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Abstract

Parity encoded redundant disk arrays provide highly reliable, cost effective secondary storage
with high performance for reads and large writes. Their performance on small writes, however, is
much worse than mirrored disks - the traditional, highly reliable, but expensive organization for
second ary storage. Unfortunately, small writes are a substantial portion of the I/O workload of
many impor tant, demanding applications such as on-line transaction processing. This paper pre-
sents parity logging, a novel solution to the small write problem for redundant disk arrays. Parity
logging applies journalling techniques to substantially reduce the cost of small writes. We provide
detailed models of parity logging and competing schemes - mirroring, floating storage, and RAID
level 5 - and verify these models by simulation. Parity logging provides performance competitive
with mirroring, but with capacity overhead close to the minimum offered by RAID level 5.
Finally, parity logging can exploit data caching more effectively than all three alternative
approaches.
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 1. INTRODUCTION

The market for disk arrays, collections of independent magnetic disks linked together 
data store, is undergoing rapid growth and has been predicted to exceed 13 billion dol l
[DiskT rend94]. This growth has been driven by three factors. First, the growth in processo r
outstripped the growth in disk data rate. This imbalance transforms traditionally comp
applications to I/O-bound applications. T o achieve application speedup, I/O system bandwidth must b e
increased by increasing the number of disks. Second, arrays of small diameter disks o
substantial cost, power , and performance advantages over larger drives. Third, such systems c a
made highly reliable by storing a small amount of redundant information in the array . Without this
redundancy , large disk arrays have unacceptably low data reliability because of their larg e
component disks. For these three reasons, redundant disk arrays, also known as Redundant A

Inexpensive 1 Disks (RAID), are strong candidates for nearly all on-line secondary storag e
[Patterson88, Gibson92].

Figure 1 presents an overview of the RAID systems considered in this paper . The most promising
variant, RAID level 5, employs distributed parity with data striped on a unit that is on e
sectors.

RAID level 5 arrays exploit the low cost of parity encoding to provide high data reliabil
Data is striped over all disks so that large files can be fetched with high bandwidth. By d i
parity , many small random blocks can also be accessed in parallel without hot spots on any d

While RAID level 5 disk arrays offer performance and reliability advantages for a wide

1. In current industry usage, the “I” in RAID denotes “independent”.

Fig.  1. Data Layout in RAID Levels 0, 1, 4 and 5.  This figure shows the first few units on each disk in e a
levels. “D” represents a block, or unit, of user data (of unspecified size, but some multiple of one sector) 
computed over user data units x through y . The numbers on the left indicate the offset into the raw di s
units. Shaded blocks represent redundant information, and non-shaded blocks represent user data.
and does not tolerate faults. Level 1 is simple mirroring, in which two copies of each data unit 
exploit the fact that failed disks are self-identifying, achieving fault tolerance using a s
lowering the capacity overhead to only one disk out of six in this example. Levels 4 and 5 diff
parity . In level 5, the parity blocks rotate through the array rather than being concentrated on a 
access bottleneck.
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applications, they possess at least one critical limitation: their throughput is penaliz e
four over nonredundant arrays for workloads of mostly small writes [Patterson88]. This pe n
because a small write request may require the old value of the user ’s targeted data be read (we call this
a preread), overwriting this with new user data, prereading the old value of the correspon d,
then overwriting this second disk block with the updated parity . In contrast, systems based on mirrored
disks simply write the user ’s data on two separate disks and, therefore, are only penalized by a f
two. This disparity , four accesses per small write instead of two, has been termed the small write
problem.

Unfortunately , small write performance is important. The performance of on-line tran s
processing (OLTP) systems, a substantial segment of the secondary storage market, is l
determined by small write performance. The workload described by Figure 2 is typical of TP and
nearly the worst possible for RAID level 5, where a single read-modify-write of an accou n
require five disk accesses. The same operation would require three accesses on mirrored dis k
two on a nonredundant array . Because of this limitation, many OL TP systems continue to employ the
much more expensive option of mirrored disks.

This paper describes and evaluates a powerful mechanism, parity logging , for eliminating this small
write penalty . Parity logging exploits well understood techniques for logging or journallin g
transform small random accesses into large sequential accesses. Section 2 of this paper d
parity logging mechanism. Section 3 introduces a simple model of its performance and cos t
describes alternative disk system organizations, develops comparable performance mod e
contrasts them to parity logging. Section 5 provides an analysis of small-write overhe a
logging with respect to configuration and workload parameters, and analyzes potential load i
in a parity logging system. Section 6 introduces our simulation system, describes implem e
parity logging and alternative organizations, and contrasts their performance on workloa d
random writes and an OL TP workload. Section 7 analyzes extensions to multiple-failure tole r
arrays. Section 8 discusses how the large write optimization can be accomodated in a pa r
disk array . Section 9 reviews related work. Section 10 closes with a few comments on futur e
redundant disk arrays for small write intensive workloads.

 2. PARITY LOGGING

 This section develops parity logging as a modification to RAID level 5. Our approach is m
the fact that disks deliver much higher bandwidth on large accesses than they do on smal
logging disk array batches small changes to parity into large accesses that are much more e
model is introduced in terms of a simple, but impractical RAID level 4 scheme, then re fi
realistic implementation used in our simulations.

The duration of a disk access can be broken down into three components: seek time, r
positioning time, and data transfer time. Small disk writes make inefficient use of dis k

TPC Benchmark

get request from terminal
begin transaction

update account record
write history log
update teller record
update branch record

commit transaction
respond to terminal

Scaling Requirements

Record
Type

Minimum Quantity
per TPS

Record Size (Bytes)

Account 100K 100

Teller 10 100

Branch 1 100

History 30K 50

Total 11.5 MB per TPS

Fig.  2. OL TP W orkload Example. The transaction processing council (TPC) benchmark is an in d
benchmark for OL TP systems stressing update-intensive database services [TPCA89]. It models the c o
customer withdrawals and deposits at a bank. The primary metric for TPC benchmarks is transact i
Systems are required to complete 90% of their transactions in under 2 seconds and to meet the sca l
Customer account records are selected at random from the local branch 85% of the time, and from 
the time. Because history record writes are delayed and grouped into large sequential writes and t
easily cached, the disk I/O from this benchmark is dominated by the random account record update.
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because the data transfer component is much smaller than the seek and rotational po s
components. Thus a disk servicing a small-access-dominated workload spends the majority of 
positioning instead of transferring data. Figure 3 shows the relative bandwidths of random block, trac k
and cylinder accesses for a modern small-diameter disk [IBM0661]. This figure largely bea r
lore of disk bandwidth: random cylinder accesses move data twice as fast as random trac k
which, in turn, move data ten times faster than random block accesses.

Logically , we develop our scheme beginning with Figure 4 in which a RAID level 4 disk a
augmented with one additional disk, the log disk . Initially , this disk is considered empty . As in RAID
level 4, a small write prereads the old user data, then overwrites it. However , instead of similarly
updating parity with a preread and overwrite, the parity update image (the result of XOR i
and new user data) is held in a dedicated block of memory called a log buffer . When enough parity
update images are buffered to allow for an efficient disk transfer (one or more tracks), t h
to the end of the log on the log disk.

