6.2 898 171 3.7 24,153 81 5.2 8

Table 1: This table summarizes the statistics gathered from all 15 file systems and older studies. We report
here the date when data was gathered, the type of file system, total file space and capacity used, number
of files and directories, file with biggest size and capacity used, biggest directory size in entries, biggest
filename and average file size and directory size in entries. Direct comparisons may be made in mean file
size, mean directory size etc. within file systems studied by us. A shift in trend in statistics from older studies
is also visible. For example Douceur et al., found avg file size to be 0.079 MB where as average file sizes in
the HPC data are bigger by an order of magnitude.

5.2 NERSC

NERSC (The National Energy Research Scientific Computing Center) is a scientific computing facility for
the Office of Science in the US Department of Energy, located at Lawrence Berkeley National Laboratory
in Berkeley, California.

We collected data from the NERSC Global File System (NGF) which provides shared storage accessi-
ble from five supercomputers: Franklin, PDSF, Jacquard, Bassi, and DaVinci. Franklin is a Cray XT4 with
9,660 dual Opteron nodes. See a summary in table 1. PDSF is 275 nodes with a mixed collection of dual
x86 CPUs. Jacquard is a Linux Networx cluster of 356 dual Opteron nodes. Bassi is an IBM p575 POWERS
cluster of 122 8-processor nodes. DaVinci is a SGI Altix 350 with 32 Itanium-2 processors. While all these
supercomputers have local scratch disk space of different sizes using different file system software, we had
access to only the shared NGF file system.

NGF is a IBM GPFS file system [18] with 96 volumes built on top of 2 Data Direct Networks (DDN)
S2A 9550 disk arrays and 4 IBM DS4500 disk arrays. The DDN disk arrays are both configured as 8 data
+ 2 ”parity” RAID-6 arrays; one has 16 RAID sets (each 8+2 disks) using 250 GB 7 Krpm SATA disks and

the other has 24 RAID sets using 300 GB 10 Krpm FC disks. Two IBM DS4500 disk arrays each have 16
RAID sets each a RAID-5 array of 4 data + 1 parity disks configured with 512 KB stripe units and using 250
GB 7 Krpm SATA disks. The other two IBM 4500 disk arrays each have 12 RAID sets each a RAID-5 array
with 5 + 1 disks configured with 64 KB stripe units and using 300 GB 10 Krpm FC disks. The result is about
132 TB usable space with another 31 TB for RAID overhead (24%). Files in NGF are not automatically
archived and purged except when a project becomes inactive.

The users of NGF are over 100 science projects funded through the Office of Science’s SciDAC and
INCITE programs. Example projects include Interaction of Turbulence and Chemistry, Full Vehicle Wind-
noise Simultion, Plasma Based Accelerators, Climate-Science Computation, X-Ray Free Electron Lasers,
Modeling the Earth System, Clouds in Global Clime, Thermahaline Circulation, Magnetohydrodynamic
Modeling, Quantum Simulations of Nanostructures, Turbulent Combustion, and Supernovae.

5.3 PNNL

PNNL (Pacific Northwest National Laboratory), is a U.S. Department of Energy (DOE) government research
laboratory in Richland Washington.

We collected attribute data from three different file systems at PNNL, labeled as pnnl-dtemp, pnnl-nwfs
and pnnl-home. See a summary of these volumes in table 1 The pnnl-dtemp dataset is a general purpose
global scratch space. Its purge policy deletes a file after 30 days since last use but this policy is not currently
enforced since free space is ample. The volume uses the Lustre [1] file system. Lustre, for this volume, runs
over 32 storage servers using 64 logical LUNs. The disk array backend is a HP EVA3000 with FC disks,
configured with RAID-5 LUNs. The compute cluster attached to this volume is the mpp2 cluster of 946
dual Itanium HP RX2600 nodes used by projects in the Environmental Molecular Sciences Laboratory such
as preteomics, chemistry, biology, and biochemistry. The pnnl-home is home directories for scientists who
have projects approved to run on the mpp2 cluster. Files in both of these volumes are manually archived to
the pnnl-nwfs volume on a need basis. The pnnl-nwfs volume is backed by 70 storage servers each with 2
to 4 RAID-5 LUNSs built by a 3ware 9000 series controller. These LUNs use a mix of 400GB, 750GB, and
1TB drives, all 7Krpm SATA drives.

54 ARSC

ARSC (Arctic Region Supercomputing Center) is part of the DoD (Department of Defense) and the univer-
sity of Alaska Fairbanks for high performance computing. Its goal is to support computational research in
science and engineering with emphasis on high latitudes and the arctic. We collected file systems statistics
from four major file systems here, labeled: arsc-sea-ul, arsc-sea-u2, arsc-nan-ul and arsc-nan-projects. The
volume arsc-sea-ul is for academic user archival storage on the DoD systems, arsc-sea-u2 is for DoD user
archival storage on the DoD systems, arsc-nan-ul is for academic user archival storage on academic (non-
DoD) systems and arsc-nan-projects is for academic user archival storage who have requested actual shared
project space, e.g. National Weather Service, Bureau of Land Management etc. Table 1 contains of sum-
mary of the file systems. Volumes arsc-sea-ul, arsc-sea-u2 and arsc-nan-ul usually contain data archived
from scratch but may come from anywhere. Client mount these file systems using the SUN SAM-QFS file
system. SAM-QFS can hide the file’s real storage (disk or tape) from the user and so a stat on a file on tape
can return a large file size (EOF) but no capacity used. SAM-QFS inodes also track multiple copies of a
file existing on various disk and tape systems and a stat returns a sum of this information. The arsc-nan-
projects is used for shared (multiple owner) projects, not much file system information was available to us
about arsc-projects. Volumes arsc-sea-ul, arsc-sea-u2, and arsc-nan-ul use two storage servers, seawolf and
nanook, which are configured with the same equipment. Each of these three file systems consists of 5.5TB
(56 x 1.1TB LUNS, each of which are 4+1 RAIDS 300GB FC 10k/rpm drives) drive space on two separate

StorageTek FLLX380 drive array. These drives use a 512KB segment size, giving a 2MB stripe size for any
write. Two main compute clusters are concurrently using this storage, Midnight and Iceberg. Midnight is
a Sun cluster comprised of 2312 compute Opteron processors in 415 shared memory nodes. Iceberg is 800
processor IBM System spread over a mix of 98 IBM servers.

5.5 PSC

PSC (Pittsburgh Supercomputing Center) is a joint effort of Carnegie Mellon University and the University
of Pittsburgh together with Westinghouse Electric Company to provide resources for high performance
computing to universities, government, and industrial researchers. We collected file statistics from two
volumes used as scratch space in the PSC clusters. They are labeled psc-scratch and psc-bessemer. Both
are used for output from parallel jobs running on the compute cluster. Users of psc-scratch archive files that
they need and delete those they don’t. PSC deletes files from here on a need basis, generally those older than
21 days. Whereas psc-bessemer is used for special projects that need more disk space for a longer period
of time. Files are deleted only after the project is completed. See a summary of the volumes in table 1.
Both file systems run Lustre, a high performance file system for shared clusters. The psc-scratch is used
by BigBen, a Cray XT3 MPP system with 2068 compute nodes and twenty-two dedicated 1O processors.
The storage is backed by 1 Lustre DDN 8500 in a 8+1 configuration, serving 24 2TB luns to 8 lustre OSS
nodes. The psc-bessemer used 3 Lustre DDN 9550 in a 842 configuration serving 24 6TB luns to 12 lustre
OSS nodes. All drives in both configurations are 400GB 7200RPM. The psc-bessemer is also attached to
BigBen, Pople: an SGI Altix 4700 with 768 processors and 1.5 TB of shared memory, and Salk: an SGI
Altix 4700 with 144 processors and 288 gigabytes memory.

5.6 CMU

We also collected data from our storage laboratory at CMU called PDL (Parallel data laboratory). PDL
is composed of a group of graduate students and scientists at CMU who work on storage systems related
research and projects. File statistics were collected from a storage server that manages a variety of volumes
storing data typical to university development and research environment. This data is represented as pdll
and pdI2 on the Graphs. These volumes store user home directories, CVS repository, OS distributions, music
and video for file system testing, internal projects and trace data collected from industry as well as CMU
labs. See a summary of PDL volume in table 1. Its backend store is a NetApp filer using WAFL [10] with
Dual parity RAID LUNSs created out of SATA disks. We also collected statistics from a volume that is used
as PDL scratch space, labeled as pdl-scratch.

