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Abstract

Data-intensive distributed file systems are emerging as a key component of large scale Internet services and
cloud computing platforms. They are designed from the ground up and are tuned for specific application
workloads. Leading examples, such as the Google File System, Hadoop distributed file system (HDFS) and
Amazon S3, are defining this new purpose-built paradigm. It is tempting to classify file systems for large
clusters into two disjoint categories, those for Internet services and those for high performance computing.

In this paper we compare and contrast parallel file systems, developed for high performance computing, and
data-intensive distributed file systems, developed for Internet services. Using PVFS as a representative
for parallel file systems and HDFS as a representative for Internet services file systems, we configure
a parallel file system into a data-intensive Internet services stack, Hadoop, and test performance with
microbenchmarks and macrobenchmarks running on a 4,000 core Internet services cluster, Yahoo!’s M45.

Once a number of configuration issues such as stripe unit sizes and application buffering sizes are dealt with,
issues of replication, data layout and data-guided function shipping are found to be different, but supportable
in parallel file systems. Performance of Hadoop applications storing data in an appropriately configured
PVFS are comparable to those using a purpose built HDFS.
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1 Introduction

“What’s in a name? that which we call a rose
By any other name would smell as sweet.”

– Shakespeare in ‘Romeo and Juliet’ (II, ii, 1-2)

1.1 Motivation

Recent trends suggest a rapid growth in the use of large server infrastructure like data centers
and cloud computing platforms for scalable services [3, 35, 15]. Internet services, like Google and
Yahoo!, are using their computing infrastructure to run applications that compute on massive
amounts of input data. And in order to finish running these applications fast, computations are
distributed over a large cluster. With the success of such data-intensive applications, Internet
services are being explored for more diverse applications compelled by their parallel programming
models, manageability and reliability [7, 8, 11].

At the core of data-intensive applications is a distributed file system also running on the large
server cluster. Leading Internet services have designed and implemented file systems “from-scratch”
to provide high performance for their anticipated application workloads and usage scenarios. Lead-
ing examples of such Internet services file systems, as we will call them, include the Google file
system (GoogleFS) [17], Amazon Simple Storage Service (S3) [4] and the open-source Hadoop
distribute file system (HDFS) [23].

Another style of computing at a comparable scale and with a growing market place [24] is
high performance computing (HPC). Like Internet applications, HPC applications are often data-
intensive and run in parallel on large clusters (supercomputers). These applications use parallel file
systems for highly scalable and concurrent storage I/O. Examples of parallel file systems include
IBM’s GPFS [30], Sun’s LustreFS [26], and the open source Parallel Virtual file system (PVFS)
[28].

It is commonly believed that HPC systems use specialized infrastructure, that their file systems
are designed for vastly different data access patterns, and that they cannot support Internet services
workloads efficiently. Most oft-cited HPC examples assume the use of low latency networks for
distributed shared memory computations of a physical phenomena. In fact, many HPC clusters
use commodity compute, storage and network infrastructure. Furthermore, an increasing number
of scientific applications are being programmed to be like Internet services applications. The goal
of this paper is to compare Internet services file systems and parallel file systems, specifically can
we use modern parallel file systems in the place of custom Internet services file systems?

Several factors motivate the use of existing parallel file systems for Internet services. First,
most parallel file systems are designed to efficiently handle a wide variety of workloads, especially
concurrent file access, while Internet services file systems are not. Second, they offer different
performance versus reliability tradeoff, such as RAID-5, mirroring and failover pairs. Finally,
parallel file systems are maturing; soon the venerable NFS, through a standardization effort known
as parallel NFS (pNFS) [18], will become a parallel file system.

In this paper, we compare and contrast the Parallel Virtual File System (PVFS), a represen-
tative for parallel file systems, and the Hadoop Distributed File System (HDFS), a representative
for Internet services file systems. We built a non-intrusive shim layer to plug PVFS in to the
open-source Hadoop Internet services stack [20]. This enables Hadoop applications to use PVFS
for persistent storage without any changes to the PVFS source.
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Our shim layer enables PVFS to offer the same benefits that HDFS offers to the Hadoop
data-processing framework through three key features:

• Exposing data layout for function shipping – HDFS is optimized for applications that process
massive amount of data using the Hadoop/Mapreduce abstraction [14, 20]. A goal of this
abstraction is to minimize the transfer of large amounts of input data by shipping computation
to nodes that store the input data. The Hadoop framework achieves this collocation using
file data layout exposed by HDFS. PVFS also maintains file layout information. Our shim
layer extracts layout maps from PVFS to the Hadoop framework.

• Readahead buffering – To avoid the overhead of synchronous small reads, HDFS clients
prefetch large amount of data and pipeline the data transfer in smaller units. Because clients
in PVFS are stateless and do not cache data, all requests for data are synchronously sent
to the server, irrespective of the amount requested. Our shim layer implements a readahead
buffer that enables PVFS to match the transfer efficiency of HDFS.

• Replication for fault tolerance – HDFS provides high availability by storing three copies (by
default) of a file. It uses a “rack-aware” replication policy to ensure data availability in face
of machine and rack failures. PVFS relies on storage hardware to provide fault tolerance.
Our shim layer emulates HDFS-like replication by writing all data, on behalf of the PVFS
clients, to three different servers.

We evaluate the performance of PVFS and HDFS by running microbenchmarks and mac-
robenchmarks, comprised of a suite of four data-intensive applications, on the 4,000 core Yahoo!
M45 cluster. Our experiments demonstrate that PVFS performs at least as good as HDFS for
most workloads including data-intensive Hadoop applications that benefit from the data layout.
The major exception to this is sort, which is a write-intensive workload. In such workloads, HDFS
writes one copy unstriped locally and two striped widely while our unmodified PVFS writes all
three remotely. With limited network bandwidth this can cause a 2:3 ratio in completion time.
Moreover, PVFS outperforms HDFS for workloads doing concurrent writes to the same file because
HDFS does not support concurrent writes. For instance, a “parallel” file copy operation using
PVFS is more than four times faster than HDFS on 16 nodes.

