
GIGA+ : Scalable Directories for Shared File Systems

Swapnil Patil Garth Gibson

{swapnil.patil, garth.gibson} @ cs.cmu.edu

CMU-PDL-08-110

October 2008

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Acknowledgements: We would like to thank several people who made significant contributions in improving
this paper. Ruth Klundt put in a significant effort and time to run our experimental evaluation at Sandia National
Labs, especially getting it working few days before a deadline; thanks to Lee Ward who offered us Sandia’s resources.
James Nunez and Alfred Torrez helped us run experiments at Los Alamos National Lab. Aditya Jayaraman, Sanket
Hase, Vinay Perneti and Sundar Sundaraman built the first FUSE prototype as their course project. Discussions
with Milo Polte, Sam Lang, Rob Ross, Greg Ganger and Christos Faloutsos improved various aspects of our design.
This material is based upon research sponsored in part by the Department of Energy under Award Number DE-
FC02-06ER25767, the Petascale Data Storage Institute (PDSI) and by the Los Alamos National Lab under Award
Number 54515-001-07, the CMU/LANL IRHPIT initiative. We also thank the members and companies of the PDL
Consortium (including APC, Cisco, EMC, Google, Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft Research,
NetApp, Oracle, Seagate, Symantec, and VMWare) for their interest and support.

Keywords: scalability, weak consistency, directories, concurrency

Abstract

Traditionally file system designs have envisioned directories as a means of organizing files for human
viewing; that is, directories typically contain a few tens to thousands of files. Users of large, fast file systems
have begun to put millions of files into single directories, for example, as simple databases. Furthermore,
large-scale applications running on clusters with tens to hundreds of thousands of cores can burstily create
files using all compute cores, amassing bursts of hundreds of thousands of creates or more.

In this paper, we revisit data-structures to build large file system directories that contain millions to billions
of files and to quickly grow the number of files when many nodes are creating concurrently. We extend
classic ideas of efficient resizeable hash-tables and inconsistent client hints to a highly concurrent distributed
directory service. Our techniques use a dense bitmap encoding to indicate which of the possibly created hash
partitions really exist, to allow all partitions to split independently, and to correct stale client hints with
multiple changes per update.

We implement our technique, Giga+, using the FUSE user-level file system API layered on Linux ext3.
We measured our prototype on a 100-node cluster using the UCAR Metarates benchmark for concurrently
creating a total of 12 million files in a single directory. In a configuration of 32 servers, Giga+ delivers
scalable throughput with a peak of 8,369 file creates/second, comparable to or better than the best current file
system implementations.

2

1 Introduction

1.1 Motivation

Demand for scalable storage I/O continues to grow rapidly as more applications begin to harness the
parallelism provided by massive compute clusters and “cloud computing” infrastructures [34, 20].
Much of the research in storage systems has focused on improving the scale and performance of the
“data-path”, operations that read and write large amounts of file data. Scalable file systems do a
good job of scaling large file access bandwidth by striping or sharing I/O resources across many
servers or disks [16, 18, 35, 28]. The same cannot be said about scaling file metadata operation
rates.

Two trends motivate the need for scalable metadata services in shared file systems. First,
there is a growing set of applications in scientific computing and Internet services (examples in
§2.1) that use a file system as a fast, lightweight “database” with files as unstructured records
in a large directory [34]. The second trend – growing application-level parallelism – increases the
potential concurrency seen by the metadata service. Clusters today consist of thousands of nodes
growing to tens and hundreds of thousands, and each node has one to eight or more multi-core
processors. Highly parallel applications can be expected to be soon executing more than hundreds
of thousands to millions of concurrent threads. At this high level of real concurrency, even simple
output file creation, one per thread, can induce intense metadata workloads.

Most file systems, like NFS [32], NTFS [6], SGI’s XFS [43], Lustre [28] and PanFS [49],
manage an entire directory through a single metadata server (MDS), thus limiting the overall
scalability of mutations to the system’s metadata service. Customers in need of more metadata
mutation throughput usually mount more independent file systems into a larger aggregate, but
each directory or directory subtree is still managed by one metadata server. Some systems cluster
metadata servers in pairs for failover, but not increased throughput [11]. Some systems allow any
server to act as a proxy and forward requests to the appropriate server; but this also doesn’t increase
metadata mutation throughput in a directory [24]. Symmetric shared disk file systems, like Redhat
GFS [15] and IBM GPFS [35], that support concurrent updates to the same directory use complex
distributed locking and cache consistency semantics, both of which have significant bottlenecks for
concurrent create workloads, especially from many clients working in one directory. Moreover, file
systems that support client caching of directory entries for faster read only workloads, generally
disable client caching during concurrent update workload to avoid excessive consistency overhead.

1.2 Our contributions

In this paper, we describe techniques, called Giga+, for a simple, highly decentralized metadata
service. We have built a POSIX-compliant directory implementation by stacking Giga+ techniques
over Ext3 on multiple servers using FUSE [14]. Our long term goal is to push the limits of metadata
scalability by building directories containing billions to trillions of files and handling more than
100,000 metadata operations/second. In contrast to several attractive “domain-specific” systems
that achieve similar scalability (like Google’s BigTable [5] and Amazon’s Dynamo [9]), Giga+
builds file system directories that offer UNIX file system semantics, for example, no duplicates, no
range queries, and unordered readdir() scans.

The central tenet of our research is to avoid system-wide consistency or synchronization.
Giga+ starts with well-known, out-of-core indexing techniques that incrementally divide a di-
rectory into non-cacheable1 hash partitions in a way that achieves incremental growth and load-

1While we have not implemented read-only optimizations, it is common practice in distributed systems to enable

1

balancing across all the servers [13, 12, 26, 27]. The distinguishing feature of our distributed index
is that each server expands its portion of the index without any central co-ordination or synchro-
nization between servers or clients.

Giga+ uses a simple, dense, fine-grain bitmap to map filenames to directory partitions and
to a specific server. Clients use it to lookup the server that stores the partition associated with a
given filename. Servers use it to identify another server for a new partition to receive a portion
of the local partition that overfilled and to update a client’s view of the index. A bitmap is fast
and simple to maintain, and is compact enough (a few bytes to a few kilobytes for a billion file
directory) to be cached in-memory effectively and to be shipped over the network piggybacked with
operation status results as needed.

Our indexing scheme delegates different partitions of the directory to different servers. In order
to build its view of each directory’s bitmap, each server keeps track of the destination server of all
prior split operations on their partitions. This “split history” is stored locally as an attribute of the
respective partition. Thus, by not using any globally shared state on the servers, Giga+ servers can
grow (or shrink) their partitions without any overhead from lock contention and synchronization
bottlenecks.

The drawback of not using a global consistency mechanism is that clients wanting to contact
a server about a file may use an out-of-date copy of a bitmap, specifically, with workloads that
perform high rates of concurrent updates. Giga+ tolerates the use of stale, inconsistent state at
the client without affecting the correctness of their operations. Clients may send a request to an
“incorrect” server, which will correct the client. On detecting that a request has been incorrectly
addressed to it, a server uses its bitmap to update the client’s cached copy. This ability to lazily
update the client’s bitmap avoids the need to keep synchronized mapping state at the clients. In
addition, correctable state at clients simplifies the client’s failure recovery semantics.

We have built a prototype implementation of Giga+ in a cluster of Linux nodes using the
FUSE (filesystem in user-space API) [14]. We use the UCAR Metarates benchmark to measure
our prototype on a large 100-node cluster configured with up to 32 servers. Our prototype results
show that untuned Giga+ delivers 8,369 file creates per second, significantly higher than some
production systems.

The rest of this paper describes the design, implementation, and evaluation of Giga+. We
continue in the next section by motivating the rationale for huge directories and elaborate on how
Giga+ differs from current related work. §3 presents an overview of Giga+ before describing the
details of our indexing technique. §4 describes our prototype implementation, experimental setup
and results of our system.