6 Results

6.1 File Size

The mean file size ranges from 169 KB to 29 MB. Ignoring the 3 file systems with the smallest mean size:
pdI2, pdll and pnnl-home, of mean sizes 169 K, 374 K and 463 K, the smallest mean value is 5.1 M. This
means that 80% file systems have a mean file size that varies from 5.1 M to 29 M. The mean file size
range in HPC data is considerable bigger than the mean file size in a 99 study. Douceur et al., found mean
file size to range from 64K to 128K, which was still 4 times bigger than a similar study in 94 [19]. This
shows, as expected, that files on average are many orders of magnitude bigger in HPC environment than on
workstations. Figure 2 shows that the median file size ranges from 0 to 256K, for all file systems. Ignoring
one file system, psc-bessemer, the range of median is 2K to 256K. The large mean value as compared to the
median value is due to the presence of large files as also noted by Sienknecht et al. Our median file size

999999

fraction of files whose size is < X

99999
.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

filesize-files-cdf.eps filesize-files-cdf.ep

2K

Figure 2: This figure shows a CDF of files of given size across all file systems. On the left is a graph
for 11 non-archival file systems. These are mainly scratch, project and home volumes from HPC sites and
two volumes from departmental file servers at CMU. On the right is a graph of 4 archival file systems, 3
from ARSC (see section 5.4) and 1 from PNNL (see section 5.3). The X axis is log scale of base 2. The
Y-axis is split in 2 sections. It is linear from 0 to 100 percentile in section 1 and log scale from 90 to 99.9999
percentile in section 2. The Legends are explained in section 2. Files across file systems show a wide variety
of behavior. There are file systems with only 20% of files less than 2K to file systems with almost 75% files
less than 2K. The archival file system lines are much more herded and almost linear as file size grows.

range is also considerably bigger than the one previously reported from workstation studies by Douceur et
al. They found median file size on workstations to be 4K. Figure 2 shows that 90% of files are relatively
small, varying from O to 64M in size, as compared to the remaining 10% that varies from 32K to 1T in size
or 25 binary orders of magnitude. This is a wide variation in just a 10% range. We see here the advantage
of plotting the graphs as multiple sections to better view the activity in upper 10 percentile range.

Looking at the graphs in figure 3 that plots distribution of total file space consumed, as a function of file
size, we see that the median value across all file systems ranges from 4M to 32G. The Archival file systems
have a narrower median range, between 256M to 1G.

There is a clear shift in the range of median values when graphed as a distribution of total file space
compared to total files. This shift in median value shows, as often noted in previous studies, that while most
files are small, most bytes are in large files. For example, in the archival file systems, almost 90% space is
consumed by files 32M or greater where as 90% files are smaller than 32M.

6.2 Capacity used

The mean capacity used across all file systems ranges from 144K to 19 M. Of this, 7 file systems, 46% of all
file systems have a mean value that ranges from 144 K to 868 K. The remaining file systems, more than 50%
have a mean value that ranges from 5SM to 19M. Some of the smallest mean values: 868, 404, 149 and 674
bytes, are in the SAM-QFS file systems: arsc-seau2, arsc-seaul, arsc-projects and arsc-nanul ARSC. Since
SAM-QFS transparently manages files between tapes and disks a large capacity of files is actually on tapes
and not on disks and so does not get accounted from the stat system call. The SAM-QFS inode will not
show capacity residing on tape as allocated. Again the presence of large mean values as against the median
values indicate the effect of large files. Some file systems that have a small mean value for capacity used

10

T .999999
PP = 09999
Z .
pres s 9999
Ly e i = .
et >
ok 2= =t 99 8
— 1 1 9 1
—1— — 1
- Mgf”% Ea . Lt
L g
X g 7z
v .
8
i M
D
i 2 06
arsc-projects -§ A
/ pnnl-home —e— b —
y / pnnl-dtemp —&— | 2 94 y
) psc-sratcha = - /
/ psc-bessemer —v— S VD
lanl-scratchl —%— 5 4 :/
lanl-scratch2 —o— k3]
lanl-scratch3 1 g 02 arsc-seau2 —+—]
pdll —e— arsc-seaul
pdl2 —e— arsc-nanul —&—
nersc-projects —— Pnnl»nwfs ——
P i e vt T 0 L i R
32K im 32M 1G 32G 1T 2K 32K M 32M 1G 32G T
File size in bytes File size in bytes

999999
.99999
.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

0
A

.01
.001
.0001
.00001
.000001

fraction of total size in files whose size is < X

filesize-bytes-cdf.eps

T T
arsc-projects
pnnl-home —e—
pnnl-dtemp —=4—
psc-sratcha
psc-bessemer ——
lanl-scratchl —%—

T
lanl-scratch2 —&—

lanl-scratch3

pdil —e—
di2 —e—

nersc-projects ——

I I I HM -
7 /
i
7. .

32K M

32M
File size in bytes

1G

32G

iT

.999999
.99999
.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

0
A

.01
.001
.0001
.00001
.000001

fraction of total size in files whose size is < X

filesize-bytes-cdf.eps

o+

arsc-seau2 —+—

arsc-seaul

arsc-nanul —&—

Pnnl»nwfs—e—
L i R

2K

32K

M

32M
File size in bytes

1G

32G

Figure 3: This figure shows a CDF of total file space in files of given size, across all file systems. On the
left is a graph for 11 non-archival file systems. These are mainly scratch, project and home volumes from
HPC sites and two volumes from departmental file servers at CMU. On the right is a graph of 4 archival
file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log scale of
base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in section
1. Linear from 0 to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section 3.
The Legends are explained in section 2. In the non-archival file systems, there is considerable activity in the
lower 10 percentile range, showing that 10% space is consumed in files whose size range from O to less than
1G. There is a clear shift in lines as compared to the previous figure that graphs fraction of files of given
size, indicating that most space is consumed by large files. For example in the archival file systems, almost
90% space is consumed by files 32M or greater where as 90% files are smaller than 32M.

are pdll and pdl2, 350K and 144K, which is expected given that they are file systems for department at a

university.

Figure 4 graphs files as a function of capacity used on disk. The median value for capacity used across
all file systems ranges from 32K to 256K.

The archival file systems show some interesting characteristics. In 75% of file systems almost 80% to
92% files use up less than 2K capacity. Since we have a single bin from 0 to 2K we cant tell if these files
are actually O bytes in size, but it is likely since they are on archival file systems arsc-seaul, arsc-seau2 and
arsc-nanul. A completely horizontal line until the 2M point on X-axis implies that there were no files that
used more than 2K and less than 2M capacity. But we can see from figure 2 that there are only 15 to 30%
files whose size is less than 2K. This anomaly is due to the fact that these 3 file systems are SAM-QFS,
which transparently moves data to tape. As a result ’stat’ will not show any disk space allocated but will
show a large file space to exist. Volume arsc-projects, though categorised as non-archival, shows similar
behavior since it is a SAM-QFS file system.

Looking at the non-archival file systems, the capacity used range is comparatively wider in the top 10
percentile range. 90% of files use just 64M or less capacity, but the maximum capacity used is 1T. This
suggests that there is a narrow band of capacity usage in which most files lie, but there are a few files that
are spread across a relatively large range of sizes. There was a similar narrow band for file size with 90%
files less than 64M in size. Thus there is a typical value for capacity used and file size, which suggests that

there must be optimizations in file systems design for this common case.

iT

.999999
.99999
.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

0
A

.01
.001
.0001
.00001
.000001

fraction of files whose capacity used is < X

capused-files-cdf.eps capused-files-cdf.ep

Figure 4: This figure shows a CDF of files with given capacity used, across all file systems. On the left is a
graph for 11 non-archival file systems. These are mainly scratch, project and home volumes from HPC sites
and two volumes from departmental file servers at CMU. On the right is a graph of 4 archival file systems,
3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log scale of base 2. The
Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in section 1. Linear from
0 to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section 3. The Legends are
explained in section 2. The SAM-QFS file systems show an interesting characteristic. Since they don’t
report allocated space for files on tape to stat calls, a large amount of file space appears to be compressed in
a small amount of disk space.

The median value for total capacity used ranges from 4M to 32G, i.e., 50% of total capacity used is in
files whose capacity used ranges from less than 4M to less than 32G, for all file systems. The comparatively
large range of median values for this distribution over the previous one (32K to 256K) shows again that large
files dominate capacity requirement on disk.

6.3 Positive overhead

The mean positive overhead ranges from 2K to 1463K, across all file systems. Note that the positive over-
head histogram only counts files that have some positive value of overhead, including 0. All files whose
capacity used is less than their EOF are counted as negative overhead. So the above mean is the average
amount by which a files capacity used exceeds its EOF address.