In the next section, we present an overview of real-world parallel file systems and Internet
services file systems. In §3, we discuss the design and implementation details of PVFS and HDFS.
§4 describes our implementation and cluster configuration in the context of the Hadoop Internet
services stack. Experimental results from microbenchmarks and macrobenchmarks are described
in §5 and §6. Finally we summarize our contributions and opportunities for future work in §7.

2 Real, Large-scale Storage Systems

Over the last decade, the use of large compute clusters has fueled the resurgence of scalable file
systems. We present a brief overview of parallel file systems and Internet services file systems that
are used in real-world clusters.

2.1 Parallel file systems

Most users want a Unix file system that can scale to handle very large files, that delivers very
fast aggregate throughput, increasingly high rates of concurrent writing and metadata operations,
and very large numbers of files. The leading parallel file systems all plug into the VFS interface
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and strive for Unix/POSIX semantics although the widespread deployment of NFS, which has very
weak semantics for concurrent access to shared files, has taught users to tolerate some divergence
from exact emulation of historical single-CPU UNIX file system.

There are two classes of parallel file systems, shared-disk file systems and object-based file
systems. Shared-disk file systems use a pool of block-level storage that is shared in a scalable
manner and is distributed across many machines under common administration. These file systems
allow all clients to access the shared storage directly without going through an intermediate server.
Some examples include IBM’s General Purpose file system (GPFS) [30], Redhat Global File System
(GFS) [16, 32], and SGI’s Cluster XFS [12]. Object-based file systems use separate servers to store
the data and metadata; data servers store the actual file data and metadata servers store all file
metadata like directories, access permissions and timestamps. To access a file, clients contact the
metadata server to find which data servers it should contact and then directly accesses the file on
these data servers. Sun’s Lustre file system [26], Panasas’s PanFS [34] and PVFS [28] are leading
examples of object-based file systems.

In the near future, NFSv4.1 (or pNFS) will offer parallel file system capability, supporting
variants of both classes [18]. A key feature being added to NFSv4.1 is layout delegation, a descrip-
tion of the mapping of files to storage (blocks, objects or subfiles) that NFS servers can lease to
clients to allow direct access [25]. The possibility that these layout delegations could be used by
applications to make scheduling decisions, as is done in MapReduce on Internet service file systems,
inspired us to ask how well a parallel file system might perform as an Internet services file system.

2.2 Internet services file systems

Google’s software and the closely related open-source Hadoop software are revolutionizing the
Internet services community by building scalable systems infrastructure for data intensive applica-
tions. A key component of these systems is their distributed file system, called Google file system
(GoogleFS) or Hadoop distributed file system (HDFS), that is built from scratch to provide high
availability in face of component failures and to deliver a high performance for data-intensive ap-
plications [17, 23]. In particular, the file systems provide the right abstraction for the Mapreduce
data processing framework that divides a computation into many tasks which are scheduled to run
on many nodes in a manner that minimizes transferring massive amounts of input data-sets [14].

GoogleFS attributes that its basic architecture closely resembles the CMU Network attached
secure disks (NASD) design, which also inspired the design of many modern parallel file systems,
particularly object-based systems (§2.1). Files in GoogleFS are split into 64MB chunks that are
placed on different chunkservers. All the filesystem metadata, including chunk layout, is stored on
a master server. Clients contact the master to get the chunk layout information of a file and then
perform all file mutations directly on the chunks stored on the chunkservers. GoogleFS is built
to deliver high performance for applications that mutate files through appends. It uses “atomic
record appends” and relaxed consistency semantics to enable concurrent appends to a single file.
The other key feature of GoogleFS is that it uses chunk replication to detect, tolerate and recover
from component failures in the cluster. It uses techniques for replica consistency, automatic re-
replication and inexpensive snapshots. More details about the GoogleFS internals can be found in
the 2003 paper by Ghemawat et. al. [17].

The Hadoop project, led by Yahoo! and the Apache Foundation, offers an open source imple-
mentation of Google’s Mapreduce model [20]. This framework is widely used to experiment and
run large-scale computing services; even, Google is supporting it in its joint project with the Na-
tional Science Foundation (NSF) and IBM to promote research and development in Internet-scale
computing [27]. The file system support for Hadoop is provided by the Hadoop distributed file
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Hadoop Distributed file system Parallel Virtual file system
(HDFS) [23] (PVFS) [28]

Deployment model Compute and storage on one node (ben-
eficial to Hadoop/Mapreduce model
where computation is moved closer to
the data)

Separate compute and storage nodes
(easy manageability and incremental
growth); also used by Amazon S3 [4]

Concurrent writes Not supported – allows only one writer
at time

Guarantees POSIX sequential consis-
tency for non-conflicting writes, i.e. op-
timized writes to different regions of a
file

Small file operations Not optimized for small files; but client-
side buffering will only send a write to
a server once

Lack of client-side caching incurs high
I/O overhead for small file ops (beta
version include small file packing opti-
mizations)

Append mode Write once semantics that does not al-
low file rewrites or appends

Not supported yet, but can modify it to
use “fetch-add” semantics by writing to
the end-of-file offset that is stored as a
file’s extended attribute

Buffering “Data staging” to buffer writes until the
amount of data is worth the chunk size
(64MB)

No client-side caching

Data layout Exposes mapping of chunks to datan-
odes to Hadoop applications

PVFS maintains stripe layout informa-
tion as extended attributes (pNFS has
support for layout delegations)

Replication 3 replicas of data using rack-aware
replica placement policy

No file system level support, redun-
dancy through RAID on/across stor-
age devices (modified PVFS to emulate
replication)

Compatibility API designed for the requirements of
data-intensive applications

Supports UNIX I/O interface and
(most) POSIX semantics

Table 1. Comparing various facets of PVFS and HDFS design.

system (HDFS) [23]. While HDFS draws inspiration from GoogleFS, it has significantly different
file access semantics, especially for concurrent access and file mutations (details discussed in §3).

