
Automated Diagnosis of Chronic Performance

Problems in Production Systems

CMU-PDL-13-109

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Soila P. Kavulya

B.S., Computer Science, University of Nairobi

M.S., Computer Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, PA

May 2013



To my parents, Fred and Anne Pertet, and my husband, Geoffrey Kavulya,

who supported me each step of the way.

To my teachers, who broadened my horizons. Asanteni sana.



Abstract

Large production systems are susceptible to chronic performance problems where the sys-

tem still works, but with degraded performance. Chronic performance problems occur in-

termittently or affect a subset of end-users. Traditional approaches for diagnosis typically

rely on a bottom-up approach that localizes problems by correlating low-level alarms (such

as resource utilization indicators or network packet loss) across components in a production

system. However, these alarm-correlation approaches fall short when diagnosing chron-

ics because they fail to provide the necessary application-level visibility to detect chronics

effectively. Due to the scale and complexity of production systems, there can be multiple

unresolved chronics at any given timetheir symptoms often overlap with each other, and

they are sometimes triggered by complex corner cases.

This dissertation presents a top-down diagnostic framework for diagnosing chronic per-

formance problems in production systems. The framework comprises of four components.

First, an extensible log-analysis framework that extracts end-to-end causal flows using com-

mon white-box (i.e., application) logs in the production system; these end-to-end flows

capture the user’s experience with the system. Second, anomaly-detection tools exploit

heuristics and a peer-comparison approach to label each end-to-end flow as successful or

failed. Third, a top-down statistical diagnostic tool combines white-box metrics with black-

box metrics (e.g., CPU usage) to localize the source of the problem by identifying attributes

that are more correlated with failed flows than successful ones. Fourth, a visualization tool

that uses peer-comparison to highlight anomalous nodes in a parallel-computing cluster.

The diagnostic framework has been used to localize real incidents at an academic cloud-

computing cluster that runs the Hadoop parallel-processing framework, and a production

Voice-over-IP system at a major Internet Services Provider. Our approach is not limited to

these two systems and is applicable to systems such as Internet Services that serve users

via independent interactions.

iv



Kidole kimoja hakivunji chawa.

One finger cannot kill a louse.

(Teamwork is necessary when solving problems.)

Swahili Proverb

Acknowledgments

I stumbled on the field of computer science quite by accident when a team of instructors

from Strathmore College in Kenya visited my high school and gave a fascinating talk on the

subject. Prior to that, I had dreamed of becoming a zoologist because of fond memories of

going on safari with my family. Since that first introduction to computer science, numerous

people and experiences have shaped my academic career. This thesis would not have been

possible without their support. While it would be impossible to provide a complete list

of all the people who have influenced this dissertation, what follows is my best effort to

express my sincere gratitude to those who have shaped this research.

First and foremost, I would like to express my gratitude to my parents, Fred and Anne

Pertet, who have always supported me and sacrificed a lot to ensure that I got the best

education. My loving husband, Geoffrey Kavulya, who has supported me every step of the

way. My dear brothers, Kasaine and Emmanuel Ole Pertet, and my extended family, Lucy

Pertet, Rosemary, Bernice and Ken Kavulya for their love and support.

My dissertation advisor, Priya Narasimhan, was instrumental in developing this the-

sis. Throughout my career as a graduate student, her constant support, enthusiasm for

research, and depth of knowledge have been invaluable in shaping both my professional

and personal life. Priya introduced me to fault-tolerant middleware systems, and whole-

heartedly supported my decision to change my research topic to focus on problem diagnosis

in distributed systems. She facilitated collaborations with industry partners so that I could

better understand the challenges they faced during problem diagnosis. These collabora-

tions helped me discover interesting problems and develop practical solutions to advance

the state-of-the-art. My writing and presentation skills have also greatly improved under

her guidance.

My committee members, Gregory R. Ganger, Christos Faloutsos, and Matti Hiltunen,

provided me with invaluable feedback on scoping my thesis. Their careful reading and

v



ACKNOWLEDGMENTS vi

thoughtful comments greatly helped to improve the overall quality of my thesis. Philip

Koopman and Raj Rajkumar taught me about distributed systems, and were always avail-

able to provide sound advice. Roy Maxion taught me everything I know about experimen-

tal methods. My undergraduate advisors at the University of Nairobi, Peter W. Wagacha

and Katherine Getao, introduced me to machine-learning and supervised my first research

project.

My work on understanding complex systems would not have been possible without ac-

cess to production systems, especially to the instrumentation data that they generate. I am

indebted to Matti Hiltunen, Kaustubh Joshi, and Scott Daniels from AT&T Labs Inc., who

collaborated with me to develop the algorithm for diagnosing chronic performance prob-

lems in large distributed systems. They provided me with access to logs from a production

VoIP system that handled 10s of millions of calls each day, and championed the adoption of

our diagnosis tool into the daily workflow of the operations team at the production system.

I thank the system administrators of the Yahoo! M45 cluster and the OpenCloud comput-

ing cluster for providing me with access to Hadoop logs. I would especially like to thank

Mitch Franzos, Michael Stroucken, Zisimos Economou, and Kai Ren for all the help they

provided on the OpenCloud cluster.

I have been fortunate to collaborate with other brilliant researchers during my PhD. Jiaqi

Tan, Xinghao Pan, Michael P. Kasick, Elmer Garduno, Eugene Marinelli, Nathan Mickulicz,

and Rajeev Gandhi were instrumental in developing our peer-comparison approach for

problem diagnosis and visualization. Arun Ganesany, Ben Gotow, James Mulhollandy, Sri-

ram Ramasubramaniany, Mark Shuster, and Jason Campbell helped with the Hadoop user

study. Raja Sambasivan, Ilari Shafer, Tudor A. Dumitras, Joseph G. Slember, and Rolando

Martins were always available to participate in interesting discussions, and to provide feed-

back on my research.

My first internship at General Motors Research Lab taught me about developing de-

pendable drive-by-wire systems. I would like to thank Thomas E. Furhman, Alan Baum,

Sanjeev M. Naik, and Pradyumna K. Mishra from General Motors for giving me the oppor-

tunity to work on a fascinating research problem, and for my first joint patent with Sanjeev

and P. K. I also thank Patrick E. Lanigan, Kunal Mankodiya and Utsav Drolia for our joint

work on problem diagnosis in autonomous vehicles. My second internship at HP Labs with

John Wilkes and Jay Wylie introduced me to service oriented architectures, which rely on



ACKNOWLEDGMENTS vii

economic pressures to drive automated management decisions. John Wilkes also provided

advise on my thesis topic.

Lynn Philibin, Elaine Lawrence, Karen Lindenfelser, Joan Digney, Samantha Goldstein,

and Reenie Kirby provided the administrative support that ensured that my graduate stud-

ies went smoothly. They treated me with warmth and kindness, and helped me navigate

through my studies at CMU.

My close friends, Alice Muiruri, Maggie Johnson, Katherine Gacharia, Rachel Syombua,

and Mwiyeria Mucuha who have kept me grounded. The Kenyan community in Pitts-

burgh, particularly Isaac Kivuva and Catherine Mutunga, for providing me with a home

away from home. Gary Denning for his advice and constant encouragment.

During my dissertation research, I received financial support from the NSF CAREER

Award CCR-0238381, the DARPA PCES contract F33615-03-C-4110, the TRONE project

CMUPT/RNQ/0015/2009, the General Motors-Carnegie Mellon Autonomous Driving

Collaborative Research Lab, the Intel Science and Technology Center for Cloud Computing

(ISTC-CC), as well as Carnegie Mellon’s CyLab and Parallel Data Lab.



Contents

1 Introduction 1

1.1 Challenges in Diagnosing Chronics . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Applying Approach to Different Systems . . . . . . . . . . . . . . . . . . . . 10

1.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Work 13

2.1 Rule-based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Model-based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Statistical Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Tracing and Visualization Techniques . . . . . . . . . . . . . . . . . . . . . . 26

3 Workload Characterization 28

3.1 Target Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Characterization of Hadoop Workloads . . . . . . . . . . . . . . . . . . . . . 33

3.3 Prevalence of Chronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Anecdotal Evidence of Chronics in VoIP . . . . . . . . . . . . . . . . . . . . . 47

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 White-box Analysis 52

4.1 State-Machine Abstraction for Log Analysis . . . . . . . . . . . . . . . . . . . 56

4.2 Extensible Log-analysis Framework . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 End-to-end Flows in VoIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



CONTENTS ix

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Anomaly Detection 68

5.1 Peer-comparison for Anomaly Detection . . . . . . . . . . . . . . . . . . . . . 70

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Problem Localization 79

6.1 Scalable Anomaly Score Computation . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Attribute Group Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Architecture and Design of Diagnosis Engine . . . . . . . . . . . . . . . . . . 87

6.4 Fusing Black-box Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Why does it work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Experimental Evaluation 93

7.1 Impact of Knowledge of Dependencies . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Impact of Fusion of White- and Black-box Metrics . . . . . . . . . . . . . . . 98

7.3 Impact of Fault Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Impact of Multiple Ongoing Problems . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Impact of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.6 Benchmarking Against Existing Algorithms . . . . . . . . . . . . . . . . . . . 103

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Case Studies 109

8.1 Hadoop Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2 VoIP Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3 Performance of Problem Localization . . . . . . . . . . . . . . . . . . . . . . . 116

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Problem Visualization 118

9.1 Visual Signatures for Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.2 Visualizations and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3 Visualization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



CONTENTS x

10 Conclusion 133

10.1 Open Questions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 139



List of Figures

1.1 Multiple ongoing problems at a production VoIP system . . . . . . . . . . . 3

1.2 Persistent chronic problem at a production VoIP system . . . . . . . . . . . . 4

1.3 Overview of diagnostic framework . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Implementation of MapReduce in Hadoop. . . . . . . . . . . . . . . . . . . . 29

3.2 An example of a VoIP call flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Screenshot from Ganglia monitoring tool . . . . . . . . . . . . . . . . . . . . 35

3.4 Screenshot of the Hadoop web interface . . . . . . . . . . . . . . . . . . . . . 36

3.5 Probability density function of Hadoop job durations . . . . . . . . . . . . . 41

3.6 Error latencies for Hadoop jobs . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Swimlane graph charting progress of tasks in Hadoop job . . . . . . . . . . 43

3.8 Multiple chronics present in a single network element in VoIP system. . . . 48

4.1 Overview of white-box analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Inferring end-to-end causal flows . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 log4j-generated TaskTracker log entries . . . . . . . . . . . . . . . . . . . . 58

4.4 log4j-generated DataNode log with task dependencies. . . . . . . . . . . . 59

4.5 log4j-generated DataNode log without task dependencies. . . . . . . . . . 59

4.6 Deriving control-flows from Hadoop’s white-box logs . . . . . . . . . . . . . 60

4.7 Extracting attributes of interest from Hadoop logs. . . . . . . . . . . . . . . . 61

4.8 Derived Control-Flow for Hadoop’s execution . . . . . . . . . . . . . . . . . 62

4.9 Examples of end-to-end Hadoop flows generated by log-analysis framework 64

4.10 Derived Control-Flow for Hadoop’s execution . . . . . . . . . . . . . . . . . 65

4.11 Derived Control-Flow for VoIP call flows . . . . . . . . . . . . . . . . . . . . 66

5.1 Overview of anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



LIST OF FIGURES xii

5.2 Strategies for anomaly-detection . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Example of peer-comparison of Map tasks scheduled across M45 hosts. . . . 71

5.4 Example of variance in the durations of tasks in a Hadoop job. . . . . . . . . 75

5.5 Example of anomalous Hadoop tasks detected using linear-regression. . . . 76

5.6 Labeled end-to-end flows generated by anomaly detection. . . . . . . . . . . 77

6.1 Overview of problem localization . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Computing anomaly score for individual attributes . . . . . . . . . . . . . . 82

6.3 Ranking combinations of attributes correlated with problems . . . . . . . . 83

6.4 Architecture of problem-localization engine . . . . . . . . . . . . . . . . . . . 86

6.5 Data structures that support problem-localization’s scalable design . . . . . 86

6.6 Screenshot of problem-localization user interface . . . . . . . . . . . . . . . . 88

6.7 Identifying black-box metrics most correlated with failures . . . . . . . . . . 90

7.1 Histograms of Map durations at successful and faulty nodes. . . . . . . . . . 96

7.2 Benchmarking effectiveness of peer-comparison approaches . . . . . . . . . 97

7.3 Effect of varying fault probability on diagnosis . . . . . . . . . . . . . . . . . 100

7.4 Effect of varying combination, and number of faults on diagnosis . . . . . . 102

7.5 Effect of noise on problem localization . . . . . . . . . . . . . . . . . . . . . . 103

7.6 Influence of ratio of failed to successful call on decision-tree performance . 104

7.7 Benchmarking our approach against Pinpoint and Spectroscope-mod . . . . 105

7.8 Benchmarking effect of complex failure modes on Pinpoint and

Spectroscope-mod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.1 Percentage of failed and anomalous Hadoop tasks over a 2-week period . . 110

8.2 Diagnosis of Quality of Service (QOS) violation in VoIP system . . . . . . . 114

8.3 Localizing resource-usage problems in VoIP network . . . . . . . . . . . . . 115

9.1 Overview of problem visualization . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2 Visual signature of an infrastructural problem using anomaly heatmap . . . 125

9.3 Visual signature of an application-level problem using anomaly heatmap . . 125

9.4 The job-execution stream visualization compactly displays information

about a job’s execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.5 Visual signature of bugs in the Map phase . . . . . . . . . . . . . . . . . . . . 127



LIST OF FIGURES xiii

9.6 Visual signature of bugs in the Reduce phase . . . . . . . . . . . . . . . . . . 127

9.7 Visual signature of data-skew . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.8 Visual signature of infrastructural problem affecting several jobs . . . . . . . 128

9.9 Job-execution detail visualization highlighting both the progress of tasks

over time, and the volume of data processed . . . . . . . . . . . . . . . . . . 129

9.10 Alternative visual signature of data-skew . . . . . . . . . . . . . . . . . . . . 130

9.11 Alternative Visual signature of an infrastructural problem . . . . . . . . . . 130

9.12 Interactive User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Tables

1.1 Contributions of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Summary of Diagnosis Techniques . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Comparison of target systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Summary of M45 and Opencloud Hadoop job traces. . . . . . . . . . . . . . 39

3.3 Variance in Hadoop job durations . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Variance in Hadoop error latencies . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Variance in Hadoop task durations . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Prevalence of problems in OpenCloud issue tracker. . . . . . . . . . . . . . . 45

3.7 Prevalence of problems in OpenCloud issue tracker. . . . . . . . . . . . . . . 46

3.8 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 A Generic Call Detail Record (CDR) in the VoIP system . . . . . . . . . . . . 65

5.1 Peer-comparable properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Application-level attributes that influence task durations in Hadoop . . . . 74

6.1 Examples of metrics extracted from black-box logs . . . . . . . . . . . . . . . 89

7.1 Summary of benchmarking approaches for Hadoop and VoIP . . . . . . . . 94

7.2 Injected faults in Hadoop, and the reported failures that they simulate . . . 95

7.3 Impact of fusion of white-box and black-box metrics on diagnosis . . . . . . 98

8.1 Examples of chronics at the production VoIP system . . . . . . . . . . . . . . 112

8.2 Performance of problem-localization tool . . . . . . . . . . . . . . . . . . . . 116

9.1 Heuristics for developing visual signatures of problems in Hadoop . . . . . 120

xiv



LIST OF TABLES xv

9.2 Metrics used for Hadoop visualizations . . . . . . . . . . . . . . . . . . . . . 124

9.3 Problems diagnosed by cluster-level and job-level visualizations . . . . . . . 131



Whenever you can, count.

J. R. Newman (ed.), Commentary on Sir Francis Galton, 1956

Chapter 1

Introduction

THE use of large-scale distributed systems in production systems has become increas-

ingly popular due to advances in cloud-computing and network technologies that

have lowered the barrier to entry for businesses. Businesses often rely on these large-

scale distributed systems to support Internet and telecommunication services such as e-

Commerce, VoIP and business analytics. The evolution of these large distributed systems

into entire platforms that provide dozens of distinct services to millions of users requires

rethinking classic notions of availability as a binary property. Production systems are en-

gineered for high-availability, and are rarely simply “up” or “down”; even when they are

working for an overwhelming majority of users, there are almost always multiple ongoing

problems of different types that affect small subsets of users or requests. Often, the symp-

toms of each individual problem are not big enough to trigger alarm thresholds, and thus

they fly under the radar of operations teams that are geared towards major outages.

We call such problems chronicsperformance degradations or failures that are perceiv-

able by end-users, and that affect small subsets of end-users or requests. Chronic perfor-

mance problems have also been referred to as partial outages or brownouts in Internet ser-

vices [Kiciman, 2005]. Chronics can occur repeatedly but unpredictably for short durations

of time, or persist for days or even weeks, affecting small subsets of users all the time. Al-

though small individually, cumulatively, chronics contribute significantly to the degrada-

tion of the user experience. [ExtraHop.com, 2011] estimates that for every reported major

outage, there are hundreds or even thousands of chronics. Our analysis of problems in

Hadoop clusters corroborates the pervasiveness of chronics in production systems where

chronics accounted for 78% of reported issues (see Table 3.6). Anecdotal evidence obtained

1



CHAPTER 1. INTRODUCTION 2

from a production Voice-over-IP (VoIP) platform at a major Internet Service Provider (ISP)

also revealed that even in the worst month for major outages, chronics accounted for 43%

of failed (i.e., dropped or blocked) calls.

The discovery and diagnosis of never-before seen chronics in production systems com-

prising thousands of network, server, and user elements poses new challenges compared

to the diagnosis of major system outages. Threshold-based techniques [Mahimkar et al.,

2009; Cohen et al., 2005; Bodik et al., 2010] do not work well because lowering thresholds

to detect chronics often increases the number of false positives. Long-running persistent

chronics can get absorbed into a system’s definition of “normal”, thus posing problems for

methods based on historical models [Kandula et al., 2009] or change-point detection [Agar-

wal et al., 2006]. Isolating individual problems is also more difficultdue to their persistent

nature, lots of chronics are often present in a system at once, all starting and ending at dif-

ferent times, with larger problems hiding smaller ones. Furthermore, they occur even when

the system works well for most users, and cannot be diagnosed by isolating the system’s

execution into periods of “good” and “bad” behavior [Sambasivan et al., 2011; Oliner et al.,

2010]. Finally, chronics may involve some unexpected combination of corner-cases that

impact only small subsets of users, e.g., a configuration error that impacts only those users

with a particular version of a software stack, or a performance degradation that occurs only

when the load on a particular server temporarily increases beyond a certain threshold.

Therefore, production systems require diagnosis techniques that can scalably analyze a

wide range of data sources from many elements of different types, from different vendors,

often in the form of partially-structured logs with widely differing formats. To capture the

user-visible symptoms of chronic problems, these diagnosis techniques need to adopt a top-

down view of the system that captures the user’s experience as their request traverses across

the interconnected components within the service provider’s network. Furthermore, any

technique must be both accurate and timely. Anomaly detection techniques such as [Yemini

et al., 1996; Oliner et al., 2010] that detect problems based on low-level events such as indi-

vidual log alarms or resource utilization charts can suffer from a high false positive rates

when diagnosing chronics because anomalies in low-level events do not always correlate

to end-user issues. On the other hand, failing to detect problems until customers complain

leads to lost or dissatisfied customers, damage to the company’s reputation, and possible

impact on the company’s stock price.



CHAPTER 1. INTRODUCTION 3

Fa
ile

d 
ca

lls
 fo

r
tw

o 
cu

st
om

er
s

Fa
ile

d 
ca

lls
 fo

r
ne

tw
or

k 
el

em
en

ts

Incident 1: Persistent problem, complex trigger

Incident 2: Multiple problems exist
An unrelated chronic

server problem emerges Problematic server reset

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Chronic nightly problem due to unsupported fax codec

Customers stop using
unsupported fax codec

Figure 1.1. Multiple ongoing problems at a production VoIP system. These problems affected calls passing

through the same network element at the production VoIP system.

1.1 Challenges in Diagnosing Chronics

Diagnosing chronic performance problems in production systems is challenging. Chronic

performance problems can occur for a variety of reasons such as misconfigurations at the

customer-site that affect some, but not all, requests made by the customer. These problems

persist until the customer fixes their configuration. Increases in system workload can also

cause regularly occurring chronics (e.g., during peak business hours). Such problems may

be due to under-provisioning of resources within the service provider’s network, or cus-

tomers exceeding their resource caps (e.g., number of concurrent calls in a VoIP system).

Equipment failures such as a bad row of memory or a bad disk can also cause intermittent

failures. Operators could ignore these problems if they were one-off incidents. However,

the recurrent nature of these problems negatively impacts customer satisfaction over time.

We illustrate the challenges faced when diagnosing chronics by using examples of real

incidents experienced in a production Voice-over-IP system [Kavulya et al., 2012a]. Fig-

ure 1.1 shows actual instances of chronic problems in the service provider’s logs that were

discovered using our diagnosis approach. In the first incident, the recurrent increase in

defects during night hours was traced to two different business customers, who were at-

tempting to send faxes overseas using unsupported codecs during US night time. In the

second incident, an independent problem with a specific network element arose and per-



CHAPTER 1. INTRODUCTION 4

Day 1 Day 5 Day 10 Day 15 Day 20 Day 25
Fa

ile
d 

ca
lls

 fo
r

tru
nk

 g
ro

up

Incident 3: Persistent problem at trunk group
Chronic problem accounts for
2-3% of failures at trunk group

Problem resolved

Figure 1.2. Persistent chronic problem at a production VoIP system. The chronic problem persisted for

several weeks making it difficult to detect using change-points.

sisted until the network element was reset. Figure 1.2 shows a persistent chronic problem

due to two blocked CICs (Circuit Identification Codes) on the trunk group that affected

calls assigned to these blocked CICs in a round-robin manner. At peak, 2–3% of the calls

passing this trunk group would fail. After those CICs were unblocked, the total defects

associated with this error code were reduced by 80%.

These incidents highlight the challenges faced when diagnosing chronics namely:

1. Chronics can fly under the radar. Chronics occur sporadically, or affect a small sub-

set customers, and thus may not trigger any threshold-based alarms. In the incidents

shown in Figures 1.1 and 1.2, the defect rate observed by the customers was a fraction

of one percent. Setting thresholds to detect these problems is notoriously difficult

because lowering the thresholds to detect chronics would increase the number of

spurious alarms.

2. Performance variations. Variance in production systems can occur due to legitimate

sources (e.g., hardware and load differences) or illegitimate sources (e.g. bugs, mis-

configurations, resource contention, hardware failures). High-variance complicates

the task of setting thresholds for problem detectionsetting higher thresholds (or

confidence levels) results in higher false negatives, while setting lower thresholds

results in higher false positives [Sambasivan and Ganger, 2012a].

3. Persistent problems. Some problems, occur only for short durations of time, and

could be discovered by change-detection algorithms. However, other problems per-

sist for long periods of time as shown in Figure 1.2. Algorithms that rely on change-

point detection methods [Agarwal et al., 2006] or those that rely on historical mod-

els [Kandula et al., 2009] would fail to detect these problems.



CHAPTER 1. INTRODUCTION 5

4. Multiple independent problems. Because chronics often persist for long periods

of time before they are discovered, there are usually many of them ongoing at the

same time. Figure 1.1 shows multiple ongoing problems in the VoIP system that af-

fected calls passing through the same network elementone related to two different

business customers, and one related to the network element.

5. Complex triggers. Chronics often involve only a small subset of user interactions

because they are triggered by some unforeseen corner case arising due to a combi-

nation of factors. For example, certain chronics arise due to a conflict between the

configuration at the customer’s premises, and the ISP’s server. To effectively debug

these problems, operators need to know both the server configuration, and the sub-

set of customers affected.

6. Scale. Production environments can have hundreds or thousands of nodes. Opera-

tors can be daunted by the prolific amount of monitoring available in these systems

and they might not always know where to look when things go wrong.

7. Labeled failure-data not always available. Chronics can arise due to unforeseen

problems (such as failed upgrades) that would not be addressed by techniques that

rely on signatures of known problems [Cohen et al., 2005; Bodik et al., 2010].

8. Desired level of instrumentation might not be possible. Operators have to use as-

is vendor instrumentation over which they have limited control. The cost of adding

extra instrumentation might be high. In addition, the instrumentation in production

systems might be diverse with different log formats. The diagnosis technique needs

to cope with the diverse instrumentation sources available in production systems.

1.2 Thesis Statement

This dissertation explores the following hypothesis:

Diagnosis of chronic performance problems in production systems is possible through

the analysis of common white-box logs to extract local behavior and system-wide depen-

dencies, coupled with the analysis of common black-box metrics to identify the resource

at fault.

Specifically, this dissertation presents a holistic framework for diagnosing chronics in

production systems that relies on a suite of statistical tools to detect user-visible symptoms



CHAPTER 1. INTRODUCTION 6

list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

end-to-end 
flows 

labeled  
end-to-end flows 

normalized black-
box metrics 

anomalous nodes 

Figure 1.3. Overview of diagnostic framework. The diagnostic framework comprises of a suite of tools that

analyze white- and black-box data to localize the source of chronic performance problems.

of problems (e.g., slow requests), and drill-down on the source of the problems by ana-

lyzing unmodified white-box (i.e., application-level) and black-box (i.e., system-level) logs.

The use of unmodified logs makes our framework amenable for use in production systems

where we may not have the luxury of modifying existing instrumentation. Our diagnos-

tic framework comprises of the five stages illustrated in Figure 1.3. First, an extensible

log-analysis framework analyzes white-box logs to infer system dependencies, and con-

struct end-to-end causal flows. These end-to-end flows capture the interactions between

components, such as servers, that affect the user’s experience with the system. Second,

anomaly-detection tools detect user-visible problems using the end-to-end flows, and la-

bel each flow as successful or failed. The anomaly-detection tools combines domain-specific

heuristics with a peer-comparison approach to detect performance degradations. Third, a

top-down problem-localization approach identifies the source of the problem using the la-

beled end-to-end flows by identifying attributes (e.g., nodes, customers, error codes) that

are more correlated with failed flows than successful flows. Fourth, flows on indicted

nodes are annotated with black-box data such as CPU and memory-usage. The problem-

localization algorithm incorporates this black-box data to identify the resource at fault, and

outputs a list of identified problems ranked by severity. Fifth, a visualization tool that re-

lies peer-comparison highlights anomalous nodes in parallel-processing clusters. These

visualizations complement our diagnosis algorithms by supporting root-cause inference.



CHAPTER 1. INTRODUCTION 7

Goals. The primary goals of this dissertation are:

• Diagnosis of chronic performance problems using common instrumentation avail-

able in production systems.

• Anomaly detection in the absence of labeled failure-data.

• Differentiation of workload changes from anomalies.

Non-goals. This dissertation does not address the following:

• Diagnosis of system-wide outages.

• Diagnosis of value faults and transient faults.

• Root-cause analysis at code-level, i.e., finding faulty line of code.

Assumptions. This dissertation makes the following assumptions:

• Majority of the system is working correctly.

• Problems manifest as observable behavioral changes (e.g., exceptions or performance

degradations) that are visible to the end-user.

• White-box instrumentation supports inference of end-to-end flows by capturing local

behavior, and dependencies with adjacent nodes.

• All instrumentation is locally time-stamped.

• Clocks are synchronized to enable system-wide correlation of data.

• Instrumentation faithfully captures system behavior.

1.3 Thesis Map

This dissertation explores the diagnosis of chronic performance problems in production

systems. We apply our diagnostic approach to traces from two production systems namely:

academic cloud-computing clusters running the Hadoop parallel processing framework

[Apache Software Foundation, 2007], and a Voice-over-Internet-Protocol (VoIP) system at

a major Internet Service Provider. Our approach is not limited to these two systems, but is

also applicable to other platforms such as Internet services that serve users via independent

requests, and support the generation of end-to-end causal flows.

The first hurdle we faced when developing our diagnostic approach was understanding

the characteristics of chronics, and the limitations of existing research in addressing these

problems. Chapter 2 discusses related work on problem diagnosis in distributed systems.



CHAPTER 1. INTRODUCTION 8

We group the related work into five major categories, and discuss the strengths and limi-

tations of these approaches in the context of chronics. [Kavulya et al., 2012b] presents an

extended version of this chapter. Chapter 3 provides insight on prevalence of chronics in

the production Hadoop clusters and the VoIP system. We also present a comprehensive

analysis of the performance characteristics of workloads in the Hadoop clusters [Kavulya

et al., 2010]. This workload characterization informed our diagnostic approach.

Chapter 4 describes our extensible log-analysis framework for inferring end-to-end

causal flows from the unmodified white-box logs. These end-to-end flows capture the

user’s experience with the system by tracing the control path and data demands of ap-

plication requests as they are serviced across components and machines in the production

system. The framework extends SALSA’s state-machine abstraction [Tan et al., 2008] for log-

analysis by supporting a configurable environment for describing log files, and expressing

rules for generating end-to-end flows.

Chapter 5 presents our two-pronged anomaly-detection approach. Whenever available,

we rely on domain-specific heuristics to detect anomaliesespecially in the VoIP system

which has well-established heuristics for detecting blocked or dropped calls. In the absence

of heuristics, we developed a practical peer-comparison approach that detects performance

degradations in the end-to-end flows in Hadoop clusters. The peer-comparison approach

copes with heterogeneity at the application-level by exploiting regression to factor out le-

gitimate sources of variance such as data skews.

Chapter 6 describes our problem-localization approach [Kavulya et al., 2012a,c], which

uses a top-down statistical approach to identify sets of problem signatures that together ex-

plain the differences between the failed and successful end-to-end flows. This statistical

approach is robust to noise introduced by the occasional mislabeling of flows. The problem-

localization engine is scalable and domain-agnosticsupporting 10s of millions of flows.

Chapter 7 explores the effectiveness of our diagnostic approach in a controlled environ-

ment using fault-injection, and benchmarks our approach against existing approaches [Pan

et al., 2009a; Kiciman and Fox, 2005; Sambasivan et al., 2011]. Chapter 8 presents case stud-

ies showing how we effectively diagnosed chronic problems in a production Hadoop clus-

ter and a VoIP system at a major ISP. Chapter 9 describes how we used peer-comparison to

visualize problems in Hadoop clusters [Garduno et al., 2012]. Chapter 10 summarizes the

dissertation and presents our thoughts on future work.



CHAPTER 1. INTRODUCTION 9

Table 1.1. Contributions of thesis. Contributions explained in the context of two production systems.

VoIP Hadoop

Anomaly Detection Heuristics-based Peer-comparison (no labeled data)

Problem

Localization

Localize to customer/network-

element/resource/error-code

Localize to node/task/resource

Types of Chronics Exceptions or performance prob-

lems due to single/multiple sources

Exceptions or performance prob-

lems due to single/multiple sources

Experimental

Evaluation

Production VoIP system

1000s of network elements

OpenCloud cluster

64 nodes

Publications [Kavulya et al., 2011, 2012a,c] [Pan et al., 2009b,a; Tan et al., 2008,

2010a,b; Kavulya et al., 2010]

1.4 Contributions

This dissertation presents a suite of statistical tools for detecting and localizing chronics in

production systems. The contributions of this dissertation are:

In the absence of labeled failure-data, peer-comparison is an effective approach for de-

tecting anomalies in production systems. Some user-visible problems manifest as errors

such as timeouts. While the user is aware that there is a problem, the operations team may

not be made aware of the problem until it perturbs as significant number of requests or the

customer complains. Our diagnostic framework detects these problems by extracting error

codes from failed flows, or by applying domain-specific heuristics, e.g., detecting calls with

zero talk-time. On the other hand, performance problems can be harder to detect because

there is no outright error other than the user’s frustration with the progress of their request.

We exploit the notion of peers to detect performance problems by identifying system be-

haviors that can be considered equivalent (“peers”) under normal conditions. Significant

deviation from peers is regarded as anomalous. We present a hybrid peer-comparison ap-

proach that exploits domain-specific knowledge about the structure of Hadoop jobs to iden-

tify peers, and uses stepwise-regression to automatically factor out sources of variance due

to application-level differences among these peers.