Figure 6 shows that the median ranges from O to 64K. It means 50% of files with overhead, across all
file systems, have a size that ranges from O to 64K. Note that this includes files that have no overhead, since
we count files with 0 overhead in the positive overhead histogram. This allows us to get a mean overhead per
file, in files that have overhead, thus the 0 in the 0 to 64K range. 90% of files with overhead have a size that
ranges from 0 to 16M though the absolute file size ranges is much wider; O to 1T. While it appears that most
files with overhead are small in size, we should remember that most files are small anyway. The overhead
per file is useful only when seen together with the total number of files with overhead. Across all 14 file
systems (excluding NERSC from the 15 studied), files with positive overhead ranges from 0.39 Million to
15.57 Million. Remember that positive overhead files include directories and symlinks and not just regular
files. We do not have file overhead data form NERSC yet.

A useful contrast is to see where most overhead bytes are. Figure 7 shows the fraction of overhead

12

T .999999 —
4 99999 A~
5 '/‘; Z 4 9999 / 5
= : .
- =5 999 Yy
. e
= H‘ﬁ,ﬁ X 99 Jajﬁ/
1 ? - 1 1 \é 9
= Tl kst 1 T T
1%}
=]
%‘ 0.8
| =4 s e
171 - g 06 >
Q
/ 2 y
il g oap/
I / / 8 o2 /
] 2 0
v T T T T T T T T T T T T T T T T T g 1 T T T T T T T
*// arsc-projects lanl-scratch2 —&— g o1 arsc-seau2 —+—
pnnl-home —e— lanl-scratch3 7 = . arsc-seaul
pnnl-dtemp —=&— pdll —e— .001 arsc-nanul —&—
psc-sratcha pdl2 —e— pnnl-nwfs —e—
psc-bessemer —v— nersc-projects —a— .0001
lanl-scratchl —x— _ 100001
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 000001
2K 32K M 32M 1G 32G T 2K 32K iMm 32M 1G 32G T
Capacity used in bytes Capacity used in bytes

.999999
99999

.001
.0001
g 00001

.000001

raction of total capacity used in files whose capacity used is

capused-bytes-cdf.eps capused-bytes-cdf.ep

.999999

Figure 5: This figure shows a CDF of total capacity used in files of given capacity used, across all file
systems. On the left is a graph for 11 non-archival file systems. These are mainly scratch, project and home
volumes from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph of
4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log
scale of base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in
section 1. Linear from O to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section
3. The Legends are explained in section 2. A narrow band of size in the 20 to 90% range suggests that most
files are relatively close to each other in size and only a few files are spread out in the wide band of capacity
used or file size spectrum.

bytes in files of given size. We can see that the median has a wide range from 0 to 16G. Which means
that 50% overhead in file systems may be anywhere in between files less than 2K to less 16G. Looking
just at the archival file system, the range of median is narrowed substantially when one file system, pnnl-
nwfs, is excluded. lL.e., 75% archival file systems have a median value for overhead bytes in between 16K
to 64K. LANL, that has panfs, has most of its overhead in relatively big files, while the other file systems
have overhead in relatively smaller files. This is likely because none of the other file systems are counting
overhead due to parity and metadata in their capacity used. While panfs accounts for overhead due to RAID
parity and metadata overhead when it reports capacity used to the stat system call. Since the big files take
up the most space on disk also have big overheads. This pushes the median much further in the range of big
files for LANL, as compared to others. The parity overhead will be visible in statistics in disk subsystem
though, for the other file systems.

6.4 Negative overhead

The mean negative overhead, across all file systems, ranges from 58K to 1.05 K, i.e., of all files with negative
overhead, the average value by which the EOF exceeds the capacity used in these files varies from 58K to
1.05G. Figure 8 shows the distribution of files with negative overhead as a function of file size. Only files
with negative overhead are included. As can be seen, in 100% file systems, 90% files with negative overhead
have a size that ranges from less than 2K to less than 256M. Many of them have 90% overhead files less
than 2K in size. Our guess is that this could be due to some optimization such as stuffing small file data in
the Inode of the file (for e.g. in the case of symbolic links). If the file system does not include the metadata
overhead in the capacity used, then these files will appear to have negative overhead. For example volume

13

arsc-p‘;rojects ' IanI-scrathhZ —— X 99999
B pnnl-home —e— lanl-scratch3 v
- pnnl-dtemp —=4— pdll —e— 29999
psc-sratcha pdl2 —e— 3
B psc-bessemer —v— nersc-projects —+—) -999 L8
L lanl-scratchl —%— 99 =
- o 2 s
1 i i - — — e § g 9 H—E—F
g .
- @ 1
ﬁ o g B P
o %]
/ % 0.8 A
i 2x
7 / 8 o6) 4
E / A
S 04
a4 ¢ 2 /
72 : [/
e A - > 02]
— ' A i 4 £
e = 5 g
S 0
T > s =
= i g o 2
= Z o
= 5 .001
— = 5—¢ arsc-seau2 —+—
S .0001 arsc-seaul 1
] arsc-nanul —&— |
2.00001 pnnl»nwfs ——
a .000001 L 1111
2K 32K M 32M 1G 32G T 2K 32K iMm 32M 1G 32G T
Capacity used in bytes Capacity used in bytes

.999999
.99999

fraction of positive overhead files whose size is < X

.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

pos-files-cdf.eps pos-files-cdf.ep

— .999999 =
oy ey= 99999
= .9999
: 4
=% g .999
e e = P
= .99 A
H =
« 9
T T T —I = v 1 T
8 .y
- 2 08 7
Q .)
vl
B A
yi :
L 4 2 o6
3 .
arsc-projects £ 7
pnnl-home —e— | S g4
pnnl-dtemp —4— 3)
psc-sratcha e
psc-bessemer —v— =2
lanl-scratchl —x— 8 .
lanl-scratch2 —o— S 02k arsc-seau2 —+— 7
lanl-scratch3 ° arsc-seaul
pdll —e— s arsc-nanul —&—
pdl2 —e— 8 pnnl»nwfs ——
1 1 1 1 1 1 1 1 E 0 1 1 1 1 1 1 1
2K 32K M 32M 1G 32G T - 2K 32K iMm 32M 1G 32G T
File size in bytes File size in bytes

Figure 6: This figure shows a CDF of files with positive overhead in files of given size, across all file
systems. On the left is a graph for 10 non-archival file systems. These are mainly scratch, project and home
volumes from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph
of 4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is
log scale of base 2. The Y-axis is split in 2 sections. It is linear scale from O percentile to 100 percentile in
section 1 and log scale from 90 to 99.9999 percentile in section 2. The Legends are explained in section 2.
It appears that most overhead is in small files, but small files are the most abundant on file systems anyway.

pnnl-nwfs has has over 99.5% overhead files, less than 2K in size. In absolute terms, there are 17447 negative
overhead files in the O to 2K size range that together account for 410.4K of negative overhead space. It has
19624 symlinks in the file system, suggesting that most of the negative overhead files are actually symlinks.

We only consider 14 of the 15 file systems we studied since overhead statistics from NERSC were
not available. lanl-scratchl had only 1 file with a negative overhead. Incidentally LANL had a few very
big empty files, several Tera bytes in size, almost all of which was a negative overhead. L.e., their capacity
was almost zero. This skewed the negative overhead statistics for LANL data. LANL removed them after
discovering them via fsstats. These files had been accidentally left on the system for a long time. The current
data does not include those files.

In the non-archival file systems, lanl-scratch2, lanl-scratch3 and arsc-projects have negative overhead
in comparatively larger files. In the HPC environment, often a checkpoint file is created, and many cores
seek to different regions of the file and write to it. This seek will cause whole in the files that otherwise
unfilled will create sparseness in the file. This could be a reason for large files with negative overhead in the
HPC environment.

In the archival file systems, barring pnnl-nwfs, there is a more uniform distribution over size in files with
negative overhead. The median value ranges from 16K to 512K (excluding pnnl-nwfs). Figure 9 shows the
distribution of the total negative overhead (in bytes), as a function of file size. The first thing we notice is the
clear shift in the curves to right, when compared with the distribution of files with negative overhead. This
shows that though most files with negative overhead are small in size, most savings in space are coming
from the large files. This has not been been discovered in any previous study. This trend is obvious in
both archival and non-archival data. This is also evident in the median. The median for distribution of
total negative overhead, across all file systems, ranges from 256M to 512G. This is relatively large when
compared to the median in the distribution of negative overhead files, whose range was 16K to 512K.