2 Background and Related Work

2.1 Rationale for large FS directories

Among file system vendors and users, there is a small but persistent voice calling for huge directories
and fast create rates. So we decided to explore alternatives that have been proposed in the past and
implementations that are currently available. Unfortunately, as described later in §2.2, the best
production system does not scale concurrent creates into one directory. Because concurrent creates
in a single directory is largely neglected in research and not well implemented in production, we
decided to develop a framework for exploring the scalability roadblocks when scaling up with the

client-side caching of non-changing directories (or in our case, partitions of a directory) under the control of each
server independently

2

largest computers. In the rest of the section, we motivate the need for large directories and then
argue the need for a file system interface, instead of other interfaces like databases.

Applications, often seen in long running scientific computing applications and Internet services,
create a large number of small files in a single directory either steadily or burstily.

• Steady small file creation: Phone companies monitor and record information about their
subscribers’ calls for billing purposes. Typically for every call, this monitoring application
creates a file that logs the start and end time of that call. Todays telecom infrastructure can
support more than hundred thousand calls per second [45]. Even a system that is running
at one-third utilization can easily create more than 30,000 files per second. Similarly, there
are applications that store the output generated from scientific experiments in domains like
genomics and high-energy physics. For instance, a file may be created for every atomic particle
created in a physics experiment or a file may store information from each splice of a gene
sequencing microarray experiment.

• Bursty small file creation: Another example comes from applications that perform per-
process memory state checkpointing, where every core in a large cluster runs a process. An
application running on PetaFLOP scale computers, for example a 25,000-node cluster with
16-32 cores per node, may nearly simultaneously create more than half a million files.

Our goal is to build a huge directory implementation for a POSIX-compliant file system and
support traditional UNIX file system semantics. This rules out certain otherwise attractive inter-
faces; we ruled out using a database interface for the following reasons. First, the VFS interface
enables a faster adoption of our techniques by making them backward compatible for legacy appli-
cations written for a file system interface. Second, traditional “one size fits all” databases aren’t
always the best solution for all problems [41, 40, 39]. Specialized solutions often outperform the
traditional RDBMS approaches; there is an growing trend of re-writing “from scratch” specialized
databases for high availability (like Amazon’s Dynamo [9]) and high performance (like Google’s
BigTable [5] built on the Google file system [16]). In addition, most applications generate very
heterogeneous data; extracting value from semi- and un-structured data is not well supported by
traditional database indices. Large database systems are also often coupled with additional fea-
tures like query optimizers, transactional semantics and lock hierarchies. Applications may not
need most of this functionality; they may want simpler, faster semantics. Finally, we want to see
how far we can push highly concurrent file system directories.

2.2 Related Work

We present the related work in two parts: out-of-core indexing structures and practical challenges
in using these indices to build scalable storage systems.

2.2.1 Out-of-core Indexing

Out-of-core indexing structures, such as hash tables and B-trees, are widely used to index the disk
blocks of large datasets between disk and memory in both databases and file systems. File systems
have used both types of structures (or their variants) for directory indexing; e.g., SGI’s XFS uses
B-trees [43] and Linux Ext2/3 uses hash-tables [44]. For extreme scale, indexing structures should
have four properties: load-balanced key distribution, incremental growth, ability to support high
concurrency, and the ability to be distributed over hundreds to hundreds of thousands of cores or
more.

3

To eliminate hot-spots, the indexing technique should uniformly distribute the keys over all
the buckets. In a distributed system, it is also important to achieve uniform load distribution with
respect to the servers. In fact, buckets don’t need to have the same load provided that the servers
each holding a collections of buckets have the same aggregate load. We use a strong hash function
(MD5) that achieves load-balancing of keys with respect to both, buckets and servers.

The directory index should grow incrementally with usage. Particularly in file systems, where
most directories are small and they see the bulk of accesses [3, 8], it is important that small
directory performance should not be penalized. B-trees naturally grow in an incremental manner
but require logarithmic partition fetches per lookup, while hash-table which support lookups in a
single partition fetch do not. If a hash-table bucket is full, all keys need to be re-hashed into a
bigger hash-table. This can be inefficient in terms of both space utilization and re-hashing overhead
for a large number of keys. We look at three variants that have addressed this problem and are
most closely related to our work: extendible, linear, and consistent hashing.

Extendible hashing uses a specific family of hashes in order to defer rehashing keys in most
buckets after the number of buckets is doubled [13]. This technique doubles the number of bucket
headers in one step, with two headers pointing to each bucket. And then it splits each overflowing
bucket as needed by creating a new bucket, transferring half the keys from the old bucket and
updating one of the bucket pointers to point to this new bucket. The main drawback of this
scheme is that it assumes that the hash-table pointers are globally available on a single machine.
As far as we can tell the best distributed version of this algorithm is in development as an extension
of IBM’s GPFS [35, 1] (discussed in §2.3), and that it will still have interesting cache consistency
issues for the global pointer table.

Linear hashing (and its variant LH*) is another technique that grows a similar hash table
dynamically [26, 27]. LH* allows clients to have stale hash table pointers by restricting the bucket
splitting to happen in a strict serial ordering. The growth of the index is controlled by two variables,
a radix and a split token. The radix is used to identify the number of times a bucket has doubled
and the split token enforces the order of splitting by referencing the bucket that is supposed to
split next. This serial split order needs a central co-ordinator, and this order may delay splitting
an overflowing bucket for a long time. Moreover, servers traversed in the past do not know about
later updates to the split token until it gets back to them, so updates to stale clients are also
stale. While LH* has inspired us to use stale information, Giga+ provides more concurrency by
allowing multiple splits to happen simultaneously without any specific order. This is enabled by
using additional state, represented as a bitmap, that is used to record the splits executed by each
server and to update the clients when they address an incorrect server. Finally, we believe that
Giga+ is simpler than LH* and its extensions.

Consistent hashing forms the basis of distributed hash-tables (DHTs) used widely for Internet-
scale P2P systems. Consistent hashing dynamically divides the keyspace into multiple regions and
assigns a node to manage that region based on the hash of an unique name of the node [25]. Each
node knows about a few other nodes in the system based on their order of the keyspace range
managed by that nodes. The principal advantage of consistent hashing, which makes it attractive
for Internet scale systems, is that the addition and removal of any node only affects its immediate
neighbors. This property is crucial for designing systems where one expects a high rate of node
arrival and departure, as one should in Internet P2P systems. Giga+ targets cluster environments
where the number of nodes is much smaller than end hosts on the Internet and the availability
of servers in a cluster changes much less often than Internet end-hosts. Thus, it is feasible for all
servers to know about each other, and for lookups to take O(1) instead of O(log N) as in consistent
hashing.

4

2.3 Related File Systems

Most file systems – local and distributed – store a directory on a single server [28, 49, 17, 37, 16].
The most sophisticated huge directory indexing is implemented in IBM’s GPFS [35]. GPFS starts
from Fagin’s extendible hashing [13], stores its buckets in disk blocks and builds a distributed
implementation that maintains strong consistency on the disk block of the shared directory buckets
across all the nodes using a distributed lock managers and cache consistency protocols. This
is significantly different from Giga+’s weak consistency semantics where clients do not cache
directory entries and send all directory operations to the servers. In case of concurrent writers,
the GPFS lock manager initiates token transfers between the writers before anyone of them can
update the shared directory block. The lock acquire and release phase can cause multiple disk I/Os
on the underlying shared disk system on every write. Experiments performed in 2005 by NCAR
show GPFS read-only lookups scaling very well but concurrent creates limited by write through
to disk [7]. GPFS authors tell us that they are changing the cache consistency protocol to send
requests to the lock holder rather than sending changes to the client through the shared disk [1].
Even with this improvement, GPFS will use whole directory locking to handle the growth of the
directory’s storage. This offers easy fault tolerance semantics at the cost of reduced performance
at every client with every bucket split. Giga+ does not use a distributed lock protocol at all.