Knowledge of system dependencies facilitates the diagnosis of chronic performance

problems. The end-to-end flows capture the dependencies between the components

in the production system that are servicing a user’s request. Knowledge of these depen-



CHAPTER 1. INTRODUCTION 10

dencies enables our problem-localization approach to narrow down the source of prob-

lem when errors propagate across components. Our problem-localization approach relies

on a scalable Bayesian distribution learner and an information-theoretic measure of dis-

tance [Kullback and Leibler, 1951] to identify sets of problem signatures that together ex-

plain the differences between the failed and successful end-to-end flows. The statistical

nature of our algorithm makes it robust to occasional mislabeling during anomaly detec-

tion. Our problem-localization approach also identifies the source of chronics triggered

by a combination of factors by finding subsets of attributes that are more likely to appear

in failed flows than successful ones. Our approach disambiguates between the sources of

multiple ongoing problems by analyzing the impact of these problems on different sets of

end-to-end flows.

Fusion of white-box and black-box data can provide more insight into the source of the

problem. White-box data extracted from the application-level logs enables us to localize

the source of the problem to customers, network-elements or nodes, job, tasks, and other

categorical (or discrete) features available available in the logs (e.g., error codes generated).

The subsequent incorporation of black-box data such as CPU and memory usage can pro-

vide insight on the resource at fault.

Demonstration of the effectiveness of our approach on two production systems. We

evaluated the effectiveness of our approach on an academic cloud-computing cluster run-

ning the Hadoop parallel processing framework, and a Voice-over-Internet-Protocol (VoIP)

system at a major Internet Service Provider (see Table 1.1). This thesis provides empirical

and anecdotal evidence showing that chronics are more prevalent than major outages in

production systems. We demonstrate the effectiveness of our diagnostic approach on real

incidents in these production systems. The operations team at the ISP has used an imple-

mentation of our diagnostic approach to diagnose real incidents in their production VoIP

system since 2011.

1.5 Applying Approach to Different Systems

The problems we address, and our solutions, are not limited to VoIP and Hadoop. They are

likely to be applicable to many other large platforms (e.g., e-commerce, web-search, social

networks) that serve users via independent interactions such as web requests. Our problem



CHAPTER 1. INTRODUCTION 11

localization approach is scalable and domain-agnostic (Chapter 6). Adapting our approach

to other applications requires changes to the domain-specific steps namely: inferring the

end-to-end flows from white-box logs (Chapter 4), and anomaly detection (Chapter 5). The

changes needed to adapt our approach to other applications are:

White-box analysis. The end-to-end flows can be generated automatically using request-

tracing tools [Fonseca et al., 2007; Barham et al., 2004; Sigelman et al., 2010] which monitor

end-to-end behavior in distributed systems. If request-tracing is unavailable in the appli-

cation, the end-to-end flows can be constructed using the steps described in Chapter 4.

Domain-specific knowledge is needed to identify the attributes in the white-box logs that

capture the control path, dependencies with adjacent nodes, and data demands of appli-

cation requests. The attributes extracted also depend on desired granularity of problem

localization. For example, extracting only hostnames results in coarse-grained problem

localization that narrows the source of the problem to a given host. Finer-grained prob-

lem localization is possible by including attributes such as request types, error codes, and

configuration-related information. For scalability reasons, the first step of our problem

localization approach deals with categorical attributes (such as hostnames). Real-valued

attributes such as CPU usage can be incorporated using the steps described in Section 6.4.

Anomaly detection. Anomalies in end-to-end flows can be detected by mining excep-

tions from the logs, or by using simple statistical techniques (e.g., flagging anomalies if

packet loss exceeds the 95th percentile of requests). Some requests exhibit high variance

which complicates the task of setting thresholds for detecting problemsdiagnosis algo-

rithms either set higher thresholds resulting in higher false negatives, or set lower thresh-

olds resulting in higher false positives [Sambasivan and Ganger, 2012a]. For example, job

durations in Hadoop exhibit high variance (Section 3.2.2). This thesis proposes two tech-

niques for reducing this variance thus improving the accuracy of anomaly detection. First,

use domain-specific knowledge or clustering to identify groups with similar behavior, i.e.,

peers, using the strategies discussed in Section 5.1.3. The behavior amongst peers may vary

due to legitimate reasons, for example, tasks in Hadoop jobs which process more data take

longer to complete. Regression or normalization can learn inter-relationships between ex-

planatory variables to factor out sources of variability amongst peers (Section 5.1.4). Detect

anomalies by identifying requests that deviate significantly from their peers.



CHAPTER 1. INTRODUCTION 12

1.6 Limitations

Our diagnostic approach provides a comprehensive solution for diagnosing chronic per-

formance problems in production systems. However, we believe that no single approach

will address all the types of problems encountered in production systems. Specifically,

due to our fault-model, our diagnostic approach does not deal with problems that result in

system-wide outages. Our approach also does address problems that do not result in user-

visible problems, for example, failures that are masked by fault-tolerance mechanisms.

Our diagnostic approach provides a coarse-grained localization of the root-causes of

the chronic problems. For example, we may localize the root-cause of the problem to a

particular server or customer, but not to the exact line of source code or the configuration

parameter causing the problem. The granularity of our diagnosis is limited by granularity

of information available in the application-level logs that we analyzed. The strength of our

approach lies in its ability to limit the scope of components that operators need to examine

when identifying the fine-grained root-cause of chronics that arise due to complex system

interactions. Our approach also helps operators to prioritize their troubleshooting efforts

by ranking root-causes according to their impact on the end-users.

Our log-analysis framework relies on domain-specific log-parsers that use regular expres-

sions to extract attributes of interest from the logs. One limitation of these domain-specific

log parsers is their reliance of hard-coded regular expressions that vary based on the for-

mat of log messages. The parsers need to be manually updated if the underlying log format

changes due to a software upgrade. Despite this limitation, we opted for this approach be-

cause we lacked visibility into the proprietary components in the production systems. The

quality of end-to-end flows generated by our framework is also limited by the accuracy of

information contained in the logs.

At present, our peer-comparison approaches for anomaly-detection and visualization

rely on expert knowledge to identify peers. Identifying peers is easier in parallel-processing

frameworks, such as Hadoop, which attempt to distribute load as evenly as possible across

slave nodes in the cluster. Automatically identifying peers in heterogeneous systems such

as VoIP is more challenging, and is not addressed in this dissertation. Instead, of peer-

comparison, we rely on heuristics to identify anomalous flows in heterogeneous systems

such as the production VoIP system.



If I have seen a little further it is by standing on the

shoulders of Giants.

I. Newton, Letter to R. Hooke, 1676

Chapter 2

Related Work

The issue of diagnosing the underlying causes of hardware and software failures has ex-

isted for as long as computers have been around. Using the fault, error, and failure nomen-

clature of [Laprie, 1995], failure diagnosis is the process of identifying the fault that has

led to an observed failure of a system or its constituent components. In any sufficiently

large computing system, many types of faults are often not directly visible for a number

of reasonseither due to the characteristics of the fault itself, due to fault-tolerance mecha-

nisms built into the system that hide the expression of the fault, or as is most often the case,

the lack of detailed monitoring functionalities that can detect and report on the occurrence

of the fault directly. In some cases, monitoring systems may provide only an indication that

a fault has occurred, but may not provide sufficient information to precisely locate it.

Failure diagnosis is a technically challenging endeavor because the relationship be-

tween faults, failures, and their observable symptoms is a complex one; single faults often

produce multiple symptoms in different parts of a system, e.g., a misconfiguration fault

in a critical network component such as a Dynamic Host Configuration Protocol (DHCP)

server can cause all client computers on the network to fail; conversely, similar symptoms

may be caused by many different types of faults, e.g., the failure of a networked computer

to receive an IP address can have several causes including, but not limited to, packet loss

in the physical network, a client misconfiguration, or a problem with the DHCP server.

As operational systems become more mature, the failures they encounter often transition

from easy to detect hard failures that cause a significant impairment to the system’s primary

function, to soft failures such as those due to performance bottlenecks, or transient faults

that are much harder to detect. Therefore, the process of diagnosis often also includes the

13



CHAPTER 2. RELATED WORK 14

identification of anomalous conditions that are symptoms of the occurrence of faults.

Due to the complexity of computing systems and difficulty of formalizing the scope of

the diagnosis task itself, diagnosis has historically been a largely manual process requiring

significant human input. However, techniques to automate as much of the process as pos-

sible have significantly grown in importance. In domains such as communication networks

and Internet services, the sheer scale of modern systems and the high volumes of impair-

ments they face drive such trends; while in domains such as embedded systems [Lanigan

et al., 2011], the trends are driven by increasing complexity coupled with the need for au-

tonomic operation (i.e., self-healing) when human expertise is not available. Due to the

diversity of the domains, a variety of failure diagnosis techniques drawing from diverse ar-

eas of computing and mathematics such as artificial intelligence, machine learning, statis-

tics, stochastic modeling, Bayesian inference, rule-based inference, information theory, and

graph theory have been studied in the literature. Finally, when automated techniques fail,

approaches that assist humans perform diagnosis more efficiently via the use of visualiza-

tion aids have also been widely deployed.

While a comprehensive survey of this broad topic can provide sufficient material for a

book of its own, in this chapter, we provide a summary of the most important techniques.

Table 2.1 provides a summary of the techniques described in this chapter. For each class

of techniques, we describe different approaches proposed in the research literature, and

conclude each discussion with a critique of the technique that highlights its strengths and

limitations for diagnosing chronic problems. We compare the prior work against our statis-

tical diagnosis approach that uses peer-comparison for anomaly detection, and a Bayesian

algorithm for problem localization.

2.1 Rule-based Techniques

Rule-based techniques rely on expert knowledge expressed as a set of predefined direc-

tives, i.e. rules, to diagnose problems. The rules are typically formatted as a set of if-then

statements where the if-part of the rule is called the premise, and the then-part of the rule is

the conclusion. An example of a rule used for diagnosis is “if CPU utilization exceeds 90%

then node is overloaded”. Rule-based techniques for diagnosis typically rely on forward-

chaining inference mechanisms [Steinder and Sethi, 2004] to synthesize results when mul-



CHAPTER 2. RELATED WORK 15

Table 2.1. Summary of Diagnosis Techniques.

Technique Critique

Rule-based techniques rely on expert

knowledge expressed as a set of prede-

fined rules to diagnose problems (Sec-

tion 2.1).

Rules are human-interpretable and extensible.

However, they cannot diagnose unforeseen prob-

lems, and large knowledge bases are difficult to

maintain.

Model-based techniques define a mathe-

matical representation of a system, test-

ing the observed state against the model

to see if it conforms (Section 2.2).

Model-based techniques are well suited for di-

agnosing application-level problems. However,

building models requires a deep understanding

of the system.

Statistical techniques summarize and in-

terpret empirical data using techniques

such as correlation, histogram compar-

ison and probability theory, for diagno-

sis (Section 2.3).

Statistical techniques require little expert knowl-

edge or detailed models on system internals.

However, they have difficulties distinguishing

legitimate changes in behavior (e.g. workload

changes) from illegitimate changes (e.g. perfor-

mance problems).

Machine-learning techniques identify pat-

terns in behavior using clustering, or

use training data to determine if the

likely cause of problems (Section 2.4).

Machine-learning techniques automatically learn

profiles of system behavior, but can suffer from

the curse of dimensionality that reduces accuracy

when the number of features is large.

Visualization techniques allow operators

to visualize trends in data and spot

anomalous behavior (Section 2.5).

Visualization tools allow operators to explore dif-

ferent hypotheses on the root-cause of problems.

However, they do not automatically identify they

source of problems.

tiple rules fire. Forward inference processes events, such as high CPU and memory utiliza-

tion, and uses the triggered rules to draw conclusions on the root-cause of the problem.

One approach for representing rules is codebooks [Yemini et al., 1996; EMC, 2009] which

map each problem to a unique signature consisting of symptoms in both the faulty com-

ponent where the problem occurs, and related components affected by the original prob-

lem. The codebook is instantiated as a dependency matrix where the columns represent

the problems, and the rows represent the symptoms. Problems are uniquely diagnosable

if all the columns are different. Codebooks diagnose the underlying problem by identify-

ing the closest match to the observed symptoms. Other rule-based diagnosis tools, such as



CHAPTER 2. RELATED WORK 16

Chopstix [Bhatia et al., 2008] and Vertical Profiling [Hauswirth et al., 2004] rely on a small

collection of rules based on the semantics of the application, and the underlying behavior of

the operating system to map changes in system performance on individual nodes to known

problems. These tools provide an intuitive approach for diagnosing problems on individ-

ual nodes, however they currently do not correlate metrics across multiple nodes and do

not address problems that can propagate across the network in distributed systems.

Diagnosis tools that analyze large sets of rules require more sophisticated techniques,

such as expert systems that rely on forward inferencing to synthesize results and resolve

conflicts when multiple rules fire. These expert systems allow administrators to cope with

the deluge of alarms generated by large-scale distributed systems. JECTOR [Liu et al., 1999]

presents a specification language for expressing rules that captures the timing relationship

among correlated events. For example, alert operator if a link is down and no correspond-

ing link up event occurs within 2 minutes. Commercial tools such as HP Operations

Manager [Packard, 2010] use an optimized Rete algorithm [Forgy, 1982] to perform pat-

tern matching on rules in a scalable manner that is independent of the number of rules.

Critique. Rule-based approaches are prevalent in commercial tools, such as IBM Tivoli

Enterprise Console [IBM, 2010] and HP Operations Manager [Packard, 2010], as

they offer an intuitive approach for expressing system behavior that allows users to aug-

ment the rule-base by developing new rules tailored to their unique operating environ-

ments. In addition, rule-based systems do not require profound understanding of the un-

derlying system architectural and operational principles. However, rule-based systems suf-

fer from the inability to learn from experience, and the inability to deal with problems not

described within the rule-base. Rule-based systems are also difficult to maintain because

the rules frequently contain hard-coded network configuration information [Steinder and

Sethi, 2004]. Our diagnostic framework relies on rules to identify failed calls at the pro-

duction VoIP system since telecommunications systems have well-established rules for de-

tecting blocked or dropped calls. To address the limitations of rule-based approaches, we

augmented the rules with a peer-comparison approach for detecting anomalies in the ab-

sence of labeled failure data.



CHAPTER 2. RELATED WORK 17

2.2 Model-based Techniques

Model-based techniques define a mathematical representation of a system, and test the ob-

served state of the system against the learned model to diagnose problems. Some models

represent the normal operation of the system, and detect problems whenever the observed

system behavior fails to conform to the learned model. Other techniques generate graphical

models of how problems propagate through the system [Kompella et al., 2005; Bahl et al.,

2007], and exploit this knowledge to infer the source of the problem. Alternatively, graph-

ical models [Joshi et al., 2005; Rish et al., 2004; Tati et al., 2012] exploit probes to identify

failures in the system. Probes are end-to-end test transactions which gather information

about system components, for example, a dummy query which tests if the database is run-

ning. These graphical models then analyze patterns of probe failures and successes to infer

the source of the problem. Lastly, graphical models may represent expected communica-

tion patterns within a system and flag problems whenever these patterns are violated.

Model-based techniques can be classified into: 1) physical model based techniques which

use the physical laws that a system operates under to model constraints on system behavior;

2) regression and queuing models which model relationships between resource consumption

and application behavior; and 3) graph-theoretic models which exploit knowledge on how

errors or successes propagate in a system to localize problems.

Physical models use models of the physical world, such as the laws of mechanics, electro-

magnetics, or chemical kinetics to model system behavior and to determine when anoma-

lous behavior is present. They typically model continuous cyber-physical systems in in-

dustrial, automotive and aerospace domains whose physics are well understood, e.g, pow-

ertrain [McCullough et al., 2007] and chassis systems [Huh et al., 2008] in cars. These sys-

tems run in a closed-loop, where sensors monitor the system output, then feed the data

into a controller that signals actuators to adjust control as necessary to maintain the de-

sired system output. Problems are diagnosed by executing the physical model alongside

the actual system at run-time to detect when the system fails to conform to the model. The

fault model typically associated with the control-theoretic approach includes sensor faults,

actuator faults, and faults in the mechanical, electromechanical, or hydraulic plant being

controlled [Lanigan et al., 2011].



CHAPTER 2. RELATED WORK 18

Regression and queuing models are useful for workload characterization, capacity plan-

ning and detecting performance problems. These models represent relationships between

resource consumption and application behavior, and detect anomalies whenever these re-

lationships are violated. Some techniques model multi-tier Internet applications as queues,

and use mean-value analysis [Liu et al., 2005; Urgaonkar et al., 2005] to predict transaction

response times. These techniques use a network of queues to represent how the tiers in the

multi-tier application cooperate to process requests. Mean-value analysis assumes closed

queueing models in which the number of clients in the system remains constant. However,

it is often difficult in practice to obtain the client session information required to calibrate

closed models for real-world production applications [Stewart et al., 2007].

Production workloads are non-stationary, i.e., the relative frequencies of transaction

types changes over time. Queuing approaches which leverage regression to learn the rela-

tionship between resource consumption and application behavior can be used to predict re-

sponse times for non-stationary workloads [Kelly, 2005; Stewart et al., 2007]. These models

assume that the system contains a small number of types of transactions, and that transac-

tion types strongly influence system resource demands. These models rely on open queues,

where clients can join and leave the system model. Open models facilitate more thorough

empirical validation in production systems than would be possible with closed models as

they do not require client session information [Stewart et al., 2007].

In addition, using queuing theoretic approaches to model transaction mixes allows

these systems to distinguish anomalies from workload changes. [Cherkasova et al., 2008]

use queues to model the relationship between CPU usage and transaction response times

for a transaction mix. They also exploit regression to define an application performance

signature that allows them to detect software upgrades by monitoring changes in the ap-

plication signature. [Stewart et al., 2007] model the relationship between multiple physical

resources, namely CPU, disk and network, and response times for a transaction mix. Mod-

ellus [Desnoyers et al., 2012] uses queuing theory and stepwise-regression to automatically

derive models that predict the resource usage of an application. Stepwise-regression al-

lows Modellus to automatically identify features that best predict the observed resource

usage or workload. However, these models need to be re-trained to cope with new trans-

action types. They also ignore interaction effects across transaction types and implicitly

assume that queueing is the only manifestation of congestion.



CHAPTER 2. RELATED WORK 19

Graph-theoretic models analyze communication patterns across nodes and processes to

model the probability that errors, or successes, propagate through the system. The models

may also monitor violations in expected communication patterns. Graph-theoretic mod-

els are useful for diagnosing both correctness and performance problems in distributed

systems. They can be used to detect multiple independent problemsranking them by

likelihood of occurrence.

SCORE [Kompella et al., 2005] and Shrink [Kandula et al., 2005] localize problems in

an IP network by modeling error propagation patterns in the wide-area networks. Both

Shrink and SCORE model the system as a two-level graph between the IP layer and the

underlying wide-area network. [Bahl et al., 2007; Khanna et al., 2007a] extend Shrink

and SCORE to deal with multi-level dependencies and with more complex operators that

capture load-balancing and failover mechanisms. These techniques infer the root-cause

by computing the probability that errors propagate from a set of possible root-cause nodes

to the observation nodes. They indict the root-cause nodes that best explain the symptoms

at the observation nodes, and assume that there can only be a small number of concurrent

problems in the system at a given time.

[Rish et al., 2004] propose an active probing approach that exploits a dependency-matrix

to represent the failed components that each probe, e.g., server ping, detects. Active prob-

ing allows probes to be selected and sent on-demand, in response to one’s belief about the

state of the system. At each step the most informative next probe is computed and sent.

As probe results are received, belief about the system state is updated using probabilistic

inference. [Joshi et al., 2005] use a Bayesian approach to diagnose problems in systems

with different types of monitors, or probes, that have differing coverage and specificity

characteristics. They use a dependency matrix to represent the probability that a moni-

tor detects a failure in a component, and incrementally update their belief about the set of

failed components based on the observed monitor output. [Khanna et al., 2007b] address

diagnosis in distributed systems where errors can propagate across nodes. They track mes-

sage exchanges between nodes and detect problems by comparing communication patterns

against a rule-base of allowed state transitions. [Tati et al., 2012] identify faulty network ele-

ments despite incomplete symptoms during large-scale failures. They utilize a knowledge

base of possible network paths and end-to-end symptoms (comprising of successful and

failed probes) to output list of elements whose failures are consistent with the symptoms.



CHAPTER 2. RELATED WORK 20

Critique. Model-based techniques are well-suited for diagnosing application-specific

problems, such as chronics, because they encapsulate semantic knowledge on the expected

behavior of the system. The incorporation of semantic knowledge can also help them dis-

tinguish legitimate changes in behavior, e.g. workload changes, from illegitimate changes

due to failures [Kelly, 2005; Cherkasova et al., 2008; Stewart et al., 2007]. Our hybrid peer-

comparison approach relies on regression to factor out legitimate sources of variance. As

with Modellus [Desnoyers et al., 2012], we rely on stepwise-regression to automatically se-

lect the best features for our regression models, and detect anomalous end-to-end flows.

Graph-theoretic techniques [Rish et al., 2004; Khanna et al., 2007b; Bahl et al., 2007] can

be used to detect multiple independent problemsranking them by likelihood of occur-

rence. However, these techniques do not address problems due to complex triggers as they

assume that the root-cause of the problem stems from a single component. In addition,

model-based techniques that rely on physical models require a deep understanding of sys-

tem behavior to construct the models which is not always feasible in production systems.

Even in cases where automatic model construction is feasible, there is often a tradeoff be-

tween the amount of semantic knowledge the model incorporates and the fidelity of the

diagnosis. For example, graph-theoretic models [Bahl et al., 2007] that are automatically

constructed by examining a system’s communication patterns can localize a problem to a

single node or a small neighborhood of nodes, but cannot tell what the deeper root cause

is. Another disadvantage of model-based techniques is that they can fail to detect novel

problems that were not considered in the model.

2.3 Statistical Techniques

Statistical techniques for diagnosis summarize and interpret empirical data using tech-

niques such as correlation, histogram comparison and probability theory. These techniques

are data-centric and require little expert knowledge or detailed models on system internals.

Statistical techniques are either: 1) parametric techniques that assume data is drawn from

a known distribution, e.g., normal distribution, or 2) non-parametric techniques that do not

rely on data belonging to a particular distribution but rather estimate the underlying dis-

tribution, e.g., using histograms or kernel density estimation. Non-parametric methods

make fewer assumptions than parametric methods, making them more robust and giv-



CHAPTER 2. RELATED WORK 21

ing them wider applicability. However, there is a costlarger sample sizes are required to

draw conclusions with the same degree of confidence as parametric methods. Our diag-

nosis approach is a non-parametric statistical approach that relies on a Bayesian algorithm

for localizing problems by comparing differences in the distributions of attributes, such as

hostnames and customer IP addresses, in successful and failed user-interactions.

Statistical techniques are pervasive in problem diagnosis literature. Some model-based

techniques discussed in Section 2.2 rely on statistical techniques, such as correlation and

regression, in conjunction with deep knowledge of the application’s behavior to diagnose

problems. In contrast, the statistical techniques discussed in this section make fewer as-

sumptions about the application’s behavior.

Parametric techniques assume that data is drawn from a known distribution. Normal

distributions are commonly used for anomaly detection and diagnosis because of their

tractability, and because normality can sometimes be justified by the central-limit theorem

which explains why many distributions tend to be close to the normal distribution. These

techniques typically detect anomalous behavior by identifying significant deviations from

the mean for performance counters, which they assume follow a normal distribution. How-

ever, hardware failure rates are better modeled using Weibull distributions which capture

the increased failure rates of devices as they age [Schroeder and Gibson, 2006, 2007].

Agarwal et al [Agarwal et al., 2006] use change-point detection and problem signatures

to detect performance problems in enterprise systems. They detect abrupt changes in sys-

tem behavior by monitoring changes to the mean value of performance counters over con-

secutive windows of time. This technique does not scale well if the number of nodes and

metrics is large. NetMedic [Kandula et al., 2009] diagnoses propagating problems in enter-

prise systems by analyzing dependencies between nodes, and correlations in state pertur-

bations across processes to localize problems. NetMedic represents state for each system

component as a vector that indicates whether each metric was anomalous or normal by

assuming that each metric obeys a normal distribution and flagging anomalies based on

deviation from the mean.

Non-parametric techniques assume that data is drawn from an unknown distribution.

Non-parametric techniques estimate the underlying data distribution using histograms or



CHAPTER 2. RELATED WORK 22

kernel density estimators, or make generalizations about the populations from which the

samples were drawn, e.g., using correlation.

Histogram-based techniques typically diagnose problems by comparing histograms (or

distributions) of performance counters before and during an anomalous period to identify

the metrics most likely to be associated with the problem. [Kasick et al., 2010; Tan et al.,

2008; Pan et al., 2009a] diagnose problems in large clusters using histogram-comparison of

performance counters to identify “odd-man-out” behavior. Peer-comparison allows these

approaches to be robust to workload changes. However, propagating errors, e.g., packet-

loss that affects communication across multiple nodes, reduces their accuracy. [Shen et al.,

2009] propose a reference-driven approach to diagnose performance problems due to con-

figuration changes or upgrades. Their approach relies on histogram comparison to identify

the collection of single-parameter changes that best explain the performance deviation ob-

served. [Liu et al., 2006] uses a Bayesian approach to compare the distributions of failed

and successful predicates when debugging software problems. Carat [Oliner et al., 2012]

detects energy bugs in mobile devices by identifying applications running on the device

whose energy-use distribution diverges significantly from similar devices running these

applications. Our problem localization approach also compares distributions of successful

and failed user interactions to localize problems in production systems, but with a more

comprehensive fault model than these techniques.

Correlation-based techniques analyze historical data to automatically discover relation-

ships between pairs of metrics that are stable over time [Jiang et al., 2009a,b]. Changes in

these learned correlations may signal problems. Correlation can also be used to automati-

cally discover causal relationships between metrics in distributed systems. Giza [Mahimkar

et al., 2009] exploits knowledge of the system’s topology to identify spatial correlations

between events, and discover causal relationships between the observed symptoms and

root-cause events. [Oliner et al., 2010] also use cross correlation to discover causal rela-

tionships between anomaly signals across components. The anomaly signals represent the

changes in the behavior of components over time in terms of resource usage, message tim-

ing or semantics. Project5 [Aguilera et al., 2003] records packet traces at each node and

uses message correlation algorithms to automatically extract end-to-end causal traces for

requests, and detect high-latency paths. Correlation-based approaches can discover spu-

rious relationships depending on the thresholds used to determine whether a correlation



CHAPTER 2. RELATED WORK 23

is significant. In addition, correlation-based approaches do not scale well if the number of

nodes and metrics is large.

Dimensionality-reduction techniques, e.g., Principal Component Analysis, can reduce

the number of metrics to compare when diagnosing problems by summarizing dominant

trends. Intemon [Hoke et al., 2006] detects anomalies in large clusters by identifying sudden

changes in system behavior, which are indicated by the change on the number of hidden

variables. [Xu et al., 2009] use source-code analysis to apply structure to console logs and

discover dominant historical trends in application state and message counts using principal

component analysis. PeerWatch [Kang et al., 2010] uses peer-comparison to detect anoma-

lies in heterogeneous clusters running different hardware. Their peer-comparison algo-

rithm uses a dimensionality-reduction technique known as canonical correlation analysis

to normalize performance differences due to different hardware, and discover correlations

between peers.

Critique. Statistical techniques require little expert knowledge or detailed models of sys-

tem internals. These diagnosis techniques can rely on well-established statistical theories to

ground their algorithms, and test that their results are statistically significant, i.e., unlikely

to have occurred by chance alone. For example, hypothesis tests such as the t-test, allow us

to reject the hypothesis that the observed system behavior is consistent with the expected

system behavior with a degree of confidence. When building statistical profiles of behavior,

care must be taken to include sufficient data samples and test assumptions on data distribu-

tions to ensure validity. Statistical approaches that rely on event correlation [Oliner et al.,

2010; Mahimkar et al., 2009; Yemini et al., 1996] support diagnosis of multiple independent

problems, and might be applicable in our system when there are resource-contention prob-

lems due to overload within the service provider’s network. However, most of the chronics

we have observed are due to customer-site problem such as misconfigurations, and opera-

tors at the ISP lack access to customer-site data other than names of the customertherefore

event-correlation might not be possible. Our approach localizes these chronics by analyz-

ing data that is causally-related with each call rather than alarm signals across the network.

Peer-comparison techniques [Kasick et al., 2010; Tan et al., 2008; Pan et al., 2009a] which

compare behavior across node-groups are not well-suited for diagnosing chronics due to

multiple independent faults. They also experience higher false-positives when problems

cause errors to propagate across the system.



CHAPTER 2. RELATED WORK 24

2.4 Machine Learning Techniques

Machine learning is a scientific discipline that is concerned with the design and devel-

opment of algorithms that allow computers to evolve behaviors based on training data.

Machine-learning techniques borrow heavily from statistical techniques, e.g., data distri-

butions and probability theory. Machine learning relies on training and cross-validation

which involves partitioning a sample of data into complementary subsets, performing the

analysis on one subset called the training set, and validating the analysis on the other subset

called the validation set or testing set.

Diagnosis algorithms that rely on machine learning can be categorized into two broad

categories namely: 1) unsupervised learning which identifies patterns in unlabeled data

typically through clustering, and 2) supervised learning which infer a function that best

classifies successful and failed states from labeled data.

Unsupervised learning identifies patterns in unlabeled data typically through clustering,

and detects unexpected outlier data points that might be indicators of failures.

[Kiciman and Fox, 2005] use probabilistic context-free grammars to model the causal

paths in the system. The grammar rules represent the probability that one component calls

another. They identify anomalous causal paths by measuring the difference between the

probability of the observed transition and the expected probability of the transitions that

make up the causal path. Magpie [Barham et al., 2004] uses a string-edit-distance com-

parison to group together requests with similar behavior, from the perspective of request

structure, synchronization points and resource consumption. The representative requests

from each clusters allow them to construct concise workload models and detect outliers.

[Thereska et al., 2010] exploits clustering of data from real-world deployments to generate

performance signatures of application behavior that supports what-if analysis.

Supervised learning uses labeled data of successful and failed states to learn which met-

rics are most correlated with failed states, or to identify signatures of recurrent problems

from a database of known problems.

Metric attribution approaches localize problems by identifying resource-usage metrics

or components that are highly correlated with failed states. They allow operators to sift

through the hundreds or thousands of metrics available in their system and narrow down

the handful of metrics that yield insight to the cause of the problem, and its location. Once



CHAPTER 2. RELATED WORK 25

the operators determine the root-cause, they can then annotate the output of metric attri-

bution with the root-cause and build the database of known problems used by signature-

based approaches.

Pinpoint [Chen et al., 2002] and MinEntropy [Chen et al., 2004] localize components

highly correlated with failed requests using data clustering [Chen et al., 2002] or decision

trees [Chen et al., 2004]. These approaches detect problems that result in changes in the

causal flow of requests such as exceptions. More recently, Spectroscope [Sambasivan et al.,

2011] categorizes requests based on functionality, e.g., read or write requests, and applies

data clustering to requests in each category to identify outliers due to changes in causal

flows or request durations. These techniques have typically been used to diagnose in-

frastructural problems, such as database faults and software bugs (e.g infinite loops and

exceptions) which lead to a marked perturbation of a subset of requests. In principle, tech-

niques such as decision trees should fare well at diagnosing both major outages and chron-

ics. However, decision trees did not fare well at diagnosing chronics when we applied them

to our dataset (see Section 7.6). [Cohen et al., 2004] use tree augmented Bayesian networks

to determine which resource-usage metrics are most correlated with the anomalous peri-

ods. They proposed an extension [Zhang et al., 2005] to their work that uses ensembles of

Bayesian models to adapt to changing workloads and infrastructure.

Signature-based approaches allow system administrators to identify recurrent problems

from a database of known problems. Signature-based approaches have wide applicability

because studies have shown that typically half, and as much as 90% of software failures

are due to recurrent problems [Duan and Babu, 2008]. Research has centered on how to

represent and retrieve signatures of known problems from the database of known prob-

lems. However, these approaches do not fare well at automatically identifying problems

that have not previously been diagnosed. [Yuan et al., 2006] learn signatures of known

problems in standalone systems by analyzing sequences of system calls. They use multi-

class Support Vector Machines to learn signatures of problems. However, their approach

does not address distributed systems. [Cohen et al., 2005] and Bodik et al. [Bodik et al.,

2010] generate signatures of recurrent problems in distributed systems by using the dis-

crete feature vectors obtained through metric attribution. They found that they can lever-

age signatures learned at one geographical location to diagnose problems in data centers

at a different location. [Duan and Babu, 2008] present an approach that can be used for



CHAPTER 2. RELATED WORK 26

both known problems, and problems that have not previously been seen. They use a su-

pervised approach (decision trees or signature databases) to identify recurrent problems.