When the log disk fills up, the out-of-date parity and the log of parity update records 
memory using sequential cylinder accesses. The logged parity update images are applied 
memory image of the stale parity and the resulting updated parity is written with large 
writes. When this completes, the log disk is marked empty and the logging cycle begins aga i

Block

97

Track Cylinder

720

1467

Fig.  3. Peak I/O Bandwidth.  This figure shows the sustainted data rate in kilobytes per second tha t
written to an IBM 0661 drive using random one block (2KB), one track (24 KB), and one cylinder (336
for disk parameters).
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Fig.  5.Model Parameters. The bandwidth utilization models of Section 2, 3, and 4 are presen t
parameters list above. The first table presents common disk parameters and the second, parameters 
The first and fourth columns in each table show the symbol used in the text; the second and fif t
symbol denotes; and the third and last column show the default value of the parameter as used in 
for milliseconds and a tilde (~) indicates an approximate value.

Data units per track 12 Tracks per cylinder 14

Cylinders per disk 949 Number of disks in array22

Average seek time 12.5 ms Single track seek time 2.0 ms

Average rotational delay
(1/2 disk rotation time)

6.95 ms Head switch time 1.16 ms

Number of regions per disk ~100 Cylinders of data per region ~200

Cylinders of log per region ~9 Cylinders of parity per
region

~9

Tracks buffered per region 1 Log striping factor 1
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Because only parity updates (not data changes) are deferred, this scheme preserves si n

tolerance 2. If a data disk fails, the log disk (and any buffered parity updates) are first 
parity disk, which is then used to reconstruct the lost data in the same manner as is done 
5. If the log or parity disk fails, the system can simply recover by reconstructing pari t
onto the surviving parity or log disk. The failed drive is then replaced with a new empty l
controller fails, its buffered parity updates are lost, but, after the controller has 
replaced, parity can be updated in the same way as if a log disk had been lost.

The addition of a log disk allows substantially less disk time to be devoted to parit y
than in a comparable RAID level 4 or 5 array . This can be shown by computing the average disk busy
time devoted to updating parity . Assume there are  data units per track,  tracks per cylinder , and
cylinders per disk (refer to the glossary in Figure 5). Each user write requires a p
corresponding data unit, which introduces an overhead of one block (data unit) access p e
addition, each user write to a data unit consumes buffer memory equal to the size of the u
track’ s worth ( ) of small (unit-sized) writes issued to the array causes one track write to 
to occur. Next, a disk’ s worth ( ) of small writes causes the log disk to fill up, which must t h
emptied by updating the parity . This update involves reading the entire contents of the parity a
disks (  cylinders), and then writing the entire parity disk (  cylinders) at cylinder transfer rates.
On average, then, for every  small user writes there are  block accesses,  sequential track
accesses, and cylinder accesses for maintenance of the parity information. Recall track ac

 times larger than random small writes but about 10 times more efficient and cylinder ac
twice as efficient and  times larger than track accesses. Thus, parity maintenance for a disk’ s worth
( ) of small user writes consumes about as much disk time as

random small accesses. In a standard RAID level 4 or 5 disk array , parity maintenance for  small
writes would consume about as much disk time as  random block accesses. The ratio of parity
maintenance work performed by parity logging to RAID level 4 or 5 is therefore

Thus, by logging parity updates, we have reduced the disk time consumed by parity mainte n

about a factor of two. 3

In many cases, it may be possible to avoid the preread of the user data. For example, 
benchmark (Figure 2), the update of a customer account record is a read-modify-write op e
account record is read, modified in memory , then written back to disk. In these cases, the old data 
is usually known (cached) at the time of the write and the preread of the data may b
[Menon93]. Under these conditions, the overhead for RAID levels 4 or 5 is just two ra n
accesses per small write, or  random block accesses per small user writes, and the
overhead for parity logging is

random small accesses. Therefore, in these cases, parity logging reduces disk time consum e
maintenance by about a factor of eight.

2.1. Partitioning the Log Into Regions

As stated, however , this scheme is completely impractical: an entire disk’ s capacity of random access
memory is required to hold the parity during the application of the parity updates. Figu r
that this limitation can be overcome by dividing the array into manageably-sized regions. 
is a miniature replica of the array proposed above. Small user writes for a particula

2. Our failure model treats disk and controller failures as independent. If concurrent controller and disk 
survived, controller state must be partitioned and replicated [Schulze89, Gibson93, Cao93].
3. Notice that we make no attempt to reduce the cost of the overwrite of the target data block. Additional savi n
data writes are deferred and optimally scheduled [Solworth90, Orji93].
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journalled into that region’ s log. When a region’ s log fills up, only that region’ s log is required to update
that region’ s parity . This reduces the size of the controller memory buffer needed during 
reintegration from the size of a disk to a manageable fraction of a disk. Section 2.4 sho w
number of regions is dependent on disk capacity , but is about 100 in our example 22 disk array .

Each region requires its own log buffer . Each log buffer holds a few (typically less than three) 
of parity update images. When one of these buffers fills up, the corresponding region’ s log is appended
with an efficient track (or multi-track) write. Thus, the sequential track writes of the si n
are replaced by random track (or multi-track) writes in the multiple-region layout. While r
writes are less efficient than sequential track writes, Section 3 will show that this m
implementation still has dramatically lower parity maintenance overhead than RAID level 4 o

2.2. Striping Log and Parity for Parallelism

As in the RAID level 4 case, the log and parity disks may become performance bottlenecks i
many disks in the array . In particular , the maximum aggregate bandwidth for log accesses is just t
bandwidth of single disk. This limitation can be overcome by distributing parity and log 
across all the disks in the array , as indicated in Figure 6(b). This distribution boosts the aggre g
bandwidth to the bandwidth of the array . However, the log and parity bandwidth for a particular reg i
remains that of a single disk.

Following the example of RAID level 5, Figure 7 shows a layout in which the parity for e a
distributed across the array to increase bandwidth. This distribution decreases the 
reintegrating parity updates for a particular region by using all  non-log disks to effect the parity
read and write. So that these operations are also efficient, the granularity of distributio n
is one contiguous set of parity units per disk per region. The log, however , remains a potential
bottleneck.

The log bottleneck may also be eliminated by distributing the log for each region over m u
Figure 8 shows a parity logging array with the log for each region striped across two disk s
update records in the log are logically part of the parity , they cannot be placed on the same disks as th e
data they protect. If they were, the failure of that disk would cause both data and par i
which is an unrecoverable failure in a disk array using a parity-based code. T o avoid data loss, data and
log for each region are restricted to disjoint sets of disks. Thus, log striping reduces t h
on which data for a particular region may be placed. If, for example, the log is striped o
data for that region may be placed only on the other  disks.