Amazon S3 is a simple file system where files are written only once and are accessed using the
web services API like REST and SOAP [4]. These files are stored in a flat space using a key-value
abstraction, where the filename is the key and the actual file content is the value. Amazon objects
are similar to NASD’s definition of objects, but more restricted in the way they are written. They
are perhaps closer to EMC’s Centera for digital information regulation compliance [9].

3 HDFS and PVFS – A Design Primer

Both HDFS and PVFS are open-source file systems that are widely used in real production clusters
and are well-supported by an active developer base. HDFS is the core storage subsystem for the
Hadoop Internet services stack. HDFS is deployed on production systems in Internet services such
as Yahoo! and Facebook, and on experimental systems such as the 4000-core Yahoo! M45 cluster
[35]. PVFS is a user-level parallel file system that is built for high performance access to large
data sets. Currently PVFS is used at numerous HPC sites such as Argonne National Lab, Ohio
Supercomputer Center and Sandia National Labs. Both file systems are deployed as user-level

4



services without any changes to the underlying local file system or other kernel components; this
makes it feasible to experiment with HDFS and PVFS configurations in a production Internet
services platform.

HDFS and PVFS have a similar high-level design – they store file data and file metadata
on two different types of servers. All the file system metadata is stored on a metadata server
(“namenode” in HDFS). This includes the namespace, data location and access permissions. All
metadata operations may be handled by a single metadata server, but a cluster will configure
multiple metadata servers as primary-backup failover pairs. Data servers are responsible for storing
all file data on persistent storage. In PVFS, a data server is called a “I/O server”, and HDFS calls
it a “datanode”. Any installation will have many data servers, which can run on any node, although
HDFS typically uses compute client machines also as data servers and PVFS typically does not.

Files are divided into pieces, called chunks in HDFS and stripe units in PVFS, that are stored
on different data servers. Both chunk size and stripe unit size are configurable parameters used by
metadata servers to distribute a file. By default, HDFS uses 64MB chunks and PVFS uses 64KB
stripe units, although in practice PVFS systems use a larger stripe unit (1-4 MB) to achieve higher
data transfer bandwidth.

To perform a data access operation, a client first asks the metadata server which data servers
it should contact. Clients then send their read and write requests directly to the data servers. data
I/O operations are never performed through the metadata server. Clients cache the data server
layout information it receives from a metadata server to interact repeatedly and directly with the
data servers.

We now contrast the design and implementation of HDFS and PVFS (summarized in Table
1). Occasionally, we also reference unique characteristics of other parallel file systems and Internet
services file systems.

3.1 Storage deployment architecture

The storage and compute capabilities of a cluster are organized in two ways. A cluster can either
collocate storage and compute on the same node or separate storage nodes from compute nodes.
Both HDFS and GoogleFS use the former approach with 2-6 disks attached locally to a server with
a commodity processor and few gigabytes of RAM [13]. This “disk-per-node” model is well suited
for the Hadoop/Mapreduce data processing abstraction that seeks to collocate a compute task on
a node that stored the input data for that task. This model is an attractive cost-effective high
bandwidth approach for a cluster that desires private storage on each node.

PVFS typically uses the other approach of keeping storage servers separate from the compute
infrastructure. This model pools storage nodes to enable highly parallel storage I/O and is widely
used in high performance computing clusters [19]. Separating storage nodes also helps build op-
timized reliability and manageability solutions [34]. Compared to the disk-per-node model, this
approach has marginally higher capital costs but it comes at a much lower operational complexity,
which is becoming a growing bane for users of large computing infrastructure.

In fact, this model is also adopted by some Internet services, most notably Amazon’s web
services platforms. In Amazon’s compute cloud infrastructure the compute instances (called EC2)
are separate from the underlying storage infrastructure (called EBS and S3) [2, 4, 3]. This allows
the EBS storage system to provide features for high availability, seamless data volume migration
and data backups without being dependent on EC2.
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3.2 File access semantics

The semantics of most Internet services file systems, including HDFS, GoogleFS and Amazon S3,
are optimized for their anticipated workloads. Files in HDFS have write-once-read-many (WoRm)
semantics and strictly have one writer at any time. HDFS does not allow changes to a file once
it is created, written, and closed. These semantics favor Hadoop/MapReduce applications that
typically read and process data from a huge file. The lack of support for concurrent write sharing
simplifies the data consistency semantics of HDFS. WoRm semantics have been previously seen in
the Bullet file server [33], in archival file systems like Venti [29] and more recently in Amazon S3
[5]. Amazon S3 provides a key-value abstraction that uses the filename as a key and stores file
contents as a value. If a key already exists, S3 will overwrite the existing value of that key with a
new one. In contrast, GoogleFS is optimized for mutating files by appending the data to the file
[17]. Instead of supporting random writes, GoogleFS provides relaxed consistency semantics and
an “atomic” append operation to support concurrent appends to a single file. Current version of
HDFS does not support appending writes to files; there are plans to add it in a future release.

Most parallel file systems support a wide variety of file operations, especially for highly concur-
rent file access. PVFS provides high throughput for large file accesses using “non-conflicting write”
semantics. A write operation is non-conflicting with another write if the two operations are writing
to non-overlapping regions. (However, interleaved write requests can still be non-conflicting.) If two
clients are performing concurrent, non-conflicting write operations to a file, then all other clients
will see the data from the writers after their respective writes have completed. But if two clients
concurrently write data to the same region of a file (conflicting write), the result is undefined. Thus
PVFS adheres to the POSIX consistency semantics by guaranteeing sequential consistency in case
of non-conflicting writes.

Like HDFS, the current PVFS release does not support appending writes to a file. Appends
can be implemented in PVFS using a “fetch-and-add” style operation using extended attributes.
PVFS supports extended attributes for applications that require the file system to provide custom
metadata types. For appends, the End-of-File (EoF) offset of a file can be stored as an extended
attribute. PVFS clients can “fetch” the EoF offset and “add” data starting at that offset [1].

3.3 Huge file operations

HDFS architecture and semantics enable writes for high throughput (instead of low latency) batch
processing [23]. It enables streaming writes through “write staging” at the clients. Clients send
writes to a datanode only when they have data worth the HDFS chunk size (64MB). Initially,
clients buffer all write operations by redirecting them to a temporary file in memory. Once filled,
the clients flush their buffer to the datanode responsible for storing that file chunk. If the file is
closed when the buffer is not full, clients are forced to flush the buffer to the chunk’s respective
datanode.