If the current failure does not match the annotated failures in the database, they compare it

to the healthy data to identify features that are correlated with the failure. They then select

multiple instances of the same failure which they can present to the system administrator

to annotate.

Critique. Machine-learning techniques automatically learn profiles of system behavior,

for example, using clustering to identify signatures of known problems. Machine-learning

can also help localize problems by identifying resource-usage metrics or components that

are highly correlated with failed states. However, these techniques can suffer from the curse

of dimensionality that reduces accuracy when the number of features is large. Additionally,

they are also susceptible to overfitting, a phenomenon in which the learner learns features of

the evidence that are circumstantial rather than those that actually define the relationship

between the faults and their effects. Over-fitted models generalize poorly, and can fail when

presented with evidence that is only slightly different from the one on which the model

was trained. Finally, because machine learning techniques learn a direct mapping between

the symptoms and underlying root causes without an intermediate structural model of the

system, lengthy retraining is required whenever the system behavior changes significantly.

Furthermore, previously learned models often have to be thrown away during the period

of retraining, leaving the system vulnerable to any problems. Therefore, machine learning

techniques may not be appropriate for systems that are upgraded frequently.

2.5 Tracing and Visualization Techniques

Request-tracing tools. Request-tracing tools automate the monitoring of end-to-end be-

havior in distributed systems. The end-to-end flows generated by these tracing tools can

serve as input into our diagnostic framework. Magpie [Barham et al., 2004], X-trace [Fon-

seca et al., 2007], and Dapper [Sigelman et al., 2010] are primarily tools for tracing causal

request paths, but they also offer support for visualizing requests whose causal structure

or duration is anomalous. Pip [Reynolds et al., 2006] detects application-specific problems

in distributed systems by allowing programmers to embed expectations about application

behavior in the source code. X-ray [Attariyan et al., 2012] diagnoses the root causes of



CHAPTER 2. RELATED WORK 27

performance problems by instrumenting binaries as applications execute, and by using dy-

namic information flow tracking to estimate the likelihood that a block was executed due

to each potential root cause. X-ray also highlights performance differences between two

similar activities by differentially comparing their request execution paths.

Visualization tools. Visualization tools complement diagnosis tools by allowing opera-

tors to cope with these scenarios by: 1) summarizing data trends; 2) supporting interactive

graphs that allow operators to explore different hypotheses on the root-cause of problems;

and 3) integrating output from automated diagnosis tools.

[Ganglia, 2007; Splunk Inc., 2005; Sigelman et al., 2010] provide an array of simple

graphs, e.g. line plots, barcharts, and histograms, to display trends in performance coun-

ters such as CPU utilization. They use simple statistical tests such as the deviation from

the mean to flag outliers, and use color to highlight these outliers. LiveRAC [McLachlan

et al., 2008] is a visualization system that supports the analysis of large collections of sys-

tem management time-series data consisting of hundreds of parameters across thousands

of network devices. LiveRAC provides high information density using a re-orderable ma-

trix of charts, with semantic zooming that dynamically adapts different aspects of each

chart based on available space. Artemis [Cretu-Ciocarlie et al., 2008] provides a pluggable

framework for distributed log collection, data analysis, and visualization. Mochi [Tan et al.,

2009] is a log-analysis based debugging tool that visualizes both the flow of data and the

flow of control for a large-scale parallel processing framework known as Hadoop. Net-

Clinic [Liu et al., 2010] visualizes data from computer networks using directed graphs, and

presents suggested diagnostics for observed problems by incorporating output from an

automated analytic reasoning engine [Kandula et al., 2009].



As a rule, software systems do not work well until they have been

used, and have failed repeatedly, in real applications.

D. Parnas, Communications of the ACM, 1990

Chapter 3

Workload Characterization

ANECDOTAL evidence suggests that for every major outage or blackout, there are

hundreds or even thousands of chronics [Kiciman, 2005]. To gain insight on the

prevalence of chronics and understand the performance characteristics of workloads in pro-

duction systems, we analyzed traces from two production systems namely: two academic

cloud-computing clusters running the Hadoop parallel processing framework [Apache

Software Foundation, 2007], and a Voice-over-Internet-Protocol (VoIP) system at a major

Internet Service Provider.

This chapter describes the production systems (Section 3.1), provides a detailed analysis

of the performance characteristics (Section 3.2.2), and prevalence of problems in jobs exe-

cuting on the Hadoop clusters (Section 3.3). We also present results of a Hadoop user study

that highlights the shortcomings of existing troubleshooting tools (Section 3.2.1). Due to

confidentiality concerns, we only present anecdotal evidence of chronics in the VoIP sys-

tem. The anecdotal evidence provides insight on the prevalence of chronics (Section 3.4).

An understanding of the performance characteristics of workloads in production sys-

tems helped inform our diagnosis approach as follows: 1) the prevalence of chronics moti-

vated our top-down statistical approach that drills down from user-visible symptoms of prob-

lems (e.g., slow or failed user-interactions) to localize the source of the problem; 2) the

presence of peer groups in the data (e.g., tasks from the same job) motivated our use of

peer-comparison to detect performance problems; 3) the variance in task durations mo-

tivated our use of regression to factor out legitimate sources of variance (e.g. differences

in data input sizes) when identifying performance problems. Table 3.8 summarizes the

implications of our workload characterization on diagnosis.

28



CHAPTER 3. WORKLOAD CHARACTERIZATION 29

TaskTracker 

DataNode 

JobTracker  

NameNode  

M
as

te
r 

S
la

ve
s 

HDFS 

Job Job 

Reduces Maps Maps Reduces 

White-box logs

Black-box logs

Logs available

Figure 3.1. Implementation of MapReduce in Hadoop. Hadoop uses a master-slave architecture. The in-

strumentation sources are white-box logs from the Hadoop daemons, and black-box logs from the nodes.

3.1 Target Systems

This section provides a brief description of the production Hadoop clusters, and the Voice-

over-IP (VoIP) system at a major Internet Service Providerhighlighting the similarities be-

tween these two production systems that make them amenable to our diagnosis approach

in Section 3.1.3.

3.1.1 Hadoop Clusters

Large-scale data processing is becoming increasingly common, and has been facilitated

by frameworks such as Google’s MapReduce [Dean and Ghemawat, 2008], which paral-

lelizes and distributes jobs across large clusters. In particular, Hadoop, the open-source

implementation of MapReduce, has been widely used for large-scale data-intensive tasks

such as click-log mining, web crawling, image processing, and data analysis. Hadoop is

widely used at companies such as Yahoo!, Facebook, and Fox Interactive Media, as well as

for academic research [Apache Software Foundation, 2012]. Hadoop clusters process large

amounts of datafor example, Facebook’s Hadoop Distributed File System (HDFS) consists

of more than 100 PB of physical disk space [Ryan, 2012].

Hadoop decomposes a massive job into smaller (Map and Reduce) tasks, and a massive

data-set into smaller partitions (blocks) such that each task processes a different partition

in parallel, as shown in Figure 3.1. The Map task executes a user-defined Map function



CHAPTER 3. WORKLOAD CHARACTERIZATION 30

for each key/value pair in its input, while the Reduce task fetches, merges, and sorts the

outputs from completed map tasks. Hadoop shares data amongst the distributed tasks in

the system through the Hadoop Distributed File System (HDFS), an implementation of the

Google File System [Ghemawat et al., 2003]. HDFS splits and stores files as fixed-size blocks

(except for the last block).

Hadoop uses a master-slave architecture with a unique master node and multiple slave

nodes. The master node typically runs two daemons: 1) the JobTracker that schedules and

manages all of the tasks belonging to a running job; and 2) the NameNode that manages the

HDFS namespace by providing a filename-to-block mapping, and regulates access to files

by clients (i.e., the executing tasks). Each slave node runs two daemons: 1) the TaskTracker

that launches tasks on its local node, and tracks the progress of each Map or Reduce task

on its node; and 2) the DataNode that serves data blocks (on its local disk) to HDFS clients.

We analyzed the white-box logs generated by these daemons on two production

Hadoop clusters namely: Yahoo!’s M45 [Yahoo!, 2009] supercomputing cluster, and the

OpenCloud cluster for data-intensive research [Parallel Data Lab, 2012]. Each node in

the system also generates black-box logs which monitor resource-usage on the node. Sec-

tion 3.2.2 provides a comprehensive analysis of these traces.

3.1.2 Business Voice-over-IP (VoIP) system

Consumers are increasingly using interconnected VoIP services in lieu of traditional tele-

phone service. As of December 2010, 31 percent of the more than 87 million residential tele-

phone subscriptions in the United States were provided by interconnected VoIP providers.

In addition, approximately 31 percent of residential wireline 9-1-1 calls were made using

VoIP services, making the availability of VoIP infrastructure critical [FCC, 2012]. The FCC

specifies reporting requirements for major outages which are defined as outages that last

more than 30 minutes and potentially affect E-911 services, or outages that affect at least

900,000 user minutes of interconnected VoIP service. There is no FCC reporting require-

ment for chronics. However, VoIP providers are concerned about chronics because unre-

solved chronics significantly degrade users’ satisfaction with the service.

We investigated the characteristics of chronics in the context of a business VoIP system at

a major US-based Internet Service Provider (ISP). The ISP’s VoIP network that we analyzed

handles tens of millions of calls each day, contains thousands of network elements, and is



CHAPTER 3. WORKLOAD CHARACTERIZATION 31

 
 

ISP PSTN 

 Customers with 
Non-IP service 

 Customers with 
IP service 

White-box logs

Black-box logs

Logs available

IP Base Elements 

Application Servers 

Gateway Servers 

Figure 3.2. An example of a VoIP system. Customers connect to the network via the public-switched telephone

network using phones or faxes, or using IP devices such as computers. A large number of network elements

at the ISP route the calls from the source to their destination and execute application-specific logic.

layered on a large IP backbone. The network offers a portfolio of voice services including

individual accounts, teleconferencing, self-managed solutions where users manage their

own premise equipment, and wholesale users who buy network minutes in bulk and resell

them. Each service has different call flow patterns, with calls going through combinations

of network elements such as VoIP gateways (IPBEs), traditional phone gateways (GSXs),

accounting servers, application servers (AS), voicemail servers, and policy servers (PSX).

Many of these are built by different vendors and have different log file formats. Calls within

the VoIP system may originate from, or be destined to circuit-switched networks (e.g, public

switched telephone network (PSTN)) or packet-switched networks (e.g, VoIP services on

personal computers) as shown in Figure 3.2.

Each network element in the VoIP system logs details of each call that passes through

in white-box logs known as call-detail-records (CDRs). The network elements also track

resource-usage in black-box logs. There are two types of CDRs namely: 1) Success CDRs

generated when a call is answered, ring-no-answer, user-busy, or dialed-number-error;

and, 2) Defect CDRs generated when a call fails during call setup (i.e., blocked call),

or when a call fails during data transfer after the connection is established (i.e, cutoff

calls). Quality of Service in the VoIP system is measured in by the number of defects per

million (DPM) calls.



CHAPTER 3. WORKLOAD CHARACTERIZATION 32

Table 3.1. Comparison of the target systems. Summary of characteristics that make the target systems

amenable to our diagnosis approach.

Property Hadoop VoIP

Workload Batch jobs Interactive calls

Scale 10s–100s of nodes 1000s of nodes

Labeled failure data Partially available Available

Application logs Hadoop daemon logs Call Detail Records (CDRs)

System logs OS performance counters OS performance counters

Causal flows End-to-end task traces End-to-end call traces

Peers Tasks from same job Calls from the same service

3.1.3 Comparison of Target Systems

Hadoop workloads are data-intensive and consist of batch jobs with diverse run-

times [Kavulya et al., 2010; Ren et al., 2012]. The scale of the two production Hadoop

clusters we analyzed ranged from 10s–100s of nodes. Labeled failure data is partially avail-

able in the Hadoop clusters by mining the exceptions thrown whenever jobs or tasks abort.

However, the diverse runtimes of Hadoop jobs makes it challenging to identify perfor-

mance problemsnecessitating the use of anomaly detection in our diagnosis approach.

On the other hand, VoIP workloads consist of interactive calls. The production VoIP sys-

tem that we analyzed comprised of 1000s of nodes. Labeled failure data was available in

the VoIP system due to the existence well-established heuristics for identifying failed calls,

e.g., a user redialing the same number immediately after disconnection, or zero talk time

might indicate failure.

Despite the differences in the Hadoop and VoIP systems, these systems share charac-

teristics that make them amenable to our diagnosis approach as listed in Table 3.1, and

elaborated below:

• Both systems are engineered for high-availability, thereby ensuring that they are

working correctly for an overwhelming majority of users. However, due to the scale

of these systems, there are almost always multiple ongoing problems of different

types that affect small subsets of users or requests, i.e., chronics.

• Multiple instrumentation sources are available in both systems. White-box logs, such

as the daemon logs in Hadoop and the call-detail records (CDRs) in VoIP provide a



CHAPTER 3. WORKLOAD CHARACTERIZATION 33

semantic-rich source of information. In addition, black-box logs, such as OS perfor-

mance counters, provide insight on resource-usage.

• User requests are routed through the system using well-known patterns (e.g. MapRe-

duce flows in Hadoop and call flow patterns in VoIP ) that support the inference of

end-to-end causal traces from the diverse white-box logs available in these produc-

tion systems. These end-to-end traces capture the users’ experience with the system

by identifying successful and failed interactions. Our top-down diagnosis approach

exploits knowledge of these successful and failed interactions to localize the root-

cause of the problem.

• Both systems support a notion of peersmaking them amenable to a peer-

comparison approach for detecting anomalous behavior in the absence of labeled

failure data. In Hadoop, peers can be tasks from the same job, or slave nodes running

similar workloads. In VoIP, peers can be calls from the same service, e.g., conference

calls and call-waiting.

3.2 Characterization of Hadoop Workloads

To gain insight on how to best to address the shortcomings of existing monitoring tools,

we analyzed the characteristics of Hadoop jobs using traces collected from two production

Hadoop clusters. The first set of traces comprised of 10-months of white- and black-box

logs from the M45 [Yahoo!, 2009] supercomputing cluster, a production Hadoop system

that Yahoo! administered and made freely available to select universities for academic re-

search until August 2011. The M45 cluster had approximately 400 nodes, 4000 processors,

3 terabytes of memory, and 1.5 petabytes of disk space. The cluster ran Hadoop, and used

Hadoop on Demand (HOD) to provision virtual Hadoop clusters over the large physical

cluster. The second set of traces comprised of 8-months of white- and black-box logs from

the OpenCloud cluster for data-intensive research. The OpenCloud cluster currently has

64 worker nodes, each with 8 cores, 16 GB DRAM, 4 1TB disks and 10GbE connectivity be-

tween nodes [Parallel Data Lab, 2012]. The compute cluster in OpenCloud, seen as a single

computer, has over 1 tera-operations per second, over 1 TB memory, 256 TB of disk space,

and over 40 Gbps bisection bandwidth.



CHAPTER 3. WORKLOAD CHARACTERIZATION 34

This section provides background on Hadoop clusters by describing the users, existing

monitoring tools, and the current diagnostic workflows of Hadoop users based on a user

study conducted on the OpenCloud cluster (Section 3.2.1). This section also provides a

comprehensive analysis of the performance characteristics of jobs and tasks executing in

the Hadoop clusters (Section 3.2.2).

Users of Hadoop Clusters. The users of both clusters are researchers familiar with con-

figuring Hadoop, writing and running MapReduce jobs, and analyzing the output gener-

ated by their jobs. These users run a diverse set of data-intensive workloads such as large-

scale graph mining, text and web mining, natural language processing, machine translation

problems, and data-intensive file system applications. Hadoop users troubleshoot their

MapReduce jobs when they suspect that the job has been running longer than usual, or

when their jobs fail due to exceptional conditions such as insufficient file privileges. Users

also seek help from the system administrators when they are unable to solve problems on

their own. The root-causes of these problems range from bugs in their MapReduce jobs (e.g.

infinite loops), configuration problems such as allocating insufficient memory to complete

their jobs, to the occasional disk failure as discussed in Section 3.3.

The system administrators are responsible for maintaining the overall health of each

cluster by: 1) setting up hardware and software on the cluster; 2) troubleshooting infras-

tructural problems (e.g., hardware failures, misconfigurations); 3) upgrading hardware and

software; and 4) maintaining user accounts. The system administrators were less famil-

iar with Hadoop, so the task of troubleshooting MapReduce problems was typically per-

formed by Hadoop users.

Existing Monitoring Tools. Users primarily rely on three tools to diagnose problems in

their jobs namely: 1) Ganglia [Ganglia, 2007], a scalable distributed system monitor tool

for high-performance computing systems such as clusters and grids that allows users to

remotely view live or historical statistics (such as CPU load averages or network utilization)

as illustrated in Figure 3.3; 2) the Hadoop web interface [Apache Software Foundation,

2007] that allows users to browse white-box logs and monitor the progress of the map and

reduce tasks that constitute their jobs, as illustrated in Figure 3.4; and 3) the operating

system terminal that facilitates more powerful exploration such as querying the real-time

resource usage (e.g., CPU utilization), of nodes and processes, pinging remote nodes to



CHAPTER 3. WORKLOAD CHARACTERIZATION 35

Figure 3.3. Screenshot from Ganglia monitoring tool. Each chart represents load on a node during a one

hour period.

determine their status, tail-ing logs to track the real-time job progress, and dumping

the process state of Hadoop jobs. In addition, system administrators use Nagios [Nagios

Enterprises., 2008], an open-source application that monitors nodes and services, and alerts

administrators when things go wrong. They also make use of an issue-tracking system

(Request Tracker (RT) [Best Practical Solutions, 2013]) that allows them to keep track of

both open and resolved problems.

3.2.1 Hadoop User Study

To better understand the diagnostic workflows of Hadoop users and identify shortcomings

in the existing monitoring tools, we interviewed 3 Hadoop users and 2 system administra-

tors of the OpenCloud cluster [Campbell et al., 2011]. The Hadoop users had varying levels

of experience with Hadoop: one of the users was a novice user, while the other two were

advanced users. Hadoop users try to diagnose problems on their own, by soliciting help

from the cluster mailing list, or by escalating the problem to the system administrators. The

users were interested in distinguishing between the following diagnostic scenarios:

1. Bugs in their MapReduce jobs. Users sometimes make mistakes when developing

their MapReduce jobs, such as referencing incorrect files, assigning insufficient file



CHAPTER 3. WORKLOAD CHARACTERIZATION 36

Kind % Complete Num Tasks Pending Running Complete Killed Failed/Killed
Task Attempts

Map

Reduce

Job Name: random-writer
Job ID: job_20130504180930_0001
Status: Running
Started at: Sat May 4 09:30:17 EDT 2013
Running for: 9mins, 46sec

Figure 3.4. Screenshot of the Hadoop web interface. Screenshot shows progress of Map and Reduce tasks

in a single job.

permissions, and software bugs such as infinite loops. Once they identify the bug,

they can fix their code and re-run their jobs.

2. Legitimately slow jobs. Some tasks within their MapReduce jobs are legitimately

slower than others because they are processing more data. Users can ignore these

discrepancies in task durations, and allow their jobs to run to completion.

3. Contention with other jobs. As users share the cluster, sometimes buggy MapRe-

duce jobs can degrade the performance of other jobs running in the cluster. For

example, infinite loops in tasks or jobs which inadvertently fill up the temporary di-

rectories on nodes can interfere with other jobs in the system. Users can contact the

owners of these buggy jobs or system administrators to resolve these issues.

4. Infrastructural problems: Users can escalate problems to the system administrators

especially if they suspect an infrastructural problem, e.g., disk failures, insufficient

disk space or a cluster-wide misconfiguration.

Methodology of User Study

We used a human-centered design methodology [Beyer and Holtzblatt, 1997] to explore the

diagnostic workflows of Hadoop users. Our aim was to identify common workflows in their

day-to-day tasks, and identify breakdowns and opportunities for improving the existing

diagnostic interfaces. To understand the diagnostic workflows of these users, we conducted

contextual inquiries [Beyer and Holtzblatt, 1997]. Contextual inquiry is a human-centered

research method in which researchers observe users performing their work in context, and



CHAPTER 3. WORKLOAD CHARACTERIZATION 37

interrupt briefly to ask questions as they arise. We believe that what the user says he does,

and what he actually does can be very different things. By observing users and their work flows,

we gained a more concrete understanding of their everyday tasks and goals. Through our

contextual inquiries, we identified common workflows of Hadoop users when diagnosing

problems in their jobs. In what follows, we describe cases that illustrate important aspects

of the diagnostic workflow, focusing on breakdowns because these are areas that require

the most immediate attention.

Case 1: Misleading application bug. Bob1 begins a Hadoop job from the terminal.

He monitors the job progress from the terminal window. “I like to monitor progress from the

terminal. If there is a problem, I can see it faster.” After receiving sporadic feedback about job

progress, Bob switches windows to the Hadoop web interface and refreshes the page. “I

think I’m competing with another job”. He sees that another job is being run by a different user

and restarts his job to test his theory. To do this, he must scroll through the job output on

his terminal to find the kill command, then copy and paste the command in the terminal.

“If the job is very long, you have to go back several screens to get it.”

After modifying his code, Bob attempts the job again, but this time the job fails. The ter-

minal tells him that the job failed, but it does not contain sufficient information to diagnose

the problem. Bob returns to the web interface to gather more information and refreshes

the job page again. He determines there is a problem by noticing that the number of failed

tasks on his job is greater than zero. “If this number is non-zero, basically there is something

wrong with your program. If the number is low, two or three, the node may be unstable.” He then

clicks on the number of failed tasks in the web interface to view the error messages, but he

must navigate to another page to access a full error log. “It’s kind of painful to do this”. From

this he determines the cause to be due to a syntax error in his code.

Case 2: Overloaded node. Jeff2 retrieves an email message posted to the cluster mailing

list requesting assistance with troubleshooting a job that is failing. Jeff examines the failed

job in the Hadoop web interface. He selects the job from the job list and subsequently clicks

on the number of killed tasks from the job summary page. He observes the list of killed

tasks and identifies the node on which the task was killed, “ah, this was the machine”, which is

labeled as node 13, “sometimes it’s not that obvious”. Jeff changes browser tabs to the Ganglia
1Not his real name.
2Not his real name.



CHAPTER 3. WORKLOAD CHARACTERIZATION 38

web interface where the individual cluster nodes are monitored. He scrolls through the list

of nodes to find node 13, which he identified as being troublesome in the Hadoop interface

and selects it. He explains, “Sometimes it’s not just your job that caused the problem, sometimes

someone else might cause you a problem”. The resulting page displays hourly plots of all the

metrics collected from node 13. He glances at the first few graphs, “these are more likely to be

important”, he quickly scrolls the rest of the page, “this is too much detail, there is too much data

to look at”. Back at the summarized node 13 graphs, he synthesizes the information from

multiple graphs to determine that the node was under heavy load during the period over

which his task ran.

Shortcomings in Existing Monitoring Tools

The contextual inquiries revealed several shortcomings in diagnostic interfaces of the mon-

itoring tools available on the Hadoop cluster namely:

• No single point for diagnosis-relevant information. We observed that users spent

an inordinate amount of time locating key pieces of data spread across multiple sys-

tems. Users often juggled between multiple browser tab views to obtain the desired

information.

• Lack of information prioritization. In many cases, important data needed by the

user is not displayed prominently and conveniently. The user often must go through

several levels of navigation to find needed information.

• Information overload. Another major shortcoming we observed was the copious

amount of information displayed to the user due to the large number of nodes in the

cluster, and the approximately hundred different performance metrics collected from

each node. Users were presented with stacks of graphs that commingled meaningful

information with irrelevant data as shown in Figure 3.3.

• Users unaware of the computational cost of their jobs. The Hadoop users in the

cluster had no way of knowing how effectively they were managing resources on the

Hadoop cluster. They were unable to determine whether variations in task perfor-

mance were due to legitimate issues (e.g., a task processing a large chunk of data),

due to application bugs, or due to infrastructural problems in the cluster.



CHAPTER 3. WORKLOAD CHARACTERIZATION 39

Table 3.2. Summary of M45 and Opencloud Hadoop job traces. Over 90% of jobs completed successfully

on both clusters. The job failure rate was slightly higher on OpenCloud than M45.

M45 OpenCloud

Log period 10 months 8 months

Number of active users 33 57

Job Status

Successful jobs 160,278 (97.0%) 59,683 (94.3%)

Failed jobs 4,874 (3.0%) 3,627(5.7%)

Job statistics Mean S. dev. Max. Mean S. dev. Max.

Maps per job 121 528 38,927 303 2,134 143,949

Reduces per job 18 142 24,000 26 68 5,000

Nodes per job 25.6 22.4 299 30 22 64

Job duration 18mins 208mins 7days 7mins 107mins 13days

HDFS statistics Mean S. dev. Max. Mean S. dev. Max.

HDFS bytes read 2.8GB 28.7GB 2.4TB 12GB 476GB 85TB

HDFS bytes written 1.8GB 38.6GB 11.6TB 2GB 28GB 3TB

3.2.2 Characteristics of Hadoop Jobs

The first step towards understanding how to address the shortcomings in existing tools

involved analyzing the performance characteristics of Hadoop jobs. To gain insight on

these performance characteristics, we analyzed 10-months of white-box logs from the M45

[Yahoo!, 2009] supercomputing cluster, and 8-months of white-box logs from the Open-

Cloud [Parallel Data Lab, 2012] cluster (see Table 3.2). The white-box logs contained infor-

mation about the Map and Reduce tasks executed by each job, e.g., task duration, status,

and the volume of data read and written to the Hadoop Distributed File System (HDFS).

The logs also recorded the completion status of each job. We categorized the completion

status of jobs as:

• Successful jobs.

• Failed jobs which were aborted by the JobTracker due to unhandled exceptions, or

aborted by the user.



CHAPTER 3. WORKLOAD CHARACTERIZATION 40

Over 90% of jobs completed successfully on both clusters as shown in Table 3.2. The per-

centage of failed jobs on OpenCloud is higher than that on M45we hypothesized that this

increased failure rate could be due to novice users and configuration problems on Open-

Cloud. Jobs on OpenCloud, on average, instantiated 303 Maps per job compared to 121

Maps per job on M45. The larger mean number of Maps per job on OpenCloud can be

attributed to the larger mean number of bytes read from HDFS (12GB on OpenCloud com-

pared to 2.8GB on M45). The differences in the mean number of Reduces per job and the

data written by these Reduces to HDFS was less pronounced across both clusters.

Most jobs on both clusters utilized only a subset of available nodes. For example, on

M45 the mean number of nodes utilized per job was 25.6 while the total number of available

nodes was 400. Despite larger data input sizes, jobs completed faster on OpenCloud with

a mean duration of 7 minutes than on M45 where the mean duration was 18 minutes as

shown in Table 3.2. We hypothesize that the differences in the mean job duration could be

due to the diversity of jobs running on the clusters, and higher resource contention on M45

which experienced a higher volume of jobs.

The performance characteristics of Hadoop jobs and tasks that we explore are:

1. Variance in job durations. We analyze the performance characteristics of Hadoop

jobs by quantifying the variance in job durations.

2. Variance in error latencies. We analyze the amount of time it typically takes for

Hadoop jobs to fail from the time the first exception is thrown. Long error latencies

imply that Hadoop could benefit from better diagnosis techniques.

3. Variance in task durations. We analyze the performance characteristics of tasks

within individual Hadoop jobs by quantifying the variance in the task durations.

An understanding of variance is important because research has shown that high vari-

ance in metrics can degrade the performance of diagnosis tools [Sambasivan and Ganger,

2012b]. Quantifying the amount of variance in Hadoop jobs and tasks guided our efforts to

reduce variance during anomaly detection (Chapter 5). We estimated the degree of variance

in Hadoop jobs and tasks by computing the mean, standard deviation, and the coefficient

of variation (CV) for job and task durations. The coefficient of variation is the ratio of the

standard deviation to the mean. Distributions with CV <= 1 have a low-variance, while

those with CV > 1 have high-variance [Bendel et al., 1989].



CHAPTER 3. WORKLOAD CHARACTERIZATION 41

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Job duration (log scale)

P
D

F

1s 10s 100s 1h 10h 100h

Successful
Failed

(a) M45 cluster

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Tasks per job (%) (log-scale)

P
D

F

0.1 1 10 100

Anomalies
Failed Tasks

(b) OpenCloud cluster

Figure 3.5. Probability density function of Hadoop job durations. The job durations on Hadoop follow a

multi-modal distributionthe median job duration was ≈1 minute, however some jobs lasted several days.

Table 3.3. Variance in Hadoop job durations (in minutes). SD - Standard deviation, CV - Coefficient of

Variation, 99th Perc. - 99th percentile.

Cluster Job status Mean SD CV Median 99th Perc.

M45 Successful 13.6 159.7 11.7 1.2 89.5

Failed 112.6 617.2 5.5 0.4 5,213.3

OpenCloud Successful 5.2 48.8 9.3 1.4 39.5

Failed 33.0 265.7 8.0 1.8 833.7

Problem 1: Quantifying variance in job durations. Given d1, d2, ..., dn durations of ji

jobs in each Hadoop cluster, quantify the variance in job durations. Figure 3.5 shows that

the job durations on both clusters exhibit multi-modal behavior, and follow a heavy-tailed

distribution where most jobs were short-lived with a median job duration of about 1 minute

on both clusters (see Table 3.3). However, the longest job durations observed lasted several

days. Heavy-tailed job durations have also been observed in other MapReduce clusters

[Isard et al., 2009; Ren et al., 2012], prompting the development of fair job schedulers, such

as the Hadoop capacity scheduler [Yahoo!, 2008] and the Quincy fair scheduler[Isard et al.,

2009], which prevent large jobs or heavy users from monopolizing the cluster. We estimated

the degree of variance in Hadoop jobs by computing the mean, standard deviation, and the



CHAPTER 3. WORKLOAD CHARACTERIZATION 42

0
1

2
3

4

Error latencies (log-scale)

P
D

F

10s 100s 1h 10h 100h

M45
OpenCloud

Figure 3.6. Error latencies in Hadoop jobs. Most jobs fail within 5 minutes after the first unrecoverable task

aborts. However, we observed a maximum error latency of 3.62 days on OpenCloud.

Table 3.4. Variance in Hadoop error latencies (in minutes). SD - Standard deviation, CV - Coefficient of

Variation, 99th Perc. - 99th percentile.

Cluster Job status Mean SD CV Median 99th Perc.

M45 Failed 43.3 293.5 6.8 0.3 1,241.3

OpenCloud Failed 33.0 265.7 8.0 1.8 833.7

coefficient of variation (CV) for the job durations (see Table 3.3). The coefficient of variation

for job durations on both clusters was greater than 1 indicating high variance.

Problem 2: Quantifying variance in error latencies. Given l1, l2, ..., ln error latencies of

ji failed jobs in each Hadoop cluster, quantify the variance in job durations.

We estimated the error latency for failed jobs i.e., the time that elapsed from the first un-

recoverable exception in a task to the time the JobTracker aborts the job. Figure 3.6 shows

that most jobs fail within 2 minutes of the first aborted task. The error latencies on Open-

Cloud tended to be larger than those on M45 as shown by the median latencies in Table 3.4.

The coefficient of variation in both clusters was greater than 1 indicating high variance. The

maximum error latency observed was 3.62 days. Therefore, even jobs that eventually failed

due to unrecoverable exceptions could benefit from better diagnosis techniques.

Problem 3: Quantifying variance in task durations. Given t1, t2, ..., tn task durations in

each individual job, ji, quantify the variance in task durations in each job.

Table 3.3 shows that Hadoop clusters experience high variance across jobs (i.e., at a

macro-level) because users run diverse jobs with different performance characteristics. We



CHAPTER 3. WORKLOAD CHARACTERIZATION 43

Map tasks

Reduce tasks

0 sec 500 sec 1000 sec

Long running Maps
delay startup of 
Reduce phase

Figure 3.7. Swimlane graph charting progress of tasks in Hadoop job. The graph charts the start and end

times, and durations of Map and Reduce tasks for a single jobhighlighting the inherent structure of MapReduce

jobs with Map tasks completing before Reduce tasks.

Table 3.5. Variance in Hadoop task durations. Prevalence of high variance is computed by the percentage of

jobs with a coefficient of variation > 1 during the Map or Reduce phase.