Farsite is a distributed file system intended for commodity, desktop machines in an enterprise,
providing the semantics of a central file server [2]. It redesigned its centralized directory service to
be distributed for server load balancing by partitioning the metadata based on the file identifier,
instead of the file path name [10]. Farsite’s goals are fundamentally different from Giga+ in that
it explicitly assumes directory updates are rare and never highly concurrent.

Ceph [46] is an object-based research cluster file system that proposes to dynamically partition
metadata based on the directory namespace tree. Ceph distributes “hot spot” directories by keeping
track of the popularity of every metadata object [47]. At the cost of keeping a per object (file/inode)
counter, their partitioning technique preserves locality while achieving load distribution over all
directories. Giga+ uses hash functions to distribute each directory without using additional per-
file state.

Lustre is a production cluster file system based on object-based storage that at present has very
limited support for distributed metadata [28]. The 2005 experiments by NCAR show that Lustre
scaled to about 1000 creates/second [7]. However, Lustre is planning to implement a hash-based
distributed metadata service, supporting one level of splitting. Prototype experiments performed
in 2005 suggest that Lustre’s future scalable metadata service may support over 10,000 file creates
per second [42].

Several other research projects have used “scalable distributed data structures” (SDDSs) to
build scalable storage abstractions for cluster computing – Gribble et. al. use a hash-table interface
[19] and Boxwood uses B-link trees [30]. Both these projects used SDDSs to build a block-level
persistent storage abstraction for different goals; Gribble’s work focused on building cluster-based
Internet services and Boxwood focused on building storage abstractions to ease the development of
distributed file systems. Our work is different in that we use SDDSs to build a metadata service
that provides high scalability, high concurrency, and fault tolerance.

3 Giga+ Design

Giga+ divides each directory into a scalable number of partitions that are distributed across
multiple servers in the cluster. Directory partitions grow dynamically with usage; that is, when
a directory is small, it is represented as a single partition on one server. This is necessary to

5

a

b

Clients

Servermapping

Y

G

R

RP2

GP1

YP0

/foo

RP2

GP1

YP0

Clients use their mapping to access the correct
partition of a dir /foo split over many servers.(a)

P0 {0-.25}

P2
{.25-. 5}

P1 {.5-1}

a

b

Clients

Servermapping

Y

G

R

RP2

GP1

YP0

/foo

P0 {0-.25}

GIGA+ indexing technique grows in a decentralized
and unsynchronized manner.(b)

RP2

GP6

GP1

YP0

P2
{.25-.375}

P1 {.5-1}

P6
{0.375-.5}

a

b

Clients

Servermapping

Y

G

R

RP2

GP1

YP0

/foo

Clients have inconsistent copies of the mapping
state; use them without affecting any correctness.(c)

RP2

YP6

GP1

YP0

P0 {0-.25}

P2
{.25-.375}

P1 {.5-1}

P6
{0.375-.5}

a

Clients

Servermapping

Y

G

R

/foo

RP2

YP6

GP1

YP0

a

b

Servers use the “split history” to update client
caches to forward request to the correct server.(d)

P0 {0-.25}

P2
{.25-.375}

P1 {.5-1}

P6
{0.375-.5}RP2

YP6

GP1

YP0

Figure 1. Example of inserts and lookups in Giga+ – Directory /foo is divided into
partitions that are distributed on three servers, such that each partition holds a particular range in the
hashspace (denoted by {x− y}). (1) Client b inserts a file test.log in the directory. Clients hash the
filename to find the partition that stores the name. Assume, hash(“test.log′′) = 0.4321, the filename
gets hashed to partition P2. Client uses its partition-to-server mapping to send the request to server R
that holds the partition P2. (2) Server R receives the request and observes that partition P2 is full. It
uses the Giga+ indexing technique to split P2 to create a new partition P6 on server Y (indexing details
in §3.2 and Figure 2) On this partition split, half the hashspace range of P2 is moved to P6. The filename
test.log is also moved to P6. (3) Once the split is complete, server R sends a response to client b. The
client updates its partition-to-server map to indicate the presence of P6 on server Y . (4) Other clients
have inconsistent copies of the mapping information but they continue to use it for directory operations.
Client a wants to lookup the file test.log and its old mapping indicates (incorrectly) that the entry is
located on P2 on server R. (5) The “incorrect” server R receives client a’s request and detects that the
range of the hash desired by the client has been moved to another partition P6 on server Y . Server R
uses the split history of P2 to update the client’s stale cache. (6) Client a then sends its request to the
“correct” server. In Giga+ we use a bitmap representation to lookup the partition-to-server mapping.

6

p{0-1}before
insert()

p{0-1}

p{0-.5}

after
insert()
(split) p{.5-1}

 Active partition insert()

i = 0
s = Y

Server (i % num_servers) in Fig.1S =

i = 0
s = Y

i = 1
s = G

 Old partition

i in Pi from Fig.1i =

Depth (r) = 1

p{0-1}

p{0-.5}

before
insert()

p{0-1}

p{0-.5} P{.5-1}

p{.25-.5}

p{.5-1}

after
insert()
(split)

p{.5-1}

p{0-.25}

i = 0
s = Y

i = 1
s = G

i = 1
s = G

i = 2
s = R

i = 0
s = Y

Depth (r) = 1

Depth (r) = 1

Depth (r) = 2

p{0-1}

p{0-.5} P{.5-1}

p{.25-.5}

p{.5-1}

before
insert()
(split) Depth (r) = 1

p{0-.25}

i = 1
s = G

i = 2
s = R

i = 0
s = Y

p{0-1}

p{0-.5} P{.5-1}

p{.25-.5}

p{.5-1}

after
insert()
(split)

p{0-.25}

i = 1
s = G

i = 0
s = Y

p{.25-.375} p{.375-.5}
i = 2
s = R

i = 6
s = Y

Depth (r) = 2

Depth (r) = 1

Depth (r) = 2

Depth (r) = 3

Figure 2. Giga+ index tree – Giga+ splits a directory into multiple partitions that are
distributed across many servers. Each server grows a directory independently by splitting a
partition half in two partitions. Each partition stores a the hash(filename) space, indicated as
{x− y}. Initially, directories are small and stored in a single partition on one server. As they
grow in size, the server splits half of each partition into a new partition, possibly on another
server (the right child of a node) The old partition, with a decreasing hash-space range, remains
on the original server (left child of a split node).

ensure that performance on small directories , which form the bulk of directory operations [8, 3],
is not penalized. Striping a small directory on many servers will incur a significant overhead when
readdir() operations have to gather many tiny partitions instead of one small directory.

Giga+ uses hashing to spread the directory incrementally over a set of servers. Since hashing
based schemes achieve a uniform distribution of hash values, Giga+ load-balances files with respect
to both partitions and servers. In Giga+, the directory entry name (filename) serves as the hash
input. We use the MD5 hash algorithm because of its good collision resistance and randomness
properties [33].

All directory operations in Giga+ are handled at the server; clients send their requests to an
appropriate server that operates on the given file. In other words, clients do not cache any directory
entries. Even in read only directories this may be appropriate with large directories because these
will be too big to fit in memory. Moreover, caching can incur a high consistency overhead in
workloads with concurrent creates in the same directory. For instance, IBM’s GPFS allows nodes
to cache directory partitions. While this greatly improves the read only lookup performance, it
suffers from lock contention and cache update traffic in the face of concurrent inserts to the same
directory [1], unless it is disabled when concurrent updates are observed [23].