14

.999999

fraction of total overhead in files whose size is < X

.99999
.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

pos-bytes-cdf.eps pos-bytes-cdf.eps

— .999999 r
<4 .99999
9999 -l /
- / ' o /
.999
¢ e i
St e e 99 =
= e e S b bttt 9 53— g
x 1
- = nSaBEY= y ===
— b = 2 = /1/""
N
° 08 s /
s /
" H
. S & os / 4
f—b— = . / 4
c
2 arsc-projects K]
- pnnl-home —e— | E 0.4 F
pnnl-dtemp —&— 5 - 5
psc-sratcha 3
psc-bessemer —v— = A
h—4 g lanl-scratchl —x— g ”“/(
lanl-scratch2 —o—] s 02 e arsc-seau2 —+—]
. lanl-scratch3 g ,,0" arsc-seaul
/o o pdll —e— o arsc-nanul —&—
BEUSSSSE - AN . e g L L prninwts, —o—
2K 32K M 32M 1G 32G T = 2K 32K iMm 32M 1G 32G T
File size in bytes File size in bytes

Figure 7: This figure shows a CDF of total positive overhead in files of given size, across all file systems.
On the left is a graph for 10 non-archival file systems. These are mainly scratch, project and home volumes
from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph of 4 archival
file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log scale of
base 2. The Y-axis is split in 2 sections. It is linear scale from O percentile to 100 percentile in section 1
and log scale from 90 to 99.9999 percentile in section 2. The Legends are explained in section 2. LANL,
that has panfs running on its systems, seems to have most of its overhead in big files. This is due to the
fact that panfs is likely the only file system that accounts for RAID parity overhead and metadata overhead,
such as inode and indirect blocks, in the value it reports for capacity used. Since big files use up majority
of disk space, as can be seen from previous graphs, the big files also end up paying for most overhead. This
overhead though is not visible in file systems that do not account for overhead due to parity and metadata in
file system stat calls.

The archival graph in figure 9 shows that the archival file systems, barring pnnl-nwfs, have a narrower
range for median, varying from 256M to 1G. L.e., 75% archival file systems have relatively less variability
in the median value. There is some bias here from the fact that the remaining 3 archival file systems, when
we exclude pnnl-nwfs, are from the same site, ARSC.

6.5 File Age

The age of files in terms of modification time, access time and change time are believed to be indicators
of usefulness of data in that file [17]. But as has been noted earlier and found in our own study, file time
attributes are unreliable. This may be seen from files that have future time stamps or appear to be too old,
sometimes older than the machine itself. File time attributes are under the control of application and can
be set using UNIX system calls. For this reason, it is hard to say how accurate and reliable is the time data
retrieved from stat calls. For example, files with obviously wrong values may be ignored easily but those
with not so obviously wrong values will be hard to discern.

6.5.1 Distribution of files as a function of access time

Figure 10 shows the access age of files. The mean access time ranges from 9 days to 838 days. This is a
very large variance in access time. Of this, the SAM-QFS file file systems have the largest mean value for

15

.999999
.99999

fraction of negative overhead files whose file size is < X

.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

neg-files-cdf.eps neg-files-cdf.ep

.999999
"
.99999 £
.9999
e oo 999
—o—9— “o— T : 0 ——¢
b N . 3
— - i = 9 o H
® .
T V;_‘;_y, K%} 1 =
I - - — g —
"
[}
E o8 %
/ % 4
E J7;
/ s '’
8 o6 i
/ 3
arsc-projects] —
pnnl-home —e— | £ o4 "
pnnl-dtemp —4— g .
psc-sratcha b Y.
psc-bessemer —v— > i/
lanl-scratchl —»— S
lanl-scratch2 —o—] g 02 arsc-seau2 —+— 7|
lanl-scratch3 = arsc-seaul
pdll —e— ° arsc-nanul —&—
pdi2 —e— 5 pnnl-nwfs —e—
PR T T T v S M £ o0 P L e B
2K 32K im 32M 1G 32G T g 2K 32K im 32M 1G 32G T
File size in bytes File size in bytes

Figure 8: This figure shows a CDF of files with negative overhead in files of given size, across all file
systems. On the left is a graph for 10 non-archival file systems. These are mainly scratch, project and home
volumes from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph
of 4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is
log scale of base 2. The Y-axis is split in 2 sections. It is linear scale from O percentile to 100 percentile in
section 1 and log scale from 90 to 99.9999 percentile in section 2. The Legends are explained in section 2.
pnnl-nwfs has 99.56% negative overhead files smaller than 2K in size. It is possible that they are all symlinks
with optimizations such a Inode stuffing obscuring the capacity used on these files. pnnl-nwfs has 19,624
symlinks. There are other file systems with similar statistics.

access time ranging from 598 days to 838 days. The median access time ranges from 32 days to 1024 days
for the archival file systems and from 4 days to 1024 days for the other file systems. This suggests that the
files in the archival file system are much older in terms of access time, as expected. This data should be read
cautiously since access times are under application control and may not contain the real access time for the
files. For instance the lanl-scratch2, lanl-scratch3 and pdl1 file systems have access age in negative for some
files, which means the access time is set to a future date. The minimum access time on both lanl-scratch2
and lanl-scratch3 is -32555, that affect their mean access time. Although the fraction of files that have access
time in the negative is not substantial, just 134 files out of 3.3 million for the lanl-scratch2 and 867 out of
2.6 million for lanl-scratch3. But it does suggest that using access time to summarize file functional lifetime
may be an unreliable method.

6.5.2 Distribution of total file space (sum EOF) as a function of access time

Figure 11 shows the access age of total file space, sum of EOF of all files on disk. The mean value ranges
from -474 days to 863 days. Ignoring the negative value, the mean value ranges from 7 days to 863 days.
This is again a wide variance in access time of different file systems. The largest mean values are again in
the SAM-QFS file system suggesting that the oldest bytes live there.

The median value for the archival file system ranges from 32 days to 1024 days and for the non-archival
file systems ranges from 4 days to 512 days. Of the 4 archival file system, 3 (75%) have access time greater
than 512 days. Median value for the remaining file systems varies from 4 days to 512 days. At least 4 of
these file systems, 36% of non archival file systems, have a median value ranging from 256 to 512 days,
suggesting much older bytes. This means that for the HPC data, the access time show a wide variance and

16

.999999
.99999
.9999
.999
.99

.9
1

0.8
0.6
0.4
0.2

0
A

.01
.001
.0001
.00001
.000001

raction of total negative overhead in files whose size is < X

neg-bytes-cdf.eps neg-bytes-cdf.ep

Figure 9: This figure shows a CDF of total negative overhead in files of given size, across all file systems.
On the left is a graph for 10 non-archival file systems. These are mainly scratch, project and home volumes
from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph of 4 archival
file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log scale of
base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in section
1. Linear from 0 to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section 3.
The Legends are explained in section 2. A clear shift in the distribution of negative overhead bytes, when
compared to distribution of negative overhead files, shows that most significant sparseness is in big files,
though most files that are sparse are small in size.

are probably dependant on the purge policy at each site.

6.5.3 Distribution of files as a function of modification time

Figure 12 graphs the file modification age for files in file systems. The mean file modification time in our
data set ranges from 64 days to 1169 days. Again there are several file systems that have some files with
negative file modification time: arsc-seaul, lanl-scratch2, lanl-scratch3, pnnl-dtemp, pnnl-nwfs, pnnl-home.
These files have future time stamps for the same reason as we discussed in the previous section. The fraction
of files with future time stamps are very few, ranging from 1 to a few hundred in millions of files.

As expected, the mean file modification time in the archival file systems is comparatively high, ranging
from 816 days to 940 days. Other file systems with comparatively old file modification time are arsc-
projects, which is expected since it is a SAM-QFS file system and pdll and pdl2 which is surprising. The
mean file modification time for pdll and pdI2 is 1128 and 1169 days. pdll and pdl2 are departmental
file server but also host directories that store a collection of media files (audio and video) for file systems
testing. It is possible that these files cause the mtime average to be skewed. There are also some trace files
contributed by industry research lab that are several years old. This high average figure can be seen even in
the ctime stats. We should note here that pdll and pdl2 show several similar values in some histograms in
the same histogram bin, leading us to believe that they may have a bunch of copied files from each other.

Figure 12 shows that the median modification time ranges from 16 to 1024 days. Of this, 5 out of 6
scratch file systems (83% of all scratch file systems) have 50% files younger than 256 days and 90% files
younger than 512 days. This suggests, as expected, that files are comparatively younger in the scratch file
systems than projects and home at HPC sites.