Indicator of High Variance Percentage of jobs with high-variance

(Coefficient of Variation > 1) Successful jobs Failed jobs Canceled jobs

M45

Map phase 10.8% 6.7% 15.7%

Reduce phase 30.8% 15.4% 9.6%

OpenCloud

Map phase 11.1% 13.7% 25.5%

Reduce phase 40.6% 33.8% 57.8%

investigated whether individual jobs experience variance in the durations of Map and Re-

duce tasks (i.e., at the micro-level). A low amount of variance would indicate that peer-

comparison would be a feasible strategy for anomaly detection in Hadoop. We term the

property of low variance in task durations within the same job as the equity of task dura-

tions. The equity of task durations is important in optimizing the performance of parallel

programs such as Hadoop. Intuitively, parallel programs perform optimally when the dif-

ferent threads (a term we use loosely to refer to independently executing parts) of the pro-

gram executing in parallel complete in the same amount of time; otherwise, the runtime of

the program can be reduced by redistributing work from threads taking longer to complete

to work taking less time to complete. Alternatively, high variation in task durations within



CHAPTER 3. WORKLOAD CHARACTERIZATION 44

a job can be seen as an indication of inefficiency or performance problems (if each task has

the same amount of work), or as an indication that the job at hand intrinsically consists of

barriers to its parallelization.

Visually, variance in task durations can be observed using the Swimlanes plots of

MapReduce job behavior [Tan et al., 2009]. The Swimlanes visualization plots the execu-

tions of Map and Reduce tasks of one (or more) MapReduce job(s). Figure 3.7 shows a plot

of a typical MapReduce job: the horizontal axis shows the time elapsed since the start of

the job. For each (Map or Reduce) task, a horizontal line is plotted to indicate the dura-

tion of the job during which it was executing. The executions of Map and Reduce tasks are

plotted using different colors. Tasks are plotted in the order in which they were executed

during the job. Straggler Map or Reduce tasks, which take much more time than other

tasks to complete, slow the completion of jobs, and are easily seen visually from our plots.

These stragglers would also typically render the durations of tasks in the job less equitable,

so studying the variance in task durations is also instructive in indirectly (but scalably, for

large datasets) for identifying the possible existence of straggler tasks.

We measured the variance in task durations by computing the coefficient of variation

for Map and Reduce tasks for each job in the Hadoop traces. Table 3.5 highlights the preva-

lence of high variance by computing the percentage of jobs with a coefficient of variation

> 1 during the Map or Reduce phase. We observed that most successful jobs exhibited low

variance for both Map and Reduce task durationsindicating that the durations of Map

tasks (and Reduce tasks) were comparable in most jobs, with more than 90% of successful

jobs with coefficients of variation <= 1 for Map durations, and with more than 60% of jobs

with coefficients of variation <= 1 for Reduce durations. However, we also observed that

there were jobs with high variance. The high variance could be due to legitimate issues (e.g.,

tasks processing more data), or due to performance problems (e.g, resource contention). A

diagnostic approach needs to factor out legitimate sources of variance when identifying

anomalous tasks (see Chapter 5).

3.3 Prevalence of Chronics

This section presents empirical evidence of chronics in Hadoop clusters, and anecdotal evi-

dence of chronics in VoIP systems. This section also explores the characteristics of chronics



CHAPTER 3. WORKLOAD CHARACTERIZATION 45

Table 3.6. Prevalence of problems in OpenCloud issue tracker. Chronics (i.e., problems that affect a subset

of users or jobs) are more prevalent than major outages.

Major Outage Chronics

Total problems 30 (21.6%) 109 (78.4%)

Problem characteristics

Single, independent 0 (0%) 59 (54.1%)

Multiple, independent 0 (0%) 15 (13.8%)

Correlated 30 (100%) 35 (32.1%)

Identified cause

Hardware problem 4 (13.3%) 69 (63.3%)

Hard drive 0 59

Network 4 4

Power 0 4

CPU/memory 0 2

Configuration 15 (50.0%) 21 (19.3%)

Disk full 11 14

Out of memory 4 7

Software bug 1 (3.3%) 4 (3.7%)

Unknown 10 (33.3%) 15 (13.7%)

in production systems.

Evidence of Chronics in Hadoop

We estimated the prevalence of chronics in Hadoop clusters using one year’s worth of data

from OpenCloud’s issue tracking system, and hardware replacement logs. OpenCloud

relies on Request Tracker (RT) [Best Practical Solutions, 2013] to track issues and coordi-

nate tasks on the cluster. Users submit problems to the issue tracker using the mailing list.

The submitted problems are assigned to the system administrators who troubleshoot the

problems by manually analyzing white-box and black-box logs. Once the system admin-

istrators identify the root-cause and resolve the problem, they record the resolution in the

issue tracker. The system administrators also keep track of failed hardware components



CHAPTER 3. WORKLOAD CHARACTERIZATION 46

Table 3.7. Summary of M45 and Opencloud Hadoop job traces.

Application-level bug 1439 (53%)

Command failed 371

Missing or mismatched class 216

Index out of bounds 202

Number format exception 185

Null pointer exception 136

Type mismatch 76

Other 253

Configuration 910 (34%)

Missing file 341

Permission problem 266

Out of memory 227

Disk full 76

Unknown 357 (13%)

and their replacements. We analyzed 139 resolved problems on the OpenCloud cluster

by collating reported incidents in the issue tracker and hardware replacement logs. Our

analysis did not include incidents due to scheduled downtime such as upgrading cluster

software.

Table 3.6 shows the prevalence of problems in OpenCloud’s Hadoop cluster. We catego-

rized major outages as problems that impacted the majority of jobs running on the cluster.

Major outages occurred due to failures in centralized Hadoop components namely: the Job-

Tracker which schedules jobs on the cluster, the NameNode which manages the namespace

for the Hadoop Distributed File System (HDFS), and the client which serves as the gateway

into the cluster. Major outages on the cluster were primarily due to exhaustion of memory

or disk space on these centralized nodes. We categorized chronics as problems that im-

pacted a small subset of users or jobs. For example, a software bug in a user’s MapReduce

application that primarily affects jobs belonging that user, or a hardware problem such as

a bad disk that degrades the performance of the subset of a job’s tasks that are running

on the affected node. In addition, Hadoop’s fault-tolerance mechanisms attempt to mask



CHAPTER 3. WORKLOAD CHARACTERIZATION 47

problems by rescheduling affected tasks on different nodes. We observed that chronics

were more prevalent than major outages on the OpenCloud clusteraccounting for 78.4%

of reported problems. Chronics in the cluster were mostly due to single, independent prob-

lems such as bad disks. Occasionally, the chronics were attributed to multiple, independent

problems. For example, one incident was attributed to two faulty disks, and a faulty net-

work interface cardeach on a different node. This incident took several weeks to resolve.

Correlated problems arose due to misconfigurations or software bugs in a user’s job, e.g.,

allocation of insufficient memory results in correlated task failures in a user’s job.

We observed that only a small proportion of the problems reported to the system ad-

ministrators involved software bugs. Most users attempted to first debug problems in their

jobs before reporting issues to the system administrators via the mailing list. Table 3.7

highlights the root-causes of failed jobs on the OpenCloud cluster based on mining excep-

tions thrown when the JobTracker aborts a job due to an unrecoverable error. We identified

the root-causes of the 2,706 failed OpenCloud jobs described in Table 3.2 by manually an-

alyzing the classes of exceptions (e.g., null pointer exceptions which indicated application-

level bugs). Table 3.7 shows that 53% of jobs failed due to application-level bugs such

as failed command-line scripts and mismatched classes. Misconfigurations and environ-

mental problems such as referencing non-existent files or allocating insufficient memory

accounted for 34% of failed jobs. We tried to ascribe the remaining 13% of job failures

whose root-causes were unknown to hardware problems reported in the issue tracker and

hardware replacement logs. However, due to the time lag between the job failure and the

reporting of the incident to the issue tracker, we were only able manually ascribe 17 inci-

dents to job failures. Therefore, we could not obtained a detailed breakdown of root-causes

for 13% of failed jobs.

3.4 Anecdotal Evidence of Chronics in VoIP

Due to confidentiality concerns, we present anecdotal (rather than empirical) evidence of

chronics in the production VoIP system. The VoIP system has real-time operations teams

that ensure high-availability by monitoring both low-level alarms derived from the equip-

ment, as well as end-to-end indicators such as user complaints and output from automated

test call systems. These operations teams rely on codebook-based systems [Yemini et al.,



CHAPTER 3. WORKLOAD CHARACTERIZATION 48

Total Failures

F
a

ilu
re

s
 

lo
g

 (
 y

 )
 

 
F

a
ilu

re
s 

lo
g

 (
 y

 )
 

 

F
a

ilu
re

s
 

lo
g

 (
 y

 )
 

 

F
a

ilu
re

s
 

lo
g

 (
 y

 )
 

 

F
a

ilu
re

s
 

lo
g

 (
 y

 )
 

1. Problem with network element

2. Problem with single customer

3. Failures on specific trunk route

4. Problem with a different customer

Total Failures

Figure 3.8. Multiple chronics present in a single network element in VoIP system. Defects associated with

a network element may be due to many different causes.

1996] driven by signatures of known problems for diagnosis. Major outages often result

in immediate impact on successful call volumes, alarms from many sources, and are usu-

ally detected and resolved quickly. For example, data we obtained from the Voice over IP

(VoIP) platform of a major ISP revealed that even in the worst month for major outages, the

number of calls affected (dropped or blocked) due to major outages was only 30% higher

than the number of calls impacted by chronics.

Despite such robust operations support, the system always has a number of call defects

occurring at any time of the day in the form of “background noise” which they refer to as

chronics. The causes of these chronics were many, ranging from network elements that need



CHAPTER 3. WORKLOAD CHARACTERIZATION 49

to be reset or rebooted, to protocol compatibility issues for corner cases, to configuration

problems for individual customers. Measured in defects per million (DPM), they represent

only a small fraction of the calls at any given time, but left unchecked, they can add up

quickly over weeks and months. A separate operations team troubleshoots these defects,

but diagnosis was still a largely manual process prior to the deployment of our diagnosis

tool.

Figure 3.8 shows an actual example where the total number of defective calls passing

through a network element (top graph) over a period of 3 days were in fact due to at-least

four unique problemsone related to a network element, two related to two different cus-

tomers (problems 2 and 4), and one a capacity problem with a trunk route (problem 3). The

y-axis shows the number of failed calls due to each problem on a log scale as a function of

time. The most dominant problem (problem 1) drives the shape of the overall failure graph,

and hides the other problems. Some problems, such as problem 4 from Figure 3.8 occur

only for short durations of time, and could be discovered by change detection algorithms.

However, problems such as problem 1 persisted for long periods of time, thus making it

difficult to detect them via change points.

Chronics may also be triggered by some unforeseen corner case requiring atypical con-

ditions. An incident from the VoIP network illustrates this issue. Customers of a given

service experienced difficulties making and receiving calls following a planned mainte-

nance involving a configuration change to a server. The issue prevented customers whose

phones used IP addresses instead of fully qualified domain names from registering with

the network. To effectively debug this problem, operators needed to identify that the prob-

lem occurred only for customers of the specific service when certain types of phones were

used with the misconfigured server. Identifying the combination of factors necessary to

trigger the problem is challengingmotivating the need for automated diagnosis tools for

localizing the source of chronics.

3.5 Summary

This chapter described the performance characteristics of Hadoop workloads, and in-

vestigated the prevalence of chronics in the context of two production systems namely:

academic cloud-computing clusters running the Hadoop parallel processing framework



CHAPTER 3. WORKLOAD CHARACTERIZATION 50

Table 3.8. Summary of Findings

Finding Implications on diagnosis

Workload characterization

I. Hadoop jobs exhibit multi-modal behavior, and

large variance in job durations where short jobs

are occasionally interspersed with long-running

jobs. (Figure 3.5 and Table 3.3)

Anomaly detection can be challenging due

to the diverse job durations.

II. Most Hadoop jobs exhibit low variance across

Map and Reduce tasks. (Table 3.5).

Peer-comparison is a feasible strategy for

anomaly detection.

III. High task variance could be due to legitimate

issues (e.g., varying input), or due to performance

problems (e.g, resource contention) (Table 3.5).

Anomaly detection approach needs to fac-

tor out legitimate sources of variance when

identifying anomalous tasks.

Prevalence of chronics

I. Chronics are more prevalent than major outages

in production systems (Section 3.3).

Top-down statistical approach needed to drill

down from user-visible symptoms of prob-

lems to identify source of problem.

II. Chronics arise due to various fault scenarios

ranging from single, independent faults to com-

plex component interactions (Section 3.3).

Diagnostic approach needs to distinguish

between these fault scenarios.

[Apache Software Foundation, 2007], and a Voice-over-Internet-Protocol (VoIP) system at

a major Internet Service Provider. We summarized the implications of our workload char-

acterization on anomaly-detection and problem localization in Table 3.8.

First, the comprehensive analysis of Hadoop workloads showed that Hadoop jobs ex-

perience high-variance at a macro-level (i.e., across jobs) due to diverse runtimes. These

diverse job runtimes make the detection of performance problems challenging because

we cannot rely on time-based service-level objectives (SLOs) used in multi-tier web ap-

plications [Cohen et al., 2005; Chen et al., 2002; Aguilera et al., 2003] where there are well-

accepted standards for defining slow web requests (e.g., 99% of requests should complete

within 4 seconds). However, at the micro-level (i.e, tasks within individual jobs), the ma-

jority of Hadoop jobs exhibit low-variance across Map and Reduce tasks. The low-variance

within jobs suggests that peer-comparison is a feasible strategy for anomaly-detection. We

also observed that some individual jobs experience high-variance in Map and Reduce du-



CHAPTER 3. WORKLOAD CHARACTERIZATION 51

rations. The challenge is how to differentiate between legitimate sources of variance (e.g.,

tasks processing more data) from illegitimate sources of variance (e.g, resource contention).

An anomaly-detection approach that relies on peer-comparison would need to factor out

legitimate sources of variance when identifying anomalous tasks.

Both empirical and anecdotal evidence revealed that chronics more prevalent than ma-

jor outages in production systems. The root-causes of the chronics ranged from software

bugs to resource-contention. Not all of these problems would trigger alarms at the node-

level. Therefore, to detect these problems we adopted top-down statistical approach that drills

down from user-visible symptoms of problems to localize the source of the problem. We

also observed that due to the scale and distributed nature of production systems, complex

interactions between components can result in complex failure modes, such as 1) correlated

failures where problems whose root-cause is a single node manifest at multiple nodes due

to internode communication; 2) complex triggers where a combination of factors have to go

wrong to trigger the problem; and 3) multiple independent failures. A diagnostic approach

needs to distinguish between these failure modes.



It’s no longer enough to monitor the up-versus-down status of

thousands of discreet elements—you need a top-down view to

monitor the performance of your applications.

ExtraHop.com 2011

Chapter 4

White-box Analysis

TRADITIONAL approaches for diagnosis typically rely on a bottom-up approach

[Yemini et al., 1996; Mahimkar et al., 2009; Oliner et al., 2010] that localizes prob-

lems by correlating low-level alarms (such as resource utilization indicators or network

packet loss) across components in a production system. However, these alarm-correlation

approaches fall short when diagnosing chronics because they fail to provide the necessary

application-level visibility to detect chronics effectively. These tools are also prone to false

positives, and tend to flood the operations team with alarms that do not correlate to end-

user issues [ExtraHop.com, 2011]. Additionally, false negatives occur when the chronics

are not be severe enough to trigger alarmsin these instances, the only indications of a

problem are customer complaints which are often not specific and difficult to decipher.

We addressed the shortcomings in traditional alarm-correlation tools by adopting a top-

down statistical approach that localizes the root-cause of chronics by drilling down from

user-visible symptoms (i.e., slow or failed user interactions) to the source of the problem.

The first step of our approach involves inferring end-to-end causal flows from the white-

box logs available in the production system. These end-to-end flows capture the control

path and data demands of application requests as they are serviced across components

and machines in the production system. Existing frameworks for automatically generat-

ing end-to-end flows either rely on source-code instrumentation, or black-box monitoring

of messages exchanged between components. [Barham et al., 2004; Thereska et al., 2006;

Sigelman et al., 2010] used source-code instrumentation in the application and middle-

ware layers to track requests. However, production systems often comprise of proprietary

components that do not support source-code instrumentation. Black-box monitoring of

52



CHAPTER 4. WHITE-BOX ANALYSIS 53

list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

labeled  
end-to-end flows 

normalized black-
box metrics 

anomalous nodes 

end-to-end 
flows 

Figure 4.1. Overview of white-box analysis. During white-box analysis, the white-box (i.e., application) logs

are analyzed to infer end-to-end flows that capture system dependencies.

messages exchanged by components can be used to infer causal flows in proprietary com-

ponents without relying on knowledge of node internals or message semantics [Aguilera

et al., 2003]. But simply examining the black-box messages does not provide sufficient in-

sight into the application-level behavior. [Attariyan et al., 2012] automatically generates

request flows by instrumenting binaries as stand-alone applications executethey do not

support tracing across a distributed system.

We developed a log-analysis framework for use in production systems that infers end-

to-end causal flows from the unmodified white-box (See Figure 4.1). The use of unmodified

logs makes the framework better suited for production systems where we may not have the

luxury of modifying existing instrumentation. The white-box logs provide our framework

with semantic information on the runtime behavior of the application. The log-analysis

framework infers the end-to-end causal flows by extracting control flows and data flows

from the white-box logs. Control flows capture the sequence of events executed when ser-

vicing a user’s request, while data flows capture the transfer of data between components.

Research questions The research questions that we asked when performing white-box

analysis were:

• How do we extract local control-flow and data-flow information from the unmodi-

fied white-box logs?



CHAPTER 4. WHITE-BOX ANALYSIS 54

• How do we infer dependencies with other components?

• How do we deal with missing dependency information in the logs?

Challenges. The challenges that we faced when performing white-box analysis were:

• Diverse log formats. Production systems comprise of different components, sup-

plied by different vendors, each with different log formatsextracting meaningful

information requires an understanding of these log formats.

• Lack of global request identifiers. The lack of global request identifiers that are

propagated across the system complicates the inference of end-to-end flows. In VoIP

systems, different components may use different formats to record key attributes

(e.g., some components log whole phone numbers while others log partial phone

numbers). While in Hadoop, the TaskTracker logs do not record the unique identi-

fiers of the data blocks transferred from the Hadoop Distributed File System (HDFS).

• Scale. Production systems can consist of hundreds (or thousands) of components.

Each component can generate a large volume of monitoring data depending on the

number of attributes tracked and the number of requests processed.

Design Overview. We addressed these challenges by developing an extensible log-

analysis framework for inferring end-to-end causal flows. The framework examines the

unmodified white-box logs to trace control-flow and data-flow execution in a distributed sys-

tem, and to derive state-machine-like views of the system’s execution. The framework extends

SALSA’s state-machine abstraction [Tan et al., 2008] for log-analysis by supporting a config-

urable environment for describing log files and expressing rules for generating end-to-end

flows. User-defined configuration files specify how to stitch together the end-to-end flows

based on the sequence of states extracted from locally-generated component logs. Since

log data is only as accurate as the programmer who implemented the logging points in

the system, we can only infer the state-machines that execute within the target system. We

cannot (from the logs), and do not, attempt to verify whether our derived state-machines

faithfully capture the actual ones executing within the system. Instead, we leverage these

derived state-machines to support different kinds of analyses namely: to detect anomalous

flows (Chapter 5), to localize problems (Chapter 6), and to visualize the system’s execution

(Chapter 9).



CHAPTER 4. WHITE-BOX ANALYSIS 55

Node1 Node2

Node4Request Reply

8:09:01 am 
From ID: 567
To ID: 676
Node1 to Node2
Status: Success

8:09:39 am 
From ID: 676
To ID: ???
Node1 to Node2
Status: Success

8:10:30 am 
From ID: 888
To ID: ???
Node1 to Node2
Status: Failed

User

Each node  locally logs 
request outcomes  

1 Causal flows matched
using request and 
node IDs

2

Approximate matching
used when IDs are
missing (e.g., missing To ID)

3

Figure 4.2. Inferring end-to-end causal flows. Our log-analysis framework infers end-to-end flows from locally-

generated component logs based on approximate-matching of request and node IDs across components.

Figure 4.2 provides an overview of how we generate the end-to-end flows for a hypo-

thetical request. Each component in the production system generates a log entry for each

event processed. This log entry comprises of a timestamp, the type of event (e.g., Map or

Reduce task in Hadoop, or service type in VoIP), the IP address the sending and receiving

nodes, and the event duration and status. Each event typically has a unique identifier as-

sociated with it, e.g. a task ID in Hadoop or the sender’s and recipient’s phone numbers in

VoIP. Some log entries track the unique identifier for the next event in the sequence. For

example, Hadoop logs explicitly specify the association between individual Map and Re-

duce tasks. Our log-analysis framework uses these associations to infer the state-machines

that execute in the system. To cater for the log entries that do not explicitly state the identi-

fiers for the next event in the sequence, we rely on approximate-matching based on domain-

specific knowledge about relationships between events. For example, correlating block

reads with Map tasks that occurred during the same time interval, and that accessed the

same source and destination hosts. Each log entry may also contain additional descriptive

attributes, such as the volume of data read or written during each event.

Our log-analysis framework relies on domain-specific log-parsers that use regular expres-

sions to extract attributes of interest from the logs. One limitation of these domain-specific



CHAPTER 4. WHITE-BOX ANALYSIS 56

log parsers is their reliance on hard-coded regular expressions that vary based on the for-

mat of log messages. The parsers need to be manually updated if the underlying log format

changes due to a software upgrade. Despite this limitation, we opted for this approach be-

cause we lacked visibility into the proprietary components in the production systems.

Non-Goals. We do not seek to validate or improve the accuracy or the completeness of

the logs, nor to validate our derived state-machines against the actual ones of the target

system. Rather, our focus has been on the analyses that we can perform on the logs in their

existing form. In addition, the current implementation of our log-analysis framework does

support online analysis.

Assumptions. We assume that the logs faithfully capture events and their causality in the

system’s execution. For instance, if the log declares that event X happened before event Y,

we assume that is indeed the case, as the system executes. We assume that the logs record

each event’s timestamp with integrity, and as close in time (as possible) to when the event

actually occurred in the sequence of the system’s execution. Again, we recognize that, in

practice, the preemption of the system’s execution might cause a delay in the occurrence of

an event X and the corresponding log message (and timestamp generation) for entry into

the log. We do not expect the occurrence of an event and the recording of its timestamp/log-

entry to be atomic. However, we do assume that clocks are loosely synchronized across

hosts for correlating events across logs from different hosts.

This chapter presents SALSA’s state-machine abstraction, and describes the extensible

log-analysis for inferring end-to-end flows from white-box logs. We illustrate our approach

using Hadoop logs. The operations team at the VoIP system uses a similar approach to gen-

erate the end-to-end flows where call-flow patterns represent the state-machine abstraction,

and approximate-matching on key attributes infers end-to-end flows (see Section 4.3).

4.1 State-Machine Abstraction for Log Analysis

SALSA [Tan et al., 2008] analyzes the production system’s logs to derive the control-flow

on each node, the data-flow across nodes, and the state-machine execution of the system.

When parsing the logs, SALSA also extracts key attributes (state durations, bytes read/writ-

ten, etc.) of interest. SALSA does not require any modification of the hosted applications,

middleware or operating system. To describe SALSA’s high-level operation, consider a dis-



CHAPTER 4. WHITE-BOX ANALYSIS 57

tributed system with many producers, P1, P2, ..., and many consumers, C1, C2, ..... Many

producers and consumers can be running on any host at any point in time. Consider one

execution trace of two tasks, P1 and C1 on a host X (and task P2 on host Y) as captured by

a sequence of time-stamped log entries at host X:

[ t 1 ] Begin Task P1

[ t2 ] Begin Task C1

[ t3 ] Task P1 does some work

[ t4 ] Task C1 waits f o r data from P1 and P2

[ t5 ] Task P1 produces data

[ t6 ] Task C1 consumes data from P1 on host X

[ t7 ] Task P1 ends

[ t8 ] Task C1 consumes data from P2 on host Y

[ t9 ] Task C1 ends

:

From the log, it is clear that the executions (control-flows) of P1 and C1 interleave on

host X. It is also clear that the log captures a data-flow for C1 with P1 and P2.

SALSA interprets this log of events/activities as a sequence of states. For example,

SALSA considers the period [t1, t6] to represent the duration of state P1 (where a state

has well-defined entry and exit points corresponding to the start and the end, respectively,

of task P1). Other states that can be derived from this log include the state C1, the data-

consume state for C1 (the period during which C1 is consuming data from its producers,

P1 and P2), etc. Based on these derived state-machines (in this case, one for P1 and another

for C1), SALSA can derive interesting attributes, such as the durations of states.

SALSA can then compare these attributes and the sequences of states across hosts in the

system. In addition, SALSA can extract data-flow models, e.g., the fact that P1 depends on

data from its local host, X, as well as a remote host, Y. We explain how to infer end-to-end

flows using the state-machine abstraction in a Hadoop cluster.

4.1.1 Hadoop’s Logging Framework

Hadoop uses the Java-based log4j logging utility to capture logs of Hadoop’s execution

on every host. log4j is a commonly used mechanism that allows developers to generate

log entries by inserting statements into the code at various points of execution. By default,

Hadoop’s log4j configuration generates a separate log for each of the daemonsthe Job-



CHAPTER 4. WHITE-BOX ANALYSIS 58

Hadoop source-code

LOG. i n f o (” LaunchTaskAction ( r e g i s t e r T a s k ) : ” + t . getTaskID ( ) ;

Cl ientTraceLog . i n f o ( S t r i n g . format (MR_CLIENTTRACE_FORMAT,

request . getLocalAddr ( ) + ” : ” + request . ge tLoca lPor t ( ) ,

request . getRemoteAddr ( ) + ” : ” + request . getRemotePort ( ) ,

totalRead , ”MAPRED_SHUFFLE” , mapId , reduceId , endTime−s tar tTime ) ) ;

⇓ TaskTracker log

2011−10−12 0 0 : 0 1 : 5 3 , 7 8 9 INFO

org . apache . hadoop . mapred . TaskTracker :

LaunchTaskAction ( r e g i s t e r T a s k ) : attempt_201106031747_9581_m_005404_2

2011−10−12 0 0 : 0 1 : 5 4 , 0 5 0 INFO

org . apache . hadoop . mapred . TaskTracker . c l i e n t t r a c e :

s r c : 1 0 . 0 . 0 . 2 3 : 4 0 0 6 0 , dest : 1 0 . 0 . 0 . 1 4 : 4 3 0 9 4 , bytes : 6256992 ,

op : MAPRED_SHUFFLE, c l i I D : attempt_201106031747_9581_m_000109_0

Figure 4.3. log4j-generated TaskTracker log entries. Dependencies on task execution on local and remote

hosts are captured by the TaskTracker log.

Tracker, NameNode, TaskTracker and DataNode. Each log is stored on the local file-system

of the executing daemon (typically, 2 logs on each slave host and 2 logs on the master host).

Typically, logs (such as syslogs) record events in the system, as well as error messages

and exceptions. Hadoop’s logging framework is somewhat different since it also check-

points execution because it captures the execution status (e.g., what percentage of a Map or

a Reduce has been completed so far) of all Hadoop jobs and tasks on every host. Hadoop’s

default log4j configuration generates time-stamped log entries with a specific format. Fig-

ure 4.3 shows a snippet of a TaskTracker log, and Figures 4.4 and 4.5 show snippets of the

DataNode logs.

4.1.2 Control Flows in Hadoop

Figure 4.7 illustrates how we infer end-to-end flows in Hadoop. Each TaskTracker log

records events related to the TaskTracker’s execution of Map and Reduce tasks on its lo-

cal host, as well as any dependencies between locally executing Reduces and Map outputs

from other hosts. On the other hand, each DataNode log records events related to the read-

ing or writing (by both local and remote Map and Reduce tasks) of HDFS data-blocks that

are located on the local disk (see Figures 4.4 and 4.5). The dependencies between the HDFS



CHAPTER 4. WHITE-BOX ANALYSIS 59

Hadoop source-code

ClientTraceLog . i n f o ( S t r i n g . format (DN_CLIENTTRACE_FORMAT,

r e c e i v e r . inAddr , r e c e i v e r . myAddr , block . getNumBytes ( ) ,

”HDFS_WRITE” , r e c e i v e r . clientName ,

datanode . dnRegis t ra t ion . getStorageID ( ) , block , endTime − s tar tTime ) ) ;

⇓ DataNode log

2011−10−12 0 0 : 0 0 : 0 6 , 3 5 8 INFO

org . apache . hadoop . hdfs . server . datanode . DataNode . c l i e n t t r a c e :

s r c : / 1 0 . 0 . 0 . 4 4 : 5 2 8 6 6 , dest : / 1 0 . 0 . 0 . 2 3 : 4 0 0 1 0 , bytes : 67108864 ,

op : HDFS_WRITE, c l i I D : DFSClient_attempt_201106031747_9581_r_000021_0 ,

srvID : DS−1453395396−10.0.0.23−40010−1267417661277 ,

blockid : blk_3458061035615104394_40996376

Figure 4.4. log4j-generated DataNode log with task dependencies. Local and remote data dependencies

are captured. The log also captures dependencies between block IDs and task IDs through the cliID token.

DataNode log

2009−02−24 0 6 : 0 4 : 0 7 , 7 7 1 INFO

org . apache . hadoop . dfs . DataNode : 1 0 . 2 5 1 . 1 0 3 . 3 2 : 5 0 0 1 0

S t a r t i n g thread to t r a n s f e r block blk_1338452498666794354 to 1 0 . 2 5 1 . 1 6 2 . 8 0 : 5 0 0 1 0

2009−02−24 0 6 : 0 4 : 0 7 , 8 2 9 INFO

org . apache . hadoop . dfs . DataNode : 1 0 . 2 5 1 . 1 0 3 . 3 2 : 5 0 0 1 0 :

Transmitted block blk_1338452498666794354 to / 1 0 . 2 5 1 . 1 6 2 . 8 0 : 5 0 0 1 0

Figure 4.5. log4j-generated DataNode log without task dependencies. Earlier versions of the Hadoop

logs did not specify dependencies between block IDs and tasks IDs. Our framework infers these missing

dependencies using approximate matching.

data blocks, and the Maps and Reduces are explicitly specified in the logs from Hadoop

release 0.20.0 (Figure 4.4). Earlier versions of the DataNode logs did not record these depen-

dencies (Figure 4.5). We infer dependencies by using exact matches on task IDs or block IDs

specified in the Hadoop daemon logs. In the event of missing dependencies in the logs, we

infer dependencies using approximate-matching by identifying events that occur within a

given time window, and that share the same source and destination IP address.



CHAPTER 4. WHITE-BOX ANALYSIS 60

TaskTracker 8
10:03:59, SHUFFLE 
task_656_r_900 
copying 
task_188_m_98

10:03:59, REDUCE 
task_656_r_900 
192.168.22.3

Datanode 34

TaskTracker 6
10:03:59, MAP 
LaunchTaskAction
task_188_m_98

   Each node logs task 
(or block) info. locally 

10:04:01, 
BLOCK_WRITE 
blk_8987676
192.168.22.3 to 
192.168.22.6

      Domain-specific 
knowledge used to 
extract attributes of 
interest 

    Infer dependency  
using exact key 
match on task ID.    Match on IP 

address within given 
time window 

1

2

3

4

Figure 4.6. Deriving control-flows from Hadoop’s white-box logs.

4.1.3 Data-Flows in Hadoop

A data-flow dependency exists between two nodes when an activity on one node requires

transferring data to/from another node. The DataNode daemon acts as a serverreceiving

blocks from clients that write to its disk, and sending blocks to clients that read from its

disk. Thus, data-flow dependencies exist between each DataNode and each of its clients

for each of the ReadBlock and WriteBlock states. We identify the data-flow dependencies

on a per-DataNode basis by parsing the hostnames jointly with the log-messages in the

DataNode log. Data exchanges occur to transfer outputs of completed Maps to their as-

sociated Reduces during the Shuffle phase. This dependency is captured, along with the

hostnames of the source and destination hosts involved in the Map-output transfer. Tasks

also act as clients of the DataNode in reading Map inputs and writing Reduce outputs to

HDFS.

4.2 Extensible Log-analysis Framework

We implemented an extensible log-analysis framework for inferring end-to-end causal

flows from the Hadoop logs based on the state-machine abstraction described in Section 4.1.