This reduction in data striping in a region increases the disk space overhead as follows  be the
number of disks over which each log is striped and  the number of cylinders of parity per region. T h

number of data cylinders per region, , is related to the size of the parity , , according to the

standard RAID level 4 and 5 rule for data striped over  disks:
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where  is the number of disks in the array . Because the log is equal in size to the parity , , the num-

ber of cylinders of log per region, equals . Hence, the disk space overhead (the fraction of the a r

containing log and parity) equals

and rises as the degree of log striping, , increases. Figure 9 shows the disk space overhead for di f
ent degrees of log striping for an array of 22 disks. Section 6 will show , however, that the performance
advantages of log striping are substantial.

2.3. The Impact of V arying Log Length

The previous subsection assumes that the same amount of disk space for log (  cylinders) and
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parity (  cylinders) is allocated in each region because our introduction adds exactly on e

an array . Given the more flexible striped log and parity model of Figure 8, the efficiency 
overheads of parity logging can be altered by increasing or decreasing the amount of log 
region.

Let  be the ratio of total log space to total parity space ( ) in each region. The disk space

overhead then becomes

Now the log for each region fills up after  small user writes into that region. Updating th e

parity still requires prereading old data on each small user write (  blocks) (assuming the old

data is not cached), writing the log buffers (  tracks), plus, every time the log fills, reading 

parity (  cylinders), reading the log (  cylinders), and writing the updated parity (  cylinders),.

Thus the parity maintenance work for  uncached small user writes is

random small accesses, or an overhead of  random small accesses per uncached small
user write. Performance can therefore by traded for space, as shown in Figure 10. Applyin g
example 22 disk array with logs striped over two disks ( ), allocating twice as much log as parity
( ) increases the space overhead from 9.5% to 13.6% of the total capacity , but decreases the parity
maintenance overhead from 41.7% to 40% of that of RAID level 5, where three related parit y
occur for each small user write. Halving the amount of log ( ) decreases the disk space overhead
to 7.3% while only increasing the parity maintenance work to 45% of RAID level 5.

If the old data is cached, RAID level 5 does two parity-related accesses for each small u
parity logging does ( ). Applying this cached workload to our 22 disk array with l
striped over two disks does not change the space overheads. However , in this cached case, doubling log
size reduces parity maintenance work from 12.5% to 10% of RAID level 5 while halving 
increases the work to 17.5% of RAID level 5.

2.4. Accounting for and Managing Buffers

The primary benefit of parity logging, that parity maintenance operations access disks u
efficient transfers, requires expensive controller memory buffers. This buffer memory is 
ways. First, each region delays the most recent parity update images until efficient log-ap p
can be performed. If  tracks are transferred in a log-append operation and there are  regions, then,
conservatively ,  tracks of buffer memory are required to delay log appends. Second, whene v
log for a region fills, the parity for that region is read into memory , the newly full log is read and applied
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to it, and the updated parity is written back. This parity reintegration operation require s tracks of

buffer memory , where  is the number of cylinders of parity per region and  is the number of tracks

per cylinder . Since the number of cylinders of parity per region is the same as the total c y
disk, , divided by the number of regions, , the total buffer memory space is , measured
in tracks.

By selecting  as , the memory buffer space is minimized to . If the ratio of the cost

of a byte of memory and a byte of disk is  then the buffer memory space cost, relative to the cost o

array of  disks is  . If memory costs 30 times as much as disk
[Feigel94], then an array of 22 IBM 0661 (Figure 12) disks buffering a single log trac
( ) requires about 5.6 MB of buffer , costing the equivalent of about 2% of the array’ s cost.

In practice, parameters such as the number of regions must be discrete. If we further req u
size per region of the log appends, sublogs (the portion of a region’ s log on one disk), as well as parity
and data, per region, be an integral number of tracks, then a significant fraction of th e
space may be wasted. We have found that if the number of regions, , is allowed to vary from the
optimum by %, then a set of integral parameters can be found such that the wasted disk 
less than 1% of the array’ s total space.

If, however , the size per region of the sublogs, parity and data, per region, are only req u
integral number of disk sectors (rather than tracks), substantially less disk space is wa

number of regions, , is selected as an integer near . Relaxing this discrete-tracks condition
will cause additional head switches and single cylinder seeks to occur during log and pa r
but because these positioning overheads are small relative to track access times, pa r
performance is only slightly affected (3% for our experiments).

A more significant performance degradation results if small user writes are blocked d u
reintegration of a region’ s log into its parity . This blocking should be minimized by managing the per -
region buffers as a single global buffer pool. Using this approach, user writes are only
entire buffer pool is full of parity updates images that have not yet been appended to th e
logs.

2.5. Summary

In summary , parity logging buffers parity updates until they can be written to a log effici . It then
further delays their reintegration into a redundant disk array’ s parity until there are enough parity
updates in the log to make a complete revision of the parity efficient. T o accommodate limited memory
for reintegration of parity records, the disk array is partitioned into regions with per -region logging.
Then, to avoid bandwidth bottlenecks, parity and log information is striped over multipl e
parity logging scheme reduces the extra work done by RAID level 5 arrays for small random 
little more than is done in the much more expensive, traditional mirrored approach ev e

Fig.  10. Log Length and Efficiency .
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caching is ineffective.

 3.  MODELING P ARITY LOGGING

In this section we present a utilization-based analytical model of a parity logging r e
array . This model predicts saturated array performance in terms of achieved disk utiliz a
geometry, and access size. The variables used in this model are defined in Figure 5.

 Consider a single small user write in a parity logging array . User data must be preread, then
overwritten. This is done in an access which seeks to the cylinder with the user ’s data, waits for the
data to rotate under the head, reads the data, waits for the disk to rotate around once, t h

data. 4 Defining  as the average seek time,  as the time for one-half of a disk rotation, and rec a
that  is the number of data units per track, the time to perform this operation, , is

disk seconds, on average.
As mentioned earlier , in many cases it may be possible to predictably avoid the preread of 

data. Without prereading, the disk busy time needed for a small write access, , is

 (2)

disk seconds.

Each region has tracks worth of log buffers. On average, for every  small user writes, one
region’s buffers will fill and be written to the region’ s log in a single -track write. Defining  as the
disk’s head-switch time, the number of disk seconds required to do this, , is

assuming all tracks are on the same cylinder .5

Finally , recall that each region’ s log consists of  cylinders, each of which has  tracks of  data

units. Therefore, on average, for every  small user writes, one region of logged parity must 

reintegrated. Consider the case of an array that does not stripe its log (Figure 7). Th e
consists of three steps: a sequential read of  cylinders from the log, a striped read of the parity 

 disks, and a striped write of the parity back onto  disks. Defining  as the time taken to
seek one cylinder, the time for the sequential log read ( ) is

4. This single access could be separated into two accesses each taking S+R+2R/D disk seconds for a total of 2S+(2+4/D)R .
For most modern disks S is about twice R , so the single access is more efficient.

5. Disks that support zero-latency writes [Salem86] can eliminate the initial rotational positioning delay . This can reduce
the I/O time by up to 26% in drives such as the IBM 0661 (which does not support this feature), if only a single 
(K =1). However, the impact of zero-latency write support on parity logging is small (under 3%), because the track-s
are only a small contributor to parity logging’ s overhead (Figure 1 1).