17

.999999
.99999
<
v .9999
)
/ o 999
N
» .99 =
[g
T T '§ 1 T T
arsc-projects I @ arsc-seau2 —+—
| pnnl-home —e— | / 2 g} arscseaul |
pnnl-dtemp —4— - | / c - arsc-nanul —a— |
psc-sratcha i / = pnnl-nwfs —e— /i |
[psc-bessemer —v— / i / g 06 7 |
lanl-scratchl —%— / £ {}
L lanl-scratch2 —o— [/,c S 04 |
lanl-scratch3 / / | / 3 |
pdll —e— /% | / o A |
r pdl2 —e— = £ 0.2
— >
i —t—3 i = @ 0
LI B B N A i o g 1 T
e == Z o1 =
= / S oot &
A - g ooor ——
—4 — o N
1 *=.00001
i .000001 6—&
2K 32K im 32M 1G 32G T 2K 32K im 32M 1G 32G T
File size in bytes File size in bytes

atime-files-cdf.epe atime-files-cdf.ep

999999 T + .999999

.99999 7 4 .99999

9999 9999 .

.999 .999
99 At S — x99
g 9 L g 9
< 1 = 1
@ a
o / o
w 08 . ” w 08
) <3
< 0.6 © 0.6
Q Q
3 3
Jé 0.4 -E 0.4
g S A 3 S
2 02 g o s 02
= L —7 =
2 L &+ — %% = ———¢ 2 —
c 0 1 5 0
S 1 S 1
. — . T T T T
E o1 7 +arsc-p:rojeclsI ' Ilanl-scraltchz To—] § o1 b— P arsc-seau2 —— |
= pnnl-home —e— lanl-scratch3 = arsc-seaul
.001 pnnl-dtemp —=&— pdll —e— .001 arsc-nanul —&—
- psc-sratcha pdl2 —e— pnnl-nwfs —e—

.0001 (’7(/ psc-bessemer —v— nersc-projects —a— .0001

00001 lanl-scratchl —x— _ 100001
.000001 L L L L L L L .000001

2| 32D 1KD 2D 32D 1KD
access time in days access time in days

Figure 10: This figure shows a CDF of files whose access time is less than given age, across all file systems.
On the left is a graph for 11 non-archival file systems. These are mainly scratch, project and home volumes
from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph of 4 archival
file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log scale of
base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in section 1.
Linear from 0 to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section 3. The
Legends are explained in section 2. The files in archival file systems are relatively older when compared to
the non-archival ones. Access time of less than 0 days indicates future time stamps on file, which implies
that the time attribute associated with files is not always reliable when held to POSIX definitions.

Douceur et al. [6] found the median file age to range from 1.5 to 388 days on 90% file systems. The file
age they were referring to was time since last creation or modification. Our median value ranges from 16
days to 1024 days for the project and scratch file systems and from 512 days to 1024 days for the archival
file systems. This shows that data at HPC sites may have a much wider range in age and relatively older files
as compared to workstation data.

The mean file age for scratch file systems varies from 64 days to 667 days, a much narrower range, but
still wide enough to indicate that file modification time in HPC systems can be heavily influenced by the
purge policy of the HPC site.

6.5.4 Distribution of total file space (sum EOF) as a function of modification time

Figure 13 shows the distribution modification age of total file space. The mean modification time for all file
systems ranges from 34 days to 1180 days. The median value for the non-archival file systems ranges from
8 days to 2048 days while the median value for the archival file systems range from 512 to 1024 days. There
is a clear difference in age between the archival data and the scratch and project data from the HPC sites.
For the non archival file systems, 90% of all file space is 32 to 2048 days old where as 10% of all file space
is 0 to 512 days old . For the archival file systems, 80% of all the space in all the file systems is 1024 to 2048
days old and 10% of all space in all the file systems are 0 to 256 days old (ignoring negative age values in
both case). The non archival file systems show considerable activity in the 0 to 10% and 90 to 100% range
as can be seen in section 1 and 3 of graphs in Figure 13.

The wide range in the median value for the non archival file system (8 binary orders of magnitude)
suggests that HPC data shows much wider variety in age of bytes as compared to workstation data [19, 6].

18

.999999
.99999
.9999
.999

.99

.9
1

0.8

0.6

0.4

0.2

0
A

.01

.001
.0001
.00001
.000001

fraction of total size whose age is < X

atime-bytes-cdf.eps atime-bytes-cdf.ep

.999999
.99999
7/ £
.9999 /
= 999
L /
/?/ J 0
| — L >\§ 9
— k] 1
A o -
i S o8 i
1%}
T — % 06
e - Py : /
/ @ 04
o]
T 8 g, e ¢
PUARS SV e 5 =
5
M T T T T T T T g 1 T T T
arsc-projects lanl-scratch2 —o— = o1 —X arsc-seau2 —+—
pnnl-home —e— lanl-scratch3 N o — arsc-seaul N
- pnnl-dtemp —=&— pdll —e— .001 arsc-nanul —&—
psc-sratcha pdl2 —e— F———" pnnl-nwfs —e—
psc-bessemer —v— nersc-projects —a— .0001
lanl-scratchl —x— _ 100001
1 1 1 1 1 1 1 000001
2D 32D 1KD 2D 32D 1KD
access time in days access time in days

Figure 11: This figure shows a CDF of total file space (sum EOF) whose access time is less than given age,
across all file systems. On the left is a graph for 11 non-archival file systems. These are mainly scratch,
project and home volumes from HPC sites and two volumes from departmental file servers at CMU. On the
right is a graph of 4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3)
The X axis is log scale of base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile
to 10 percentile in section 1. Linear from 0 to 100 percentile in section 2 and log scale from 90 to 99.9999
percentile in section 3. The Legends are explained in section 2. The access time for the median bytes, that is
the 50 percentile mark, shows a wide variance across file systems. This suggests that time attribute on HPC
data may be strongly influenced by the purge policy at the HPC site.

6.5.5 Distribution of files as a function of change time

Figure 14 shows distribution of files as a function of change time across all file systems. The file systems
are split in two groups, archival and non-archival. The mean age for file change time across all file systems
varies from 27 days to 754 days. Ignoring mean time from file systems that have files with future time
stamps: lanl-scratch2 and lanl-scratch3, the mean value ranges from 74 to 754 days. Although there are
only a few files with future timestamps; 134 in 3.3 Million files in lanl-scratch2 and 865 in 2.58 Million in
lanl-scratch3. The highest mean time, 754 days, is in the pdI2 file system.

Figure 14 shows that the median change time ranges from 16 days to 1024 days which means that
50% files are older than 16 to 1024 days across all file systems. Splitting this statistic we see that for the
non-archival file systems this range is 16 to 1024 days but for the archival file systems this range is only 128
to 512 days.

A closer look at the non-archival file systems shows that the change time is not older than 256 days for
50% files on 60% (6 out of 10) file systems. All these are scratch file systems. Which means that 100% of
all scratch file systems have 50% files no older than 256 days in change time. And 90% of all file in 100%
of all scratch file systems have files no older than 512 days in change time. Similar to modification time, this
suggests that files on HPC scratch volumes are much younger as compared to project and home directories.
They are younger than workstation files too. This is expected since modification time is set primarily on
write and change time on write as well as on change of file attribute (see appendix A). Scratch file systems
typically have a purge policy associated with them and do not allow files to become very old. Though this
purge policy is not strictly enforced at all HPC sites, there is still some amount of churn in file creation and
deletion. The excluded file systems, i.e. no scratch, are pdll, pdl2, arsc-projects and pnnl-home. pdll and

19

mtime-files-cdf.eps mtime-files-cdf.eps
.999999

.999999

fraction of files whose age is < X

T T T T
arsc-projects lanl-scratch2 —¢— ﬁ
-99999 - pnnl-home —e— lanl-scratch3 -99999
.9999 |- pnnl-dtemp —4— pdil —e— .9999 %
psc-sratcha pdl2 —e— ﬂ /
999 ' psc-bessemer —v— nersc-projects —— {4% -999
9 } lanl-scratchl —»— i 99
9 i i i /W/ < 9 % i
1 T Y s e v 1
Pt ‘@ 7
0.8 — 5 o8 7
[
0.6 3 06
=)
2
1%}
0.4 — y g o4 /}{
s S
" o Z = s _
0 + 4 — g o
" 7 -
.01 S .01
S
.001 = S .001 =
0001 0001 arsc-seaui —
. a—— . arsc-seau .
.00001 kjﬁ:' .00001 arsc-nanul —&— |
000001 000001 o
oD 2D 32D 1KD oD 2D 32D 1KD
mtime in days mtime in days

Figure 12: This figure shows a CDF of files whose modification time is less than given age, across all file
systems. On the left is a graph for 11 non-archival file systems. These are mainly scratch, project and home
volumes from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph of
4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log
scale of base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in
section 1. Linear from O to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section
3. The Legends are explained in section 2. Scratch file systems have files that are much younger than project
and home volumes. 50% files younger than 256 days and 90% files younger than 512 days as compared to
the project and home volumes where files are as old as 1024 days. File modification time similar to access
time show a wide variance at the median indicating influence of purge policy on file age at the HPC site.
A few hundred files in several millions have future timestamps indicating application control on timestamp
values.

pdl2 may have their statistics skewed due to presence of media files and trace data , which will have old
change time. Also note that overall, 90% files on 70% file systems are less than 512 days old.