This framework comprises of domain-specific log-parsers and configuration files, and a

domain-agnostic inference engine that generates the end-to-end causal flows. The infer-



CHAPTER 4. WHITE-BOX ANALYSIS 61

Map ID used to infer control flow 

Control and data flow from Map to Reduce task 

2011-10-12 23:59:55,625 INFO org.apache.hadoop.mapred.TaskTracker: 
attempt_201106031747_9630_m_013846_0 0.027189009% Records R/W=208/1
2011-10-12 23:59:55,943 INFO org.apache.hadoop.mapred.TaskTracker: 
Sent out 43000 bytes for reduce: 37 from map: 
attempt_201106031747_9630_m_013677_0 given 43000

(a) Snippet of the Hadoop logs showing tokens extracted during a shuffle task.

Timestamp,TaskType,ReduceID,MapID,Hostname,Bytes
1364868136,Shuffle,
 attempt_201106031747_9630_m_013846_0,
 attempt_201106031747_9630_m_013846_0,
 node43,43000
..... 

"hadoop-states":{
  "tasktracker":{
    "Fields":{
      "Timestamp":"timestamp",
      "TaskType":"state-name",
      "MapID":"from-state-id",
      "ReduceID":"to-state-id"
      ...
    },
    FieldTypes":{
      "timestamp":"float",
      "state-name":"string",
      "from-state-id":"string",
      "to-state-id":"string",
   ... },}}

Parsed comma-delimited file (CSV)

Record Descriptor (JSON)
Hadoop 
Daemon

CSV 
Header

Data Types

Attribute
Names

Domain-specific parsers transform the
unstructured white-box logs into 
structured comma-delimited files

(b) Snippet of CSV file generated by log parsers, and the corresponding JSON record descriptor.

Figure 4.7. Extracting attributes of interest from Hadoop logs. The extraction of attributes is domain-specific

and depends on the format of the log.

ence engine stores the data generated in the MongoDB NoSQL database [Plugge et al.,

2010]. NoSQL databases are key-value stores that can provide higher scalability and avail-

ability than traditional relational databases.

Domain-specific Log-parsers. The domain-specific elements of the log-analysis frame-

work include: 1) log-parsers that extract states of interest from the white-box logs; and 2)

configuration files that describe the extracted states, and specify the sequence of expected

states for each end-to-end flow. In Hadoop, the log-parsers process the logs generated by

the TaskTracker and DataNode daemons on the slave nodes, and the JobTracker and Na-

meNode daemons on the master nodes. Data extracted from the master nodes is merged

with data from the slave nodes to provide additional context on the Map, Shuffle, and Re-

duce states in the TaskTracker, and the ReadBlock and WriteBlock states in the DataNode.



CHAPTER 4. WHITE-BOX ANALYSIS 62

2011-10-12 23:59:55,625 INFO 
org.apache.hadoop.mapred.TaskTracker: 
attempt_201106031747_9630_m_013846_0 

White-box logs
MapReduce: { 
“state”:{“Shuffle”: { 
“primary-key”:“from-state-id”,       
“join-key”:“to-state-id”,
“next-event”:“Reduce”},…

Flow Schema (JSON)

NoSQL
Database

Database records
<timestamp=1364868136,
state-name=Shuffle,
from-state-id=attempt_
  201106031747_9630_m
  _013846_0>

"tasktracker":{
 "Fields":{
  "Timestamp":"timestamp",
  "Task":"state-name", 
  "MapID":"from-state-id",
  "ReduceID":"to-state-id"
  ... },}

Record Descriptor (JSON)

Log Parsers
Flow 

Builder

Stitched end-to-end 
causal traces

Map Reduce

Data 
CollectorsCSV files

Figure 4.8. Derived Control-Flow for Hadoop’s execution.

For example, the JobTracker, which schedules jobs and tasks on the cluster, records whether

a Map task is accessing data from a local or a remote DataNodethe inference engine ex-

ploits this information to infer a causal relationship between Map tasks and data blocks in

the Hadoop Distributed File System (HDFS).

Figure 4.7(a) shows the attributes extracted by the log-parsers for a Shuffle task. Each

log-parser outputs a CSV (comma-separated-values) file where each record, i.e., line, in the

file consists of fields that describe the state, e.g., Shuffles. The first line in the file is the

header listing the names of the fields. Each CSV file has a corresponding record descriptor

written in JSON (JavaScript Object Notation); JSON [Crockford, 2006] is a text-based open

standard designed for human-readable data interchange. The record descriptor maps the

header field-names in the CSV file to the key attribute-names in the NoSQL database, as

shown in Figure 4.7(b). The record descriptor also describes the data types for each field.

Flow Inference Engine. Figure 4.8 illustrates the domain-agnostic inference engine for

generating the end-to-end causal flows. The inference engine consists of a set of data col-

lectors which read the CSV files generated for each component by the domain-specific log-

parsers, and stores the attributes of interest in the NoSQL key-value store. The naming con-

ventions and data formats for attributes in the key-value store are governed by the JSON

record-descriptor. A separate JSON file describes the schema of each end-to-end flow by



CHAPTER 4. WHITE-BOX ANALYSIS 63

listing the sequence of states that make up each flow. The flow schema specifies the join

keys needed to match adjacent states. For example, generating a Shuffle flow based on

the Map and corresponding Reduce identifiers stored in the shuffle record in the NoSQL

database. If a record in the database does not explicitly specify the unique identifier for

the next state in the flow, we rely on approximate-matching to infer the dependency. For

example, in Hadoop, the flow schema indicates that the ReadBlock state and the Map state

are causally-related. However, the DataNode logs to not track the mapping between Block

IDs and Map IDs in earlier versions of Hadoop. Therefore, the inference engine infers de-

pendencies between states using time-based correlation, e.g., by correlating ReadBlocks

with Maps that occur during the same time interval, and that access the same source and

destination hosts. The inference engine consists of about 3,000 lines of Python code. This

implementation of the inference engine, running on a single node, takes about 2-hours to

synthesize end-to-end traces from 18GB of raw log data. The performance of the inference

engine could be improved by distributing the MongoDB database on multiple nodes.

The inference engine is also responsible for outputting the flows generated into the stan-

dard text format supported by our problem localization tool (described in Chapter 6). This

output format is shared by both the Hadoop and VoIP systems. Each line of the file repre-

sents an end-to-end flow with its associated attributes. The problem localization tool does

not require preservation of the ordering between states in an end-to-end flowrather, it

treats the attributes for each flow as a bag of words. Each attribute in the file has a pre-

fix which indicates the category to which it belongs. For example, the category code +01

indicates a status code, such as SUCCESS. The prefix can also include the hostname when

attributes are associated with a given node, e.g., +06:node40 attemptm768 indicates a

map whose unique identifier is attemptm768 was executed on node40. Figure 4.9 shows

examples of the end-to-end flows generated by the log-analysis framework, along with a

snippet of the text files used during problem localization. Our framework can generate

flows that capture all the dependencies from the block read during the Map to the block

writes during the Reduce as described in [Tan et al., 2009]. However, we opted to generate

shorter sub-flows comprising of the Map, Shuffle, and Reduce flows because the cross-

product that occurs during the Shuffle can result in very large flows. For example, we

observed Hadoop jobs with 140,000 maps and 200 reduces yielding a cross-product of 28

million dependencies during the shuffle.



CHAPTER 4. WHITE-BOX ANALYSIS 64

Map Reduce

Block
Read

Map

Reduce

Block
Write

Block
Write

<state-name=BlockRead,
block-id=blk_89890,
hostname=node23>

<state-name=Map,
map-id=attempt_m_768,
hostname=node40>

Map flow

Shuffle flow

Reduce flow

<state-name=Map,
map-id=attempt_m_768,
hostname=node40>

<state-name=Reduce,
reduce-id=attempt_r_54,
hostname=node15>

<state-name=Reduce,
reduce-id=attempt_r_54,
hostname=node15>

<state-name=BlockWrite,
block-id=blk_5635,
hostname=node15>

<state-name=BlockWrite,
block-id=blk_98927,
hostname=node25>

|flow1|1364868136|+06:node23~blk_89890 +03:BlockRead +06:node40~attempt_m_768 +03:Map
|flow2|1364868143|+06:node40~attempt_m_768 +03:Map +06:node15~attempt_r_54 +03:Reduce
|flow3|1364868145|+06:node15~attempt_r_54 +03:Reduce +06:node15~blk_5635 ... 

Each flow (and its associated attributes) is represented as a line in the file

1

2

3

Figure 4.9. Examples of end-to-end Hadoop flows generated by log-analysis framework. The framework

generates Map, Shuffle, and Reduce flows, and outputs a text file listing the flows and their associated attributes.

4.3 End-to-end Flows in VoIP

The operations team at the large ISP uses a similar approach to generate the end-to-end

flows for the VoIP system. The call-flow patterns represent the state-machine abstraction,

while approximate-matching on key attributes helps construct the end-to-end flows. These

end-to-end flows represent user-level events (i.e., phone calls). The operations team uses

these flows for network quality accounting, and defect analysis. In the VoIP network, each

network element locally records information about each call that passes through it in the

call detail record (CDR) logs (see Figure 4.10). These white-box logs often contain hundreds

of attributes that specify details of the call such as the caller and callee information as shown

in Table 4.1. The structure and semantics of these records are vendor-specific, and require

domain-specific log-parsers to extract attributes of interest. The logs tend to be large

the average size of the raw CDR logs is 30GB/day. Even after significant consolidation

to eliminate irrelevant data fields, the average size is 2.4GB/day, and each log contains

between 5000–10000 unique call attributes pertinent to diagnosis, i.e., attributes that appear

in defective calls. In addition to CDR logs, each network element generates black-box logs

at 5-15 minute intervals which store OS performance counters.

The operations team consolidates data extracted from the raw CDRs and constructs a



CHAPTER 4. WHITE-BOX ANALYSIS 65

Application Server 43

10:04:05, ATTEMPT
973-123-8888 to 
409-555-5555

Gateway 45

IP Base Element 3
10:03:59, START
973-123-8888 to 
409-555-5555
192.156.1.2 to
11.22.34.1
10:04:02, STOP

10:04:10, ATTEMPT
973-123-xxxx to 
409-555-xxxx

   Domain-specific 
knowledge used 
to extract attributes 
of interest

    Infer dependency  
using exact key 
match on phone no.    Approximate match 

on partial phone no. 
and time

   Each node logs call 
outcomes locally in 
Call Detail Record (CDR)

1

2

3

4

Figure 4.10. Fix caption: Derived Control-Flow for Hadoop’s execution.

Table 4.1. A Generic Call Detail Record (CDR) in the VoIP system.

Attribute Description

Timestamps Call start and end times

Service Type of service

Caller/callee info Phone number and IP address

Network Element Name of network element, e.g., gateway X

Error code Problem encountered, e.g., server timeout

master record that represents the consolidated end-to-end flows. Each raw CDR contains

common keys such as timestamps, phone numbers, and IP addresses that can be used to

infer the end-to-end flows for each phone call. However, the matches need not be exact, and

domain-specific matching rules can be used. For example, some vendor log partial phone

numbers. To cater for these instances, we infer dependencies by approximate-matches on

the partial phone numbers within a small window of time.

We post-process the end-to-end flows generated by the operations team to incorporate

synthetic attributes that increase the scope of problems diagnosed as described below:

• Wild-card attributes. We use wild-cards to create synthetic attributes that can detect

problems that affect all the servers in a high-availability cluster. For example, the syn-

thetic attribute, svr ∗ loc1, would represent the high-availability servers at location1,

comprising of the primary server, svr1loc1, and the standby server, svr2loc1.



CHAPTER 4. WHITE-BOX ANALYSIS 66

IP Base
Element

<hostname=ipbe3,
   caller=973-123-8888, 
   callee=409-555-5555,
   ip-address=192.156.1.2>

Call flow

|flow1|1364864567|+02:ipbe3 +06:973-123-8888 +06+:409-555-5555 +02:192.156.1.2
            +02:as43 +02:11.22.34.1 +02:gateway45 +02:192.156.1.10
|flow2|1364864570|+06:ipbe65 +06:973-123-9999 ...

Each flow (and its associated attributes) is represented as a line in the file

App.
Server

Gateway
Server

<hostname=as43,
   caller=973-123-8888, 
   callee=409-555-5555,
   ip-address=11.22.34.1>

<hostname=gateway45,
   caller=973-123-xxxx, 
   callee=409-555-xxxx,
   ip-address=192.156.1.10>

Figure 4.11. Derived Control-Flow for VoIP call flows.

• Ingress and egress fields. The call detail records contain ingress and egress fields

that identify the preceding and the next network element in the call path. By extract-

ing the hostnames from these fields, we can detect problems due to timeouts where

the call detail record of the faulty network element is missing.

• Attribute categories. We categorize attributes in the call detail records into defect

codes, network elements, telephone numbers, and VoIP services. Operators can use

these categories to filter diagnostic output.

The end-to-end flows for the VoIP system serve as input to our problem localization

tool described in Chapter 6. The log-format for the VoIP end-to-end traces is the same as

the Hadoop traces shown in Figure 4.9.

4.4 Summary

This section described our extensible log-analysis framework that infers end-to-end causal

flows using the unmodified white-box logs available in production systems. These end-

to-end causal flows capture the control path and data demands of application requests as

they are serviced across components and machines in the production system. Each end-

to-end flow embodies a user’s interaction with the system through Map and Reduce flows

in Hadoop, and phone calls in VoIP. The log-analysis framework comprises of domain-

specific log-parsers and configuration files, and a domain-agnostic inference engine that

generates the end-to-end causal flows. The inference engine generates end-to-end flows



CHAPTER 4. WHITE-BOX ANALYSIS 67

by coupling SALSA’s state-machine abstraction [Tan et al., 2008] with configuration files

that specify the sequence of expected states for each flow. When the application logs do

not explicitly record the identifiers for the next state in the sequence, our framework relies

on approximate matching based on domain-specific knowledge about relationships between

states and time-based correlations.

We applied our framework to generate end-to-end flows in Hadoop. These end-to-end

flows are useful for a variety of purposes, such as anomaly detection (Chapter 5), problem

localization (Chapter 6), and visualization (Chapter 9). A limitation of our log-analysis ap-

proach is that the end-to-end flows might not be accurate since state-machines are inferred

purely from the log data. Our framework has no way of verifying what the system is ac-

tually doing. Thus, the inferences are undoubtedly affected by the quality of the log data.

Another limitation of using the unmodified logs is that the log-parsers might need to be

upgraded for every new version of the production system, if system’s log messages or its

logging points are modified by the developers.



Essentially, all models are wrong; some models are useful.

G. Box, Empirical Model-Building and Response Surfaces, 1987

Chapter 5

Anomaly Detection

Major outages cause considerable disruptions to service delivery in production systems.

These disruptions can be quickly detected by alarms in the service provider’s network,

or by violations of the service-level objectives (SLOs) which guarantee high-throughput

or low-latency. Chronics, on the other hand, are more elusive for the operations team to

detect because they may not be severe enough to trigger low-level alarms within the ser-

vice provider’s network. Chronics may manifest to the end-user as performance degra-

dations, error messages, or incorrect results. To effectively detect chronics, the service

provider needs to monitor the end-user’s experience with the service. Figure 5.1 provides

an overview of how we detect anomalies in the end-to-end flows, described in Chapter 4.

Anomaly-detection determines whether an end-user is experiencing problems with the sys-

tem, and labels each flow as successful or failed.

Research questions. The research questions that we asked during anomaly detection

are:

• How do we detect performance problems in the absence of labeled data?

• How do we distinguish between performance differences due to legitimate

application-behavior from differences due to performance problems?

Design overview. We detect anomalous end-to-end flows using a two-pronged ap-

proach. Some user-visible problems manifest as errors such as timeouts. While the user

is aware that there is a problem, the operations team may not be made aware of the prob-

lem unless it perturbs a significant number of requests, or the customer complains. We

detect these problems by extracting error codes from failed flows, or by applying domain-

specific heuristics. VoIP systems have well-established heuristics for detecting anomalous

68



CHAPTER 5. ANOMALY DETECTION 69

list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

normalized black-
box metrics 

anomalous nodes 

labeled  
end-to-end flows 

end-to-end 
flows 

Figure 5.1. Overview of anomaly detection. Anomaly detection identifies user-visible errors and performance

degradations in end-to-end flows.

user interactions. For example, a user redialing the same number immediately after dis-

connection, zero talk time, or server reported error code can be used to indicate a problem

in the VoIP system. In Hadoop, uncaught task exceptions serve as indicators of problems.

Similar heuristics can also be applied to Internet Services, e.g., a user repeatedly refreshing

a web page might indicate issues with the website.

On the other hand, performance problems are harder to detect because there is no out-

right error other than the user’s frustration with the progress of their request. We exploit

the notion of peers to detect performance problems. Peers are system behaviors that can

be considered equivalent under normal conditions, e.g., tasks within the same job exhibit

similar performance. Any significant deviation from the peers is regarded anomalous. Peer-

comparison assumes that the majority of the system is working correctlya reasonable as-

sumption when targeting chronics. Peer-comparison is an attractive option for anomaly-

detection because: 1) it does not rely heavily on domain experts to model system behav-

ior; 2) it is relatively robust to workload changes as peers execute similar workloads in a

given period of time; and 3) operators do not need to explicitly demarcate non-problem

and problem time-periods which might be difficult to identify when problems persist for

long periods of time. However, for peer-comparison to be practical for anomaly detection, it

needs to distinguish legitimate sources of variance, such as I/O differences, from variance

induced by problems. This chapter describes our peer-comparison approach.



CHAPTER 5. ANOMALY DETECTION 70

Reduce Block
Write

Block
Write

Reduce flow

User-visible problems Detection mechanisms
Errors Domain-specific heuristics
Performance degradations Peer-comparison 

Figure 5.2. Strategies for anomaly-detection. Anomaly detection uses heuristics and peer-comparison to

identify user-visible problems in end-to-end flows.

5.1 Peer-comparison for Anomaly Detection

Peer-groups in production systems comprise of sets of machines, components or tasks that

perform similar work in a given time-interval. These peer-groupings can arise due to the

need for fault-tolerance, load-balancing, or parallel-processing. A peer-comparison ap-

proach detects anomalies based on the notion that peers exhibit similar behavior under

fault-free conditions, and diverge when a problem occurs.

Challenges. The two main challenges faced when implementing a peer-comparison ap-

proach are: 1) how to identify peers; and 2) how to factor out legitimate sources of variance.

Researchers have typically addressed these challenges by using two strategies namely: 1)

segmentation where they use domain-specific knowledge or clustering to identify groups

with similar behavior, i.e., peers; and 2) regression or normalization where they learn inter-

relationships between explanatory variables to factor out sources of variability amongst

peers. We describe these strategies in detail below.

• Identifying peers through segmentation. Some peer-comparison approaches rely

on domain-specific knowledge to identify peers. [Kavulya et al., 2008; Pan et al.,

2009a; Kasick et al., 2010] exploited knowledge about the structure of parallel dis-

tributed systems to identify peers and pinpoint anomalous nodes. [Barham et al.,

2004; Sambasivan et al., 2011] automatically identify peers by clustering requests,

while [Thereska et al., 2010] uses nearest-neighbor searches to automatically find

peers with similar configurations. These clustering techniques are better suited for

handling static attributes such as CPU type rather than dynamic attributes such as

CPU and memory usage which vary over time.



CHAPTER 5. ANOMALY DETECTION 71

workload that hogs a resource), bugs within Hadoop (e.g., a

memory leak), or data-dependent issues.

Scope of paper. We focus on offline diagnosis supported

by online data-collection, although our offline algorithms can

also be run online. We restrict our diagnosis to performance

problems only at slave nodes and not at the master node. Our

diagnosis produces a list of slave nodes that our algorithm

has identified as those that (for some reason) exhibit different

behavior from the majority of nodes. Finer-grained root-cause

analysis, which might trace the problem even further to the

faulty line of code, is outside our scope. We do not attempt

to predict a job’s normal completion-time. We also do not

currently attempt to distinguish between, or even to determine,

the possible root-causes of the performance problem.

Assumptions. The target MapReduce system (i.e., the Hadoop

infrastructure and Hadoop jobs) is the dominant source of

activity on every node. The majority of the Hadoop slave nodes

are fault-free and nodes are homogeneous in hardware.

IV. MOTIVATING A PEER-COMPARISON APPROACH

Over the past year, we conducted several experiments with

and analyzed data from two MapReduce systems, including

a 100-processor Amazon EC2-based cluster [4] under our

control and the 4000-processor Yahoo! M45 cluster [12] not

under our control. We experimented with multiple workloads,

such as the simple RandWriter and Sort , and the more

realistic Nutch and Pig. In addition to our own traces, we

also analyzed the traces of Hadoop jobs of other M45 users.

We observed that, in the absence of performance problems,

the slave nodes in a MapReduce cluster tend to exhibit similar

behavior, in terms of various metrics, e.g., CPU usage, network

traffic, Map-task completion-times, etc. When we inject a fault

(or when we observe a performance problem in the field, as in

the case of the M45 traces), we observed that the slave node

where the problem originated (the culprit node) deviated from

the other slave nodes in its behavior, again in terms of various

metrics. This peer-similarity observation held across multiple

traces, multiple experiments, multiple users, and regardless

of the workload, the specific performance problem, and the

Hadoop cluster (Amazon’s EC2 or Yahoo! M45). Section V

describes how these two empirically-driven insights motivate

Kahuna.

Justification. On reflection, this observed behavior is intuitive

and reasonable to expect in a MapReduce system. For a given

job, slave nodes typically process different instances of the

same Map or Reduce task and should exhibit similar behav-

ior, despite operating on different data. When Hadoop detects

an inequitable allocation of work across nodes, it attempts to

redistribute work across nodes in order to reduce overall job-

completion time. However, such redistribution comes at a cost

and detracts from useful work that Hadoop could otherwise

be doing. Thus, to trigger minimal redistribution, Hadoop

tries to ensure an equitable workload distribution so that each

slave node in the cluster spends approximately the same time

TABLE I
SUMMARY OF HADOOP LOGS FROM M45.

Number of experiments 12854

Number of users 26

Average jobs per experiment 3.84 ± 20

Average nodes per experiment 21.42 ± 24

Average experiment duration (mins) 19.74 ± 82

Longest running experiment (hours) 23.32

0 200 400 600 800 1000 1200

Time (seconds)

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

node1

node2

node3

slow host has fewer
maps scheduled

M
a

p
s/

s
M

a
p

s/
s

M
a

p
s/

s

Fig. 3. Peer-comparison of Map tasks across M45 nodes highlights a slow
node in a user’s Hadoop job.

processing each task instance.

Supporting evidence. We examine the traces of real Hadoop

jobs in the Yahoo! M45 production system, to support our

peer-comparison approach. M45 uses Hadoop on Demand

(HOD) to provision virtual Hadoop clusters over a large

physical cluster. We obtained the Hadoop logs for 12854

experiments across 26 users (whose data-intensive jobs ranged

from machine translation to large-scale data mining) over

the five-month period, April–Sept 2008. Each experiment

consisted of multiple Hadoop jobs. Table I summarizes the

log statistics.

Apart from visually inspecting these log traces, we sought

statistical measures to measure the similarity among nodes

involved in the same job. We computed corr_coeff, the

Pearson’s correlation coefficient (∈ (0,1), with 1 expressing
maximum similarity) of the average number of Maps/second

being executed across slave nodes during a job. We focused

on the number of Maps/second, rather than the number of

Reduces/second, because a third of the jobs (for this specific

user and workload) did not involve any Reduce tasks.

For successfully completed jobs, 89% of the nodes had

corr_coeff ≥ 0.6 with all of other nodes involved in the
job. On the other hand, for jobs aborted by the JobTracker,

only 43% of the nodes had corr_coeff ≥ 0.6 with other
nodes involved in the job. This demonstrates that fault-free

nodes exhibit peer-similarity, and can be seen visually in

Figure 3.

3

Figure 5.3. Example of peer-comparison of Map tasks scheduled across M45 hosts. Performance of a slow

host in a user’s job differs significantly from its peers.

• Coping with variance. High-variance complicates the task of setting thresholds

for detecting problems [Sambasivan and Ganger, 2012a]. Regression can be used

to reduce some sources of variance such as load variations and application differ-

ences [Kelly, 2005; Cherkasova et al., 2008; Stewart et al., 2007]. Instance-based

learning approaches [Smith, 2007; Kapadia et al., 1999; Kavulya et al., 2010] combine

clustering to identify sets of similar jobs in the recent past, and regression to predict

the completion time based on the set of similar jobs. Instance-based approaches flag

jobs as anomalous if they exhibit high residuals.

5.1.1 Background

Our initial exploration of the feasibility of peer-comparison for problem diagnosis began

when we were investigating the effect of different group communication protocols on prob-

lem diagnosis in replicated systems [Kavulya et al., 2008]. Our research demonstrated that

a peer-comparison approach was less susceptible to false positives due to workload fluctua-

tions than an approach that relied on historical data to identify abrupt changes in metrics on

individual nodes. Next, we applied our peer-comparison approach to parallel-processing

systems such as MapReduce clusters [Tan et al., 2008; Pan et al., 2009a; Tan et al., 2010a]. We

developed algorithms that compared the distribution of black-box and white-box metrics

across the different nodes of a MapReduce cluster, and indicted the culprit-node by iden-



CHAPTER 5. ANOMALY DETECTION 72

tifying odd-man-out behavior. We observed that in the absence of a performance problem,

the slave nodes in a Hadoop cluster tended to exhibit similar behavior, as measured in any

number of ways, e.g., CPU usage, network traffic, and task durations. This peer-similarity

arose because the JobTracker tried to distribute workload in the cluster as evenly as pos-

sible. However, when we injected a performance problem (or when we observed some

problems in the field), we observed further that the slave node on which the problem origi-

nated (the culprit node) deviated significantly from the other slave nodes in its behavior, as

illustrated in Figure 5.3. These earlier implementations of our peer-comparison algorithms

assumed that the hardware on the cluster was homogeneous, and that the workload was

evenly distributed across all the slave nodes. We also assumed that performance problems

arose due to a single, independent fault.

5.1.2 Peer-comparison of End-to-end Flows

We developed a practical peer-comparison approach for detecting anomalous behavior in

production systems. Our peer-comparison approach was inspired by the concept of Rika

a Swahili word for people in the same age-group, and is a core-concept in Kenyan cul-

ture as peers undergo rites of passage like initiation and marriage at similar times. Our

peer-comparison approach defines peers as tasks belonging to the same job, and detects

performance degradations in the end-to-end Hadoop flows by searching for flows whose

performance profiles differ significantly from their peers. The approach combines domain-

specific knowledge about the structure of Hadoop jobs to identify peers, with stepwise-

regression to automatically factor out variance due to application-level differences such as

differences in input sizes.

Assumptions. We relax the assumption of a homogeneous workload in [Tan et al.,

2008; Pan et al., 2009a; Tan et al., 2010a], and cater for variance due to application-level

differences. We also relax the single, independent fault assumptioncoping with more

complex failure modes like multiple, independent faults when coupled with our problem-

localization approach. We can cope with heterogeneous hardware in a cluster if the hard-

ware type of each component is specified as a categorical attributethe inclusion of hard-

ware type allows us to form homogeneous sub-clusters by grouping data based on hard-

ware type. Studies have shown that even homogeneous systems, e.g., disks of identical

make and model [Krevat et al., 2011], experience variations in performance. We treat any



CHAPTER 5. ANOMALY DETECTION 73

Table 5.1. Peer-comparable properties. Examples of peer-comparable properties for Hadoop.

Property Description Examples

Temporal Timestamps Start and end times

Spatial Nodes running same workload Nodes running same job

Phase Tasks with same structure Maps with local reads vs. remote reads

Context Application or hardware characteristics Job ID, user, service

large variations in hardware performance in homogeneous systems as anomalies. We also

assume that the majority of the system is working correctly most of the time, and that clocks

are loosely synchronized across all nodes to facilitate log correlation.

5.1.3 Identifying Peers using Domain-specific Knowledge

Peers can be compared across different dimensions. We identify peer-comparable proper-

ties in production systems based on the concept of age-sets (or Rika) in African culture.

Belonging to an age-set implies temporal, spatial, phase, and contextual similarities between

members of the age-set. Temporal similarity arises because age-sets comprise of people born

around the same time. Spatial similarity arises because members of the same-group typi-

cally reside within the same geographical region. Members of an age-set also pass through

a series of age-related statuses together imposing a phase similarity between members. For

example, among the Maasai people of East Africa, young men undergo an initiation cere-

mony which marks their transition from childhood to junior warriors. After several years,

they participate in another ceremony to transition to senior warriors. Lastly, the structure

of the age-set and the series of age-related transitions are dictated by context, e.g., tribe and

gender.

The concepts of temporal, spatial, phase, and contextual similarity can also be applied to

identifying peers in a distributed systems like Hadoop. Temporal similarities occur between

events in the same time window, for example, distributed systems often have daily varia-

tions in behavior with peak load during the day and non-peak load at night. Spatial similar-

ities can arise due to load-balancing of workloads across similar nodes. Phase similarities

relate to the path that causal flows take through the system. For example, the Map, Shuffle,

and Reduce phases in MapReduce jobs, or the distinct paths taken by calls involved in a

teleconference when compared to call-waiting. Contextual similarities arise due to shared



CHAPTER 5. ANOMALY DETECTION 74

Table 5.2. Application-level attributes that influence task durations in Hadoop.

Application-level Attribute Type

Job ID, Job name, User name Categorical

Task Type (Map, Shuffle, Reduce) Categorical

Task status (Success, Failed, Incomplete) Categorical

Hostname Categorical

Data-locality (Data-local, Rack-local, Non-local) Categorical

Timestamp, Duration Continuous

Task input/output records Continous

Combiner input/output records Continuous

HDFS bytes read/written Continuous

Local bytes read/written Continuous

Records spilled to disk Continuous

Shuffle bytes read Continuous

Reduce input groups Continuous

application or hardware characteristics such as tasks belonging to the same job or user, or

tasks running on the same hardware platform.

We rely on domain-specific knowledge to identify peers. The analysis of performance

characteristics in Hadoop job in Chapter 3 showed us that the majority of Hadoop jobs

exhibited low-variance across Map and Reduce taskssuggesting that peer-comparison of

tasks belonging to the same job is a feasible strategy for anomaly-detection. Table 5.1 de-

scribes peer-comparable properties and provides examples of their use in Hadoop. Al-

though we focus on Hadoop, these peer-comparable properties can be applied to other

systems.

5.1.4 Coping with Variance using Linear Regression

In Chapter 3, we also observed that some Hadoop jobs experience high-variance in Map and

Reduce durations. The challenge is how to differentiate between legitimate sources of vari-

ance (e.g., tasks processing more data) from illegitimate sources of variance (e.g, resource

contention). Table 5.2 lists the application-level attributes extracted from the Hadoop logs

which influence task durations. These attributes are either categorical or continuous in

type. Categorical attributes take on a limited number of possible values such as data-



CHAPTER 5. ANOMALY DETECTION 75

Outliers

HDFS Bytes Read (MB)

Ta
sk

 D
ur

at
io

n 
(s

ec
on

ds
)

20

40

60

80

100

0 20 60 80

Figure 5.4. Example of variance in the durations of tasks in a Hadoop job. The task durations in this job are

primarily influenced by the amount of data read from HDFS, and the amount of bytes written to local disk. The

task durations also exhibit unexplained variance that might be due to a problem on the cluster.

locality which indicates whether a task reads data from a local disk, a shared rack, or a

remote node of a different rack (i.e., non-local). While continuous attributes, such us the

number of local bytes read from disk, are numeric variables that can have an infinite num-

ber of values within a certain range. Figure 5.4 provides an example of a Hadoop job whose

task durations were primarily influenced by the amount of data read from HDFS, and writ-

ten to the local file-system. The job also exhibits unexplained variance that might be due

to a problem on the cluster. We describe how to localize these problems in Chapter 6.

Linear-Regression Approach

Our anomaly-detection approach uses stepwise linear-regression to automatically identify

the application-level features that influence the durations of end-to-end flows, and to detect

anomalous flows. In Hadoop, these flows are the Map, Shuffle and Reduce tasks belonging

to the same job. Each type of task represents a peer-group. The linear-regression model

predicts expected task durations using a multi-variate linear function of the features (or

covariates) listed in Table 5.2. Equation 5.1 expresses the multi-variate linear function

where y is the response variable, x1, x2, ..., xp are the covariates or independent variables,

β1, β2, ..., βp are the regression coefficients, and ε is the error term or residual.