On the other hand, PVFS does not have any client-side caching and sends all its writes directly
to a I/O server. This approach is not optimal for small write workloads, however, small file I/O
continues to remain uncommon among data-intensive applications. Such applications do not benefit
from caching because they operate on large files that are too big to fit in memory. Moreover, by not
performing any client-side caching, PVFS does not require complex cache consistency protocols,
especially on file close(), for concurrent write operations to the same file. Typically in large
systems that support concurrent writes to a file, cache consistency and synchronization mechanisms
often become a potential source of bottleneck. Since HDFS allows only one writer per file, its
client-side write staging does not encounter any chunk inconsistency issues. PVFS does not use
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any caching on the I/O servers either; it relies on the buffer cache of the underlying file system on
the server.

3.4 Data layout and function shipping

Both HDFS and PVFS distribute chunks of a file on to different nodes. As we show in our evaluation,
the choice of data distribution policy can have a significant impact on the applications running on
Hadoop/Mapreduce.

HDFS uses a random chunk layout policy to map chunks of a file on to different datanodes.
At file create time, the namenode randomly selects a datanode to store a chunk. This random
chunk selection may often lead to sub-optimal file layout that is not uniformly load balanced. The
namenode is responsible to maintain the chunk to datanode mapping which is used by clients to
access the desired chunk.

In particular, HDFS exposes this layout information to the Hadoop/Mapreduce applications.
Hadoop uses this chunk layout to determine how to schedule computation tasks to datanodes.
Each task is assigned to a chunk and Hadoop tries to assign a task to a datanode that holds
the appropriate input chunk. In fact, the job scheduler assigns tasks to nodes in a manner that
achieves load balancing across all the nodes, and makes up for the non-uniform chunk placement
due to HDFS’s random chunk placement policy. The HDFS file system API provides a function call
(getFileBlockLocations()) that provides a layout of each chunk using a array of chunk location
information (the server’s hostname), offset of the first byte of the chunk and the current size of the
chunk.

Most parallel file systems also stripe the data across multiple servers using various policies.
However, by default, PVFS uses a round robin policy to stripe a file across multiple I/O servers
uniformly to achieve load balanced distribution. This uniform distribution enables PVFS to support
highly parallel operations. PVFS stores a file’s stripe distribution information as an extended
attribute of that file. But unlike HDFS, it does not expose this layout to the Hadoop application
by default. We implemented a mechanism that queries PVFS for this layout information and
exposes to the Hadoop/Mapreduce framework (details in §4.1).

Current version of parallel NFS (pNFS or NFS v 4.1) has in-built support to expose data
layout information [25]. The key feature being added to pNFS is a layout delegation that provides
a description of the mapping of files to storage (blocks, objects or subfiles). The NFS servers
can lease this mapping to the clients to allow direct access to the files. The possibility that
these layout delegations could be used by applications to make scheduling decisions, as done in
Hadoop/Mapreduce on Internet services file systems, would help in improving the current pNFS
design.

3.5 Handling failures through replication

Failures are common in large clusters and any large system must detect, tolerate and recover from
failures [31, 17]. HDFS uses replication to maintain at least three copies (one primary and two
replicas) of every chunk. Applications that require more copies can specify a higher replication
factor typically at file create time. All copies of a chunk are stored on different datanodes using
a “rack-aware” replica placement policy. The first copy is always written to the local storage
of a datanode to lighten the load on the network. To handle machine failures, the second copy
is distributed at random on different datanodes on the same rack as the datanode that stored
the first copy. This improves network bandwidth utilization because inter-rack communication is
faster than cross-rack communication which often goes through intermediate network switches. To
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maximize data availability in case of a rack failure, HDFS stores a third copy distributed at random
on datanodes in a different rack.

In HDFS, datanodes do the work of replicating the chunk. HDFS uses “replication pipelining”
where a datanode that receives a chunk sends the chunk to the datanode that stores the next copy
[23]. The list of datanodes that will store copies of any chunk are determined and maintained by
the namenode.

Most parallel file systems, including PVFS, rely on hardware based reliability solutions like
per I/O server RAID inside logical storage devices and RAID 0 across nodes. Some exceptions
include Panasas’s PanFS that uses RAID-5 across nodes [34] and Sun’s LustreFS that configures
its metadata servers as active-active failover pairs [26]. We modify PVFS to emulate the HDFS-
style three replicas by forcing the client to propogate each write to three data servers (described in
§4.1).

3.6 Usability and API

HDFS is explicitly designed for applications that operate on large input data sets and that are built
to use the write-once semantics. This is similar to GoogleFS where applications are expected to
mutate files by appending rather than writing at random offsets [17]. This philosophy of enforcing
“rules” for application writers is perhaps easy to adopt in an “enterprise” setup but it will fail to
capture a wider audience.

Most parallel file systems, including PVFS, offer standard UNIX I/O interface and most POSIX
semantics. This eases the adoption of parallel file systems without any significant changes to the
applications. PVFS diverges from POSIX semantics only in the case of conflicting writes described
earlier in §3.2.

4 Experimental Evaluation

In this section, we describe our modifications to the Hadoop Internet services stack to plug in
PVFS. We also describe the configuration of two clusters that we used to run microbenchmarks
and macrobenchmarks.

4.1 Prototype Implementation

Figure 1 shows our modifications to the Hadoop Internet services stack that allow data-intensive
Hadoop applications to use PVFS instead of HDFS. We implemented a shim layer that uses
Hadoop’s extensible abstract file system API (org.apache.hadoop.fs.FileSystem) to use PVFS
for all file I/O operations. Prior systems like the Kosmos filesystem (KFS) [10] and Amazon S3
[22] have used this file system API to build backend stores for Hadoop applications.