6.5.6 Distribution of total file space (sum EOF) as a function of change time

When the total file space is viewed as a distribution with respect to change time then the mean value ranges
from -47 days to 638 days. Disregarding the file system with files with future timestamps: lanl-scratch2 and
lanl-scratch3, the mean ranges from 57 to 638 days.

For all file systems, the median ranges from 4 days to 1024 days. Which means 50% of total space
across all file systems is older than 4 to 1024 days. Figure 15 shows that for the non-archival file systems,
there are two classes: scratch and non-scratch. The non-scratch file systems: pdll, pdl2, arsc-projects and
pnnl-home are clearly older than all scratch space. pdll and pdI2 have similar behavior, that is almost 80%
to 90% of their file space is older than 256 days. On the other hand 4 out of the 6 scratch file systems have
had 80% of their total space changed in the last 128 days. The remaining 2 file systems, psc-bessemer and
lanl-scratchl fall somewhere midway with 80% of their total space changed sometime in the last 512 days
but about 78% of their file space not changed in the last 32 days.

20

mtime-bytes-cdf.eps

.999999

.99999

.9999
.999

.99

9

1

0.8

0.6

0.4

0.2

0

fraction of total size whose age is < X

A

.01

T T
/‘
/*7
/[/)k)‘%?/
i i i
— —
[
]
/ of
-
e
.
pd 7177**’(
e — !
p W - Tr—% &5 —% v T T T T T
arsc-projects lanl-scratch2 —&—

.001

pnnl-home —e—

.0001

pnnl-dtemp —4—

.00001

psc-sratcha
psc-bessemer ——

Ialnl-scratlchl -

lanl-scratch3
pdil —e—
di2 —e—

nersc-projects ——

.000001
oD

2D

32D

1KD
mtime in days

.999999
.99999
.9999
.999
.99

9
1

0.8

0.6

0.4

0.2

0
1

.01

.001
.0001
.00001
.000001

fraction of total size whose age is < X

mtime-bytes-cdf.ep

arsc-seau2 —+—
arsc-seaul

arsc-nanul —&—
, pnnl»qwfs —o—

oD

2D

32D

mtime in days

1KD

Figure 13: This figure shows a CDF of total file space (sum EOF) whose modification time is less than given
age, across all file systems. On the left is a graph for 11 non-archival file systems. These are mainly scratch,
project and home volumes from HPC sites and two volumes from departmental file servers at CMU. On the
right is a graph of 4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3)
The X axis is log scale of base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile
to 10 percentile in section 1. Linear from 0 to 100 percentile in section 2 and log scale from 90 to 99.9999
percentile in section 3. The Legends are explained in section 2. There is considerably more activity, and
range covered in age, in the lower (0 to 10 and upper (90 to 100) 10 percentile range for the non-archival
file systems as against archival file systems.

6.6 Directory Size

Directory size in terms of both: number of entries and size in bytes have implications on file system data
structures. Parallel file systems for the largest HPC sites have the most demanding IO accesses to directories.
While study of dynamic data, i.e. number of creations per second etc, is one important way to understand
demand, the other is to study data at rest. Typical size of directories give insight to how big directories are
in HPC environment.

Though we do not gather directory depth data, it is another important factor and something we would
like to report on in a future study.

Figure 16 and 17 show distribution of entries in directories. For all file systems, the mean number of
entries per directory ranges from 6 to 47. The median across all file systems, ranges from O to 8 entries.
Douceur et al. in the 99 study found the median directory size to be 2 entries. They found that on 50% file
systems the median ranges from 1 to 4 files and on 90% file systems it ranged from O to 7 files. This is
not much different from our data, suggesting that the distribution of directories in HPC systems is not much
different from workstation. In sheer size, the biggest directories at HPC sites are many orders of magnitude
bigger.

Figure 16 shows that for the non-archival file systems, 90% directories are 2 to 128 entries in size, but
the maximum number of entries in a directory can be as large as 128 K. Graph in Figure 17 shows that
only 10% entries are in directories of size 1 to 128 entries. This implies that most entries are in a few large
directories.

For the archival file systems, 90% directories have between 8 to 64 entries per directory, a shorter range
but not significantly different from the non-archival file systems.

21

.999999
.99999
.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

0
A

.01
.001
.0001
.00001
.000001

fraction of files whose age is less than X

ctime-files-cdf.eps

ctime-files-cdf.ep

.999999

.99999
.9999
.999
< .99
2 L g 9
= 1
ke @
Q
il 4 o 08 S
[}
g o6 "
Q
3
i £ o4
3
" - £ 02
—— o
— — = o
g 1
T T T T 0
T e ey i T g auf—
—-— . -
arsc-projects lanl-scratchl —»— 001 3 =
pnnl-home —e— lanl-scratch2 —o— arsc-seau2 —+—
pnnl-dtemp —4— lanl-scratch3 1 .0001 arsc-seaul 1
*/*7/ psc-sratcha pdll —e— | 00001 arsc-nanul —=— |
psc-bessemer —v— pdl2 —e— | pnnl-nwfs —e—
1 1 1 1 1 1 000001 1 1
2D 32D 1KD 2D 32D 1KD

File change time in days File change time in days

Figure 14: This figure shows a CDF of files whose change time is less than given age, across all file systems.
On the left is a graph for 10 non-archival file systems. These are mainly scratch, project and home volumes
from HPC sites and two volumes from departmental file servers at CMU. NERSC does not store ctime in
its backup files which were used to generate these histograms. On the right is a graph of 4 archival file
systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log scale of base
2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in section 1. Linear
from O to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section 3. The Legends
are explained in section 2. Though the median ranges from 16 days to 1024 days 100% of all scratch file
systems have 50% files no older than 256 days in change time. And 90% of all file in 100% of all scratch
file systems have files no older than 512 days in change time. Similar to modification time analysis, this
suggests that scratch files are younger in age as compared to projects, and home volumes on HPC sites.
They are also younger than our workstation files from pdll and pdI2.

Figure 17 shows fraction of entries in a directory of given size. The median point for the non-archival
file systems is in the range 8 to 1024. Similarly for the archival file systems the range for the median values
is size 16 to 1024, which is not much different. But if exclude the pnnl-nwfs from the archival file systems,
then the range for median is narrower, 128 to 1024. That is, 75% of the archival file systems have a 50%
entries in directories whose size vary from 0 to 1024 entries.

Another way to study directories is by its size in bytes. The mean size of directories for all file systems
ranges from 4 KB to 39 KB. Figure 18 shows that the smallest directory size in bytes is 4K. The median
size is 4K to 8K. For the non-archival file systems, directory size ranges from 4K to 128M. For the archival
file systems the size ranges from 4K to 4M.

Across all file systems, 80% to 99.5% directory are between 4K to 8K in size. In the archival file
systems, almost 94% to 99.5% directories are in the range of 4K to 8K in size. In 12 out of all 15 file
systems (80% of studied file systems), 90 to 99.5% are between 4K to 8K in size. This is by far the most
pronounced behavior, with only a marginally small set of directories, in almost all file systems, bigger than
8K in size.

Across all file systems, the total covered range of directories varies by a factor of 15, ranging from
4K to 128M. In terms of entries the total covered range varies from 1 to 256K entries, 18 binary orders of
magnitude.