S R
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disk seconds, and may be rewritten as

 (5)

The striped parity accesses each consist of  sequential transfers of  cylinders. Each

of these sequential transfers takes

disk seconds. The total striped access, , takes

 (6)

disk seconds.

Thus, on average, the disk utilization induced by a small write, , is

Figure11 shows the contributions to disk busy time of the three terms after  in equation 7 for

the example disk array given in Figure 12.
The analysis for a parity logging disk array with a striped log (Figure 8) is similar . When a region’ s

log buffer fills, it will be written to one of the regions sublogs in a single -track write. The cost of this
operation is the same as in the unstriped case. Log reintegration still occurs every  small user

writes, but now consists of three striped I/Os: a striped (over  disks) read of the log, and a striped
(over  disks) read and write of the parity . Each of the  accesses in the striped log read costs

for a total of

 (8)

disk seconds. Similarly , the striped parity reads and writes will consume

tCL
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Fig.  11.  Parity Logging Overheads . The amortized overhead cost of parity and log accesses do
parity logging array is shown above. The log writes contribute approximately 40% o
milliseconds), while the cylinder rate log reads, parity reads and parity writes each 
milliseconds). For comparison, the parity accesses done by RAID level 5 cost nearly 35 mi
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 (9)

disk seconds. Thus, striping introduces an additional overhead of  disk seconds to the log
reintegration. This increases the parity maintenance overhead per small wri t

 disk seconds. As Section 6 will show , this increase in parity maintenance work is

worthwhile because it reduces long reintegration periods during which disk queues grow , the system
becomes underutilized, and maximum performance falls far short of expectations.

 4.  MODELING AL TERNA TIVE SCHEMES

Only a few array designs have addressed the problem of high performance, parity-based, di
for small write workloads. The most notable of these is floating data and parity [Menon92]. 
reviews and estimates the performance of four designs: nonredundant disk arrays (RAID 0),
mirrored disks (RAID level 1), distributed N+1 parity (RAID level 5), and floating data and parity . The
notation and analysis methodology are the same as used in Section 3.

In nonredundant disk arrays (RAID level 0), a small write requires a single disk access wh i
consumes

disk-arm seconds. No long-term storage is required in the controller .
In mirrored systems, every data unit is stored on two disks, and all write requests u

copies. Each access takes as much time as a small write in a nonredundant disk array , .

Hence, each small user write utilizes disks for a total of  seconds. While mirrored
disks’ write operations are more efficient than RAID level 5, half of their capacity is devoted t o

Geometry: 949 cylinders, 14 heads, 48 sectors/track
Sector Size: 512 bytes
Revolution T ime: 13.9 ms
Seek Time Model:  (ms)

2 ms min, 12.5 ms avg, 25 ms max
Track Skew: 4 sectors
Head Switch T ime: 1.16 ms

2.0 0.01 dist 0. 46 dis t⋅+⋅+

Disk Parameters

Access size: Fixed at 2 KB
Alignment: Fixed at 2 KB
W rite Ratio: 100%
Spatial Distribution: Uniform over all data
Temporal Distribution: 66 closed loop processes

Gaussian think time distribution

W orkload Parameters

Stripe Unit: Fixed at 2KB
Number of Disks: 22 spindle synchronized disks.
Head Scheduling: FIFO
Power/Cabling: Disks independently powered/cabled

Array Parameters

Fig.  12. Simulation Parameters.  The access size, alignment, and spatial distribution are repr eTP
workloads, while a 100% write ratio emphasizes the performance differences of the various arra y
disks have independent support hardware, disk failures will be independent, allowing a parity gro u
[Gibson93]. Disk parameters are modeled on the IBM Lightning drive [IBM0661]. Note that the dist  term in the seek 
model is the number of cylinders traversed, excluding the destination. As is commonly done in S C
chosen to equal the head switch time, optimizing data layout for sequential multitrack access.

tCP
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redundant data. As in the RAID level 0 case, controllers for mirrored disk arrays do not require 
term buffer memory .

Small writes in RAID level 5 disk arrays require four accesses: data preread, data write ,
and parity write. These can be combined into two read-rotate-write accesses, each of which 

disk seconds for a total disk busy time of . Again, no long-term controller storage is
required.

 Thefloating data and parity  modification to RAID level 5 was proposed by Menon and Kasson
[Menon92]. In its most aggressive variant, this technique organizes data and parity into c
contain either only data or parity . As illustrated in Figure 13, by maintaining a single track of 
space per cylinder , floating data and parity effectively eliminates the extra rotational dela y
level 5 read-rotate-write accesses. Instead of updating the data or parity in place, a fl o
parity array will write modified information into the rotationally nearest free block. W ith floating data
and parity , the rotational term  in the RAID level 5 disk arm busy time expression above 
replaced with a head switch and a short rotational delay . Using disks similar to those in our sample
array , Menon and Kasson report an average delay of 0.76 data units. So, the expected disk b u
each access in a floating data and parity array is

which may be rewritten as . Hence, the total disk busy time for a smal l

random user write in a floating data and parity array is . Note that if the

number of data units per track, , is large and the head-switch time, , is small, this is close to the
performance of mirroring.

Even with a spare track in every cylinder , floating data and parity arrays still have excellent st o
overheads. For an  disk array with  tracks per cylinder , floating data and parity has a storage

overhead of . 6 Floating data and parity arrays, however , require substantial fault-

tolerant storage in the array controller to keep track of the current location of data a.7 For

6. Each disk gives up 1/ T of its capacity for free space and the array gives up 1/ N of the remaining space for parity . Thus the array
storage efficiency is ( T-1)(N -1)/TN  and the array storage overhead is 1-( T-1)(N -1)/TN  = (T+N -1)/TN .

S R+( ) 2R /D +(2R-2R/D )+2R/D+
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Fig.  13.  Floating Data/Parity . This figure shows the movement of data within a cylinder caused by a 
data and parity array . Each grid represents one cylinder of four tracks, with five blocks per track. 
the controller searches for a free block within the cylinder that is rotationally close to bloc k
at offset 3 into track 3. Immediately following the preread of block D2, the controller writes t
and updates mapping tables. The preread of old information and the write of new information a r
slightly more than the time of one access.
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each cylinder , an allocation bitmask is maintained. This requires  bits per cylinder . In addition, a
table of current block locations for each cylinder is required. This consumes  bits

per cylinder . Thus, with  cylinders per disk, a total of  bits of fault-
tolerant controller storage are required. For the disks in Figure 12, this is 1,343,784 b i
disk. The total controller storage in a 22 disk array is about 3,608KB, roughly compara b
logging. Note, however , that controller memory in parity logging need not be fault-tolerant.

While floating data and parity substantially improves the performance of small writes r
RAID level 5, its performance for other types of accesses is degraded. W ithin a cylinder , logically
contiguous user data units are not likely to be physically contiguous. In the worse case, t
data units may end up at the same rotational position on two different tracks, requirin g
disk rotation to read both. In addition, the average track has only  valid data units. Thus,
even on disks with zero-latency reads, the maximum sequential read bandwidth is reduced, o n
by .