Figure 1 presents an example of an insert and lookup operations on Giga+ directories and
Figure 2 shows a tree representation of an incrementally expanding directory index. The example
in Figure 1 shows a directory /foo that is managed by three servers, Y, G, and R. In Figure 1, we
use the notation Pi{x− y} to denote the range of the hashspace ({x− y}) held by a partition Pi.
As the directory grows in size, partitions get filled up and they split half the hash range into a new
partition. §3.2 describes the details of how Giga+ splits partitions with high concurrency.

3.1 Bootstrapping

Each large directory is striped over a set of servers recorded in a server list that is stored as an
attribute of that directory or its enclosing volume. The server list becomes known to a server when
it recovers a partition of that directory. Clients learn about the directory’s zeroth partition and
server list when they first access the directory through a parent directory during pathname lookup.

7

This history of prior splits is called the split history.
Split history contains references to partitions that themselves have their own split history.

Thus, the complete history of the directory growth is the transitive closure over all partitions. We
can enumerate all the partitions of a directory by traversing the split history pointers starting at the
zeroth pointer. This is analogous to enumeration of file’s blocks by following the direct-, indirect-
and doubly indirect-pointers of the file’s i-node, or to fsck, where we traverse all the block pointers,
starting from the superblock, to check the consistency of the whole file system.

3.2 Mapping and splitting partitions

Giga+ servers use a bitmap to represent a tree of partitions and the corresponding servers. A
bit position in the bitmap serves as a partition identifier and each position, i, is deterministically
mapped to a specific server in the directory’s server list (i mod number of servers). When the
directory is newly created it is stored on a single partition and is represented by a bit-value ‘1’ at
the zero-th bit position in the bitmap, while all other bits are set to ‘0’ indicating the absence of
any other partitions.

As a directory grows, an overflowing partition is split to create a new partition and the bitmap
is updated by setting the bit-value for this new partition to ‘1’. Because there is a deterministic
relationship between parent and child partition and servers for each in the bitmap, Giga+ encodes
the lineage of all its partitions in a single representation.

Specifically, if a partition has an index i and is at depth r in the tree, meaning that it is the
result of r splits from the zeroth partition, then in the next split it will move filenames in the larger
half of filenames in its hash space to a partition i+ 2r, and both partitions will be at depth r + 1.
For example, on the far right in Figure 2, partition p{.25-.5} (with index i = 2) is at a tree depth
of r = 2. A split causes this partition to move the larger half of its hash space ({0.375-0.5}) to the
newly created partition, p{0.375-0.5} (with index i = 6). And now both the partitions are at an
increased tree depth of r = 3.

The depth r of a partition i responsible for a filename whose hash is K, is closely related to
radix algorithms because i = K mod 2r. But it is important to recognize that every partition in
Giga+ can be at a different depth, and would therefore have its own radix. Giga+ does not
need to record the depth of each partition because it can determine r from inspecting the bitmap;
partition i is at a depth r if the bit-value at position i is a ‘1’ and the bit-value at position i+ 2r

is a ‘0’.
Looking up the appropriate partition, i, for a given filename with hash K can be done in the

bitmap by finding the value of r for which, bitmap[K mod 2r] = ‘1’ and bitmap[K mod 2r+1] = ‘0’.
For the r that satisfies the above condition, partition i is K mod 2r, and the server that holds the
partition is i mod number of servers.

Because each server manages its partitions independently, it can split their partitions in paral-
lel, without any client-side or server-side synchronization or consistency except for communicating
to the server receiving the split partition. Figure 2 illustrates this with an example. Over a period
of time, servers will have diverging copies of the bitmap indicating only their own partitions and
splits. Performing a bit-wise “OR” operation on the bitmaps of all the servers, gives a map of all
the partitions of that directory, which is what clients strive to do as a result of incorrect addressing
updates.

For fast lookups and efficient space management, Giga+ bitmaps maintain a local variable r
such that all the bitmap positions above 2r are a ‘0’ and begins all depth searches at i (= K mod
2r). As long as Giga+ uses a hash that does a good job of distributing values evenly, all partitions
will be at a depth close to r, which is the maximum depth of any partition. Figure 3 shows how

8

Figure 3. Using bitmap to lookup partitions – A bit-value of “1” indicates the presence
of a partition on a server, and bit-value “0” indicates the absence of the partition on a server.
This example show how bitmaps are used to choose a new partition to split into and to lookup
the partition that holds the filename (“a.out”) you are searching.

bitmaps are searched for lookups and for splits.
Thus, bitmaps in Giga+ serve as simple, complete representation of all the partitions stored

on all servers. Bitmaps are also attractive from a system design perspective for two reasons: they
are a compact representation and they allow fast update operations. For example, a directory with
a billion files and a partition size of 8,000 files, can be represented in a 16KB bitmap! Such small
bitmaps should be easily cached in memory at all times. They can also be shipped to clients with
small network traffic overhead because they are only needed when a client’s bitmap has led to an
incorrectly addressed server. Finally, such bitmaps can be updates very quickly by a simple bit-wise
OR of a server’s bitmap onto a stale client’s copy.

3.3 Tolerating inconsistent clients

In absence of any explicit synchronization, clients will often end-up with a stale, out-of-date cache.
This happens more frequently at high insert rates when more splits create newer partitions on the
servers. A client with an out-of-date copy of the bitmap may send a request to an “incorrect”
server; that is, a server that once was responsible for this file but has since passed responsibility to
another server. An incorrect server discovers the stale mapping by recomputing the file’s hash and
testing it against its partitions. After detecting incorrect addressing, a server sends its bitmap to
inform the stale client of all that server’s partitions and the partitions in other servers that were
created as a result of splits on this server, and the updated client retries its lookup.

The cost of this lazy client update mechanism is that the clients need additional probes to
reach the correct server. Since the bitmaps at each server contain information about partitions

9

on other servers (resulting from prior splits on the server), every update message tells the clients
about the state of more than one partition split, thus updating the clients quickly.

3.4 Power of 2 specialization

In the special case where the number of servers is a power of 2, two powerful optimizations result.
If the number of servers is 2S then beyond depth S in the split lineage tree (Figure 2), all partitions
will split with both halves being assigned to the same server and that later split actions not generate
network traffic. This implies that splitting is only being used to ensure that the underlying file
system storing each partition as a directory never sees directories larger than the split threshold.
Moreover, because servers only update client bitmaps when the client addresses an incorrect server,
client bitmaps with no stale bits in the first 2S bits will not generate incorrect server addresses no
matter how many new partitions are beyond depth S. This means that client bitmaps will remain
small (and could be truncated to 2S bits by servers) and will generate few incorrectly addressed
servers.

3.5 Adding new servers

In real-world deployments, the total size of a system tends to grow over time and administrators
are likely to want to increase the set of servers. Even if the total system does not grow, conservative
administrators may find that too few of the nodes had been servers in the original configuration.
A scalable directories scheme should support increasing the pool of servers efficiently.

In the general case, changing the server list associated with a Giga+ directory changes almost
all partition to server assignments. This redistribution work can be easily parallelized, but it can
be a large amount of overhead.

Given that in Giga+ each directory can have its own server list, we can choose which directories
are most appropriate to redistribute and when. For example, we may only redistribute the partitions
of a directory when each server holds many partitions and when the number of servers is increasing
from one power of 2, say 2s, to the next, 2s+1, to effectively double the operation rate. With
this choice half of the partitions of every current server of that directory are moved to the new
servers, which would have been the split destinations in the first place if the larger number of
servers had been available. Updating clients’ bitmaps is disabled at each server while that server
is redistributing partitions, for simplicity in this rare expansion phase, and each server can instead
proxy operations to the new servers for partitions it have moved. When all partitions have been
moved, updating clients’ bitmaps can be re-enabled and the now longer server list made available
so that clients will be updated to identify the new distribution of partitions.