22

ctime-bytes-cdf.eps ctime-bytes-cdf.ep

.999999

.99999

.9999
.999

.99

9

1

0.8

0.6

0.4

0.2

0

fraction of total size whose age is < X

A

.01

.001

.0001

.00001

.000001
2D

.999999
.99999
.9999
3 .999
.99
1 /? x
v 9
— - @ 1
[
&
/) a— » / 2 0.8
o . £ o6 7
8 .
@ 04
8
g 2 o2
a2 — - s}
- - 5 o
. T T T T E 1
T 014
arsc-projects lanl-scratchl —»—] 001 b
pnnl-home —e— lanl-scratch2 —o— 1 arsc-seau2 —+—
pnnl-dtemp —4— lanl-scratch3 1 .0001 arsc-seaul 1
psc-sratcha pdll —e— | 00001 arsc-nanul —=— |
psc-bessemer —v— pdl2 —e— | pnnl-nwfs —e—
L i L L L 1000001 I L
32D 1KD 2D 32D 1KD
file change time in days file change time in days

Figure 15: This figure shows a CDF of total file space (sum EOF) whose change time is less than given age,
across all file systems. On the left is a graph for 10 non-archival file systems. These are mainly scratch,
project and home volumes from HPC sites and two volumes from departmental file servers at CMU. NERSC
does not store ctime in its backup file which was used to create these histograms. On the right is a graph of
4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log
scale of base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in
section 1. Linear from 0 to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section
3. The Legends are explained in section 2. For the non-archival file systems, there are two classes: scratch
and non-scratch. The non-scratch file spaces are clearly older. pdll and pdI2 have similar behavior, that is
almost 80% to 90% of their file space is older than 256 days. On the other hand 4 out of the 6 scratch file
systems have had 80% of their total space changed in the last 128 days.

7 Conclusion

We collected statistics from 15 file systems, of which 13 belong to a high end computing environment and 2
belong to departmental file servers at CMU. We collected statistics on file size, age, directory size in bytes
and entries and capacity used of files. This is the first ever study on files in a HEC environment and also first
ever study to report statistics on such large file systems.

We report on data from file systems of size several hundred Tera bytes and files within file systems
whose size is greater than a Tera byte. We compared our data with previous studies [6, 19]. Our mean
file size is larger than previously reported [6, 19] and the range for median is bigger than those previously
reported. We found directories to be very typical in size.

Our analysis on file overhead shows that positive overhead may not always be obvious from ’stat’ like
system calls since some file systems are not reporting all the overhead.

We also analyze file age characteristics and find that age of files differ significantly depending on
whether they are from scratch file systems or belong to project or home volumes.

We further classify our file systems as archival and non-archival and study their characteristics sepa-
rately. We received valuable statistics from ARSC (see 5.4), from its archival file systems running SAM-
QFS, that enabled this study.

Our primary contribution is the size statistics from a number of different HEC sites. We have already
made this data publicly available on our website jhttp://www.pdsi-scidac.org/fsstats/;. Our goal in fact, is
to enable easily sharing contributions from everyone.

23

.999999

=X

fraction of directories whose size is <

.99999
.9999
.999
.99

.9
1

0.8

0.6 -

0.4

0.2

dirents-dirs-cdf.eps

\

A\t

o

AN

arsc-projects
pnnl-home —e—
pnnl-dtemp —&—

psc-sratcha
psc-bessemer —v—
lanl-scratchl —x—
lanl-scratch2 —o—

lanl-scratch3
pdll —e—
di2 —e—

, nelrsc-prloject§ —

32

1K
Directory size in entries

32K

.999999

=X

fraction of directories whose size is <

dirents-dirs-cdf.ep

.99999

.9999

‘V\

.999

.99

9

,—= =
—

1

0.8

0.6

NN

0.4

Vi

0.2

arsc-seau2 —+—
arsc-seaul

arsc-nanul —&—
, pnnll»nwf§ —o—

32

1K
Directory size in entries

32K

Figure 16: This figure shows a CDF of directories whose size in entries is less than given size, across all file
systems. On the left is a graph for 11 non-archival file systems. These are mainly scratch, project and home
volumes from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph
of 4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is
log scale of base 2. The Y-axis is split in 2 sections. It is linear scale from O percentile to 100 percentile in
section 1 and log scale from 90 to 99.9999 percentile in section 2. The Legends are explained in section 2.
The median across all file systems ranges from O to 8 entries. 50% directories are 0 to 8 entries in size. 90%
directories are 0 to 128 entries in size

Our second contribution is analysis of data at rest from HPC sites and its comparison with previously
published papers on user workstations and departmental file servers.

Our third contribution is the analysis of file positive and negative overhead that has so far not been done
in any previous study.

8 Future Work

There are a number of areas concerning file statistics that were not addressed in this paper. Our future
research will focus on completing study in these areas. Some of the work that we plan to achieve in future
are:

e Working at building a repository that enables people to publicly share file statistics information. We
already have a web site where people are contributing data. Since statistics change over time, we also
want to enable generating data from the same file systems over a period of time and comparing with
older statistics, i.e. we want to generate longitudinal stats from same file systems. We already have
statistics in our website, that were gathered from the same file system separated by a period of weeks
to months. Our future study will present analysis from statistics spaced apart in months to years and
show how particular file systems are changing in time.

e Studying dynamic workloads and usage patterns are an important aspect to understanding character-
istics of files and file systems. In HPC environment, data is often generated in one place, like the
scratch file system, and makes it way to an intermediate storage in a second file system, before getting

24

dirents-entries-cdf.eps

dirents-entries-cdf.ep

999999 .999999

.99999 .99999
x .9999 x .9999
U 999 U 999
2 9 - gt 2 9
B9 S B9
b 1 T T T = 3 1
£ = g
= s — e = 70 = s i
0 - ;= e 0 8
8 = 8 o
o o
s 06 5 06
® 72z 2 P
T 04 s T T 04 e
£ £ /
8 L " .
£ o2 4 £ o2 =
E — /’%, g /tr/E —
s 0 B — T 0 —
§ 1 - — T T T T T T T T T § 1 = =
P = i = g
° o i arsc-projects lanl-scratch2 —s— S Olp—
S o001 e pnnl-home —e— lanl-scratch3 4 S o001
3 pnnl-dtemp —4— pdll —e— 2 arsc-seau2 —+—
& .0001 psc-sratcha di2 —e— - = .0001 arsc-seaul .

psc-bessemer —v— nersc-projects —+— _| arsc-nanul —e— |

00001 lanl-scratchl —»— 00001 pnnl-nwfs —e—

.000001 . . L . . . L . . .000001 . L L .
1 32 1K 32K 1 32 1K 32K

Directory size in entries

Directory size in entries

Figure 17: This figure shows a CDF of total entries in directories of given size, across all file systems. On
the left is a graph for 11 non-archival file systems. These are mainly scratch, project and home volumes from
HPC sites and two volumes from departmental file servers at CMU. On the right is a graph of 4 archival file
systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log scale of base
2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile to 10 percentile in section 1. Linear
from O to 100 percentile in section 2 and log scale from 90 to 99.9999 percentile in section 3. The Legends
are explained in section 2. Across all file systems, 50% entries are in directories whose size vary from 0 to
1K entries. And 90% entries are in directories whose size varies from O to 32K entries, though directories
can be as big as 256K entries.

archived in a third. In future we intend to study this data flow where we trace data from birth to long
term rest.

Though we did not focus on curve fitting in this paper, we would at least like to curve fit the file size
distribution. Different studies in different periods of time have curve fitted file size distributions [17,
6, 8] and have actually found different curves to be best fit for the data they studied. Satyanarayanan
found the file size distribution best fit by hyperexponential distribution, while Douceur et al. found
the log-normal distribution to be the best fit. A 2002 study by Kylie M. Evans and Geoffrey H.
Kuenning [8] showed that even log-normal is not a good fit for file size and a more complex lambda
distributions provide the best fit. We would like to curve fit the file size distribution and see what is
the best analytical function that represents file size distribution on HPC file systems.

Though we studied directory size in terms of entries and bytes, since directories enable hierarchies, an
important aspect of studying directories is the directory depth distribution. We have left this exercise
for a future study.

Appendix

A Interpretation of values returned by the POSIX ’stat’ system call

The following is a description of some of the values returned by the POSIX stat system call. The description
below has been taken directly from the Linux Manpage (2). We provide a description of only those fields

25

dirkb-dirs-cdf.eps dirkb-dirs-cdf.ep

fraction of total directories whose size is < X

.999999 : T : T : , + .999999
=
- - -
: = ¥ : o
.999 ot == — .999 —
99 == 99 =
9 %/ 1 1 9 1
! \S —> : < ! —
iz - ;
@
0.8 S os
"
%
o
<
0.6 2 06
1
. Q
arsc-projects =
pnnl-home —e— 2
pnnl-dtemp —&— | o
04 psc-sratcha 5 04
psc-bessemer —v— g
lanl-scratchl —%— °
lanl-scratch2 —o— 5
0.2 lanl-scratch3 1 c 02 arsc-seau2 —+—]
pdil —e— 2 arsc-seaul
di2 —e— g arsc-nanul —&—
nersc-projects —— = pnnl-nwfs —e—
0 L)) L 0 L) I
2K 32K M 32M 2K 32K im 32M
Directory size in bytes Directory size in bytes

Figure 18: This figure shows a CDF of directories whose size in bytes is less than given size, across all file
systems. On the left is a graph for 11 non-archival file systems. These are mainly scratch, project and home
volumes from HPC sites and two volumes from departmental file servers at CMU. On the right is a graph of
4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3) The X axis is log
scale of base 2. The Y-axis is split in 2 sections. It is log scale from 0 percentile to 100 percentile in section
1 and log scale from 90 to 99.9999 percentile in section 2. The Legends are explained in section 2. Across
all file systems, 80% to 99.5% directory are between 4K to 8K in size. Only a marginally small fraction is
greater than 8K in size though directories can be as big as 128M in size. The median size is 4K to 8K and
the mean size ranges from 4K to 39K.

that were used by the fsstats program.