Hadoop directs all file system operations to the shim layer that forwards each request to the
PVFS user-level library. Our implementation does not make any code changes to PVFS other than
one configuration change, increasing the default 64KB stripe size to match the HDFS chunk size of
64MB, during PVFS setup. The shim layer is implemented using the Java Native Interface (JNI)
API to allow the Java-based Hadoop applications make calls to the C-based PVFS library. Not
counting comments, our shim layer implementation consists of less than 3,000 line of Java code.
The shim layer has three key components that are used by Hadoop applications.

Readahead buffering – While applications can be programmed to request data in any size,
the Hadoop framework uses 4KB as the default amount of data accessed in each file system call.
Instead of performing such small reads, HDFS prefetches the entire chunk (of default size 64MB)
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replication emulator: triplicates write request to three PVFS files with disjoint layouts

Figure 1. Hadoop-PVFS Shim Layer The shim layer allows Hadoop to use PVFS in
place of HDFS. This layer has three responsibilities: to perform read-ahead buffering, to expose
the data layout to Hadoop applications and to emulate replication.

asynchronously and then synchronously reads a buffer at a time from the result of the chunk
prefetch. This “read ahead” mechanism is important for reducing file system overhead. We modified
the shim to provide similar buffering for PVFS. For every 4KB request made by Hadoop, the shim
layer synchronously reads a larger buffer (which is a configurable parameter) from PVFS but
without the asynchronous prefetch of the whole chunk.

Data layout module – The Hadoop/Mapreduce job scheduler distributes computation tasks
across many nodes in the cluster. Although not mandatory, it prefers to assign tasks to those nodes
that store input data required for that task. This requires the Hadoop job scheduler to be aware
of the file’s layout information. Fortunately, as a parallel file system, PVFS has this information
at the client, and exposes the file striping layout as an extended attribute of each file. Our shim
layer matches the HDFS API for the data layout by querying the appropriate extended attributes
as needed.

Replication emulator – Although the public release of PVFS does not support triplication,
our shim enables PVFS to emulate HDFS-style replication by writing, on behalf of the client, to
three data servers with every application write. Note that it is the client that sends the three write
requests to different servers, unlike HDFS which uses pipelining among its servers. Our approach
was motivated by the simplicity of emulating replication at the client instead of making non-trivial
changes to the PVFS server implementation. Planned work in PVFS project includes support for
replication techniques [1].
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vanilla PVFS with
HDFS PVFS shim layer

Features (in HDFS and PVFS shim)
Readahead buffer (4MB) yes no yes yes
File layout information yes no no yes
grep performance (over a 64GB data-set on 32 nodes)
Read throughput (MB/s) 579.4 244.9 358.5 597.1
Read network traffic (GB) 3.71 70.1 67.7 7.2
Write network traffic (GB) 2.68 70.3 68.0 7.1
Avg CPU utilization 43% 27% 27% 43%
Completion time (min:sec) 1:45 4:08 2:57 1:46

Figure 2. Benefits of using readahead buffering and layout information – By using
both these techniques, PVFS with its shim layer matches the performance of HDFS for the
read-intensive Hadoop application (grep) executed on a 32-node configuration.

4.2 Experimental Setup

We performed our experiments on two clusters: a small cluster for microbenchmarks and a big
cluster for running real applications. Our small cluster, called the SS cluster, consists of 20 nodes,
each containing a dual-core 3GHz Pentium D processor, 4GB of memory, and one 7200 rpm SATA
180 GB Seagate Barracuda disk with 8MB buffer DRAM size. Nodes are directly connected to a
HP Procurve 2848 using Gigabit Ethernet backplane and have 100 µsecond node to node latency.
All machines run the Linux 2.6.24.2 kernel (Debian release) and use the ext3 file system to manage
its disk.

For large scale testing, we use the Yahoo! M45 cluster, a 4000-core cluster used to experiment
with ideas in data-intensive scalable computing [35]. It makes available about 400 nodes, of which
we typically use about 50-100 at a time, each containing two quad-core 1.86GHz Xeon processors,
6GB of memory, and four 7200 rpm SATA 750 GB Seagate Barracuda ES disk with 8MB buffer
DRAM size. Because of the configuration of these nodes, only one disk is used for a PVFS I/O
server. Nodes are interconnected using a Gigabit Ethernet switch hierarchy. All machines run the
Redhat Enterprise Linux Server OS (release 5.1) with the 2.6.18-53.1.13.el5 kernel and use the ext3
file system to manage its disks.

Our experiments were performed on the Hadoop stack version 0.17.1 (that includes HDFS),
PVFS version 2.7.1 and Sun Java SE Runtime Environment version 1.6.0. Both HDFS and PVFS
were configured to use a single dedicated metadata server and data server on each compute client.

4.3 Baseline performance

To understand the baseline performance of PVFS and HDFS, we use grep on a large data set using
the Hadoop/Mapreduce framework. In this experiment, 32 clients run the grep program to search
for a pattern on an input data-set comprised of 32 files, each consisting of two billion 100-byte
records and striped over 32 data servers. Note that grep is a highly read-intensive benchmark
that reads the entire data-set to search for the desired pattern. We configured Hadoop to use both
HDFS and vanilla PVFS.

Figure 2 shows that vanilla PVFS, without the shim layer, is more than a factor of two
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Figure 3. Single client read performance with varying readahead buffer – By using
a readahead buffer, the PVFS shim delivers a read throughput comparable to HDFS’s in-built
prefetching mechanism that reads the entire 64MB chunk for all requests. For the rest of the
evaluation, PVFS uses a 4MB readahead buffer and HDFS uses a 128KB buffer (as per the
Hadoop setup guide [21]).

slower than HDFS. Hadoop-on-HDFS benefits significantly from the readahead buffering and the
file layout information. Vanilla PVFS does not have either of these features; we next perform
the same experiment using the PVFS shim layer that does readahead and exposes the file layout
information. Figure 2 shows that using a 4MB readahead buffer alone enables PVFS to improve
the application’s completion time by 25%. And by doing both readahead and exposing PVFS’s file
layout information, Hadoop-on-PVFS matches the performance of Hadoop-on-HDFS. In the rest
of the evaluation, all PVFS I/O operations use the shim layer.