CHAPTER 5. ANOMALY DETECTION 76

Pr
ed

ic
te

d 
D

ur
at

io
n 

(s
ec

on
ds

)
20

40

60

80

100

0

Actual Duration (seconds)
0 20 60 80 10040

Normal
Anomalous

Figure 5.5. Detecting anomalous tasks using linear-regression. Tasks with high-residuals are flagged as

anomalous (indicated by red triangles).

y = β1 ∗ x1 + β2 ∗ x2 + ... + βp ∗ xp + ε (5.1)

We measured the goodness of fit of our linear models using the adjusted coefficient of

determination, R2, which explains the percentage of variation that can be explained by the

variables in our model. The adjusted R2 adjusts for the number of parameters in the linear

model and ranges from 0 to 1. A value of 1 indicates that the model perfectly explains the

observed data. If we were unable to compute the adjusted R2 value due to non-linear re-

lationships in the data, we detected outliers using the median absolute deviation (MAD).

MAD is a robust measure of the variability in quantitative data. The median absolute de-

viation for a univariate dataset, X1, X2, X3, ...Xn, is the median of the absolute deviations

from the data’s median expressed as: MAD = mediani(|Xi −medianj(Xj)|). The threshold

value is calculated as a constant, K ∗MAD.

We automatically identified the relevant features that influence task performance us-

ing stepwise-regression. Stepwise-regression sequentially adds and drops features in the

linear model, and attempts to return the smallest linear model that minimizes the Akaike

Information Criterion (AIC). The AIC is a measure of the tradeoffs between the precision

and complexity of statistical models. We observed that some input features were linearly

dependent, i.e., collinear, in certain jobs. For example, some jobs exhibited a strong correla-



CHAPTER 5. ANOMALY DETECTION 77

Block
Read

Map Reduce

Block
Write

Block
Write

<state-name=BlockRead,
block-id=blk_89890,
hostname=node23>

<state-name=Map,
map-id=attempt_m_768,
hostname=node40>

Successful Map flow Failed Reduce flow

<state-name=Reduce,
reduce-id=attempt_r_54,
hostname=node15>

<state-name=BlockWrite,
block-id=blk_5635,
hostname=node15>

<state-name=BlockWrite,
block-id=blk_98927,
hostname=node25>

|flow1|1364868136|SUCCESS|+06:node23~blk_89890 +03:BlockRead +06:node40~attempt_m_768...
|flow2|1364868143|FAILED|+06:node40~attempt_m_768 +03:Map +06:node15~attempt_r_54 ...

Each labeled flow (and its associated attributes) is represented as a line in the file

Anomaly detection labels each flow as successful or failed1

2

Figure 5.6. Labeled end-to-end flows generated by anomaly detection.

tion between the number of bytes read from HDFS and the number of map input records.

Linear regression in the presence of collinearity leads to unstable estimates, e.g., negative

or very large estimates for the task durations. We detected collinearity by calculating the

variance inflation factor[Stewart, 1987] and sequentially dropping collinear variables. The

variance inflation factor, 1
1−R2 , is derived from the coefficient of determination, R2, which

is computed by performing a linear regression analysis of each independent variable using

the remaining independent variables. Collinearity exists if the variance inflation factor ex-

ceeds 10. We used the median absolute deviation to flag tasks whose residuals exceeded

the threshold, (K ∗MAD), as anomalous. Figure 5.5 provides an example of how we detect

anomalous Map tasks in a Hadoop job using linear-regression. The outputs of anomaly

detection are the labeled end-to-end flows illustrated in Figure 5.6.

5.2 Summary

This chapter presents our two-pronged approach for detecting chronics end-to-end flows

in production systems. The approach relies on domain-specific heuristics and a peer-

comparison approach to detect anomalies by identifying end-to-end flows whose behav-



CHAPTER 5. ANOMALY DETECTION 78

ioral profiles differ significantly from their peers. The two main challenges faced when per-

forming peer-comparison are: 1) how to identify peers; and 2) how to cope with legitimate

source of variance due to application-level and load differences. Our anomaly-detection ap-

proach addresses these challenges by using domain-specific knowledge to manually iden-

tify peer-groups, and by using stepwise-regression to automatically factor out variance in-

duced by application-level differences. We use the linear-regression models to identify

end-to-end flows which exhibit high-residualsimplying that the performance profile of

these flows deviates significantly from the peer-group. We describe how to apply our ap-

proach in parallel-processing frameworks such as Hadoop. For the VoIP system, we relied

primarily on heuristics to identify anomalous calls. The use of heuristics was feasible be-

cause the telecommunications industry has well-established rules for detecting failed calls.



It is a mistake to think you can solve any major problems just

with potatoes.

D. Adams, Life, the Universe and Everything, 1982

Chapter 6

Problem Localization

CHRONIC problems can occur due to a variety of different underlying problems at

the service provider’s network or at the customer site, e.g., resource contention, mis-

configurations, failed software upgrades, and hardware issues. Localizing the root-cause

of the chronics detected using the end-to end flows is challenging because a single fault

can produce multiple symptoms in different parts of a system; conversely, different faults

can produce the same symptom, e.g., a generic timeout error could be due to network con-

gestion or a hang in a server process. Due to the scale of production systems, there are

often multiple ongoing problemssome of which may be triggered by an unexpected com-

bination of corner-cases. Surprisingly, we have observed that even simple problems, like

running out of disk space, can confuse users (especially novices) because the system gener-

ates spurious error messages that overwhelm the user. Sifting through these cryptic symp-

toms requires automated problem-localization tools that disambiguate between chronics

caused by a single independent fault, by multiple independent faults, or by a combination

of interacting factors.

Research questions. The research questions that we asked during problem localization

were:

• How do we identify problems due to a combination of factors?

• How do we distinguish between the causes of multiple ongoing problems?

• How do we determine the resource-usage metric (e.g., CPU and memory) associated

with the problem?

• How do we handle noise due to flawed anomaly detection?

79



CHAPTER 6. PROBLEM LOCALIZATION 80

list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

normalized black-
box metrics 

anomalous nodes 

end-to-end 
flows 

labeled  
end-to-end flows 

Figure 6.1. Overview of problem localization. Problem localization drills down on the source of the problem,

and generates a list of problems identified ranked by severity.

Design overview. Our problem-localization tool performs statistical diagnosis of chron-

ics on large systems by combining data logs from different sources, and by diagnosing

multiple ongoing problemseach identified by complex signatures across multiple dimen-

sions. The tool handles both discrete data extracted from the end-to-end flows described

in Chapters 4 and 5, and real-valued OS performance counters stored in the black-box logs

as shown in Figure 6.1. To enable discovery of problems that have never been seen be-

fore, or those that have persisted in the background for a long time, our tool does not rely

on historical data. We minimize false positives by using a top-down approach that relies

on a scalable Bayesian distribution learner and an information-theoretic measure of diver-

gence (Kullback-Leibler divergence) [Kullback and Leibler, 1951] to identify sets of problem

signatures that together explain the differences between the failed and successful user inter-

actions. Our statistical algorithm is also robust to occasional mislabeling in the end-to-end

flows by ranking identified problems based on the number of flows affectedany spurious

attributes introduced by noise receive lower ranks.

Our problem-localization tool is scalable and domain-agnosticrequiring only changes

to some well-isolated data parsers to be adapted to other applications. It is currently in

production use by the operations team of a major US-based provider’s VoIP platform that

handles tens of millions calls per day. The tool has also been used to localize problems in

a production Hadoop cluster. Problem-localization proceeds in three steps. First, we com-



CHAPTER 6. PROBLEM LOCALIZATION 81

pute an anomaly score for each attribute using a standard information-theoretic metric that

represents the difference between the success and failure attribute occurrence probability

distributions (Section 6.1). Second, we use a scalable ranking function to identify groups of

attributes that best discriminate between the success and failure labels (Section 6.2). Third,

we examine the black-box logs of any network elements indicted during the second step,

and apply a similar ranking function to identify anomalous black-box metrics, such as high

CPU or memory usage (Section 6.4). We describe each step of the approach in more detail

below.

6.1 Scalable Anomaly Score Computation

Figure 6.2 shows a log snippet that represents the end-to-end flows generated using the

white-box logs. Each end-to-end flow, i.e, phone call in VoIP or task in Hadoop, is labeled as

successful or failed based on the anomaly-detection results. Each line in the log represents

an end-to-flow, and stores an unordered list of attributes associated with each flow. These

attributes include phone numbers or task identifiers, timestamps, duration, hostnames and

IP addresses of components used to process each flow, and any error and success codes

generated by these components. Our tool transforms these logs into a truth table repre-

sentation where the rows represent the end-to-end flows, and the columns represent the

attributes. The end result is a sparse table that can support 10s of thousands of attributes

and 10s of millions of flows.

We then identify the group of attributes that are the most highly indicative of failures

by ranking the attributes using a scoring function that quantifies the ability of the group

to discriminate between successful and failed user-interactions. To do so, we use an itera-

tive Bayesian approach to learn a simple Bernoulli (i.e., “coin toss”) model of successes and

failures. The idea is to model an attribute a as occurring in an end-to-end flow with a fixed,

but unknown probability pa which depends on multiple factors such as routing paths and

load distribution. This attribute occurrence probability is pa
f for failed flows, and pa

s for

successful flows. The model estimates these unknown probabilities using attribute counts

computed from the end-to-end traces. However, rather than learning a single value, we can

estimate the entire probability distribution of these unknown attribute occurrence probabil-

ities, i.e., Fa
f (x) = P[pa

f ≤ x], and Fa
s (x) = P[pa

s ≤ x]. We start with an initial estimate for



CHAPTER 6. PROBLEM LOCALIZATION 82

0 0.5 1

Represent call attributes as truth table
Node23

Flow1     1       1       0          1             0             1     SUCCESS
Flow2     0       1       1          1             1             0     FAILED

Model success and failure distribution of each attribute

P(Success|Node15=TRUE)

P(Failure|Node15=TRUE)

Probability

Anomaly score =
Divergence between
distributions

|flow1|1364868136|SUCCESS|+06:node23~blk_89890 +03:BlockRead +06:node40~attempt_m_768...
|flow2|1364868143|FAILED|+06:node40~attempt_m_768 +03:Map +06:node15~attempt_r_54 ...
|flow3|1364868146|FAILED|+06:node54~attempt_m_678 +03:Map +06:node15~attempt_r_54 ...

Labeled end-to-end flows (and its associated attributes) is represented as a line in the file

Node40 attempt_m_768Node15 attempt_r_54 blk_89890 Outcome

Flow3     0       0       1          0             1             0     FAILED

Figure 6.2. Computing anomaly score for individual attributes. We first extract attributes from the labeled

end-to-end traces and represents them as truth table. Next, we compute an anomaly score as the distance

between the successful and failed distribution for each attribute.

Fa
f and Fa

s , and Bayes rule is used to update this estimate as each new flow in the dataset is

processed, depending on whether it is a successful and failed flow, and whether it contains

the attribute a or not. For example, in Figure 6.2, we estimate the conditional probability

distribution that a flow succeeds or fails given that Node15 = True. The x-axis represents

our estimate of the probability, while the y-axis represents our degree of belief that this

estimate is true. The degree of belief can be any number greater than zero that results in

the area under the curve adding up to one; a broader curve represents more uncertainty

in our estimates of the underlying distribution, while a narrower curve indicates greater

confidence. Once these distributions are learned, the score is simply the Kullback–Leibler

divergence [Kullback and Leibler, 1951], a standard information theoretic metric of the “dif-

ference” between two distributions, computed between these success and failure attribute

occurrence probability distributions.

We can compute the score for large numbers of attribute groups and over large volumes

of flows efficiently because the KL divergence can be reduced to a closed form equation

due to two textbook results. The first result is that Beta distributions are conjugate priors

for Bernoulli models, i.e., if a Beta distribution Beta(x, y) is used as an initial estimate for



CHAPTER 6. PROBLEM LOCALIZATION 83

Map Task Node15

attempt_
r_54Read Block

600350

980210

2. Find attribute combinations
     that increase anomaly score

Root-cause = highest 
scoring path

Job4 Node3

Shuffle 
Task

Write 
Block

450146

650510

3. Filter out calls matching Problem1 
     and repeat.

Problem2
     Node3
     Shuffle Task

Problem1
  Node15
  attempt_r_54

attempt_
r_54 Node15

600350

1. Compute scores for attributes.

Read
Block

98

Anomaly scores

Figure 6.3. Ranking combinations of attributes correlated with problems. We use an iterative Bayesian

approach to rank combinations of attributes most correlated with the problem.

distribution Fa
f (or Fa

s ), and the forward probability P[a appears in a failed flow|Fa
f ] (and

similarly for successful flows) is given by a Bernoulli distribution, then the new estimate

for Fa
f after applying Bayes rule is also a Beta distribution Beta(x + a, y + b), where a and

b are the number of flows with and without attribute a, respectively. The second result is

that the KL divergence between two Beta distributed random variables, X ∼ Beta(a, b) and

Y ∼ Beta(c, d) is given by the Equation

KL(Y||X) = ln
B(a, b)
B(c, d)

− (a− c)ψ(c)− (b− d)ψ(d) + (a− c + b− d)ψ(c + d) (6.1)

where B is the Beta function and ψ is the digamma function. Therefore, if one starts

with the initial assumption that the failure and successful flow attribute occurrence prob-

abilities p f and ps are uniformly distributed (which is a special case of the Beta distri-

bution), then setting a/b = 1+#successful flows with/without attribute a, and c/d =

1+#failed flows with/without attribute a yields the desired score, i.e., KL(Y||X) =

KL(P[Failure|attribute a]||P[Success|attribute a]) in Equation 6.1. A similar observation is

used to compute KL divergences between two Bernoulli models in [Liu et al., 2006].

Figure 6.2 shows how the scoring works in terms of the density functions for the success

and failure attribute occurrence probability distributions. Intuitively, it scores higher those

attribute groups that are more likely to occur in failed flows than in successful flows, but it

does so while taking into account the volume of data observed. This allows us to increase

confidence as we observe more flows. For example, the score is higher after observing an

attribute in 50 out of 100 failed flows as compared to observing it in 1 out of 2 failed flows,

even though both scenarios have the same underlying probability p f of 0.5.



CHAPTER 6. PROBLEM LOCALIZATION 84

Illustrative Example. We illustrate the computation of the anomaly score using a sim-

ulated example. Suppose a configuration change in nodeR caused some flows that passed

through it to fail. Assume that the number of failed flows that passed through nodeR is

3000, while the number of successful flows is 25000. Due to other problems that might

exist in the system, the total number of failed and successful flows is 5000 and 1000000

respectively. To compute the anomaly score KL(P[Failure|nodeR]||P[Success|nodeR]), we

calculate the attribute counts as shown in Equation 6.2:

a = 1 + 25000 (a=1 + successful flows with attribute)

b = 1 + (1000000− 25000) (b=1 + successful flows without attribute)

c = 1 + 3000 (c=1 + failed flows with attribute)

d = 1 + (5000− 3000) (d=1 + failed flows without attribute)

KL(P[Failure|nodeR]||P[Success|nodeR]) = 789295 (6.2)

6.2 Attribute Group Generation

Chronics can arise due to complex triggers involving a combination of factors such as con-

flicting software versions on different network elements. These complex conditions are

represented as conjunctions of groups of attributes, e.g., Node15 and ReduceTask and

attemptr54. Our tool identifies these groups using a search tree as shown in Figure 6.3.

The root node of the tree represents the null set, and each branch represents a single at-

tribute. Each non-root node of the tree represents a unique attribute group as specified by

the path from the root to that node, and the weight of the node is the anomaly score for

node’s attribute group. Starting with the direct children of the root (representing a single

attribute each), we expand the tree to a depth of d to consider all groups containing up to d

attributes. Expanding along a branch of the tree involves a filtering operation that retains

only those successful and failure events in which the attributes represented by that branch

were present. The filtering is required to get the success and failure counts needed for the

anomaly score computation. These filtering operations dominate the algorithm’s running

time and dictate the data structures used in our design, as described in Section 6.3. The



CHAPTER 6. PROBLEM LOCALIZATION 85

node with the highest weight is picked as the dominant problem signature in that itera-

tion.

For this process to be practical, there are two additional complications that must be

handled. The first is to find any attributes that are synonyms of each other. For example,

in VoIP, attributes such as a particular customer’s IP address and name, or a customer’s

IP address and a dedicated IPBE server assigned to that customer, may appear together in

all flows. Such overlapping attributes are indistinguishable from a statistical point of view

but may be meaningful to an operator from a semantic standpoint (e.g., an operator may

know how to investigate an IPBE server but not know how to investigate the customer’s

IP). Therefore, at each node of the tree, we identify all its equivalent attributes and repre-

sent the entire set by a single canonical attribute when expanding the tree. The threshold

used to mark two, or more, attributes as synonyms is referred to as the overlap probability

and is a user-configurable parameter that is typically set to a high value such as 0.99. How-

ever, when presenting the problem signatures to the operator, we show all the synonyms

associated with the attributes identified in the signature.

The second complication is one of scalability. Because tens of thousands of attributes

can be present in the dataset, a brute-force approach that expands the entire tree up to

depth d is infeasible. To explore attribute groups optimally, we use a branch-and-bound

algorithm [Land and Doig, 1960] to dynamically determine the maximum breadth of the

tree to explore. Specifically, for each unexplored node of the tree n, we compute an upper

bound for the maximum anomaly score that can be achieved by any child node n. If this

upper bound is lower than the maximum anomaly score seen so far, then exploration of

n is guaranteed to be fruitless, and it is discarded without further exploration. The upper

bound of the anomaly score for a subtree, e.g., customer1 in Figure 6.3, can be shown to be

attained by assuming that there is a branch of that subtree that explains all the failed flows

in the subtree, and has zero successes as computed by Equation 6.3.

KLb(Y||X) = ln
B(1, a + b− 1)

B(c, d)
− (1− c)ψ(c)− (a + b− 1− d)ψ(d)

+(a + b− c− d)ψ(c + d) (6.3)

For example, if the attribute node15 was associated with 100 failed flows and 10000 suc-

cessful flows, then the maximum possible anomaly score for the subtree anchored at node15



CHAPTER 6. PROBLEM LOCALIZATION 86

Data 
Sources(s)

"o�−line"

real−time

TCP/IP

Data
Collectors

Diagnosis
Engine

Command
Interface

Command
Interface

Diagnosis
Engine

Data
Archive

Figure 6.4. Architecture of problem-localization engine. The flexible architecture supports multiple data

sources, and the problem-localization engines can run in either real-time or offline mode.

Attribute Index

Server1

Customer1 Anchor

Time Slice
Expiry
Event-list pointer
Fail count
Success count

Anchor

Event List

Call1:  Success
     Server1
     Server2
     Vendor1

Call2: FAIL
      Server1
      Customer1
      Vendor1

Figure 6.5. Data structures that support problem-localization’s scalable design. We achieve high perfor-

mance by maintaining in-memory indices of attribute and event data.

would be a branch with 100 failed flows and zero successes. We iteratively apply this algo-

rithm in a greedy fashion to identify multiple concurrent problems by removing all flows

(both success and failures) that match this identified problem signature from the dataset,

and repeat the process. Doing so removes the impact of the first diagnosed problem and

allows us to ask what explains the remaining failures. In this manner, we can identify sep-

arate independent failure causes (see Steps 2 and 3 in Figure 6.3). The average complexity

of our algorithm is M ∗ N ∗ Dr, where M is the number of attributes, N is the number of

flows, D is the average depth of the tree, and r is the average degree of nodes in the tree. The

magnitudes of D and r are determined dynamically by the branch-and-bound algorithm.



CHAPTER 6. PROBLEM LOCALIZATION 87

6.3 Architecture and Design of Diagnosis Engine

We have implemented a prototype of the problem-localization approach, written in C,

which is comprised of data collectors that process consolidated end-to-end flows to ex-

tract attributes of interest, and a diagnosis engine that outputs a ranked list of problems

identified (see Figure 6.4). For the past two years, this prototype has been in active daily

use by the operations team at the large ISP to analyze the production VoIP platform. The

prototype is flexible since it can be easily extended to incorporate additional sources of in-

formation, such as software versions and Quality of Service (QoS) data. In addition, the

prototype is scalable and capable of handling tens of millions of flows in real-time even

when running on a single server.

The data collectors extract attributes from application-level logs, and archive the pro-

cessed logs. Each data collector supports one or more data formats specified using con-

figuration files, which increases the flexibility of our prototype. The data collectors also

send data to the diagnosis engine, which implements the algorithms described above in

Sections 6.1 and 6.2. The diagnosis engine can receive data from concurrent input sources

(i.e., multiple collectors) to reduce the amount of time needed to load data. The diagnosis

engine can also be run in an offline mode by reading processed logs from the data archive.

The diagnosis engine considers each end-to-end flows as an event. The engine collects

and manages events over a user-controlled time window of length T seconds (the opera-

tions team typically uses a window size of a whole day). Timestamp information in the

event data is used to determine the bounds of the window; as new data is received, the

window progresses forward and old events are aged off.

Performance was a primary concern while architecting the diagnosis engine as it is nec-

essary to manage thousands of attributes from the production system in real-time. The

filtering operations involved in the exploration of the search tree and in filtering out data

that can be explained by a newly discovered problem signature, as described in Section 6.2,

are the most expensive operations of each analysis. This is because each filtering oper-

ation must operate on the entire dataset consisting of both successful and failed events,

which, despite reductions due to sampling, can still be very large. To construct appropri-

ate data structures for this process, we use the observation that if each event is treated as a

“document” that contains words corresponding to each attribute, then computation of the



CHAPTER 6. PROBLEM LOCALIZATION 88

1. Problem Signature1
    STOP.IP-TO-PS.487.3 
    Chicago*GSXServers
    MemoryOverload

2. Problem Signature2
    STOP.IP-TO-PSTN.102
    ServiceB                                                            
    CustomerAcme
    IP_w.x.y.z

C
al

l c
ou

nt
s

 (l
og

 sc
al

e)

View sample calls

Filter Search

Ranked List of Problems
2

1

3

View sample calls

C
al

l c
ou

nt
s

 (l
og

 sc
al

e)

Time of Day (GMT)

Time of Day (GMT)

Figure 6.6. Screenshot of problem-localization user interface. The dashboard allows operators to: 1) specify

a search criteria such as problems on given date; 2) view a ranked list of chronics diagnosed; and 3) identify

recurrent problems using plots of affected calls.

anomaly score for an attribute group involves “searching” both the success and failure doc-

ument sets for that group of attribute keywords, and counting the matches. Therefore, as

shown in Figure 6.5, problem-localization’s core data structures are constructed similarly

to search enginesusing an inverted hash table to index attributes.

The inverted index maps each attribute back to a linked list of events that contains the

attribute. These mappings allow linear time computation of set intersections so that success

and failure counts can be quickly constructed for any conjunction of attributes and negated

attributes (to support exclusion of events that match previously discovered signatures). For

each attribute, a series of success and failure counts are maintained based on the time slices.

Managing the counts by time allows them to be adjusted as the time window rolls forward

without the need to recount across all unexpired events.

6.3.1 Success Event Sampling

Due to the nature of chronics, the datasets processed usually have a disproportionately

larger number of successful events as compared to failures. Sampling successful events as

they are read by the diagnosis engine yields a significant reduction in overall memory uti-

lization, and also significantly reduces the time to perform an analysis. To sample, we bin

each successful event based on its time slice, and keep 1 out of every Nth successful event



CHAPTER 6. PROBLEM LOCALIZATION 89

Table 6.1. Examples of metrics extracted from black-box logs.

user % CPU time in user-space

system % CPU time in kernel-space

iowait % CPU time waiting for I/O job

ctxt Context switches per second

eth-rxbyt Network bytes received per second

eth-txbyt Network bytes transmitted per second

bread Total bytes read from disk per second

bwrtn Total bytes written to disk per second

in each bin. Unbiased random sampling preserves the correctness of the Bayesian estima-

tion of success and failure distributions as described in Section 6.1, and thus preserves the

correctness of the anomaly score of Equation 6.1. Its only impact is to reduce the number of

success events, and thus the uncertainty of the success distribution. The results from our

production runs, discussed in Chapter 8, shows that sampling does not appreciably impact

accuracy, but does increase its speed by more than two orders of magnitude.

6.3.2 Visualization

Operators access the prototype via an interactive web-based user interface. Figure 6.6 illus-

trates how the web-interface facilitates the operator’s workflow.

1. The operator searches for the date and the types of problems they are interested in

analyzing. For example, operators can restrict the analysis to calls for a specified

VoIP service on a given date.

2. Next, operators are directed to an interactive web-interface interface that ranks the

top-20 problems diagnosed by our tool that match their filter, sorted by decreasing

severity. Operators can gain more insight on the nature of the problem by viewing

samples of calls affected via a drop-down option. The call samples display addi-

tional information from the call detail records, such as telephone numbers and call

durations, that might not be captured by the problem signature.

3. A plot showing the frequency of the problem is displayed on the right, providing

insight on the duration and severity of the problem.



CHAPTER 6. PROBLEM LOCALIZATION 90

|flow1|1364868136|SUCCESS|+05:node15 memory~4048000 user_cpu~15.6 system_cpu~5.8
|flow2|1364868147|FAILED|+05:node15 memory~4058078 user_cpu~80.6 system_cpu~7.6
|flow3|1364868149|FAILED|+05:node15 memory~4051078 user_cpu~75.6 system_cpu~6.2 ... 

Each flow (on indicted nodes/peers) is annotated with mean resource-usage from black-box logs

0 0.5 1

P(user_cpu|SUCCESS)

P(user_cpu|FAILURE)

Probability

Indict metric if failure 
distribution differs significantly 
from success distribution

Model conditional distributions of black-box metrics given success or failure

Figure 6.7. Identifying black-box metrics most correlated with failures.

6.4 Fusing Black-box Metrics

The Bayesian approach presented in Section 6.1 is scalable enough to be directly applied

to the large numbers of discrete attributes present in our data sets. However, it is difficult

to construct such numerically cheap comparison techniques to compare between success

and failure distributions of real-valued data. To overcome this limitation, we analyze only

a subset of the real-valued data that are linked to server/node attributes implicated by the

Bayesian analysis.

Specifically, the real-valued data in the black-box logs includes performance logs of any

servers within the service provider’s network. These black-box logs include periodic mea-

surements (at 1 second–15 minute intervals) of CPU and memory utilization, network traf-

fic, disk I/O, and other OS-level metrics, as shown in Table 6.1. For each problem signature

identified in Section 6.2, the tool considers only those performance measurements associ-

ated with servers present in the signature. We identify the resource-usage metrics that are

highly correlated with the problem by annotating each flow that matches the problem sig-

nature with the mean resource-usage metrics gathered during the same time interval, as

illustrated in the log snippet in Figure 6.7.

Next, we use the Wilcoxon rank-sum test [Mann and Whitney, 1947] to determine

whether the conditional distribution of each metric in failed flows differs significantly from

the conditional distribution of each metric in successful flows. The Wilcoxon rank-sum test



CHAPTER 6. PROBLEM LOCALIZATION 91

is a non-parametric test that does not assume that the data is drawn from any particular

distribution, and assesses whether one of two samples of independent observations tends

to have larger values than the other. We indict a black-box metric if we reject the null hy-

pothesis that the observations were drawn from the same distribution. Comparing the

distribution of metrics between successful and failed flows within the same time interval

makes our tool more robust to seasonal variations in load (e.g, night- vs. day-time).

6.5 Why does it work?

A number of the characteristics of our problem-localization approach allow it to deal well

with the challenges introduced by chronic problems.

1. Separation of concurrent root causes. Our iterative analysis allows us to separate and

localize the different causes of many concurrent chronics that persist at any given time, even

if they share attributes (e.g., pass through the same network element). By repeatedly filter-

ing out end-to-end flows that match dominant problems as they are detected, we expose

increasingly smaller problems that may earlier have been hidden in the noise.

2. Identification of novel problems. An undiagnosed chronic problem is often novel,

i.e., something that operators have not seen before. For example, it may involve a new

network element, or a new customer (with potentially novel configuration issues). Since the

problem-localization algorithm does not rely on signatures of known defects, our approach

can be used for problems that have never been seen before.

3. Identification of low-grade problems. Alarm-based approaches often miss chronics

because of their low numbers might not cause significant perturbations within the service

provider’s network. Our tool ranks the identified causes of chronics using an anomaly

score that compares the distribution of successful and failed flows, and identifies attributes

discriminative of failures. The Bayesian inference we use can update the success and failure

distributions with very few flows. Therefore, our approach can detect problems with very

small numbers of failures.

4. Identification of complex triggers. Because our approach evaluates many groups

of attributes against the scoring function, it can identify problems that occur only when

multiple conditions (encoded by attributes) are satisfied at once.



CHAPTER 6. PROBLEM LOCALIZATION 92

5. Robustness to noise. Our approach is robust to noise introduced by occasional misla-

beling during anomaly detection. Since we rank the problems identified by severity accord-

ing to the number of flows affected, any spurious attributes introduced by noise typically

receive a lower ranking. Ranking the problems by severity allows the operations team to

effectively prioritize their troubleshooting efforts.

6.6 Summary

This chapter describes our problem-localization tool that relies on a scalable Bayesian dis-

tribution learner and an information-theoretic measure of distance to identify sets of prob-

lem signatures that together explain the differences between the failed and successful user

interactions. Chronic problems are notoriously difficult to diagnose: 1) their small size

makes setting alarm thresholds tricky; 2) there are many of them active concurrently even

when the system as a whole is mostly functional; 3) their symptoms often overlap with each

other; 4) they are triggered by complex corner cases involving multiple conditions; and 5)

they they persist for lengthy periods and can get absorbed into the system’s definition of

what is normal.

We address these issues through a variety of techniques: 1) using top-down statistical

diagnosis starting with abnormal user interactions to localize the root-cause of problems

rather than relying on bottom-up alarms based on server logs; 2) statistically identifying

root-causes by comparing bad interactions with good ones from the same interval of time

rather than relying on historical data from good intervals of time; 3) a branch-and-bound

procedure to identify complex triggers comprised of conjunctions of multiple attributes; 4)

greedy filtering of failures explained by already identified problems to discover additional

concurrent problems; and 5) fusion of black-box metrics to identify resource-usage metrics

that are correlated with failures. Our tool also tolerates noise due to occasional mislabeling.

Our tool also supports sampling of successful user interactions, which yields a significant

reduction in overall memory utilization, and also significantly reduces the time to perform

an analysis.



Chapter 7

Experimental Evaluation

This chapter describes the results of benchmarking our anomaly detection and problem

localization algorithms (i.e., diagnosis algorithm) in a controlled environment using fault-

injection. Fault-injection is an invaluable technique for testing the effectiveness of a diagno-

sis algorithm under a variety of precisely controlled synthetic faults so that ground truth

is known. We performed our fault-injection experiments on both Hadoop and VoIP, as

summarized in Table 7.1. In Hadoop, we injected faults by emulating resource-hogs (e.g.,

by running a disk-intensive process on a node) and task hangs. In VoIP, we injected faults

by simulating server and customer problems using one-week’s worth of call logs obtained

from the production VoIP system at a major ISP.

Research questions. The research questions that we asked during our experimental

evaluation were:

• Does knowledge of system dependencies improve diagnosis (Section 7.1)?

• Does fusion of white-box and black-box metrics provide insight on root-cause (Sec-

tion 7.2)?

• Can we effectively diagnose low-probability faults (Section 7.3)?

• Can we effectively diagnose multiple ongoing problems (Section 7.4)?

• What is the impact of noise introduced by occasional mislabeling during anomaly

detection (Section 7.5)?

• How does our approach compare to existing diagnosis algorithms that rely on

machine-learning [Kiciman and Fox, 2005; Sambasivan et al., 2011] (Section 7.6)?

93



CHAPTER 7. EXPERIMENTAL EVALUATION 94

Table 7.1. Summary of benchmarking approaches for Hadoop and VoIP.