 5.  ANALYSIS

Figure 14 compares these models’ estimates for maximum throughput of the example array b a
Figure 12. Throughput at lower utilizations may be calculated by scaling the maximum th r
numbers by the disk utilization. Figure 14 predicts that parity logging and floating data a n
both substantially improve on RAID level 5, approaching the performance of mirroring. V arying the
model’s parameters from our example 22 disk array does not substantially change the r
performance of parity logging and its alternatives except for the effects of the number of 
track and the ratio of average seek time to rotational latency . This section describes the effects of the s
parameters and the effects of log striping degree on array load balance.

Of the model’ s parameters, the number of data units per track, , has the greatest impact on
performance. Parity logging transfers each data unit two more times than RAID level 5 and 
times than mirroring. If the transfer time of a unit is small, parity logging will be ef fi
shows the relative performance when data caching is ineffective (i.e, a preread is requi
logging, mirroring, and RAID level 5 for different values of numbers of data unit per tr a
example array . The performance of mirroring exceeds that of parity logging with 13 or fewer d
per track ( ), and RAID level 5 performance exceeds that of parity logging with the unli k
of 1 or 2 data units per track ( ). Industry estimates, however , show that track capacity within a
given form factor is increasing at over 20% a year . Consequently, it is reasonable to assume that the
number of data units per track may not decrease even as database account record sizes grow .

The ratio of average seek time ( ) to rotational latency ( ) has a substantial impact on the
performance of parity logging disk arrays. Figure 16 plots the performance of parity lo
level 5 and mirroring relative to RAID level 0 as this ratio changes. The performance o

7. The nature of fault tolerance in a storage controller depends on the underlying failure model. If only power failure is of c o
cern, then nonvolatile storage will suffice, while other failure models require redundant controllers.

D T
D T 1−( ) D T( )log

V V D T T 1−( ) D T( )log+( )

D T 1−( ) T⁄

T 1−( ) T⁄

Fig.  14. Model Estimates . User writes per second per disk as predicted by the bandwidth models of S
predictions assume 100% disk utilization, FIFO disk arm scheduling, and an unbounded number of r
and parity logging disk arrays both benefit substantially from not having to preread user data .
substantially reduces the overhead of the user preread and therefore achieves less benefit from i
nonredundant disk arrays do not need to preread user data. The parity logging estimates assume t
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achieves as much benefit from decreased seek time as nonredundant arrays because its two a
are each equivalent to the single nonredundant access. RAID level 5 and parity logging, h, do
more rotational work for each seek so decreasing seek time relative to rotational latenc
performance relative to nonredundant arrays. Moreover , parity logging does more rotational work to
avoid the parity write seek of RAID level 5. Consequently , the relative advantage of parity logging ove
RAID level 5 decreases as the seek time to rotational latency ratio decreases. This rati , is
nearly unity for all modern drives, and shows no particular trend in any direction.

Figure 14 assumes the user requests access data uniformly . While this assumption is reasonable for
huge OLTP databases, other workloads may exhibit substantial locality . In the worse case, all user I/O
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units per track. The figure above shows the performance in the example 22 disk array of mirrorin g
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Fig.  16. Peak throughput, normalized to nonredundant array performance, as a function of the ratio 
seek time to rotational latency . Altering the ratio of average seek time (S) to the rotational latenc y
the relative performance of mirroring, floating data and parity , nonredundant and parity logging disk arrays. Sh
the relative performance of these approaches on the example 22 disk array (Figure 12) as the ave r
varied. The average seek time is varied from 20% of the Lightning average seek to twice that of t h
parameter range models a large spectrum of drives, from those with very fast positioning to Ligh
7200 RPM. The X-axis has been linearly scaled so that 1.0 corresponds to the ratio of average se e
the Lightning drive.
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is concentrated within one region. Choosing an appropriate data stripe unit [Chen90] will 
user I/O across the actuators that contain data for this “hot” region; however , log and data traffic are
partitioned over non-overlapping disks. If this traffic is not balanced, parity logging p e
fall short of Figure 14.

The log, parity and data traffic can be balanced by determining the appropriate degree of 
. Recall that every  small user writes (where , , and  are the number of data units per

track, tracks per cylinder , and cylinders of log per region, respectively) to the  data disks of a
particular region will causewrites oftracks to the striped log, and then a full log read a

full read and full write of the parity for that region to effect parity reintegration. 
writes are spread out over all disks, so a uniform load is maintained if the work per da t
the work per sublog disk. That is,

 (10)

where  (Equation 3), and  (Equation 8) are the service times for a -track write and a full

log read striped over  disks, respectively ,  the number of disks in the array , and  the disk service

time for a small user write. When data caching is effective,  equals  (Equation 2). When caching

is ineffective,  equals  (Equation 11). Expanding  in Equation 10 yields a quadratic equa-

tion in whose solution is omitted here because it is unnecessarily complex. Because  is domi-

nated by transfer time ( ), we approximate this balance equation as a linear equation i

whose solution is

 (11)

Using this approximation and the disk array parameters from Figure 12, one obtains  for
blind writes (when ) and  when caching is effective (when ). Therefore, to

balance the load over all disks in a single region, the example 22 disk array must hav e
sublogs per region.

 6. SIMULA TION

To validate the analytic models presented in Sections 3 and 4 and to explore response t i
arrays, we simulated the example array described in Figure 12 under five different confi g
nonredundant, mirroring, RAID level 5, floating data and parity , and parity logging. Parity logging was
simulated with a single track of log buffer per region ( ) for several different degrees of log
striping ( ). The simulations were performed using the RAIDSIM package, a disk array simu
derived from the Sprite operating system disk array driver [Ousterhout88], which was ext e
implementations of parity logging and floating data and parity .

In each simulation, a request stream was generated by 66 user processes, an average of 
disk. Each process requests a 2KB write from a disk selected at random, waits for ackno w
from the disk array , then “thinks” for some time before issuing another request. Process think 
an exponential distribution, but the mean is dynamically adjusted until the desired system 
is achieved. If the disk array is unable to sustain the offered load, think time is 
Simulations were run until the 95% confidence interval of the response time became less tha n
mean. Because this makes all confidence intervals directly computable, the subsequent per
plots do not show them.

6.1. The Need for Log Striping

Figure 17 shows peak throughput, response time 8 and response time variance as the degree of lo g

L D T CL D T CL

N L−
T CL K⁄ K

D T CL t
z

N L−

T CL K⁄( ) tK track tCL L( )+

L
=

tK track tCL L( ) K

L N tz
tz tw

tz t rm w tCL L( )

L tCL L( )

2R T CL L

L
N

1 K D tz( ) tK track 2K R+( )⁄+
=

L 0.16N≈
t z t rm w= L 0.11N≈ t z tw=

K 1=
L



Page 16 of 25

striping  is varied from one (unstriped) to thirteen. As predicted in Section 5, when 
striped over a small number of disks, performance is substantially lower than in configur a
more widely striped logs. This behavior results from a “convoy effect” in which proce s
blocking writes queue behind very long sublog read accesses. Figure 18 shows sublog read t i
degrees of log striping. While these long accesses are efficient, they completely tie up a d
at a time. During this period, any access to the disks involved in the striped log r e
reducing the effective concurrency in the system. This concurrency reduction causes other 
array to become idle until the log read completes, reducing peak throughput and utiliz
convoy effect also has a substantial impact on response time; requests that block behind t h
requests will have very long response times, leading to an increase in both average respo n
response time variance. Fortunately , a modest degree of striping eliminates the convoy effect. Fi g
shows that striping the log over six disks achieves most of the available throughput wi t
increasing disk space overhead.