For non-power of two numbers of servers more complicated redistribution schemes are possible,
but mostly seem to have much more complicated client bitmap handling after the redistribution,
or suffer from slow and unbalanced redistribution phases. This may be a topic for future work if
experience shows that power of two numbers of servers is not sufficient.

3.6 Handling failures

In this section, we describe how Giga+ handles node failures, common events in systems with
thousands or more nodes [16, 36].

Handling client failures can be subdivided into two recovery processes. Request or reply packet
loss is a client recovery action in most distributed systems. Giga+ uses best in class solutions such
as sequence numbers in requests and responses to distinguish new from retransmitted requests,
and a server reply cache to ensure that non-idempotent commands, like create, can return the

10

original command’s response when a reply packet is lost. If a client reboots, however, it loses all
its state with respect to Giga+. This is not a problem as all client state for a Giga+ directory
is reconstructed by reopening the directory from the zeroth partition named in a parent directory
entry, refetching its server list and rebuilding the bitmaps through incorrect addressing of server
partitions during normal operations.

Giga+ servers contain a large amount of state, so server failures require more mechanisms.
Giga+ uses a chained-declustering scheme [22] to increase directory availability in the case of
permanent server failures. This technique replicates partitions so that there are two copies of every
partition and these two are stored on adjacent servers in the server lost order. For example, if a
directory is spread on 3 servers, all the primary copy partitions on server 1 will be replicated on
server 2, partitions primary in server 2 replicated on server 3, and partitions primary in server 3
will be replicated on server 1. Chained declustering makes it simple to shift a portion of the read
workload of each primary to its secondary so that the secondary of a failed node does not have
a higher load than the other servers [22]. While some systems have used chained de-clustering to
load balance read requests on a specific partition over one of its two servers [?], Giga+ doesn’t
need to do this because hashing ensures us uniform load across all servers.

On normal reads and writes, clients send their request to the server that holds the primary
copy. A non-failed primary handles reads directly and replicates writes to the secondary before
responding. If the client’s request times out too many times, the client will send the request marked
as a failover request than an incorrectly addressed request to the server that holds the replica. A
server receiving a failover request participates in a membership protocol among servers to diagnose
and confirm the failover [4, 48]. While a node is down or being reconstructed, its secondary executes
all of its writes and reads, and uses chained declustering to shift some of its read workload over
other servers. This shifting is done by notifying clients in reply messages to cache a hint that
a server is down and execute chained declustering workload shifts. Clients either try the failed
primary first and failover to learn about the failure or try the secondary first and be corrected to
retry at the primary.

In this scheme, if the replica’s server also fails (along with the primary) then the requested
data becomes unavailable; one way to avoid this is by keeping more replicas, a practice adopted by
large file systems like the Google file system which keeps 3-6 copies of data [16].

4 Experimental Evaluation

4.1 Giga+ Prototype

We have built a user-space implementation of Giga+ using the FUSE API [14]. The advantages of
a user-space implementation are ease of implementation and portability across various file systems:
we can overlay our prototype on top of any existing file system [50, 21]. The disadvantage is the
potential reduced performance compared to a native parallel file system implementation; however,
this should not affect the scaling properties of the Giga+ indexing techniques.

In our implementation, we layer FUSE on top of the Linux ext3 file system. The application
performs a file operation that is intercepted by the VFS layer in the kernel. The VFS layer forwards
the request to the FUSE kernel module. This FUSE layer manages the application’s view of the
file system by maintaining in-memory state of the files created by the application through FUSE.
These dynamic structures keep a mapping of the i-nodes associated with the files created by the
application; this mapping is evicted if the file is no longer in use or if its associated timeout (set
internally by FUSE) value expires. FUSE uses these mappings for path-name translation; for a
file descriptor used by the application, FUSE uses the mapping to find the matching i-node. If an

11

Figure 4. Local representation of huge directory in Giga+ prototype layered on
Ext3 – Currently, we replicate the huge directory tree structure (not the files or partitions) for
ease of namespace management through common path-name manipulation across all servers.

operation is performed on a file descriptor that is not in the mapping, FUSE does a complete path-
name lookup to find the respective i-node, which is then cached for later use. This kernel module
bounces the request out to the user-level Giga+ library. This library contains the core indexing
technique that selects the destination server. The request is then handed over to the Giga+ RPC
layer (built using ONC RPC [38]) that marshals the request and sends it to the server.

At the server, the Giga+ RPC layer unmarshals the request and sends it to the appropriate
message handler. While a client sees a “single” large directory, the server creates sub-directories to
represent the partitions associated with a huge directory (as shown in 4). Our current prototype
replicates the huge directory tree structure (not the files or partitions) on all the servers. While
this replication is inefficient for many large directories, it enables easy namespace management by
performing common path-name manipulation across all servers. If a partition splits, our prototype
performs a readdir on the directory and rehashes every entry to check whether it needs to be
moved to the new partition. Because of layering on a local file system, we also have to copy the
entire file from an old partition to the new partition; this won’t be an issue if we layer our prototype
on parallel file systems that typically have a separate metadata manager. Not counting comments,
our prototype implementation consists of little more than 7,000 LOC.

4.2 Experimental Setup

Our testbed is a 100-node cluster of HP XW9400 Workstations, each containing a two dual-core
2.8GHz AMD Opteron processor, 8GB of memory, and a LSI/Symbios Logic SAS1068E PCI-
Express Fusion-MPT serial attached SCSI storage controller connected to one 7200 rpm SATA
80 GB Samsung HD080HJ disk with 8MB buffer DRAM size. Nodes have a nVidia Corporation
MCP55 GigE controller and are interconnected using a HP Procurve 2824 switch on a Gigabit Eth-
ernet backplane with 20 µsecond latency. All machines run Linux 2.6.9-55.0.9.EL lustre.1.4.11.1smp
(Redhat release) and use the ext3 file system to manage its disk.

We evaluate the performance of our prototype with the UCAR metarates benchmark [31],
previously used by several other parallel file systems [49, 7]. Metarates is an MPI application that

12

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

1 2 4 8 16 32

8,368

4,132

3,492

2,515

1,389
893

200

1,375

A
gg

re
ga

te
 t

hr
ou

gh
pu

t
(c

re
at

es
/s

ec
on

d)

GIGA+ prototype
(with 2 number of servers)

Panasas
on DF

Linux
NFS

N
(single server)

Average Peak

Figure 5. Scale and performance of Giga+ using UCAR Metarates benchmark.

manages multiple clients creating files in a directory. Once all files are created, it also performs
phases that stat each file (to get file attributes) and utime (to set the timestamp) on each file.
Most published results of Metarates we have found report concurrent create rates in one directory
of about 1,000 creates per second [49, 7].

For the experiments below, we use a power-of-two number of servers, a setup that greatly
reduces the number of server-to-server split and server-to-client bitmap update traffic. Giga+ is
configured with a partition size of 8,000 entries per partition by default – a number based on a
study that observed that 99.99% of directories in HPC file systems contain less than 8,000 entries
[8]; thus, directories smaller than 8,000 files are stored on a single server. When experimenting with
scaling we increase the size of the directory and number of clients running the benchmark as we
increase the number of servers. In general, we employ two clients generating load for each server.

4.3 Scale and performance

Figure 5 shows the scalability of our prototype implementation when each server creates 370,000
files in a common directory. The graph shows three systems: a commercial parallel file system
(Panasas), a Linux NFSv3 server, and our Giga+ prototype, where the first two are reported
from a prior published result [49]. The single server performance of our system (peak at 893
creates/second) is faster than Linux NFS, but about 33% slower than Panasas’s file system on their
Directflow protocol and hardware. Panasas’s PanFS file system manages each directory with a
single metadata server. During the file creation process, its metadata server also creates the two
file objects on storage before returning to the client; this allows clients to then start writing data
directly on the two storage nodes, although Metarates in fact does no data writing [49]. PanFS
buffers writes in two battery backed memories and batches directory updates after journaling them.