Note that not all of the file systems implement all of the time fields. Some file system types allow
mounting in such a way that file accesses do not cause an update of the st_atime field. (See ‘noatime’ in
mount(8).)

e st_ino Inode number.
e st_nlink number of hard links.

o The st_size field gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of
a symlink is the length of the pathname it contains, without a trailing null byte. This field was used to
calculate the file size (EOF).

e The st_blocks field indicates the number of blocks allocated to the file, 512-byte units. (This may be
smaller than st_size/512, for example, when the file has holes). This field was used to calculate the
file capacity used.

e The field st_atime is changed by file accesses, e.g. by execve(2), mknod(2), pipe(2), utime(2) and
read(2) (of more than zero bytes). Other routines, like mmap(2), may or may not update st_atime.

e The field st_mtime is changed by file modifications, e.g. by mknod(2), truncate(2), utime(2) and
write(2) (of more than zero bytes). Moreover, st_mtime of a directory is changed by the creation or
deletion of files in that directory. The st_mtime field is not changed for changes in owner, group, hard
link count, or mode.

26

.999999

fraction of total size of directories whose size is < X

.99999
.9999
.999
.99

.9
1

0.8

0.6

0.4

0.2

dirkb-bytes-cdf.eps

arsc-projects
pnnl-home —e—
pnnl-dtemp —&—

psc-sratcha
psc-bessemer —v—
lanl-scratchl —x—
lanl-scratch2 —o—

lanl-scratch3
pdll —e—
di2 —e—

Inersc-lprojeclts —

2K

32K

M
Directory size in bytes

32M

.999999

fraction of total size of directories whose size is < X

.99999
.9999
.999

0.8

0.6

0.4

0.2

dirkb-bytes-cdf.ep

/0/‘/‘/ S ~ 99
F;aﬁf—:—"%’%ﬁ’%’:’ Y ’ 9 —— =
1 =
///

arsc-seau2 —+—

arsc-seaul

arsc-nanul —&—
ppnl»nwlfs —o—

2K

32K

im
Directory size in bytes

32M

Figure 19: This figure shows a CDF total size (sum EOF of directories) in directories of given size, across
all file systems. On the left is a graph for 11 non-archival file systems. These are mainly scratch, project
and home volumes from HPC sites and two volumes from departmental file servers at CMU. On the right
is a graph of 4 archival file systems, 3 from ARSC (see section 5.4) and 1 from PNNL (see section 5.3)
The X axis is log scale of base 2. The Y-axis is split in 3 sections. It is log scale from 0.0001 percentile
to 10 percentile in section 1. Linear from 0 to 100 percentile in section 2 and log scale from 90 to 99.9999
percentile in section 3. The Legends are explained in section 2. Median value ranges from 4K to 32K in
bytes, i.e., 50% bytes are in directories whose sizes range from 4K to 32K. 90% bytes are in directories of
size 4K to 2M.

o The field st_ctime is changed by writing or by setting inode information (i.e., owner, group, link count,
mode, etc.).

References

[1] Lustre File system: High-Performance Storage Architecture and Scalable Cluster File System.
http://www.sun.com/software/products/lustre/docs/lustrefilesystem_wp.pdf.

[2] SFS2008 and SFS97_R1, Network File System Benchmark, Open Systems Group, Standard Perfor-
mance Evaluation Corporation. http://www.spec.org/benchmarks.html#nfs, 2008.

[3] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R., AND LORCH, J. R. A Five-Year Study of File-
System Metadata. In Proc. of the FAST *07 Conference on File and Storage Technologies (San Jose
CA, Feb. 2007).

[4] BAKER, M. G., HARTMAN, J. H., KUPFER, M. D., SHIRRIFF, K. W., AND OUSTERHOUT, J. K.
Measurements of a Distributed File System. In Proc. of 13th ACM Symposium on Operating Systems
Principles (SOSP ’91) (Pacific Grove CA, Oct. 1991).

[S] BENNETT, J. M., BAUER, M. A., AND KINHLEA, D. Characteristics of Files in Nfs Environments. In
Proceedings of the 1991 ACM SIGSMALL/PC symposium on Small systems (Toronto, Ontario, Canada,
1991).

27

[6] DOUCEUR, J. R., AND BOLOSKY, W. J. A Large-Scale study of File System Contents. In Proc.
of Joint International Conference on Measurement and Modeling of Computer Systems (Atlanta, WA,
1999).

[7] ELARD, D., LEDLIE, J., MALKANI, P., AND SELTZER, M. Passive Nfs Tracing of Email and Re-
search Workloads. In Proc. of the FAST '03 Conference on File and Storage Technologies (San Fran-
cisco CA, Mar. 2003).

[8] EvANS, K. M., AND H.KUENNING, G. A Study of Irregularities in File size Distributions. In Proc. of

the International Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS) (san Diego, CA, 2002).

[9] GRIBBLE, S. D., MANKU, G. S., ROSELLI, D., BREWER, E. A., GIBSON, T. J., AND MILLER,
E. L. Self Similarity in File Systems. In Proc. of Joint International Conference on Measurement and
Modeling of Computer Systems (Madison, WI, 1993).

[10] HiTz, D., Lou, J., AND MALCOLM, M. File System Design for an nfs File Server Appliance. In
Proc. of the Winter USENIX Conference (San Francisco, CA, 1994).

[11] IRLAM, G. Unix File Size Survey. http://www.gordoni.com/ufs93.html, 1993.

[12] MENDEL, R., AND OUSTERHOU, J. K. The design and Implementation of a Log-Structured File
System. TOCS 10, Number 1, P. 26-52 (1992).

[13] MULLENDER, S. J., AND TANENBAUM, A. S. Immediate Files. Software-Practice Experience 14, 4
(1984).

[14] NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K. Caching in the Sprite Network File
System. TOCS 6, Number 1, P. 134-154 (1988).

[15] OUSTERHOUT, J. K., CoSTA, H. D., HARRISON, D., KUNZE, J. A., KUPFER, M., AND THOMP-
SON, J. G. A Trace Driven Analysis of the Unix 4.2 bsd File System. In Proc. of 10th ACM Symposium
on Operating Systems Principles (SOSP ’85) (Orcas Island WA, Dec. 1985).

[16] ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. A Comparison of File System Workloads. In
Proc. of 2000 USENIX Annual Technical Conference (san Diego, CA, 2004).

[17] SATYANARAYANAN, M. A study of File Sizes and Functional Lifetimes. In Proc. of 8th ACM Sym-
posium on Operating Systems Principles (SOSP ’81) (Pacific Grove, WA, Dec. 1981).

[18] ScHMUCK, F., AND HASKIN, R. GPFS: A Shared-Disk File System for Large Computing Clusters.
In Proc. of the FAST ’02 Conference on File and Storage Technologies (Monterey CA, Jan. 2002).

[19] SIENKNECHT, T. F., FRIEDRICH, R. J., MARTINKA, J. J., AND FRIEDENBACH, P. M. The Im-

plications of Distributed Data in a Commercial Environment on the Design of Hierarchical Storage
Management. Performance Evaluation 20(1-3), P. 3-25 (1994).

[20] TANENBAUM, A. S., HERDER, J. N., AND B0S, H. File Size Distribution on UNIX Systems - Then
and now. ACM SIGOPS Operating Systems Review 40, 1 (2006).

[21] VOGELS, W. File System Usage in Windows nt 4.0. In Proc. of 17th ACM Symposium on Operating
Systems Principles (SOSP ’99) (Kiawah Island Resort SC, Oct. 1999).

28

[22] WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G., MUELLER, B., SMALL, J., ZELENKA, J.,
AND ZHOU, B. Scalable Performance of the Panasas Parallel File System. In Proc. of the FAST '08
Conference on File and Storage Technologies (San Jose CA, Feb. 2008).

29