W ith convoys avoided by a log striped over six disks, Figure 19 compares the performanc e
logging array with one track buffered per region against Section 4’ s alternative organizations:
nonredundant, mirroring, RAID level 5, and floating data and parity . The graphs of this figure present
performance in terms of response time as a function of throughput. Figures 19(a)-(b) ass u
user data must be preread (data cache miss), and Figure 19(c) presents the corresponding d
no preread (data cache hit) case.

These simulation response time results may be summarized as follows. Nonredundant disk 
perform a single disk access per user write, so they have the lowest and most slowly grow i

8.  The simulations reported herein consider a user write in a parity logging array complete when the user data i s
parity update record has been buffered. The alternatives (nonredundant, mirroring, floating data and parity , and RAID level 5)
consider a user write complete when data and parity are on disk.

L( )

Figure 17(a): Peak user I/Os
Fig.  17. Parity Log Striping . Figures 17(a) and (b) show the achieved user I/Os per disk per s e
response time, and the standard deviation of the response time under peak load for various degr e
metrics improve substantially as the striping degree is increased from one (no striping) to fou r. The difference in perf o
between striping over 4 to 13 disks is slight, indicating the robustness of the technique.
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time. Mirroring shows a similar behavior , but is driven into saturation with half as much load .
contrast, each small user write in RAID level 5, when user data must be preread, sequentia l

two slow read-rotate-write accesses. 9 Unloaded system response time is thus quite high and queui n
effects cause it to grow quite rapidly with load. While the response time for parity logg i
loaded system is approximately 14 ms (one revolution) higher than mirroring because of the 
rotate-write accesses, the peak throughput and response time are quite similar . Similar to RAID level
5, floating data and parity arrays require two read-rotate-write accesses per user wr i
minimizing rotational delays, floating data and parity achieves peak throughput similar 
logging and mirroring. Response time, however , is significantly longer .

Figure 19(c) shows the performance of all configurations when data cache hits eliminate t h
prereads. As expected, this has no effect on mirrored or nonredundant systems, but im p
performance of the other three configurations. RAID level 5 benefits substantially from elim i
full rotation delay incurred by a data preread. In addition, a user ’s data write and parity update can be
issued concurrently , further improving the response time and array utilization. Floating d a
parity achieves a lesser benefit from elimination of the preread because its preread over h
less. Response time does drop, however, because of the ability to issue user write and parity u p
accesses simultaneously. The response time of parity logging improves by a full rotationa l
because of the elimination of the preread rotate, providing an unloaded response time com p

9. In a highly aggressive implementation, it is possible to initiate the parity read-rotate-write access after t h
user data completes, but we assume that no status is returned until the entire read-rotate-write access complete s

Fig.  18. Sublog Read T imes.
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Figure 19(a): Response times

Fig.  19. User Response T imes and Disk Utilization . Figures 19(a)-(c) present the average user res p
response time standard deviations as a function of the number of small random writes achieved p e
19(a) and (b) present the results when the user data must be preread, while the results in Figu r
was cached, making the preread of the user data unnecessary . In addition to reducing the amount of I/O requir e
data allows the user write and parity update to occur concurrently , significantly reducing response time for RAI D
floating data and parity . The reported times are in milliseconds. The response time standard deviation 
is essentially identical to Figure 19(b).
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nonredundant array . This also reduces the actuator time per access by nearly one third, 
throughput and response time to improve proportionately .

The variance in user response time, however , is larger with parity logging than with mirroring 
floating data and parity , although it is not as large as with RAID level 5. This results from 
structure of parity logging: most accesses are fast because inefficient work is delayed. H, some
accesses see long response times as delayed work is (efficiently) completed. W ith this higher variance in
mind, we conclude that the response time estimates in Figure 19 show that parity logging 
and much lower cost, alternative to mirroring for small-write intensive workloads.

Figure 19(b): Response time standard deviation
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Fig. 19(c): Response times without prereads
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Fig.  20. Disk Utilization at Peak Load .

RAID level 5 Floating D/P Mirroring Parity LoggingNonredundant

Preread
Required

83.7 82.8 89.7 83.5 81.1

No Preread 86.7 87.0 89.7 81.2 81.1
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6.2. Analytic Model Agreement with Simulation

The analytical model estimates in Figure 14 predict the vertical asymptotes (saturation t
of Figure 19(a) and (c). A direct comparison, however , will display significant discrepancies because o
the relatively small number of simulated processes. W ith a fixed number of requesting processes, the
deep queue of one overloaded disk can periodically go idle. Figure 20 shows the disk utili z
load for the configurations simulated. These peak-load disk utilizations differ according t
of concurrent disk accesses issued by a user write in each configuration. RAID level 5 and fl
and parity , when user data is not cached, and parity logging and nonredundant disk arrays, r
of caching, present only one disk access request at a time per process. Mirroring and th e
cases for RAID level 5 and floating data and parity keep the array busier because each user 
two concurrent disk accesses. Figure 21 shows that, when these difference are accounted fo
the model predictions of Figure 14 by the disk utilizations of Figure 20, simulation thro u
with analytic predictions to within 5%.

6.3. Performance in More General W orkloads

Up to this point, all of the analysis has been specialized for workloads whose accesses a
(2KB) random writes. This section examines a mixed workload, defined in Figure 22, mod e
statistics taken from an airline reservation system [Ramakrishnan92]. W ith this more general
workload, the results of the earlier sections are modified by two important effects: reads a
large writes. The issues encountered in extending floating data and parity to handle var
access are beyond the scope of this paper and this technique is omitted from this sectio n
other array configurations, parity logging, mirroring and RAID level 5, there is no difference in read
performance. This will have the effect of compressing the overall performance differen c
configurations. W rites that are not small, however , will hurt the performance of parity logging as 
discussed in Section 5.

Fig.  21. Model errors . This figure shows the percent error between the models of sections 3 and 4 
Section 6. The model predictions have been scaled by the achieved disk utilizations of F i
disagreement between the simulation and the models is less than 5 percent. Note that the 95% 
simulation response time is also % of the mean.5±
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Fig.  22. Airline reservation workload . The I/O distribution shown above was selected to agree with gen e
an airline reservation system [Ramakrishnan92]. This workload is reported as approximately 82% r
4.61 KB, and a median read size of 3 KB. The mean write size was larger , 5.71 KB, but the median write size was , 1.
KB. Locality of reference and overwrite percentages were not reported. All accesses are assum e
boundaries.