Hadoop VoIP

Workload Gridmix cluster benchmark One-week of ISP’s call logs

Technique Fault emulation Fault simulation

Injected faults Resource hogs/Task hangs

10 iterations per fault

Server/Customer problems

1000 simulated faults in total

Experimental

setup

10-node EC2 cluster

4 1.2GHz cores, 7.5GB RAM

1 simulation node

8 2.4GHz cores, 24GB RAM

7.1 Impact of Knowledge of Dependencies

To assess the impact of the knowledge of system dependencies on diagnosis, we bench-

marked our diagnostic approach, which detects and localizes problems using end-to-end

flows, against an earlier implementation of our peer-comparison algorithm that relied on

node-level comparisons to indict the faulty-node [Pan et al., 2009a]. The end-to-end flows

captured dependencies across components in the distributed system, while the node-level

peer-comparison approach did not capture dependencies across components.

7.1.1 Experiment Methodology

We conducted fault-injection on a 10-node Hadoop cluster running on the Amazon’s

EC2 cloud-computing system; fault-injection supplies a controlled environment where the

ground truth is known. Each EC2 node had the equivalent of 7.5 GB of RAM and 4 1.2 GHz

CPU cores, running amd64 Debian/GNU Linux 4.0. Each experiment consisted of one run

of the GridMix workload, a well-accepted, multi-workload Hadoop benchmark. GridMix

models the mixture of jobs seen on a typical shared Hadoop cluster by generating random

input data, and submitting MapReduce jobs in a manner that mimics observed data-access

patterns in actual user jobs in enterprise deployments. The GridMix workload has been

used in the real-world to validate performance across different clusters and Hadoop ver-

sions. GridMix comprises of 5 different job types, ranging from an interactive workload

that samples a large dataset, to a large sort of uncompressed data that accesses the entire

dataset.



CHAPTER 7. EXPERIMENTAL EVALUATION 95

Table 7.2. Injected faults in Hadoop, and the reported failures that they simulate. HADOOP-xxxx represents

a Hadoop JIRA entry.

Fault Type [Source] Reported Failure [Fault Name] Fault Injected

Resource

contention

[Hadoop mailing list, Sep 26 2007] Ex-

cessive messages logged to file.

[DiskHog] Sequential disk workload

wrote 20GB of data to filesystem.

[HADOOP-2956] Degraded network

connectivity between DataNodes re-

sults in long block transfer times.

[PacketLoss] Induce 50% packet loss.

Application

bugs

[HADOOP-1036] Infinite loop at slave

node due to an unhandled exception

from a Hadoop subtask that termi-

nates unexpectedly.

[HANG-1036] Manually revert to

older version of Hadoop and trigger

bug by throwing NullPointerExcep-

tion.

[HADOOP-1152] Reduce tasks fail

while copying map output due to an

attempt to rename a deleted file.

[HANG-1152] Manually revert to

older version of Hadoop and trigger

bug by deleting file.

We injected a single fault on one node in each cluster to validate the effectiveness of

our algorithms at diagnosing each fault. The faults emulate various classes of represen-

tative real-world Hadoop problems as reported by Hadoop users and developers in: 1)

the Hadoop issue tracker [Apache Software Foundation, 2006] from October 1, 2006 to De-

cember 1, 2007, and 2) 40 postings from the Hadoop users’ mailing list from September to

November 2007. We describe our results for the injection of the four specific faults listed in

Table 7.2. We ran 10 iterations of each fault.

Node-level Peer-comparison Approach

We benchmarked our diagnostic approach against an earlier implementation of our peer-

comparison approach which relied on node-level peer-comparison to localize problems to

the faulty node(s) [Pan et al., 2009a]. The node-level peer-comparison analyzed the distri-

bution of white-box and black-box metrics on Hadoop slave nodes, and indicted a node as

faulty if the distribution of metrics on the node differed significantly from its peers over a

window of time. The white-box metrics comprised of Map and Reduce durations (we omit-

ted heartbeats from our analysis because heartbeats are not typically logged in production

environments due to the increased overhead). The black-box metrics comprised of 14 met-



CHAPTER 7. EXPERIMENTAL EVALUATION 96

Map duration (seconds)

F
re

qu
en

cy

0 2 4 6 8 10 12

0
50

10
0

15
0

(a) Histogram at majority of nodes.

Map duration (seconds)

F
re

qu
en

cy

0 2 4 6 8 10 12

0
50

10
0

15
0

(b) Faulty node is “odd-man-out”.

Figure 7.1. Histograms of Map durations at successful and faulty nodes.

rics from the pseudo-filesystem on the operating system (Table 6.1), and 2 TCP-related

metrics from netstat monitored at 1-second intervals.

For each white-box metric and vector of black-box metrics, for a given period of time,

we captured the behavior of the majority of nodes by generating a global/aggregate his-

togram using samples of metrics from all nodes. Next, for each node, we compared its

histogram for that metric against the global histogram, resulting in O(n) comparisons. Fig-

ure 7.1 illustrates the global and per-task histograms for durations of Map tasks when a

disk-intensive process ran on the faulty node.

Peer-comparison was done by computing a statistical measure (the Jensen-Shannon di-

vergence [Kullback and Leibler, 1951]) which captured the distance between histograms. If

a given node’s histogram differed significantly (by more than a threshold value) from those

of a majority of the other nodes, then, an alarm was raised for the slave node. An alarm is

treated merely as a suspicion; repeated alarms are needed for indicting a node. Thus, an

exponentially weighted alarm-count is maintained for each slave node. The slave node is

then indicted when its exponentially weighted alarm-count exceeds a predefined value.



CHAPTER 7. EXPERIMENTAL EVALUATION 97

Node-level
Our approach

Disk Hog Map Hang Reduce 
Hang

Packet
Loss

0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) True Positive rate.

Node-level
Our approach

Disk Hog Map Hang Reduce 
Hang

Packet
Loss

0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e 
P

os
iti

ve
 R

at
e

(b) False Positive Rate.

Figure 7.2. Benchmarking effectiveness of peer-comparison approaches]. Our anomaly detection algorithm

achieved higher true-positive rates and lower false-positive rates than our earlier node-level peer-comparison

approach.

7.1.2 Results

Figure 7.2 shows that the knowledge of system dependencies captured by our white-box

approach improves the effectiveness of diagnosis when compared to the node-level peer-

comparison approach. We measured the effectiveness of diagnosis by evaluating the out-

come of each experiment as follows: an indictment of the fault-injected node was a true-

positive, an indictment of any other node was a false-positive (FP), and a failure to indict

the fault-injected node was a false-negative (FN). The true-positive (TP) and false-positive

(FP) rates ∈ [0.0, 1.0], with TP = 1.0, FP = 0.0 representing a perfect diagnosis. For

the node-level approach, we reported the results of the Reduce, Map, or black-box anal-

ysis that yielded the highest true-positive rate in [Pan et al., 2009a]. The performance of

both approaches was comparable for the disk hog and the hang during the Map phase

(Hang1036). However, our approach performed better at diagnosing the hang in the Re-

duce phase (Hang1152) and the packet-loss fault. The hang in the Reduce phase did not

perturb the system as much as the hang in the Map phaseresulting in lower true-positive

rates for the node-level approach. Our diagnostic approach performed better because we

detected problems using user-visible symptoms in end-to-end flows where the hang was

more evident. The node-level approach experienced high false-positive rates for the packet-

loss fault because this fault resulted in correlated problem manifestations across multiple

nodes. Since the end-to-end flows captured dependencies between components, our ap-

proach was better placed to disambiguate the root-cause of the propagating problem.



CHAPTER 7. EXPERIMENTAL EVALUATION 98

Table 7.3. Impact of fusion of white-box and black-box metrics on diagnosis. The fusion of metrics can

provide insight on the root-cause of the problem.

Top Metrics Indicted

Fault injected White-box Black-box

DiskHog Maps Disk

PacketLoss Shuffles -

Hang-1036 (Map hang) Maps -

Hang-1152 (Reduce hang) Reduces -

7.2 Impact of Fusion of White- and Black-box Metrics

We investigated whether the fusion of white-box and black-box metrics by our diagnosis

algorithm provided insight on the root-cause of the problem.

7.2.1 Experiment Methodology

We evaluated the impact of fusing white-box and black-box metrics on our diagnostic ap-

proach by using the 10-node GridMix dataset, described in Section 7.1. We detected

anomalies using the end-to-end flows generated from the white-box logs, and localized

the problem to the faulty node(s). We then annotated flows on the indicted nodes with

black-box metrics, as described in Section 6.4, and identified any black-box metrics that

were correlated with failures.

7.2.2 Results

Table 7.3 shows the top white-box and black-box metrics indicted by our diagnostic ap-

proach. The fusion these metrics can provide operators with insight into the root-cause of

a problem. For example, the slowdown experienced by Maps during the DiskHog fault is

correlated with significant changes in disk-related black-box metrics. In addition, the Map

and Reduce hangs perturbed the Map and Reduce metricspointing to an application-level

problem. However, for some problems, such as the PacketLoss fault, our approach indicted

the Shuffles but did not provide a clear indication on the root-cause of the problem using

the black-box metrics. The operations team might be able to deduce that the performance

degradation was due to a network problem using white-box metrics because it affected the



CHAPTER 7. EXPERIMENTAL EVALUATION 99

Shuffle phase, which is network-intensive. There were no obvious indicators of the problem

in the black-box metrics because the PacketLoss fault caused drops in multiple metrics, such

as CPU-, disk-, and network-usage since the faulty node received less work. In instances

where the root-cause of the problem is not obvious from the indicted metrics, a technique

that augments our black-box analysis approach with a signature-matching approach [Co-

hen et al., 2005; Bodik et al., 2010] could help operators diagnose recurrent problems.

7.3 Impact of Fault Probability

Since chronic performance problems affect a subset of users or requests, we investigated

the impact of varying fault probability on the effectiveness our diagnosis algorithm. We

varied the fault probability by simulating a variety of precisely controlled synthetic faults

using one-week’s worth of call logs from a major ISP. Fault simulation provided us with

greater control over the range of faults that we could inject when analyzing the sensitivity

of our algorithms to faults with different characteristics.

7.3.1 Experiment Methodology

We simulated faults using actual call-detail records (CDRs) of successful calls from the VoIP

production system. We divided the CDRs into 1-hour intervals to yield 500 hourly traces.

We injected faults by changing the labels of successful calls, which contained attributes of

interest, to failed calls. The attributes of interest were individual network elements, cus-

tomer sites, links (routes), and their combinations. These attributes were selected because

they were the most common features tracked by the operations team at the large ISP. Faults

were generated by picking these attributes randomly. Therefore, we can claim qualitative

representativeness (what attributes), but not statistical representativeness (distribution of

attributes) compared to the ground truth failure distribution, which is unknown, even to

the operations team.

We randomly varied the combination of attributes associated with each fault from 1 to

3, and ensured that these attributes were not synonyms of each other. Each injected fault

recurred during two 15-minutes in each hourly trace. We also varied the number of inde-

pendent faults in each hourly trace from 1 to 3. The probability of each fault injected ranged

from 1% to 10% of calls containing the chosen attributes. We evaluated the effectiveness of



CHAPTER 7. EXPERIMENTAL EVALUATION 100

0
.7

0
0

.8
5

1
.0

0
0.02 0.06 0.10

Fault Probability

P
re

c
is

io
n

/R
e

c
a

ll

0.98

0.96

1

Precision
Recall

Figure 7.3. Effect of varying fault probability on diagnosis. Precision and recall remained relatively constant

despite variations in fault probability.

problem localization based on the rank of the correct root-cause in the diagnostic output,

and computed recall and mean-precision. Recall is the fraction of injected faults that were

correctly identified in the top-20 root-causes (Equation 7.1). Mean-precision is a measure

of the false positive rate that we used to analyze the quality of the ranked search results.

We computed the precision of each problem signature as the fraction of indicted attributes

that are relevant to the injected fault (Equation 7.2). The mean-precision is the arithmetic

mean of the precision scores for the set of experiments (see Equation 7.4). A high precision

indicates low false positive rates.

Recall =
TruePositives

TruePositives + FalsePositives
(7.1)

Precision =
TruePositives

TruePositives + FalsePositives
(7.2)

MeanPrecision =
∑N

i=1
∑R

j=1(Precision(j))
R

N
(7.3)

where, R=Number of ranked root-causes per experiment

N = Number of experiments



CHAPTER 7. EXPERIMENTAL EVALUATION 101

7.3.2 Results

We successfully diagnosed 97% of faults injected, with lower than 4% false positives in

the fault-simulation dataset. All the false negatives occurred when we injected two faults

that were logically independent, but happened to share a large intersection of attributes

correlated with the faults. In these cases, we typically reported a single root-cause that

listed the shared attributes. Figure 7.3 shows that we correctly identified the root-cause of

injected faults despite variations in the fault probability from 1% to 10% of calls containing

the attributes of interest. Our precision and recall remained relatively constant at>96% and

>94% respectively, even when faults affected only 1% of calls with a given set of attributes.

7.4 Impact of Multiple Ongoing Problems

We used fault simulation to investigate whether our diagnostic approach could diagnose

complex failures involving multiple attributes, and could discriminate between the root-

causes of multiple ongoing problems.

7.4.1 Experiment Methodology

We evaluated the impact of varying the combination of attributes associated with a fault,

and the number of ongoing faults using the fault-simulation dataset generated from one-

week’s worth of call logs from a major ISP (described in Section 7.3). The combination

of attributes associated with each fault in the dataset randomly varied from 1 to 3, while

the number of ongoing faults in each hourly trace varied from 1 to 3. We measured the

effectiveness of our diagnostic approach by computing recall and mean-precision.

7.4.2 Results

Figure 7.4(a) shows that we correctly diagnosed chronics triggered by the interaction of

two or more attributes. Precision and recall were slightly degraded from 99% to 98%, and

99% to 95% respectively for chronics involving multiple attributes. As explained above,

this drop in recall was due to the presence of faults that were not truly independent rather

than the number of attributes associated with each fault.

Figure 7.4(b) shows that performance was relatively unaffected when multiple ongoing

faults were injectedrecall dropped slightly from 1 to 0.96 when three concurrent faults



CHAPTER 7. EXPERIMENTAL EVALUATION 102

0
.7

0
0

.8
5

1
.0

0

1 2 3
Number of Attributes

P
re

c
is

io
n

/R
e

c
a

ll
1 0.98

0.95

Precision
Recall

(a) We correctly identified complex problems involv-

ing a combination of attributes.

0
.7

0
0

.8
5

1
.0

0

1 2 3
Number of Ongoing Faults

P
re

c
is

io
n

/R
e

c
a

ll

1 0.99

0.96

Precision
Recall

(b) We effectively diagnosed multiple ongoing faults.

Figure 7.4. Effect of varying combination, and number of faults on diagnosis.

were present. Overall, we correctly ranked 97% of the relevant root-causes within the top-3

likely causes of chronics. This high ranking of likely root-causes allows operators to quickly

focus their attention on the most pressing issues impacting end-users.

7.5 Impact of Noise

We used fault simulation to investigate the impact of noise due to occasional mislabeling

during anomaly detection. Noise can arise due to the thresholds used to detect anomalous

user-interactionshigher thresholds increase the number of false negatives, while lower

thresholds increase the number of false positives.

7.5.1 Experiment Methodology

We evaluated the impact of noise using the fault-simulation dataset generated from one-

week’s worth of call logs from a major ISP (described in Section 7.3). We simulated noise

by incorrectly labeling 5–20% of failed calls as successful, and randomly labeling an equiv-

alent number of successful calls as failed. We measured the effectiveness of our diagnostic

approach by computing recall and mean-precision.



CHAPTER 7. EXPERIMENTAL EVALUATION 103

0 5 10 15 20
0

.7
0

0
.8

5
1

.0
0

Noise (%)

P
re

c
is

io
n

/R
e

c
a

ll

0.97

0.73

0.95

Precision
Recall

Figure 7.5. Effect of noise on problem localization. Recall is robust to noise, but its precision is degraded in

proportion to noise.

7.5.2 Results

Figure 7.5 shows that recall is robust to noise, and that precision is degraded in proportion

to noise. The drop in precision is due spurious attributes introduced by the incorrect labels.

Our ranking of likely causes remained robust to noiseeven when 20% of failed calls were

mislabeled, we correctly identified >94% of injected faults within the top-3 likely causes.

7.6 Benchmarking Against Existing Algorithms

We benchmarked our approach against Pinpoint [Kiciman and Fox, 2005], and a modified

version of Spectroscope [Sambasivan et al., 2011]. These diagnosis algorithms are most

similar to our approach as they rely on truth tables, and decision trees that use information-

theoretic splitting functions to identify attributes most indicative of failures.

7.6.1 Experiment Methodology

We implemented Pinpoint [Kiciman and Fox, 2005], and a modified version of Spectro-

scope [Sambasivan et al., 2011] using decision trees generated by See5 [RuleQuest Research

Data Mining Tools, 2011]an open-source implementation of the C5.0 algorithm written

in C++. The C5.0 algorithm is an extension of the C4.5 decision tree algorithm, which also



CHAPTER 7. EXPERIMENTAL EVALUATION 104

0
.0

0
.5

1
.0

1:1 1:10 1:100
Failed:Successful calls (Log scale)

P
re

c
is

io
n

/R
e

c
a

ll

0.68

0.94

0.3

0.18

Precision
Recall

Figure 7.6. Influence of ratio of failed to successful call on decision-tree performance. Performance of the

decision tree degrades significantly when successful calls greatly outnumber failed calls in the dataset.

uses information gain to split the tree. C5.0 uses memory more efficiently, and supports

additional classification features such as boosting.

Pinpoint

We implemented Pinpoint [Kiciman and Fox, 2005] by training a decision tree using the la-

beled failed and successful calls. We then diagnosed problems by examining each branch in

the decision tree whose leaf node classified failed calls, and ranked the branches based on

the number of failed calls. We observed that precision and recall were primarily influenced

by the ratio of failed calls to successful calls in the dataset, as shown in Figure 7.6. We varied

this ratio by randomly sampling successful calls, while leaving the number of failed calls

unmodified. The best performance was achieved when the ratio of failed to successful calls

was similar. Weiss and Provost [Weiss and Provost, 2003] explain that the performance of

decision tree algorithms is degraded when class distributions are imbalancedthese imbal-

ances are commonplace when diagnosing chronics as the number of successes significantly

exceeds the number of failures. An example of this degraded performance is shown in Fig-

ure 7.6 where recall dropped to 18% when the number of successful calls outweighed the

number of failed calls by a factor of 100. In this case, often the best predictor was a decision

tree with no branches that always predicted success.



CHAPTER 7. EXPERIMENTAL EVALUATION 105

Pinpoint
Spectroscope-mod
Draco

0.94 0.94 0.99

0.68
0.75

0.97

0
.0

0
.5

1
.0

Precision                  Recall

Overall Performance

Figure 7.7. Benchmarking our approach against Pinpoint and Spectroscope-mod. Overall, we performed

better than both Pinpoint and Spectroscope-mod at diagnosing chronics.

Spectroscope

Spectroscope [Sambasivan et al., 2011] localizes the source of performance degradations

between two periods or executions of a system to just a few relevant components. It does

so by leveraging the insight that such changes often manifest as changes or mutations in

the structure of individual requests (e.g., the components visited, the functions executed,

etc.) or in their per-component latencies. Spectroscope identifies mutated request flows

from the problem period, and localizes the problem by showing how they differ from their

precursorsthe way they were serviced in the non-problem period. Additional localization

is performed by using a decision tree to identify low-level parameters (e.g., function calls)

that best differentiate a mutation from its precursor.

The fault models for Spectroscope and our approach are differentSpectroscope targets

problems that result in significant performance degradations, whereas our approach tar-

gets chronics. Therefore, we implemented a modified version of Spectroscope-mod where

successful calls represent the non-problem period, and failed calls represent the problem

period. We investigated whether sampling successful calls using the notion of precursors

(i.e, successful calls that were similar, but not identical to failed calls), yielded better results

than the random sampling we employed for Pinpoint. We identified precursors by sam-

pling successful calls whose string-edit distance from failed calls was below a predefined

threshold. We then localized the root-cause of the problem using decision trees.



CHAPTER 7. EXPERIMENTAL EVALUATION 106

Pinpoint
Spectroscope-mod
Draco

0.92 0.93 0.99

0.61
0.68

0.97
0

.0
0

.5
1

.0

Precision                  Recall

Multiple Faults

(a) Our tool’s recall was higher by up to 20%

for traces containing multiple independent faults;

Spectroscope-mod performed 6% better than Pin-

point for these traces.

Pinpoint
Spectroscope-mod
Draco

0.92 0.90
0.99

0.30 0.33

0.94

0
.0

0
.5

1
.0

Precision                  Recall

Multiple Attributes

(b) We outperformed both Pinpoint and

Spectroscope-mod, with a recall of up to 56%

better for complex chronics triggered by a combina-

tion of 2 or more attributes.

Figure 7.8. Benchmarking effect of complex failure modes on Pinpoint and Spectroscope-mod.

7.6.2 Results

Figure 7.7 summarizes the overall mean-precision and recall of Pinpoint1, Spectroscope-

mod, and our approach when diagnosing injected faults, in the absence of noise. We per-

formed better than both Pinpoint and Spectroscope-mod by identifying 97% of injected

faults with an average precision of 99%. The precision of Pinpoint and Spectroscope-mod

were comparable at 94%. Spectroscope-mod’s recall was 7% higher than Pinpoint’s demon-

strating that strategic sampling of success data can improve performance.

The differences in performance between our approach and the decision tree approaches

were more pronounced when we limited our analysis to fault-injection traces that either

contained multiple independent faults, or chronics triggered by complex corner cases in-

volving a combination of two or more attributes. We correctly diagnosed up to 36% more in-

jected faults for traces containing multiple independent faults, as illustrated in Figure 7.8(a).

We significantly outperformed the decision tree approaches for chronics triggered by a

combination of two or more attributes, achieving a recall of up to 64% higher as shown

in Figure 7.8(b).
1For Pinpoint and Spectroscope-mod, we sampled successful calls to yield a 1:1 ratio of failed to successful

calls, which provided the best performance.



CHAPTER 7. EXPERIMENTAL EVALUATION 107

The reasons for the degraded precision and recall for Pinpoint and Spectroscope-mod

are outlined below:

1. The decision tree performed poorly at diagnosing faults injected with very-low prob-

abilities, particularly in traces containing multiple concurrent faults. In these in-

stances, the decision tree algorithm would split the tree to classify faults occurring

at higher probabilities, thereby masking faults with lower probabilities.

2. The performance of the decision tree is degraded when chronic problems arise due

to a combination of attributes because it identifies some, but not all relevant root-

causes. We took great care to ensure that the combination of attributes associated

with each injected fault were not synonyms of each other to eliminate this as con-

tributing factor to the poor performance. We investigated the effect on performance

of decision trees of considering partial matches where at least one of the affected at-

tributes is identified. In this case, the recall of both Pinpoint are Spectroscope-mod

improved to 83% suggesting that the decision tree was pruning relevant features.

7.7 Summary

This chapter explores the effectiveness of our diagnostic approach in a controlled envi-

ronment using fault-injection. Our experimental evaluation shows that the knowledge

of system dependencies captured by the end-to-end flows improves the effectiveness of

diagnosisparticularly when the symptoms of the problem are not severe enough to trig-

ger low-level alarms, and when faults result in correlated problem manifestations across

multiple nodes in a distributed system. We also observed that the fusion of white-box and

black-box metrics can provide operators with additional insight on the root-cause of the

problem. Our fault-simulation experiments showed that our diagnosis approach can pro-

vide coverage levels as high as 97% with false positives as low as 4%, and outperformed

state-of-the-art diagnostic techniques by up to 64% for chronics triggered by a combina-

tion of interacting factors. Our diagnosis approach effectively localized the root-causes of

multiple ongoing problems, and is robust to noise due to occasional mislabeling during

anomaly detection.

Our empirical evaluation also highlighted some limitations with our approach. False

negatives occurred when we injected two or more faults that were logically independent,



CHAPTER 7. EXPERIMENTAL EVALUATION 108

but happened to share a large intersection of attributes correlated with the faults. In these

cases, we typically reported a single root-cause that listed the shared attributes. In addi-

tion, our diagnostic approach provided a coarse-grained localization of the root-causes of

the chronic problems. For example, we may localize the root-cause of the problem to a

particular server or customer, but not to the exact line of source code or the configuration

parameter causing the problem. The granularity of our diagnosis is limited by granularity

of information available in the logs that we analyzed. The symptoms of some faults, such

as packet-loss, may not always provide an obvious pointer to the root-cause. In these in-

stances, augmenting our diagnostic approach with a signature-matching approach [Cohen

et al., 2005; Bodik et al., 2010] could help operators diagnose recurrent problems.



Chapter 8

Case Studies

In this chapter, we describe how we used our diagnosis approach to detect and localize

real-incidents problems in the OpenCloud cluster (Section 8.1), and the production VoIP

system at a major ISP (Section 8.2). We have deployed our problem-localization tool on a

portion of wireline VoIP services provided by the ISP. Over the past two years, our tool has

assisted operators at the ISP in performing chronics analysis of dropped and blocked calls

on the production system.

8.1 Hadoop Case Studies

We evaluated the effectiveness of our diagnosis approach by performing a post-mortem

analysis of real incidents in the OpenCloud Hadoop cluster. These incidents were drawn

from OpenCloud’s issue tracking system, and hardware replacement logs described in Sec-

tion 3.3. Troubleshooting chronic problems in Hadoop can be daunting. We have observed

instances where the Hadoop job threw cryptic exceptions which had no direct mapping

to the underlying problem. Due to the large-scale of Hadoop jobs, a single job can throw

hundreds or even thousands of exceptions which can overwhelm the user. Conversely, a

small number of straggler-tasks waiting to access remote data from HDFS (Hadoop Dis-

tributed File System) can slow down the progress of the entire job. The dependencies be-

tween HDFS and the MapReduce tasks are not always clear because Hadoop maintains

separate user-interfaces for MapReduce jobs and the HDFS instances. We have also ob-

served that multiple ongoing problems are common in the cluster. Table 3.6 shows that

14% of reported incidences involved multiple ongoing problems. This number serves as a

109



CHAPTER 8. CASE STUDIES 110

Tasks per job (%) (log-scale)

P
e

rc
e

n
ta

g
e

 o
f 

jo
b

s
0.1 1.0 10.0 100.0

5
0

7
5

1
0

0

Anomalies
Failed Tasks

Figure 8.1. Percentage of failed and anomalous Hadoop tasks over a 2-week period.

conservative estimate because it does not include problems due to bugs in the MapReduce

application that mostly go unreported.

We detected chronic problems in Hadoop by mining task exceptions from the

application-level logs, and by applying our anomaly-detection algorithm described in Sec-

tion 5.1. To gain insight on the quality of the models generated by our stepwise-regression

approach, we computed the percentage of tasks flagged as anomalous or failed in each

Hadoop job over a two-week period. There were 890 jobs executed during this time-period.

On average, we flagged 2.25% of tasks as anomalous. The maximum percentage of anoma-

lies flagged in a single job was 21%. The mean percentage of tasks aborted per job by the

TaskTracker was 13.27%, with a maximum of 99.91%. We then labeled the end-to-end flows

associated with each task as successful or failed. Our problem-localization approach used

these labeled traces to localize chronic problems. We provide examples of real incidents in

the Hadoop cluster that were diagnosed by us.

8.1.1 Examples of Chronics in Hadoop

Incident 1. A user’s job was constantly failing with the cryptic errors, such as Task

process exit with nonzero status of 1. The administrators initially suspected

that the job was running out of memory because there were a few out-of-memory excep-

tions in the logs. The job failures were eventually traced back to multiple problems in the



CHAPTER 8. CASE STUDIES 111

cluster. The first problem was due to a bug in the network driver on a node. The second

issue was a bad disk on a separate node. We successfully identified both these nodes.

Incident 2. We localized a recurrent application-level problem in a user’s job. The user

submitted four successive jobs which failed due to an error configuring an object. These

jobs threw hundreds of exceptions which might have overwhelmed the user. We ranked

these jobs as the top-4 problems during that day, and also identified the exception that was

most correlated with the failed Map tasks in one of these jobs.

Incident 3. We manually inspected some of the jobs with high-rates of anomalies to

determine whether the linear regression models for anomaly-detection were a poor fit, or

whether there was an unreported problem in the cluster. We discovered two nodes whose

that were repeatedly indicted by us. We suspect that these nodes might have been experi-

encing a hardware problem that went unnoticed.

Incident 4. We were unable to localize a disk problem on a node because Hadoop

blacklisted the node. Hadoop has built-in fault-tolerance mechanisms that migrate tasks

from faulty nodes, and blacklists them if their performance is significantly poorer than their

peers. Since blacklisted nodes do service user jobs, our diagnostic approach is unable to

localize problems on these nodes because they do not impact user performance. Node-

level peer-comparison approaches [Tan et al., 2010a; Kasick et al., 2010] can be used to

complement our approach in these cases.

8.2 VoIP Case Studies

We evaluated the effectiveness of our approach using a diverse set of real incidents from a

production telecommunication system, listed in Table 8.1. Some of these chronics recurred

several times a day, while others occurred intermittently over several days or weeks. The

ranking of the individual chronics varied from day-to-day depending on the severity of

the problem. For example, at its peak, the trunk-group problem due to blocked circuit-

identification codes (incident 3) only affected 2-3% of the calls passing through this trunk

group. The root-causes of the chronics included configuration problems at the customer

premises, resource contention, software problems, and an intermittent power-outage. We

correctly localized the network element or customer associated with the chronic problem in



CHAPTER 8. CASE STUDIES 112

Table 8.1. Examples of chronics at the production VoIP system. We correctly diagnosed 8 out of 10 incidents

and ranked them among the top-20 problems identified. We also identified anomalous resource-usage metrics

whenever performance logs were available.

Examples of problems Type Diagnosed Resource anomalies

1. Customers use wrong codec to

send faxes abroad.

Configuration X -

2. Customer problem causes recur-

rent blocked calls at IPBE.

Configuration X -

3. Blocked circuit identification

codes on trunk group.

Configuration X -

4. Problem with customer equip-

ment leads to poor QOS.

Configuration X -

5. Congestion at gateway servers

due to high call volumes.

Contention X CPU/Concurrent

sessions

6. Performance problem at appli-

cation server.

Contention X CPU/Memory

7. Debug tracing overloads servers

during peak traffic.

Contention X CPU

8. Software problem at control

server causes blocked calls

Software bug X -

9. Policy server not responding to

invites from application servers.

Software bug Low responses at

app. server

10. Power outage and unsuccessful

failover causes brief outages.

Power -

8 out of these 10 incidents. Once a problem is localized, operators can promptly liaise with

customers, or query logs outside our scope to diagnose the problem in more detail. The two

incidents in which we did not implicate the correct element were a software problem in a

policy server (incident 9), and a power outage that resulted in intermittent problems during

failover (incident 10). In both incidents, the network element that was the root-cause of the

problem was not present in our input data so we indicted the network elements adjacent

to the root-cause.

In addition to localizing network elements associated with the chronic problem, we an-

alyzed the performance logs of the identified network element whenever they were avail-



CHAPTER 8. CASE STUDIES 113

able. We flagged a resource metric as anomalous if the distribution of the metric in failed

calls was significantly different from that in successful calls. We used the Mann-Whitney

rank test to reject the null hypothesis that the real-valued metrics associated with failed

and successful calls were drawn from the same distribution with a significance-level of 1%.

The test helped to localize problems due to resource-contention at a network element.

8.2.1 Examples of Chronics in VoIP

We highlight six case studies from Table 8.1, to illustrate how our tool has been used by the

chronics team quickly to identify several new problems.

Incident 1. A repeating increase in the number of defects during night hours was ob-

served associated with a given defect code illustrated in Figure 1.1. Our analysis identified

two different (business) customers as being associated with the bulk of the defects. While

these customers accounted for large share of total defects, the defect rate observed by the

customers were a fraction of one percent. The operations team determined that these two

customers were attempting to send faxes overseas using unsupported codecs during US

night time. Shortly after the date the customers were notified of the problem, the daily

defect count associated with this defect code decreased by 56%.

Incident 2. Our analysis identified an independent problem with a specific network

element that occurred concurrently with incident 1 (see Figure 1.1), and accounted for

over 50% of the remaining defects when failures due to Incident 1 were excluded. Again,

overall only a fraction of one percent of the calls passing through this element were failing

making the problem harder to identify. After the operations team reset the element, the

total number of daily defects associated with this defect code was reduced by 76%, and this

element was no longer implicated by our analysis.

Incident 3. An increase in failure rate during business hours was observed for a single

defect code (see Figure 1.2). Our analysis identified a trunk group as being associated with

up to 80% of these defects. At peak, 2-3% of the calls passing this trunk group would fail.