The size of the readahead buffer in the PVFS shim is an important design parameter. To choose
the appropriate buffer size, we performed an experiment where a single client sequentially reads a
1GB file, striped over 16 data servers. Starting from the beginning of the file, a client application
reads 4KB (a default value) in each request until it reaches the end of file. We configured Hadoop
to use the default PVFS and HDFS configurations with no replication (single copy); PVFS uses
64MB stripe units with no read-ahead buffering and replication.

If a client’s Hadoop application requests 4KB of data, PVFS without readahead buffering
fetches only 4KB from a server. By performing such small reads, PVFS’s read throughput is
dominated by high message processing overhead and network latency; as shown in Figure 3, PVFS
reads data at less than 10 MB/s (for the 4KB buffer size). Unlike PVFS, HDFS reads the entire
64MB chunk asynchronously and sends it to the application as soon as the first 4KB arrives. Figure
3 shows how PVFS’s read performance improves with larger readahead buffers. The readahead
performance peaks when the shim layer is configured to use a 4MB buffer; using even bigger buffers
does not yield any higher read throughput because the server’s local file system (ext3) is saturated
and is delivering its peak read throughput. Our evaluation uses a 4MB buffer for the Hadoop-PVFS
shim and a 128KB buffer for HDFS, which is the recommended value for Hadoop clusters [21].
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Figure 4. Clients reading concurrently from different files – PVFS’s read performance
is similar to HDFS.

5 Performance of Microbenchmarks

In this section, we report the results of PVFS and HDFS performance using microbenchmarks that
represent common use cases in data-intensive applications. All microbenchmark experiments were
done using the 20-node SS cluster and the applications use the file systems directly without using
Hadoop framework.

5.1 Concurrent reads from different files

This experiment represents the most common use case of Internet services, where multiple clients
are each reading a different large file that is spread over many servers. We use 1-16 clients, each
reading a different 1GB files (striped on 16 data servers) sequentially from start to end, 4KB at a
time. Figure 4 shows that PVFS performs as well as HDFS both in a replicated and a non-replicated
configuration.

During this experiment, we discovered a bug in the way PVFS chose its first data server for the
chunks. PVFS used the current time as a seed to choose a server; but when the client applications
were started concurrently, they always used the same first server (and layout pattern). We fixed it
such that each client can randomly choose the first server and used the fixed codebase for all our
experiments.

5.2 Concurrent reads from a single file

This experiment is similar to the previous microbenchmark except that instead of reading different
files, all clients are reading different (non-overlapping) regions from the same file. For a configura-
tion of N clients reading from 64*N megabyte file, each client is reading a unique 1/N th chunk of
the file.
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Figure 5. Clients reading concurrently from one single file – PVFS read throughput
increases linearly with more clients. Unlike HDFS’s random file layout policy, which leads to
contention at the servers, PVFS uses a uniform round robin file layout that spreads the read
requests uniformly across all its I/O servers.

Figure 5 shows that PVFS does significantly better with increasing number of clients. Its read
performance increases linearly because adding more clients does not affect reading files that are
striped uniformly using a round robin pattern. HDFS’s random file layout policy creates hot-spots
at some data servers that results in I/O contention on those servers.

Hadoop is able to mask this sub-optimal performance of HDFS’s non uniform file layout by
scheduling tasks in a manner that that achieves load balancing across all nodes. To understand this
more, we repeated the above experiment by using HDFS and PVFS with the Hadoop framework.
In this experiment, we use a “dummy” map task that just reads the data; we do not perform any
computation and have no reduce tasks in the system. Figure 6 shows that HDFS benefits signifi-
cantly from Hadoop’s intelligent load-balanced task scheduling. HDFS delivers a read throughput
of 525 MB/s, which is 66% more than using HDFS without Hadoop (in Figure 5).

5.3 Concurrent writes to different files

This microbenchmark measures the write performance when multiple clients are concurrently writ-
ing to separate files that are spread over 16 data servers. This is common in the “reduce” phase of
a Mapreduce job, when the nodes running the “reduce” task all generate and write different output
files.

Figure 7 shows the write performance with and without replication. As expected, more copies
require more write operations, and both HDFS and PVFS slow down. With a replication factor
N (i.e. N copies), PVFS writes to N different servers at an aggregate speed of 1/N th the single
copy configuration and HDFS writes N − 1 copies remotely. With the default replication setting
(i.e., keeping three copies), HDFS writes the first copy locally and the other two copies on different
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Reading a 16GB file
(with Hadoop’s load balancing) HDFS PVFS
Read throughput (MB/s) 524.9 509.7
Read network traffic (MB) 234.8 187.8
Write network traffic (MB) 207.5 155.4
Completion time (min:sec) 0:31 0:32

Figure 6. Performance of reading a single file with Hadoop – Hadoop uses a load-
balanced scheduling mechanism to mask the non uniform chunk layout resulting from HDFS’s
random chunk placement policy. Using HDFS with Hadoop delivers a read throughput, of 525
MB/s, that is two-thirds more than HDFS without Hadoop (which is about 350 MB/s, in Figure
5).

servers.
With no replication (i.e., a single copy), HDFS’s policy of writing the first copy locally allows

it to scale linearly in write bandwidth. One the other hand, PVFS with a single copy will send all
writes to a server. In case of fewer number of clients (or writers), this allows PVFS to benefit from
shifting all the file I/O work to the otherwise idle servers; but this benefit is diminished when many
clients begin to send data over the network and saturate all the data servers. In practice, it is hard
to imagine HDFS or PVFS being deployed in a production systems without enabling replication.

5.4 Concurrent writes to a single file

Multiple clients writing concurrently to the same file is one of the common access patterns in
high performance computing. While this “concurrent writing” scenario is well supported by most
parallel file systems, Internet services file systems including GoogleFS and HDFS do not optimize
for this use case. HDFS semantics only allow a single process to write to a file at any time.