13

103

104

105

106

 0 200 400 600 800 1000 1200 1400 1600

316 524 945 1507

D
ire

ct
or

y
si

ze
 (

nu
m

be
r

of
 e

nt
rie

s)

Experiment running time (seconds)

Creating a directory of 1 million files total.

1 server
2 servers
4 servers
8 servers

Figure 6. Growth rate of directories in Giga+ – Initially when the directory is small
and stored on a single server, the overall growth rate is limited by the performance of that
server. For a constant 1,000,000 files to be created when the threshold when the threshold for
the partition splitting is 8,000 files, an 8-server system goes little faster than a single server
system during the first 100,000 creates and has barely reached saturation at 1,000,000 created
files.

While it is not our intention to compete with commercial product, many improvements could be
made to our prototype, such as the use of a thread-pool based server, asynchronous execution
of partition splits at the server, and dynamic partition resizing. However, the performance of a
Giga+ single server, between Linux NFSv3 and PanFS single servers, indicates that it is not vastly
slow.

The key contribution of Giga+ is the throughput scale-up achieved by incrementally dis-
tributing a directory on all the available servers – our prototype delivers 55-60% average scaling,
i.e., twice the number of servers give 1.55-1.6 times more creates/second, and a peak throughput of
8368 inserts/second, using a 32 server configuration to construct a single directory with 12 million
files (Figure 5). This is a significant improvement over some of the existing parallel file systems,
based on a 3-year old study of single directory file creation rates [7]. In that study, when multiple
clients perform concurrent inserts, LustreFS achieved a peak rate of 1027 inserts/second and GPFS
v2.3 achieved a peak rate of 167 inserts/second. This study used the UCAR Metarates benchmark
on a 64-node cluster of dual core Xeon 2.4GHz processors and 2GB of memory, running Linux
2.4.26. Since this study was published, both GPFS and LustreFS have built more sophisticated
directory implementations to handle concurrent access. GPFS is optimizing its hash directory
implementation by using strong consistency only after split operations (instead of every insert)
and reducing lock protocol traffic and disk I/Os for concurrent inserts [1]. LustreFS strategy is
closer to Giga+ in that it splits a directory into multiple storage objects but apparently only
once [29]. In a presentation by a LustreFS partner, an early prototype was reported to achieve as
much as 10,000 creates/seconds [42]. These experiments indicate that Giga+ techniques produce

14

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

103 104 105 106 107

In
st

an
ta

ne
ou

s
th

ro
ug

hp
ut

 (
cr

ea
te

s/
se

co
nd

)

Directory size (number of files)

32 servers
16 servers
8 servers
4 servers
2 servers
1 server

Figure 7. Analyzing the Giga+ behavior – Initially, throughput increases in “steps”
when the directory grows on to more servers. Uniform load distribution causes all the partitions,
all have same size, to fill up at the same time and that causes all the servers to split the
partitions; this “dips” the throughput of the system for that period. The gradual “slow-down”
towards the end of the experiment happens when all servers reach their saturation point.

comparable results even with little tuning or optimization.
To understand how Giga+ scales over time with fixed (non-scaling) amount of files to create,

we measured the time required to add one million files total to a directory distributed on one to
eight servers. Figure 6 shows the size of the directory at any instant of time during the experiment.
The directory starts small, stored on a single server, so the larger system’s throughput is limited by
the single and small server performance. In the experiment of Figure 6, the directory needs to be
bigger than 100,000 files to see much difference in create rates of various numbers of servers, but at
1,000,000 files large differences in speed become apparent. To achieve parallelism more quickly, the
system could be optimized to split each partition into N-chunks on N-servers, instead of 2 chunks
of 2 servers, but this decreases the size of worst case partitions resulting in slower readdir()
performance because more servers will have to be invoked for less entries each. A similar drawback
can result for a 2-way split if the split threshold size is smaller.

In summary, Giga+ throughput scales with more number of servers, however it’s not a linear
2X scale-up. We now analyze a long running system to identify the source of throughput degra-
dation. In the following sections we look at the overhead involved in split operations at the server
and the use of weak consistency semantics at the clients.

4.4 Cost of partition splits

Figure 7 shows the instantaneous throughput over the experiment shown in Figure 5, in terms of
the growth in total directory size. At each client, we measure the insert rate for the last 1,000
files created. The sum over N clients gives us the aggregate instantaneous insert rate for the last
N thousand files. Because we employ 2 clients for each server, the 1 server case is sampled every

15

Entries 8 servers, 16 servers, 32 servers,

per each creating .. each creating .. each creating ..

partition 103 files 104 files 103 files 104 files 103 files 104 files

1K 78.2% 64.4% 80.4% 64.8% 75.8% 64.2%
8K 75.2% 61.8% 76.8% 63.8% 71.1% 62.9%
24K 46.2% 91.1% 51.2% 93.4% 56.2% 92.1%

Figure 8. Redundant work done at the servers – Servers repeatedly rehash and move
the entries from one partition to another partition, during splitting. This table shows the total
number of moves of directory entries as a fraction of the total number of files created.

2,000 files, 2-servers every 4,000 files, 4-servers every 8,000 files, 16-servers every 32,000 files, and
32-server every 64,000 files. Giga+ system behavior can be broken up into three parts: a “step-up”
in throughput when splitting adds new servers, a “dip” in throughput when servers are generally
splitting at the same time, and a gradual “slow-down” once all servers are saturated.

Giga+ spreads a growing directory over additional servers in an incremental manner. With
every additional server we should see a “step-up” in the throughput. For instance, in the 4-server
case, after 8,000 files, the directory is striped on 2 servers, and after 24,000 files, the system uses
all the servers. We don’t always see the “step-up” in Figure 7 however, and instead some curves
appear to smoothly grow. In case of 32 servers, we are sampling at every 64,000 files, but with
a split threshold of 8,000 entries per partition, the directory is already split into 8 partitions at
the first sample point. The next two sample points for the 32 server case are at 128,000 files and
256,000 files. And at that point, Giga+ has striped the directory on all servers – running at more
than 7,500 inserts/second. Our sampling method under samples during the “step-up” phase for 32
servers so the graph appears smoother than it should be.

The main reason for deep throughput degradation, indicated by the “troughs” in the figure, is
when all the servers are busier splitting their partitions at nearly the same time. Because Giga+
uses fixed size partitions, the uniform distribution of the hash function will tend fill up all the
partitions at about the same time. These “dips” are only apparently worse for a large system (the
32 server case). One optimization to avoid this behavior would be to add randomization to the
period between splits or the split threshold for each partition.

While splits are important to grow the directory on all servers, they are also expensive server-
side operations. To split a partition into a new partition, Giga+ implementation takes the following
steps: first, the servers creates a new partition; if the new partition is on a remote server, an RPC
is sent to that server. The server then reads the entire partition (readdir()) and rehashes all the
directory entries to decide whether it moves to the new partition. The entries are copied to the
new partition and then deleted (unlink() from the current partition. In our current prototype,
the server blocks to complete a split operation. We chose this approach for its simplicity and
robustness; however, the server is unable to service requests that may be addressed to any other
partition. A better implementation might use Non-blocking split operations, allowing the servers
to split a partition in the background, while continuing to service requests that are not addressed
to the partition being split.