Type % of workload Size (KB) Type % of W orkload Size(KB)

Read 20 1 Read 20 2

Read 33 4 Read 9 24

W rite 9 1 W rite 7 8

W rite 2 24
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Figure 23 presents the results of simulations of four of the array configurations — no n
mirroring, RAID level 5, and parity logging — on this more realistic OL TP workload. W ith FIFO disk
scheduling, used throughout the rest of this paper , parity logging is always superior to RAID level 

and is equivalent to mirroring when data caching of writes is effective. 10 With CVSCAN [Geist87], all
configurations deliver higher throughput with lower average response times, but mirro r
nonredundant arrays benefit most. Nonetheless, parity logging remains superior to RAID leve l
comparable to mirroring when data caching of writes is effective.

 7. MUL TIPLE FAILURE TOLERA TING ARRA YS

A significant advantage of parity logging is its efficient extension to multiple fail u
arrays. Multiple failure tolerance provides much longer mean time to data loss and great e
for bad blocks discovered during reconstruction [Gibson92]. Using codes more powerful t h,

RAID level 5 and its variants can all be extended to tolerate  concurrent failures. Figure 24 gives an
example of one of the more easily-understood double failure tolerant disk array organizati o
dimensional parity and the more familiar one dimensional parity used in the rest of thi
called binary codes because a particular bit of the parity depends on exactly one bit from 
subset of the data disks. If, instead, generalized parity (check information) is computed 

10. Our simulations do not explicitly model a disk or file cache. W e consider accesses satisfied in such a cache to not contri b
ute to the disk array workload. Cache write hits are special-cased because the disk access is modified by the a v
prior data values.

Fig.  23. Airline reservation simulation.  Shown above are the results of simulation using the access s
Figure 22. The access distribution is uniform throughout the 22 disk array (Figure 12). For all 
size was 24KB, so no access spans more than a single drive. For RAID level 5 and parity logging
the case where all writes are blind, and when the old data for all writes is cached (no prere a
scheduling improves throughput and response of all workloads, mirrored and nonredundant disk a r
since seek time is a larger proportion of their underlying I/Os.
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bit symbol, dependent on a multiple-bit symbol from each of a subset of the data disks, th
a non-binary code  [Macwilliams77, Gibson92]. Non-binary codes can achieve much lower ch e
information space overhead in a multiple failure tolerating array . In particular , a variant of a Reed-

Solomon code called “  Parity” has been used in disk array products to provide double f
tolerance with only two check information disks [A TC90].

This paper is not concerned with the choice of codes that might be used for -failure tolerance, except
to note that the best of these codes all have one property important to small random write 

[Gibson89]: each small write updates exactly  disks — disks containing check information
(generalized parity) and the disk containing the user ’s data. This check maintenance work, which
scales up with the number of failures tolerated, is exactly the work that parity logging 
handle more efficiently .

Multiple failure tolerating parity logging disk arrays arise as a natural extension of m
tolerating variants of RAID 5. As with single failure tolerating parity logging, the u n

array is augmented with a log. However , to maintain -failure tolerance, the log itself must be ( )-

failure tolerant. One way to achieve ( )-failure tolerance is to replicate the log  times. Figure 25
shows one region of a double-fault tolerant parity logging disk array based on a nonbinary 
“P+Q Parity .”

The log management cycle is quite similar to that of a single fault tolerant parity logg .
When a region’ s log buffers fill up, the corresponding parity update records are written once i

the  logs. When these logs fill up, one copy of the log is read into the reintegration bu f, along with
the check information for the region. The updated check information is then rewritten, all 
truncated, and the logging cycle starts again.

Mirroring and floating data and parity also extend to multiple failure tolerance in str a

manner. Mirroring becomes -copy shadowing [Bitton88]. Floating data and parity becomes float

data and check, requiring  “floated” read-rotate-write accesses per blind write.
The overhead associated with maintaining check information can be divided into two com p

preread bandwidth overhead and nonpreread bandwidth overhead. The bandwidth needed to pre
the old copy of the user ’s data is independent of the number of failures to be tolerated. Non p
bandwidth, the disk work done to update the check information given a data change, grow s
with the number of failures to be tolerated. Parity logging has the smallest cost for thi s, linearly
growing component of check maintenance overhead because all check information accesses (
generalized parity) are done efficiently .

Figure 26 shows the maximum rate that small random writes can be completed in zero, 

P Q+

Disk 0

Disk 5

Disk 3

Disk 2

Disk 7

Disk 5

Disk 1

Disk 6

Disk 4

Parity

Parity

Parity

Row 0

Row 1

Row 2

Parity
Column 2

Parity
Column 1

Parity
Column 0

Fig.  24. Two dimensional parity . One disk array organization that achieves double failure toleranc e
parity . Parity disks hold the parity for the corresponding row or column. In the example above, t
holds the parity of disks 0, 3 and 5. Similarly , the parity disk for row 0 holds the parity of disks 0, 1 a n
in a data disk is written, the corresponding units in both row and column parity disks are also 
1, in the example above, would require updating the parity on the shaded parity disks, parity r o

f

f 1+( ) f

f f 1−
f 1− f

f

f

f



Page 22 of 25

double, and triple failure tolerating arrays using mirroring, RAID level 5, floating data a
parity logging. This data is derived from the models of sections 3 and 4 and applied to th e
array of figure 12. .

The maximum I/O rate of the parity logging array declines more slowly than the other con fi
because parity logging has a substantially lower nonpreread overhead. For example, wh i
failure tolerating parity logging arrays should sustain about 35% of the I/O rate of n
arrays for random small writes, quadruplicated storage (triple failure tolerating mirrorin g
will sustain only 25%.

 8. ACC OMMODA TING THE RAID LEVEL 5 LARGE WRITE OPTIMIZA TION

In parity-based disk arrays, a large write operation, which is defined as a write that u p
data units associated with a particular parity unit, can easily be serviced more efficient l
write operation. Since all data units in the stripe are updated, the new parity can be 
memory from the new data and written directly to the parity unit. This “large write op
avoids the preread of data and parity associated with small writes, improving write per f
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Fig.  25.  A parity-logging array that uses a nonbinary code to achieve double-fault tolerance. By using nonbin a
codes, disk arrays can achieve double failure tolerance with only two disks of check data. Show n
double fault tolerant parity logging disk array with nonbinary check information. The parity of a
replaced with two sets of check information. The shaded area shows an example pair of check info r
blocks that they protect.

To achieve double fault tolerance in such a parity logging array , the striped log for each region is dup l
picture above, each log is striped over two disks. Note that the contents of this duplicate d
associated with a particular copy of the check information.
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with the number of failures tolerated, parity logging declines the least, decreasing in perform a
failure tolerated. The highest performing alternative, mirroring, has a huge disk space overhe a
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data and parity both decline rapidly , achieving less than 10 user writes per second in the triple fail u
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about a factor of four [Patterson88].
This optimization can not be applied directly to parity logging disk arrays as we have d e

so far because there may exist outstanding (not yet reintegrated) logged updates for a par t
unit at the time when a large write overwrites that parity unit. If these logged updates 
and a parity overwrite were done, the parity could be erroneously updated with the st
updates when reintegration occurs. This problem can be corrected by placing the new parity 

instead of writing it directly to disk. 11 Parity placed in the log by a large write operation is marke d
special “overwrite” record, and the reintegration process, which normally XORs each log re c
corresponding parity unit, now distinguishes between a normal “update” log record and 
overwrite record. Update records are XORed into the accumulating parity unit, while overwr i
are simply copied in.