However, we believe that many data-intensive workloads may benefit from the support for
concurrent writing to the same file. One such example is copying an existing large file. Figure 8
shows the performance of clients copying a large 16 GB file, striped on 16 data servers, from its
source to the destination. Both PVFS and HDFS have enabled their default replication scheme of
keeping 3 copies of each file, so all writes to the remote destination will happen thrice for PVFS
and twice for HDFS. HDFS does not allow multiple clients to write to the same file, so it can only
use a single client to perform this file copy. PVFS enables concurrent writes to non-overlapping
regions of the file and it can support a highly parallel copy where N clients write 1/N each of the
big file to the destination. Using all 16 nodes to copy different chunks of the file, PVFS outperforms
HDFS by completing the copy more than four times faster than HDFS (Figure 8).

6 Performance of Real Applications on Hadoop/Mapreduce

In this section, we compare the performance of PVFS with HDFS using a suite of four data-intensive
applications that ran on the 400-node M45 cluster using the Hadoop/Mapreduce framework with
replication enabled (three copies). For each application, we report aggregate numbers for all I/O
throughput, CPU statistics and network traffic. We describe Hadoop/Mapreduce execution model
along with the different I/O operations that are measured in our experiments.
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Figure 7. Clients writing concurrently to separate files – Keeping three copies of each
file requires both HDFS and PVFS to perform more write operations. All PVFS writes are sent
to the data servers, HDFS sends all but the first write to remote servers. By performing its
first write locally, HDFS with no replication sees a linear scale up in write performance.

The Hadoop job scheduler divides an application job into multiple tasks that operate on an
input file that is striped into chunks by HDFS. By default, the job scheduler assigns one task per
chunk. It tries to assign the “map” task to a node that also stores the respective chunk (such maps
are called local maps). If the scheduler cannot make local assignments, the “map” task is assigned
to a remote node; these maps are known as remote maps. Once the “map” task is assigned, the
node reads the input data in chunks, performs computation on each chunk and writes the output to
intermediate files stored on local disks. It repeats this process until all the input has been processed;
we measure the throughput of reading the input data. These intermediate files are transferred to
the local storage of nodes that run “reduce” tasks using a daemon process. The “reduce” nodes
read the data from their local storage, apply the appropriate reduce function and write the final
output using HDFS or PVFS. This process repeats until all the output have been written; we
measure the throughput of writing the output data.

For each application, we also report the amount of data sent and received over the network.
This includes the data transfers when the input is read by the “map” tasks, when the intermediate
file moved from the “maps” to the ”reduce” tasks and when the output written by the “reduce”
tasks. We also measure the completion time of each application (with the time it took to run the
map and reduce functions) along with the average per-node CPU utilization.

Hadoop’s implementation also uses various optimizations proposed by Google’s Mapreduce.
Hadoop runs backup tasks that help minimize a job’s response time by re-executing the “straggler”
tasks that have failed to complete. Another optimization is that Hadoop uses the data layout
to assign tasks in a manner that load-balances the file I/O performed in reading the input data.
Hadoop schedules tasks to be run out of order to overcome the potential drawbacks manifesting
from the HDFS’s non-uniform chunk placement (observed in the previous section).
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Copying a 16GB file HDFS PVFS
Throughput (MB/s) 24.6 105.5
Read network traffic (GB) 49.7 59.0
Write network traffic (GB) 48.1 59.2
Completion time (min:sec) 10:50 2:31

Figure 8. Using copy to quantify the benefits of concurrent writes to a file –
PVFS enables highly concurrent writes to non-overlapping regions and uses N clients to copy
1/N each. By not allowing multiple writers to a file, HDFS can only go as fast as a single
client can.

6.1 Application suite

The first two applications – grep and sort – are the most common workloads of Internet services
that have been previously used to evaluate the Mapreduce model [14, 36]. The last two applications
are real data-intensive applications that are using the Hadoop framework for data processing.

grep benchmark – The grep utility scans through a large file, searching for a rare pattern
“aaa” (that occurs only than 5985 times).Our input data-set comprised of 50 files, each consisting
of two billion 100-byte records. The input data consists of a set of arbitrarily generated strings.
In this experiment, we launch 1500 tasks (one task per input chunk) on 50 nodes and the job
scheduler tries to assign each task to a node that stores the respective 64MB chunk. Due to the
read-intensive nature of grep, we modified this benchmark to only perform the “map” phase and
terminate without doing any “reduce” phase.

sort benchmark – The sort utility sorts a file of two billion 100-byte records on a key
represented by the first 10-bytes from each record. The input data set has 50 files that are assigned
to 1500 tasks, one per input chunk. Unlike grep, this application writes as much it reads, thus
generating a write-intensive workload in the “reduce” phase.

NELL prototype – The NELL (Never-Ending Language Learning) prototype system classi-
fies noun phrases according to lexical categories such as ”city” and ”country” [6]. To accomplish its
goals, NELL computes the co-occurrence statistics of the candidate noun phrases with positive and
negative contextual patterns (e.g. ”cities such as ” and ”countries such as ”) in a large collection
of web pages. When populating two categories at once, there are on the order of 105 phrases (e.g.
”cities such as New York” or ”countries such as New York”) whose occurrence counts need to be
computed over a collection of 8 million web pages. The authors of this suite commonly run their
application on a 100 node Hadoop cluster using a 37GB input data set. It takes them less than 10
minutes to complete the execution.

Pagerank application – This application performs graph analysis (topic sensitive reversed
Pagerank) based on link structure of 100 million web pages along with the reading difficulty level
of each site. In general, typical web pages are hard for lower level language learners to read. To
help determine a group of web pages that is easier to read, this application uses readability level
information of each web page, along with link structure of web pages in its link analysis. The result
would then rank web pages based on the likelihood that a person can reach out to web pages with
low readability levels, i.e. web pages that are easy to read. This application runs on 50 nodes
using 8GB input data set stored in HDFS (or PVFS) along with the 100MB file which contains
readability level information that is stored locally on each node.
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grep benchmark sort benchmark NELL suite Pagerank app
HDFS PVFS HDFS PVFS HDFS PVFS HDFS PVFS