A central property of Giga+ and its predecessors extendible hashing [13] and linear hashing
[27] is the incremental use of more partitions. The advantage is small directories, by far more
common, are not distributed and no partition is ever allowed to grow very large. The disadvantage
is that splitting causes the server to perform “redundant” work by repeatedly rehashing and moving

16

 1

 2

 3

 4

 5

 1 2 5 10 18 100 1000 10000

N
um

be
r

of
 p

ro
be

s
to

 r
ea

ch
 th

e
se

rv
er

Request Number

Setup -- Directory with million files striped on 8 servers

New client doing lookups on an existing large directory
Slow client doing lookups on a rapidly growing directory

Client doing both inserts and lookups on a growing directory

 1

 2

 1 3 7

Figure 9. Cost of using inconsistent client hints – This graph shows the number
of probes required to learn about the entire system using three types of clients: a “new client”
that does lookups on a large directory, a “slow client” that does lookups at a rate two orders of
magnitude slower than a rapidly growing directory, and a client that is doing both creates and
lookups in a growing directory. Every server’s bitmap has information about its partitions and
a few partitions on other servers created by prior split operations. Thus, clients learn more
information about the entire system when it is updated using a server’s bitmap.

(copy and unlink) entries to a new partition. We measure the redundant work done by servers as the
fraction of extra mknod() operations compared to the total number files created in the experiment.
Figure 8 shows how the amount of redundant work per server is sensitive to the partition size,
number of files created per server, and the total number of servers used in the system.

It should not be surprising that the amount of redundant work is not larger than 100%, though
we were initially expecting that it might be much larger. As Figure 2 shows we are essentially
dealing with a binary tree and we know that the number of non-leaf nodes in a binary tree is
slightly smaller than the number of the leaf nodes. Since the redundant work in GIGA+ is about
half a full partition for each interior nodes and the size of each leaf nodes is between half a full
partition and a full partition, the redundant work should never exceed the number of files.

This logic and our experiments did not include any redistribution as new servers are added to
an existing directory. As we have discussed that is another source of additional work that is also
about half of the total number of filenames in the directory.

4.5 Cost of weak consistency

In this section, we analyze the cost of using inconsistent bitmaps at the client in terms of the number
of hops taken by a client request to reach the correct server. Figure 9 shows the number of probes
required by clients; a single probe indicates that the client has addressed the correct server, while
more than one probe indicates that the client has a stale bitmap that has been updated by one or
more servers before it reaches the correct server. We use three types of clients: a “new client” that
does lookups after the directory is striped on all servers, a “slow client” that does lookups at a rate
two orders of magnitude slower than a rapidly growing directory, and a client that is doing both

17

creates and lookups in a growing directory.
In a growing system, where there is a mix of lookups and creates, the behavior of the system

depends on the workload. If there are more inserts than lookups, the directory grows faster by
continuously spreading on more servers. Clients doing lookups will have more incorrect probes to
learn about the partitions on the new servers. In Figure 9, this phenomenon is verified by the “slow
client” that emulates an insert-intensive workload that where the insert rate is significantly higher
than the lookup rate. This client sends lookup requests at a rate that is 100 times slower than
create rate of the system. On the other hand, in a lookup-intensive workload where the rate of
lookups is more than inserts, the clients will always have updated information because the directory
is growing very slowly. Once the clients are updated by an incorrect server, the continue to address
the correct server until the directory splits on to a new server.

A “new client” that does lookups on a existing large directory learns about the entire bitmap in
the first few requests (inset figure in Figure 9). When a lookup request is addressed to an incorrect
server, that server sends its bitmap to update the client’s copy. A server’s bitmap encodes not only
the partitions stored at that server, but also the partitions created from prior split operations. For
a directory striped on all N servers, the clients will never incur any additional incorrect forwarding
after they have contacted the log2(N) servers. Thus, Giga+’s bitmap encoding helps servers
correct the stale clients with more information per update.

5 Summary and Future Work

Today file systems are being used in interesting ways; one such example is using file system direc-
tories as a fast, lightweight “database” to store millions to billions of files in a single directory and
supporting insert, delete, lookup and unordered scans (not range queries). In this paper, we explore
building highly scalable traditional file system directories that allow high update concurrency and
parallelism. Our research is aimed at pushing the limits of scalability by minimizing serialization,
eliminating system-wide synchronization, not caching directory entries and using weak consistency
semantics for client’s caches of mapping that describes which server manages each directory entry.

Our work builds on dynamically resizeable hash tables so that the bulk of (small) directories
are stored on one server and can be accessed or scanned efficiently, and on server-resolution hints
handed out to clients without guarantees of correctness. The former suffers from synchronization
needed to share the changing hash table headers. The latter suffers from serialization, on the
pattern that hash tables headers are changed, needed to make client hints correctable.

In Giga+, our experimental implementation shows how all hash table headers can be dis-
tributed as partition split histories and how all partitions can be independently split without global
synchronization because client hints represent all partitions separately. One hint representation, a
bitmap of the presence or absence of each partition in the growing binary tree of splits, is small
enough to be easily cached, transmitted and updated efficiently with a simple bit-wise OR. Clients
resolving a server address incorrectly are redirected with a bitmap from a server that used to hold
the request partition and knows at least one more definitive server. We also show how the special
case of power of two numbers of servers allows bitmaps to be no larger than the number of servers
and rarely incorrect, and how adding twice the number of servers can support migration of half of
the partitions quickly.

Our user-level prototype implementation built in FUSE layered on Linux ext3 and ran on
a 100-node cluster with 32 directory servers delivers a peak throughput of more than 8,000 file
creates/second during which clients can expect only a handful of server redirections. We intend to
release our prototype as it becomes more full featured and robust.

18

References

[1] Private Communication with Frank Schmuck and Roger Haskin, IBM.

[2] Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R., an Jon Howell, J.
R. D., Lorch, J. R., Theimer, M., and Wattenhofer, R. P. FARSITE: Federated, Available,
and Reliable Storage for an Incompletely Trusted Environment. In Proc. of the 5th Symposium on
Operating Systems Design and Implementation (OSDI ’02) (Boston MA, Nov. 2002).

[3] Agrawal, N., Bolosky, W. J., Douceur, J. R., and Lorch, J. R. A Five-Year Study of File-
System Metadata. In Proc. of the FAST ’07 Conference on File and Storage Technologies (San Jose
CA, Feb. 2007).

[4] Burrows, M. The Chubby lock service for loosely-coupled distributed systems. In Proc. of the 7th
Symposium on Operating Systems Design and Implementation (OSDI ’06) (Seattle WA, Nov. 2006).

[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra,
T., Fikes, A., and Gruber, R. Bigtable: A Distributed Storage System for Structured Data. In
Proc. of the 7th Symposium on Operating Systems Design and Implementation (OSDI ’06) (Seattle WA,
Nov. 2006).

[6] Cluster, H. Inside the Windows NT File System. Tech. rep., Microsoft Press, Aug. 1994.

[7] Cope, J., Oberg, M., Tufo, H. M., and Woitaszek, M. Shared Parallel File Systems in Hetero-
geneous Linux Multi-Cluster Environments. In Proc. of the 6th LCI International Conference on Linux
Clusters: The HPC Revolution (Apr. 2005).

[8] Dayal, S. Characterizing HEC Storage Systems at Rest. Tech. Rep. CMU-PDL-08-109, Carnegie
Mellon University, 2008.

[9] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo: Amazon’s Highly Available Key-
Value Store. In Proc. of 21st ACM Symposium on Operating Systems Principles (SOSP ’07) (Stevenson
WA, Oct. 2007).

[10] Douceur, J. R., and Howell, J. Distributed Directory Service in the Farsite File System. In Proc.
of the 7th Symposium on Operating Systems Design and Implementation (OSDI ’06) (Seattle WA, Nov.
2006).

[11] Eisler, M., Corbett, P., Kazar, M., Nydick, D. S., and Wagner, J. C. Data ONTAP GX: A
Scalable Storage Cluster. In Proc. of the FAST ’07 Conference on File and Storage Technologies (San
Jose CA, Feb. 2007).

[12] Ellis, C. Extendible Hashing for Concurrent Operations and Distributed Data. In Proc. of the 2nd
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (Atlanta GA, Mar. 1983).