This approach has the disadvantage of forcing the log to be processed sequentially r
concurrently . If the log were guaranteed to contain only update records, the log records coul
to the parity image in any order , increasing parallelism. The existence of overwrite records for c
reintegration process to determine the sequence in which the log updates occurred and to a p
records accordingly .

This new sequentiality constraint potentially lengthens the reintegration time, which, 
will show , can substantially degrade performance at high loads. In the simplest case, a r es logs
must be in read in the order they were written and merged to produce a update/overwrite im
any of the parity is processed. Given sufficient buffer memory for a region’ s parity and log, full
parallelism could be achieved during the log and parity reads, but the application of l
would still have to be deferred until these reads complete. At this point, a sequenti a
reintegration could be performed. However , as long as log buffers are written to sublogs in a r o
robin fashion, it is reasonable to assume that parallel sublog reads will return parity r e
sequential order . Based on this observation and because overwrite records eliminate al l
information, the following highly parallel algorithm can be used. Each block in the reinte g
is initially zeroed and marked “non-overwrite”. Parity and log for the target region a r
parallel. A parity block is applied if the corresponding buffer is marked “non-overwrite,”
if the buffer is marked “overwrite.” If a logged record is an update and the block is “n o
the record is XORed in, but is buffered until all earlier log records have been processed. 
an overwrite, the target block is overwritten and marked as “overwritten by record X.” A
updates that have already been applied should occur after this overwrite are reapplied. O
update records preceding X are not applied to a block marked “overwritten by X.” As long 
reads on different sublogs proceeded at nearly the same rate, this algorithm will not c o
extra buffer space. If buffer exhaustion occurs, the algorithm can simply serialize.

 9. RELA TED WORK

 Bhide and Dias [Bhide92] have independently developed a scheme similar to parity loggi
LRAID-X4 organization maintains separate parity and parity-update log disks, and periodica l
the logged updates to the parity disk. In order to allow writes from the user to occur in p
reintegration, they duplicate both the parity and the parity log for a total of four o
LRAID-X4 does not distribute parity or log information. Instead of breaking down the lo g
regions to reduce the required storage in the controller , LRAID-X4 sorts buffered parity updates in
memory according to the parity block to which they apply . This allows LRAID-X4 to write a “run” of
updates for ascending parity blocks to a log disk. When this log disk is full, further up d
into runs and written to the second log disk while the first log disk reintegrates its up d
parity by reading from one parity disk and writing to the other . The reintegration of a full log disk use
an external sorting algorithm to collect subsequences applying to one area of parity fro m
the log disk. If this area is large, all log reads and parity reads and writes will be effi c

LRAID-X4 reaches its performance maximum of 34.5 writes per disk per second with 20 di
data, 2 parity , 2 log) for a 100% write workload with 5% of a disk’ s worth of memory [Stodolsky93].
Additional disks do not increase performance. In comparison, the parity logging disk array 
Section 6, whose controller requires about 2% of a disk’ s worth of memory , is predicted to achieve 36.7
I/Os per disk per second in Section 3 on the same workload, and its performance continues 

11. An alternative way to correct the problem is to write the new parity directly to disk and place a “cancel” 
The reintegration process would then discard all previous log entries for the identified parity unit when it detec t
This solution has the potential to reduce the log traffic by making cancel records only a few bytes in size.
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with increasing numbers of disks.
Less closely related research efforts can be characterized by their use of three techn i

frequently exploited to improve throughput in disk arrays: write buffering, write-twice, 
location.

W rite buffering delays users’ write requests in a large disk or file cache to achieve dee p
can then be scheduled to substantially reduce seek and rotational positioning overheads 
Solworth90, Rosenblum91, Polyzois93]. Data loss on a single failure is possible in these s y
fault-tolerant caches are used.

The write-twice approach attempts to reduce the latency of writes without relying on fa u
caches. Similar to floating data and parity , several tracks in every disk cylinder are reserved, an d
allocation bitmap is maintained. When a write is issued, the data is immediately written ( t
self-identifying manner) to a rotationally close empty location in a reserved track, ma k
durable. The write is then acknowledged, but the data is retained in the host or co n
eventually written to its fixed location. When the data has been written the second 
corresponding bit in the allocation bitmap is cleared. While significant memory may be requ i
allocation bitmaps, mapping tables, and write buffers, this storage is not required to be 
limiting controller cost. W rite-twice is typically combined with one of the write buffering tech n
improve the efficiency of the second write. This technique has been pursued most fully fo
systems [Solworth91, Orji93].

The floating location technique improves the efficiency of writes by eliminating the stati c
of logical disk blocks and fixed locations in the disk array . When a disk block is written, a new locatio n
is chosen in a manner that minimizes the disk arm time devoted to the write, and a new p h
logical mapping is established. W e have described one such scheme, floating data and parit y
[Menon92], in this paper . An extreme example of this approach is the log structure filesystem (L F
which all data is written in a segmented log, and segments are periodically reclaimed 
collection [Rosenblum91]. Using fault-tolerant caches to delay data writes, this approac h
writes into long sequential transfers, greatly enhancing write throughput. However , because logically
nearby blocks may not be physically nearby , the performance of LFS in read-intensive workloads ma y
be degraded if the read and write access patterns differ widely . The distorted mirror approach
[Solworth91] uses the 100% storage overhead of mirroring to avoid this problem: one copy o f
is stored in fixed location, while the other copy is maintained in floating storage, achievi n
throughput while maintaining data sequentiality [Orji93]. However , all floating location techniques
require substantial host or controller storage for mapping information and buffered data.

 10. CONCLUDING REMARKS

This paper presents a novel solution to the small write problem in redundant disk arrays 
distributed log. Analytical models of the peak bandwidth of this scheme and alternativ e
literature were derived and validated by simulation. The proposed technique achieves su b
better performance than RAID level 5 disk arrays on workloads emphasizing small random a c
When data must be preread before being overwritten (writes miss in the cache), parity logg i
performance comparable to floating parity and data without compromising sequential a
performance or application control of data placement. When the data to be overwritten 
performance is superior to floating parity and data and mirroring array configuratio n
performance is obtained without the 100% disk storage space overhead of mirroring. The t
scales to multiple failure tolerating arrays and can be adapted to accommodate the l
optimization.

While the parity logging scheme presented in this paper is effective, several optimizati
explored. More dynamic assignment of controller memory should allow higher performance 
achieved or a substantial reduction in the amount of memory required. Application of data c
to the parity log should be very profitable. The interaction of parity logging and parit y
[Holland92] merits exploration. Parity declustering provides high performance during degr a
and reconstruction while parity logging provides high performance during fault-free ope r
combination of the two should provide a cost-effective system for OL TP environments.
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