Experimental setup (number of nodes, input data-set size and number of Hadoop “maps”)
Number of nodes 50 50 50 50 100 100 50 50
Input data set (GB) 100 100 100 100 37 37 8 8
Number of local maps 1455 1435 1486 1512 617 680 182 237
Number of remote maps 47 86 23 15 108 44 68 14
Number of backup maps 97 110 86 120 22 34 0 0
Aggregate performance (file I/O throughput, amount of network traffic and execution time)
Input (read) rate (MB/s) 816.56 879.83 403.51 366.65 78.46 75.95 28.48 35.46
Output (write) rate (MB/s) n/a n/a 175.17 110.67 11.5 9.84 0.10 0.11
Data sent (GB) 4.09 12.43 365.81 479.32 4.26 3.03 9.63 9.19
Data received (GB) 3.94 12.4 356.87 468.99 4.47 3.24 10.43 8.73
Per-node CPU utilization 39% 39% 20% 12% 31% 30% 2% 2%
Run time (min:sec) 1:56 1:52 13:55 20:06 8:13 8:35 72:27 69:52
% of time for “map” tasks 100% 100% 31.35% 22.32% 98.62% 98:03% 6.66% 6.15%
% of time for “reduce” tasks n/a n/a 68.65% 77.78% 1.38% 1.97% 93.34% 93.85%

Figure 9. Comparing HDFS and PVFS performance for real applications exe-
cuted through the Hadoop/Mapreduce abstraction – PVFS performance is compara-
ble to HDFS for all four data-intensive applications. Both grep and NELL, are read-intensive
benchmarks that spend almost all their time reading data for the “map” tasks. The Pagerank
application is also read-intensive and the algorithm is designed to use only one “reduce” task.
This single “reduce” task takes a long time to complete and, hence, accounts for more than
93% of the total execution time and biases the average per-node CPU utilization (without this
“reduce” the utilization was about 25%). In contrast, sort writes as much data as it reads.
Because we enable replication (i.e., 3 copies), PVFS sends writes a file to three different servers
but HDFS sends writes to two servers; by writing the first copy locally, sort using HDFS is
faster than running sort on PVFS. We confirmed this by running PVFS with two copies and
HDFS with three copies, and both had similar completion times.

6.2 Results

Figure 9 shows that the performance of PVFS is on par with HDFS for our four data-intensive
applications. Both grep and NELL are read-intensive workloads that process large amounts of input
data to generate miniscule output information. These applications achieve similar read throughput,
but have a very low write throughput because of the lack of any large output files. PVFS and HDFS
run at almost identical speeds when both file systems are keeping three copies each. Note that the
grep benchmark has been modified to only perform the “map” tasks; hence there are no “reduce”
tasks to write any data.

In case of sort, PVFS is about one-third slower than HDFS. Unlike grep, the sort application
writes as much as it reads. That is, by keeping three copies, write operations are three times
slower than reads; by writing one copy locally, HDFS does better than PVFS. We confirmed this
phenomenon by running PVFS with two copies and HDFS with three copies. PVFS with two copies
delivers an output rate of 178 MB/second and completes the application run in 13 minutes and 38
seconds – both are comparable to HDFS with three copies (one local and two remote).
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The Pagerank application is a compute intensive workload that reads about 8GB of input data
and writes very small output. The algorithm in this application is designed to use only one reduce
task. This single “reduce” task takes a long time to complete and, hence, accounts for more than
93% of the total execution time and biases the average per-node CPU utilization (without this
“reduce” the utilization was about 25%).

Our knowledge about different Internet services applications is limited to the handful of papers
published by Google, Yahoo and other Internet services. While our current evaluation is only the
tip of the iceberg, it covers four popular categories of large applications, and in future, we would
like to experiment with real Internet applications or benchmarks.

7 Conclusion and Future Work

Internet services are building file systems from-scratch that can deliver scalable performance for
their anticipated data-intensive applications workload. High performance computing has applica-
tions at similar scale that use parallel file systems for their demanding storage I/O requirements.
This paper explores the relationship between modern parallel file systems, represented by PVFS,
and purpose-built Internet services file systems, represented by HDFS, in the context of their design
and performance. We show that PVFS can perform comparable to HDFS in the Hadoop Internet
services stack. Our evaluation is done at a large scale on Yahoo!’s M45 cluster with microbench-
marks and real data-intensive applications.

The biggest difference between PVFS and HDFS is the redundancy scheme for handling fail-
ures. HDFS keeps three copies of file data on different servers in the cluster. Users of most parallel
file systems do not want to pay for the 200% overhead of triplication when they can use RAID
(single or double protection) with overheads of 10-25%, so they stripe RAID 0 over data servers
that concentrate many disks into RAID systems. This may be changing however as at least one
parallel file system uses mirroring as a concurrent write optimization and can do RAID across nodes
[34], and many more are planning to offer higher levels of replication; our shim implementation
emulates file triplication for PVFS.

PVFS and HDFS have contrasting file access semantics. HDFS uses “write-once” semantics,
allowing only a single writer of a file at any time. PVFS provides UNIX file system API and
supports most POSIX semantics; in particular, its ability to support concurrent writers to a file
enables high parallelism. Many data-intensive applications could benefit from a parallel file system
that supports much broader range of workloads for large data sets.

Another big difference is that Internet services file systems, both HDFS and GoogleFS, expose
the file distribution information to the Mapreduce. Hadoop job schedulers use this information
for load-balanced job distribution masking the potential sub-optimal chunk distribution, random
rather than striped, by HDFS. PVFS and other parallel file systems also expose their file layout
mapping. Layout map is available in PVFS and can be exposed to Hadoop using our shim layer.
The emerging NFSv4.1 (or pNFS) standard may also be able to make file layout available to client
applications. For write intensive workloads, HDFS’s optimization to write one copy of the file
locally, avoiding network traffic, can be impactful.

On balance, we believe that parallel file systems could be made available for use in Hadoop,
while delivering promising performance for diverse access patterns. These services can benefit from
parallel file system specializations for concurrent writing, faster metadata and small file operations.
With a range of parallel file systems to choose from, Internet services can select a system that
better integrates their local data management tools. In future, we plan to investigate the “opposite”
direction; that is, how could we use Internet services file systems for HPC applications.
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