[13] Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H. R. Extendible Hashing – A Fast
Access Method for Dynamic Files. ACM Transactions on Database Systems 4, 3 (Sept. 1979).

[14] FUSE. Filesystem in Userspace. http://fuse.sf.net/.

[15] GFS. Red Hat Global File System. http://www.redhat.com/gfs.

[16] Ghemawat, S., Gobioff, H., and Lueng, S.-T. Google File System. In Proc. of 19th ACM
Symposium on Operating Systems Principles (SOSP ’03) (Rochester NY, Oct. 2003).

[17] Gibson, G., and Corbett, P. pNFS Problem Statement. Internet Draft, July 2004.

[18] Gibson, G. A., Nagle, D. F., Amiri, K., Butler, J., Chang, F. W., Gobioff, H., Hardin,
C., Riedel, E., Rochberg, D., and Zelenka, J. A Cost-Effective, High-Bandwidth Storage Ar-
chitecture. In Proc. of the 8th Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’98) (Cambridge MA, Oct. 1998).

19

[19] Gribble, S., Brewer, E., Hellerstein, J., and Culler, D. Scalable Distributed Data Structures
for Internet Service Construction. In Proc. of the 4th Symposium on Operating Systems Design and
Implementation (OSDI ’00) (San Diego CA, Oct. 2000).

[20] Hand, E. Head in the Clouds. Nature 449, 963 (2007).

[21] Heidemann, J. S., and Popek, G. J. File System Development with Stackable Layers. ACM
Transactions on Computer Systems 12, 1 (Feb. 1994).

[22] Hsaio, H.-I., and DeWitt, D. J. Chained Declustering: A New Availability Strategy for Multipro-
cessor Database Machines. In Proc. of the 6th International Conference on Data Engineering (ICDE
’90) (Washington DC, 1990).

[23] IETF. NFS v4.1 specifications. http://tools.ietf.org/wg/nfsv4/.

[24] ISILON. Isilon Systems Inc. http://www.isilon.com/.

[25] Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., and Panigrahy, R. Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proc. of the ACM Symposium on Theory of Computing (El Paso TX, May 1997).

[26] Litwin, W. Linear Hashing: A New Tool for File and Table Addressing. In Proc. of the 6th Interna-
tional Conference on Very Large Data Bases (VLDB ’80) (Montreal, Canada, Sept. 1980).

[27] Litwin, W., Neimat, M.-A., and Schneider, D. A. LH*–A Scalable, Distributed Data Structure.
ACM Transactions on Database Systems 21, 4 (Dec. 1996).

[28] Lustre. Lustre File System. http://www.lustre.org.

[29] LustreFS. Clustered Metadata. http://arch.lustre.org/index.php?title=ClusteredMetadata.

[30] MacCormick, J., Murphy, N., Najork, M., Thekkath, C. A., and Zhou, L. Boxwood: Ab-
stractions as the Foundation for Storage Infrastructure. In Proc. of the 6th Symposium on Operating
Systems Design and Implementation (OSDI ’04) (San Francisco CA, Dec. 2004).

[31] Metarates. UCAR Metarates Benchmark. www.cisl.ucar.edu/css/software/metarates/.

[32] Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., and Hitz, D. NFS version3:
Design and implementation. In Proc. of Summer USENIX Conference ’94 (Boston MA, 1994).

[33] Rivest, R. A. The MD5 Message Digest Algorithm. RFC 1321, Apr. 1992.

[34] Ross, R., Felix, E., Loewe, B., Ward, L., Nunez, J., Bent, J., Salmon, E., and Grider,
G. High end computing revitalization task force (HECRTF), inter agency working group (HECIWG)
file systems and I/O research guidance workshop. http://institutes.lanl.gov/hec-fsio/docs/HECIWG-
FSIO-FY06-Workshop-Document-FINAL6.pdf, 2006.

[35] Schmuck, F., and Haskin, R. GPFS: A Shared-Disk File System for Large Computing Clusters. In
Proc. of the FAST ’02 Conference on File and Storage Technologies (Monterey CA, Jan. 2002).

[36] Schroeder, B., and Gibson, G. A. Disk Failures in the Real World: What Does an MTTF of
1,000,000 Hours Mean to You? In Proc. of the FAST ’07 Conference on File and Storage Technologies
(San Jose CA, Feb. 2007).

[37] Soltis, S. R., Ruwart, T. M., and O’Keefe, M. T. The Global File System. In Proc. of the 5th
NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technologies (College
Park MA, Sept. 1996).

[38] Srinivasan, R. RPC: Remote Procedure Call Protocol Specification Version 2. RFC 1831, Aug. 1995.

[39] Stonebraker, M., Bear, C., Çetintemel, U., Cherniack, M., Ge, T., Hachem, N., Hari-
zopoulos, S., Lifter, J., Rogers, J., and Zdonik, S. B. One Size Fits All? Part 2: Benchmarking
Studies. In Proc. of the 3rd Biennial Conference on Innovative Data Systems Research (CIDR ’07) (Ais-
lomar CA, 2007).

20

[40] Stonebraker, M., and Çetintemel, U. ”One Size Fits All”: An Idea Whose Time Has Come
and Gone (Abstract). In Proc. of the 21st International Conference on Data Engineering (ICDE ’05)
(Tokyo, Japan, 2005).

[41] Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N., and Helland,
P. The End of an Architectural Era (It’s Time for a Complete Rewrite). In Proc. of the 33rd Interna-
tional Conference on Very Large Data Bases (VLDB ’07) (Vienna, Austria, Sept. 2007).

[42] Studham, R. S. Lustre: A Future Standard for Parallel File Systems. Invited presentation at Inter-
national Supercomputer Conference. Heidelberg, Germany. June 24, 2005.

[43] Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M., and Peck, G. Scalability
in the XFS File System. In Proc. of USENIX Conference ’96 (San Jose CA, 1996).

[44] Ts’o, T. Y. Planned Extensions to the Linux Ext2/Ext3 Filesystem. In Proc. of USENIX Conference
’02, FREENIX Track (Monterey CA, 2002).

[45] VERIZON. ’Trans-Pacific Express’ to Offer Greater Speed, Reliability and Efficiency.
http://newscenter.verizon.com/press-releases/verizon/2006/verizon-business-joins.html, Dec. 2006.

[46] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and Maltzahn, C. Ceph: A
Scalable, High-Performance Distributed File System. In Proc. of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06) (Seattle WA, Nov. 2006).

[47] Weil, S. A., Pollack, K., Brandt, S. A., and Miller, E. L. Dynamic Metadata Management
for Petabyte-Scale File Systems. In Proc. of the ACM/IEEE Conference on Supercomputing (SC ’04)
(Pittsburgh PA, Nov. 2004).

[48] Welch, B. Integrated System Models for Reliable Petascale Storage Systems. In Proc. of the Petascale
Data Storage Workshop (at Supercomputing ’07) (Reno NV, Nov. 2007).

[49] Welch, B., Unangst, M., Abbasi, Z., Gibson, G., Mueller, B., Small, J., Zelenka, J.,
and Zhou, B. Scalable Performance of the Panasas Parallel File System. In Proc. of the FAST ’08
Conference on File and Storage Technologies (San Jose CA, Feb. 2008).

[50] Zadok, E., and Nieh, J. FiST: A Language for Stackable File Systems. In Proc. of USENIX
Conference ’00 (San Diego CA, 2000).

21

	Introduction
	Motivation
	Our contributions

	Background and Related Work
	Rationale for large FS directories
	Related Work
	Out-of-core Indexing

	Related File Systems

	Giga+ Design
	Bootstrapping
	Mapping and splitting partitions
	Tolerating inconsistent clients
	Power of 2 specialization
	Adding new servers
	Handling failures

	Experimental Evaluation
	Giga+ Prototype
	Experimental Setup
	Scale and performance
	Cost of partition splits
	Cost of weak consistency

	Summary and Future Work