Analysis by the operations team revealed two blocked CICs (Circuit Identification Codes)

on the trunk group and as a result the problem would only affect calls assigned to these

blocked CICs (in a round robin manner). After those CICs were unblocked, the total defects

associated with this code were reduced by 80%.



CHAPTER 8. CASE STUDIES 114

Single Customer’s QOS Failures (Day 1)

50

40

30

20

10
0

0 25 50
Packet Loss (%) 

Av
er

ag
e 

C
al

l D
ur

at
io

n

High Packet Loss

(a) A customer was experiencing poor Quality of Service (QOS) due to high packet-loss rates.

1. Problem Signature1
    Service_A
    Customer_A

2. Problem Signature2
    Service_A
    Customer_N
    IP_Address_N

C
al

l c
ou

nt
s

 (l
og

 sc
al

e)
C

al
l c

ou
nt

s
 (l

og
 sc

al
e)

Time of Day (GMT)

Time of Day (GMT)

View sample calls

View sample calls

Poor QoS traced back to problem with customer equipment.

(b) We correctly localized the QOS problem to misconfigured customer equipment.

Figure 8.2. Diagnosis of Quality of Service (QOS) violation in VoIP system

Incident 4. Poor call quality (due to packet delay, jitter, and packet loss) is a chronic

problem that is difficult to detect because the call is neither blocked nor dropped and thus

appears as a successful event from the system’s point of view. The quality of a VoIP call

is determined by factors such as packet delay, jitter, and packet loss. To diagnose poor call

quality, the gateway servers were configured to log the message-loss percentage for each

call. In addition, the data collector was modified to ignore failed (dropped and blocked)

calls and treat the set of calls with poor quality (loss > threshold) as the new set of failed

calls. The resulting data can then be analyzed normally by the diagnosis engine. The tool

indicated that the top quality of service issue (approximately 48% of all poor quality calls)



CHAPTER 8. CASE STUDIES 115

0 calls

293 calls

Fa
ile

d 
C

al
ls

5%

65%

A
ve

ra
ge

C
PU

 U
sa

ge
A

ve
ra

ge
M

em
or

y 
U

til 45%

32%

Anomalous CPU
and Memory at
Application Server

(a) Intermittent performance problem at applica-

tion servers perturbs memory and CPU usage.

Fa
ile

d 
C

al
ls

A
ve

ra
ge

C
PU

 U
sa

ge
A

ve
ra

ge
M

em
or

y 
U

til 41%

30%

88%

5%

171 calls

0 calls

Debug tracing
overloads server

Failover to 
backup server

(b) Debug tracing overloads server during peak

traffic.

Figure 8.3. Localizing resource-usage problems in VoIP network.

was related to a single business customer. Further, we did not implicate any network el-

ements indicating that the root-cause of the problem was likely with the customer equip-

ment and not a problem with the ISP’s hardware and/or network. A quality investigation

conducted by the ISP, independent of our analysis, identified the same customer and also

concluded that the problem was being caused by customer equipment thus confirming our

analysis. When the customer was notified, and the problem corrected, the overall number

of quality of service failures was reduced as expected.

Incident 6. An intermittent performance problem with two application servers led to an

increase in call defects persisting for several days. This problem affected 0.1% of all calls

passing through these application servers (see Figure 8.3(a)). We identified both servers

affected by the problem. After the operations team failed over traffic to a backup server,

the number of defects was reduced by 85%. We analyzed the CPU, memory and network-

related metrics on the application servers and observed that these failures occurred during

periods of heavy load and high CPU usage.

Incident 7. Customers experienced call failures following an autonomous failover of the

control servers in the service provider’s network. Although the failover completed success-

fully, some customers using the Bridge Line Appearance (BLA) feature lost synchroniza-



CHAPTER 8. CASE STUDIES 116

Table 8.2. Performance of problem-localization tool. Average data load time, average number of nodes in a

diagnosis tree, and mean analysis time to generate the top 20 diagnoses for more than 30 million calls.

Mode Load Time Nodes Analysis

Time

Branch &

Bound

Sampling Restricted

NO NO YES 374 ± 29sec 429 ± 208 524 ± 128sec

YES NO YES 374 ± 29sec 12 ± 5 128 ± 53sec

YES NO NO 374 ± 29sec 36 ± 20 880 ± 124sec

YES YES NO 120 ± 7sec 40 ± 30 16 ± 6sec

tion with the platform. Post outage analysis determined that failover was caused by a CPU

spike, which was likely triggered by increased logging levels implemented to help isolate

an intermittent BLA issue (see Figure 8.3(b)).

Incident 9. A chronic problem arose when a policy server in the VoIP network stopped

responding to invites from application servers, and affected 0.4% of calls passing through

the application server. Since records for the policy server were not present in the master

CDRs that we analyzed, we implicated the application servers that were sending invites to

the policy server. An analysis of the performance logs at the application server indicated

that low response rates were an additional symptom of the problem. Although in this

instance, our tool did not identify the root-cause, our analysis provided useful clues to

operators to help localize the problem. The incorporation of more server logs, such as

policy server and router logs, would improve our ability to localize problems. Our flexible

architecture allows us to incorporate additional data sources as they become available.

8.3 Performance of Problem Localization

We ran our experiments on a 8-core Xeon HT (@2.4GHz) with 24GB of memory. Depend-

ing on the operating mode, our tool takes 2 to 6 minutes to load input data, and from 16

seconds to over 10 minutes to analyze input data comprised of more than 30 million calls;

see Table 8.2 for details.

In the initial implementation, the tree size was limited in order to achieve acceptable

analysis times. Enabling the branch-and-bound algorithm described in Section 6.2, while



CHAPTER 8. CASE STUDIES 117

continuing to limit the tree size, resulted in more than a 50% performance improvement

in the analysis time. However, the branch-and-bound algorithm alone does not provide

enough of a performance gain to allow the restrictions on tree size to be removed; doing so

caused the analysis times to exceed those of the initial implementation. Sampling (at the

rate of 1/200 of successful calls), when used in combination with the branch-and-bound

algorithm, does allow the restrictions on tree size to be lifted while reducing analysis times

to a near interactive level. The reduction of data load time by more than 60% is another

benefit to the use of sampling.

The problem signatures generated when sampling have a 97% match rate when com-

pared to those generated when all success data is used. Specifically, the analysis of several

days’ data yielded 220 problem signatures, but only 214 matching signatures were pro-

duced by the analysis using sampled input. Of the six unmatched signatures, all but one

were ranked either 19th or 20th (out of 20); the exception was ranked 13th.

8.4 Summary

This chapter provides examples of real chronics that our diagnosis approach detected and

localized in a Hadoop cluster and a production VoIP system. We successfully identified dif-

ferent classes of chronic problems ranging from configuration problems at the customer-

site to resource-contention within the service provider’s network. Our tool has been de-

ployed on a major VoIP platform serving millions of users and handling tens of millions of

calls a day, and is being successfully used by its operations team. The top-down statistical

approach that we adopted allowed us to incrementally incorporate instrumentation from

different layers of the system. The granularity of the diagnosis that we provided is dictated

by the instrumentation data available.



The greatest value of a picture is when it forces us to notice what

we never expected to see.

J. W. Tukey, Exploratory Data Analysis, 1977

Chapter 9

Problem Visualization

Automated diagnosis tools help narrow down the possible root-causes of problems in pro-

duction systems. However, the use of automated diagnosis techniques in isolation is not

always sufficient to localize problems at the level of granularity desired by users. Visu-

alization tools help bridge this gap by providing interactive interfaces that allow users to

explore their data, and formulate their own hypothesis about the root-cause of problems.

Our problem-localization tool supports visualization of time-series data by displaying the

number of calls affected by chronic problems over time. This visualization helps operators

spot recurring chronic problems that are affecting customers (see Figure 6.6).

A number of instrumentation frameworks also support visualization of time-series

data. [Ganglia, 2007; McLachlan et al., 2008; Ren et al., 2011] use plugins to visualize time

series of performance metrics across a cluster. Artemis [Cretu-Ciocarlie et al., 2008] pro-

vides a pluggable framework for distributed log collection, data analysis, and visualization.

Request-tracing infrastructures [Dai et al., 2011; Fonseca et al., 2007; Sigelman et al., 2010]

support for visualizing requests whose causal structure or duration are anomalous. [Tan

et al., 2010b] describes how we visualized the causal structure of Hadoop jobs to support

performance debugging. We developed a visualization tool that highlights infrastructural

and application-level problems in a Hadoop cluster, as shown in Figure 9.1.

Research questions. The research questions that we asked during problem visualization

were:

• How to develop compact visualizations of problems in large production systems?

• Can these visualizations help us diagnose different classes of problems?

118



CHAPTER 9. PROBLEM VISUALIZATION 119

list of problems  
ranked by severity 

Problem 
Localization 

Anomaly 
Detection 

White-box 
Analysis 

Black-box 
Analysis 

Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

normalized black-
box metrics 

anomalous nodes 

labeled  
end-to-end flows 

end-to-end 
flows 

Figure 9.1. Overview of problem visualization. Problem visualization highlights anomalous nodes in the

cluster, and supports root-cause inference.

Design overview. In this chapter, we explore how to use visualizations to distinguish

between different classes of problems. We developed a visualization tool that analyzes

application-level logs in a Hadoop cluster, and generates visual signatures of each job’s

performance as shown in Figure 9.1. These visual signatures provide compact represen-

tations of task durations, task status, and data consumption by jobs. Our tool leverages

application-specific semantics about the structure of the Hadoop programming model to

generate high-density, interactive visualizations of job performance that scale to support

current industry deployments. Our study of users at a production Hadoop cluster [Camp-

bell et al., 2011] highlighted users’ need to differentiate application-level problems (e.g.,

software bugs, workload imbalances) from infrastructural problems (e.g., contention prob-

lems, hardware problems). We have developed visual signatures that allow users to eas-

ily spot performance problems due to application-level and infrastructural issues. We use

peer-comparison to detect anomalous behavior in a production Hadoop cluster. As de-

scribed in Chapter 5, we define peers as nodes executing the same Hadoop job. We chose

to visualize the performance of Hadoop jobs by summarizing behavior at the node-level

instead of visualizing individual tasks because the node-level representation was more

compactthe number of tasks in a Hadoop jobs can be several orders of magnitude larger

than the number of nodes in the cluster. For example, we have observed jobs with over

120,000 tasks running on a 64-node cluster. Our current visualizations can apply to other



CHAPTER 9. PROBLEM VISUALIZATION 120

Table 9.1. Heuristics for developing visual signatures of problems in Hadoop. Heuristics help distinguish

between application-level and infrastructural problems in a Hadoop cluster.

Dimen- Visual Signatures

sion Application problem Workload imbalance Infrastructural problem

Time Single user or job over

time

Single user or job over

time

Multiple users and jobs

over time

Space Span multiple nodes Span multiple nodes Typically affect single

node, but correlated

failures also occur

Value Performance

degradations and task

exceptions

Performance degradation

and data-skews

Performance

degradations and task

exceptions

parallel-computing frameworks such as parallel file systems [Kasick et al., 2010]. However,

more research is needed to develop visualizations for heterogeneous distributed systems

such as VoIP.

Our visualization tool supports three different types of visualizations: one at the cluster-

level that represents the performance of jobs across nodes over time, and two others at the

job-level that summarize task performance across nodes in terms of task duration, task sta-

tus and volume of data processed. We evaluated these visualizations using real problems

experienced by Hadoop users at the OpenCloud cluster for data-intensive research [Paral-

lel Data Lab, 2012] cluster. Our visualizations correctly identified 192 out of 204 problems

that we observed during a one-month period.

The rest of the chapter is organized as follows. Section 9.1 describes the design and

implementation of our visualization tool. Section 9.2 describes our visualizations using

case studies drawn from real problems experienced by Hadoop users in the cluster. Finally,

Section 9.3 analyzes the effectiveness of our visualization at classifying problems in the

Hadoop cluster, while Section 9.4 summarizes our results.

9.1 Visual Signatures for Hadoop

We developed a visualization tool that characterizes the (mis-)behavior of large Hadoop

clusters as a series of visual signatures, and facilitates troubleshooting of performance prob-



CHAPTER 9. PROBLEM VISUALIZATION 121

lems on the cluster. We targeted performance problems due to hardware failures or data-

skews, and failed jobs due to software bugs. Our current implementation does not address

performance problems due to misconfigurations. The key requirements were: 1) an inter-

active interface that supports data exploration thereby enabling users to formulate a hy-

pothesis on the root-cause of problems; and 2) compact representations that can support

Hadoop clusters consisting of up to thousands of nodes.

We extracted data from the job-history logs generated by Hadoop’s JobTracker using

the domain-specific parsers presented in Chapter 4. We stored this information in a rela-

tional database, and generated visualizations in the web browser using the Data-Driven

Documents (D3) framework [Bostock et al., 2011]. D3 provides a JavaScript library for gen-

erating interactive visualizations by binding data to a Document Object Model (DOM), and

then applying data-driven transformations to the document.

We developed visual signatures that allow users to spot of patterns (or signatures) of

misbehavior in job execution by identifying visual patterns across the time, space, and value

domain. Table 9.1 summarizes the heuristics that we used to develop visual signatures that

distinguish between application-level problems, workload imbalances between tasks from

the same job, and infrastructural problems. We developed the visualizations iteratively

by manually identifying jobs which we knew had failed, and consulting with the system

administrators to learn what incidents had occurred in the cluster. Next, we developed

the visualizations using a subset of these incidents, and iterated through different designs

to select the visualizations that best displayed the problem. We then manually verified

that the visualizations matched up with the heuristics for distinguishing between different

problems.

These heuristics are explained below:

1. Time dimension. Different problems manifest in different ways over time. For ex-

ample, application-level problems and workload imbalances are specific to an appli-

cation; therefore, the manifestation of a problem is restricted to a single user or job

over time. On the other hand, infrastructural problems, such as hardware failures,

affect multiple users and jobs running on the affected nodes over time.

2. Space dimension. The space dimension captures the manifestation of the problem

across multiple nodes. Application-level problems and workload imbalances asso-

ciated with a single job manifest across multiple nodes running the buggy or mis-



CHAPTER 9. PROBLEM VISUALIZATION 122

configured code. Infrastructural problems are typically limited to a single node in

the cluster. A study of a globally distributed storage system [Ford et al., 2010] shows

that correlated failures are not rare, and were responsible for approximately 37% of

failures. Therefore, infrastructural problems can also span multiple nodes.

3. Value dimension. We quantify anomalies in the value domain by capturing the ex-

tent of performance degradation, data-skew, and task exceptions experienced by a

single job. Application-level and infrastructural problems manifest as either perfor-

mance degradations or task exceptions. Workload imbalances in Hadoop clusters

can stem from skewed data distributions that lead to performance degradations.

9.1.1 Detecting Anomalies using Peer-comparison

To generate the visual signatures of problems, we quantify the anomalies experienced dur-

ing job execution using a small number of metrics. We visualize Map and Reduce tasks sepa-

rately because these tasks have very different semantics. We detect anomalies using as peer-

comparison approach by first assuming that under fault-free conditions, the workload in a

Hadoop cluster is relatively well-balanced across nodes executing the same jobtherefore,

these nodes are peers and should exhibit similar behavior [Pan et al., 2009a]. Next, we

identify nodes whose task executions differ markedly from their peers and flag them as

anomalous. Aggregating task behavior on a per-node basis allows us to build compact sig-

natures of job behavior because the number of nodes in the cluster can be several orders of

magnitudes smaller than the maximum number of tasks in a job. We flag anomalous nodes

based on the following metrics:

1. Task duration. Task duration refers to the span of a task execution for a given job on

a single node. Performance degradations are detected by identifying nodes whose

task durations significantly exceed those of its peers.

2. Data volumes. The volume of data processed is the total number of bytes read or

written from the local filesystem, and the Hadoop Distributed Filesystem (HDFS).

We flag anomalies when nodes process significantly more data than their peers (in-

dicating a workload imbalance) or significantly less data (possibly indicating perfor-

mance problem at the node).

3. Failure ratios. The failure ratio is computed by aggregating tasks on a per-node

basis, and calculating the ratio of failed to successful tasks. In our visualizations,



CHAPTER 9. PROBLEM VISUALIZATION 123

we distinguish failed tasks from killed tasks which arise when speculatively-executed

tasks are terminated by the task scheduler.

To compute the anomaly score we assume that metrics follow a normal distribution,

and use the z-scorea dimensionless quantity that indicates how much each value devi-

ates from the mean in term of standard deviations. The z-score is computed using the

following formula: z = x−µ
σ , where µ is the mean of the values, and σ is the corresponding

standard deviation. For the cluster-level visualization, we estimate the severity of problems

by using a single anomaly score that flags nodes as anomalous if the geometric mean of the

absolute value of the z-scores is high, i.e., AnomalyScore = (|zTaskDuration| ∗ |zDataVolume| ∗
|zFailureRatio|)(1/3).

9.1.2 Visualizing Anomalies

To generate visualizations that are meaningful in clusters with hundreds or thousands

of nodes, we take advantage of the human brain’s deduction and perception capabili-

ties [Kalawsky, 2009]. Human perception is determined by two kinds of processes:

bottom-up, driven by the visual information in the pattern of light falling on the retina,

and top-down, driven by the demands of attention, which in turn are determined by the

needs of the tasks [Ware, 2008]. In our case, the top-down task is to find those nodes, tasks,

or jobs that are exhibiting anomalous behavior. We have generated three visualizations that

represent different aspects of a job’s execution at varying levels of granularity.

All of our visualizations are designed with the following guidelines: 1) they display

jobs and nodes in an order that preserves contextual information, e.g., sorting nodes by the

amount of data they process; 2) they clearly distinguish between attributes that have dif-

ferent semantics, e.g., distinguishing between Map or Reduce tasks, and failed and killed

tasks; and 3) they preserve the structure of the information across the different visualiza-

tions. We use a square as the unit of representation for the different metrics of the tasks

executing on a node. Table 9.2 shows the different metrics represented in our visualizations.

We also made the following design decisions: 1) present as much information as

is understandable in a single viewport by using color and size to signal the relevant

informationthis allows the brain’s visual query mechanism to process large chunks of

information; 2) postpone the display of non-relevant attributes and take advantage of the

interactive nature of web-browsersall of our visualizations provide access to additional



CHAPTER 9. PROBLEM VISUALIZATION 124

Table 9.2. Metrics used for Hadoop visualizations.

Metric Type

Duration Scalar/Anomaly

Information volume Scalar/Anomaly

Successful tasks Count

Killed tasks Count

Failed tasks Count

data-skew Percentage

Job name & job id Text

Date & time Text

information by using the mouseover gesture, and allowing users to drill-down to a more

detailed view of the data by clicking on the relevant interface elements.

9.1.3 Scalability

A Hadoop cluster might be composed of hundreds or thousands of nodesleading to chal-

lenges in problem diagnosis brought about by the scale of the system. Research on human

perception has shown that the brain can manage to distinguish features at a very high res-

olution, e.g., differentiating up to 250 features per linear inch [Tufte, 2001]. The following

formula can be used to calculate the data density of a visualization:

Data density =
Number of data entries or features

Area of data display

For scalability, we leveraged high-resolution data graphics to display the relevant infor-

mation of each node in the cluster. Our heatmap visualization is capable of representing

between 1,500 and 2,900 features per square inch, depending on the resolution of the dis-

play; this contrasts with the approximately 10 features per square inch shown in a typical

publication [Tufte, 2001].

9.2 Visualizations and Case Studies

We developed three different visualizations that facilitate problem diagnosis. We describe

their design considerations, and use cases in this section. The first visualization is the



CHAPTER 9. PROBLEM VISUALIZATION 125

N
od

e 
ID

Job ID (sorted by start time)

Performance degradation due to failing disk

1
26

Figure 9.2. Visual signature of an infrastructural problem using anomaly heatmap. The anomaly heatmap

shows succession of anomalous jobs (darker color) due to a failing disk controller on a node.

N
od

e 
ID

1
26

Job ID (sorted by start time)

Resource contention due to buggy job 

Figure 9.3. Visual signature of an application-level problem using anomaly heatmap. In this case, the

problem was caused by a single user submitting a resource-intensive job to the cluster repeatedly causing

degraded performance on multiple nodes which were eventually blacklisted.

anomaly heatmap which summarizes job behavior at the cluster-level; the other two vi-

sualizations are at the job-level. The first job-level visualization, referred to as the job-

execution stream, allows users to scroll through jobs sequentially thus preserving the

time context. The second job-level visualization, referred to as the job-execution de-

tail, provides a more detailed view of task execution over time on each node in terms of

task duration and amount of data processed.

9.2.1 Anomaly Heatmap

A heatmap is a high-density representation of a matrix, that we use to provide users with a

high-level overview of jobs execution at the cluster-level. This visualization is formulated



CHAPTER 9. PROBLEM VISUALIZATION 126

M

R

job_9438 / HALFCAM5_kmeans_iteration_0   -- SUCCESS
21:54:47 / 0h 5m 44s / Oct -10

Maps

Reduces

Yellow borders indicate
speculative tasks were killed 

Red borders indicate 
failed tasks (darker
borders signal higher 
failure rates)

Darker colored squares 
indicate anomalous 
task durations

Figure 9.4. The job-execution stream visualization compactly displays information about a job’s execution.

The header lists the job ID, name, status, time, duration and date. The visualization also highlights anomalies

in task duration by using darker colors, and task status by using yellow borders for killed tasks and red borders

for failed tasks. The nodes are sorted by decreasing amount of I/O processed.

over a grid that shows nodes on the rows and jobs on the columns, as shown in Figure 9.2.

The darkness of an intersection on the grid indicates a higher degree of anomaly on that

node for that job. By using this visualization, anomalies due to application-level and in-

frastructural problems can be easily spotted as bursts of color that contrast with non-faulty

nodes and jobs in the background.

Figure 9.2 displays the visual signature of an infrastructural problem identified by a suc-

cession of anomalous jobs (darker color) due to a failing disk controller on a node. Fig-

ure 9.3 illustrates the visual signature of an application-level problem caused by a single user

repeatedly submitting a resource-intensive job to the cluster. The resource contention led to

degraded performance across multiple nodes which were eventually blacklisted. It is easy

to identify when a node has gone offline or has been blacklisted by spotting a sudden se-

quence of horizontal white-space; vertical white-space indicates periods of time when the

cluster was idle. The data density of the anomaly heatmap is around 2,900 features per

square inch on a 109 ppi 1 display, using 2x2 pixels per job/node. This gives us a capacity

to show approximately 54× 54 ≈ 2900 features per square inch 2; which is equivalent to fit

1200 jobs x 700 nodes on a 27′′ display.
1ppi: pixels per inch
2(109*109ppi)/(2*2pixels) = 2970.25 features per square inch



CHAPTER 9. PROBLEM VISUALIZATION 127

job_8977 / node_lookup_hadoop -- FAILED

Figure 9.5. Visual signature of bugs in the Map phase. Failures spread across all Map nodes (solid red

border) typically signals a bug in the Map phase.

job_9035 / depParseFeatExtract -- FAILED

Figure 9.6. Visual signature of bugs in the Reduce phase. Failures spread across all Reduce nodes (solid

red border) typically signals a bug in the Reduce phase.

9.2.2 Job-execution Stream

The job-execution stream, shown in Figure 9.4, provides a more detailed view of

jobs while preserving information about the context by showing a scrollable stream of jobs

sorted by start time. In addition to displaying general information about the job (job ID,

job name, start date and time, job duration) in the header, this visualization has a more

complex grammar that allows the representation of an extended set of signatures.

Since the application-semantics of Map and Reduce tasks are very different, we divided

nodes into two sets: the Map set and the Reduce set. Each of these sets represent nodes that

executed Map or Reduce tasks for a given job sorted by decreasing I/O. The intuition be-

hind the sort order is that nodes that process significantly less data than their peers might be

experiencing performance problems. We enhanced the representation of each node with a

colored border that varies in intensity depending the ratio of failed tasks to successful tasks,

or the ratio of killed tasks to successful tasks; killed tasks arise when the task scheduler ter-

minates speculative tasks that are still running after the fastest copy of the task completed.

Killed tasks are represented using a yellow border, which is overloaded by a red border if

there are any failed tasks.

The job-execution stream visualization allows us to generate signatures for the

following scenarios:

1. Application-level problems. Bugs in either the Map or Reduce phase manifest as a

large number of failed tasks across all nodes in either the Map or Reduce set (see



CHAPTER 9. PROBLEM VISUALIZATION 128

job_9146 / DocPerLineSentenceExtractor -- SUCCESS

Figure 9.7. Visual signature of data-skew. A node with anomalous task durations (darker color) and high

volume of I/O (first nodes in the list) can signal data-skew.

job_9369 / PerceptronTrainer:cat:1.0_040 -- SUCCESS

job_9370 / edu.cmu.ml.rtw.mapred.micro -- SUCCESS

job_9371 / edu.cmu.ml.rtw.mapred.micro -- SUCCESS

job_9372 / LabelCounter -- SUCCESS

Figure 9.8. Visual signature of infrastructural problem affecting several jobs. A node with failures (red

border) spread across multiple jobs can signal problems with that node.

Figures 9.5 and 9.6).

2. Workload imbalance or data-skew. A data-skew can be identified by spotting nodes with

anomalous task durations on the first positions of the node list. For example, see the

dark left-most node in Figure 9.7.

3. Infrastructural problems. Infrastructural problems can be detected if a node recurrently

fails across multiple jobs, as shown in Figure 9.8.

9.2.3 Job-execution Detail

The job-execution detail visualization provides a more detailed view of task execu-

tion and is less compact than the job-execution stream. The job-execution de-

tail visually highlights both the progress of tasks over time, and the volume of data pro-

cessed as shown in Figure 9.9. Nodes are still represented as two sets of squares for Map

and Reduce tasks; however, given that there is additional space available since we are only

visualizing one job at a time, we use the available area on each of the squares to represent

two additional variables: 1) anomalies in task durations over time by dividing the area of

each node into five vertical stripes, each corresponding to a fifth of the total time spent ex-

ecuting tasks on that nodedarker colors indicate the severity of the anomaly while white



CHAPTER 9. PROBLEM VISUALIZATION 129

Maps Reduces

job_9036 / depParseFeatExtract   -- SUCCESS
09:06:48 / 0h 1m 32s / Oct -10

Anomaly

Time

I/O %

Status (Killed task ratio due to speculative execution)

Figure 9.9. Visualization highlighting both the progress of tasks over time, and the volume of data pro-

cessed. Job execution detail visualization highlighting both the progress of tasks over time, and the volume

of data processed. Each node is divided on five stripes that represent the degree of anomalies in tasks exe-

cuting during the corresponding time slot; the size of the square represents the proportion of I/O processed by

that node.

stripes represent slots of time where no information was processed; 2) percentage of to-

tal I/O processed by that node, i.e., reads and writes to both the local filesystem and the

Hadoop distributed filesystem (HDFS)larger squares indicate higher volumes of data.

Figure 9.10 shows the visual signature of a data skew where a subset of nodes with

anomalous task durations (darker color) and high amounts of I/O (first nodes in the list,

large square size) indicate data-skew. In this visualization, the data-skew is more obvious

to the user when compared to the same problem visualized using the job-execution

stream in Figure 9.7. Infrastructural problems as shown in Figure 9.11 can be identified as

a single node with high task durations (darker color) or failed tasks (red border), coupled

with a low volume of I/O (small square size) which might indicate a performance degrada-

tion. The data density of this visualization, using 24x24 squares and 7 features per square

(5 time slots + I/O percentage + status ratio) on a 109 ppi screen, is about 112 numbers per

square inchthis allows us to display up to 4800 nodes on a 27′′ display (2400 nodes for

Maps + 2400 nodes for Reduces).



CHAPTER 9. PROBLEM VISUALIZATION 130

job_9146 / 
DocPerLineSentenceExtractor   -- SUCCESS
20:25:39 / 0h 17m 36s / Oct -07

Imbalanced workload due to data skew

Maps

Figure 9.10. Alternative visual signature of data-skew. The job-execution detail visualization shows

a single node with high duration anomaly (darker color) and high amount of I/O (first nodes in the list, large

square size) can signal data-skew.

job_9370 / 
edu.cmu.ml.rtw.mapred.micro   -- SUCCESS
10:49:45 / 0h 5m 18s / Oct -09

Task failures due to bad disk

Maps

Figure 9.11. Alternative Visual signature of an infrastructural problem. The job-execution detail

visualization shows a single node with high task durations (darker color) or failed tasks (red border), and a low

volume of I/O (small square size) can indicate a hardware failure.

9.2.4 Interactive User Interface

Our visualization tool is implemented as an interactive web interface supporting a top-

down data exploration strategy that allows users to form, and confirm their hypotheses on

the root-cause of the problems. Users can navigate from the cluster-level visualization to

the job-level visualizations by clicking on the relevant interface elements. Our tool takes

1–2 seconds to change between views. All of our visualizations provide access to additional

information by using the mouseover gesture. Figure 9.12 uses the job-execution de-

tail visualization to show how the performance of a job was degraded by a failed NIC

(Network Interface Controller) at a node highlighted using a dark blue square. By hovering



CHAPTER 9. PROBLEM VISUALIZATION 131

Node: nodeX
Successful Tasks: 6
Failed Tasks: 6
Failure Ratio: 0.5
Total I/0: 490 MB
Total Time: 0h 23m 28s

job_9627 / 
RandomShu�e   -- KILLED
06:28:29 / 0h 20m 57s / Oct -09
Maps

Figure 9.12. Interactive User Interface. This job-execution detail visualization shows degraded job perfor-

mance due to a NIC failure at a node. Hovering over the node provides the user with additional information

about the behavior of tasks executed on that node.

Table 9.3. Problems diagnosed by cluster-level and job-level visualizations. The infrastructural problems

consisted of 42 disk controller failures, 2 full hard drives, and 1 network interface controller (NIC) failure. The

infrastructural problems diagnosed by the job-execution stream were a subset of those identified by the anomaly

heatmap.

Type Total problems Diagnosed by

heatmap

Diagnosed by job-

execution stream

Application-level problem 157 0 157

Data-skew 2 2 2

Infrastructural problem 45 33 10

over the failed node, a user can obtain additional information about the behavior of tasks

executed on that node. For example, a user can observe that 50% of the tasks executed on

this node failed.

9.3 Visualization Results

We generated our visualizations using one month’s worth of logs generated by Hadoop’s

JobTracker on the OpenCloud cluster. During this period, 1,373 jobs where submitted, com-

prising of a total of approximately 1.85 million tasks. From these 1,373 jobs, we manually

identified 157 failures due to application-level problems, and 2 incidents of data-skew. We



CHAPTER 9. PROBLEM VISUALIZATION 132

also identified infrastructural problems by analyzing a report of events generated by the

Nagios tool installed on the cluster. During the evaluation period, Nagios reported 68 mes-

sages, that were associated with 45 different incidents namely: 42 disk controller failures,

2 full hard drives, and 1 network interface controller (NIC) failure.

We evaluated the performance of our tool by manually verifying that the visualizations

generated matched up with the heuristics for distinguishing between different problems

described in Table 9.1. Table 9.3 shows that we successfully identified all the application-

level problems and data-skews using the job-execution stream (similar results are

obtained using the job-execution detail). In addition, the anomaly heatmap was

able to identify 33 of the 45 infrastructural problems (the problems identified by the job-

execution stream are a subset of those identified by the heatmap). We were unable to

detect 4 of the infrastructural problems because the nodes had been blacklisted. We hy-

pothesize that the heatmap was unable to detect the remaining 8 infrastructural problems

because they occurred when the cluster was idle.

9.4 Summary

This chapter presents our visualization tool that exploits application-specific semantics

about the structure of Hadoop jobs to generate high-density, interactive visualizations of

job performance that scale to support current industry deployments. Visualization tools

complement diagnosis tools by providing interactive interfaces that allow users to explore

their data, and formulate their own hypothesis about the root-cause of problems.

Our visualization tool relies on peer-comparison to detect anomalous behavior in a

Hadoop cluster. We then applies heuristics to generate visual signatures of problems that

allow users to distinguish application-level problems (e.g., software bugs, workload imbal-

ances) from infrastructural problems (e.g., contention problems, hardware problems). Our

tool supports three types of visualization namely: a cluster-level visualization that displays

the performance of jobs across nodes over time; and two job-level visualizations that sum-

marize task performance across nodes in terms of task duration, task status and volume

of data processed. We have evaluated our visualizations using real problems experienced

by Hadoop users at a production cluster over a one-month period. Our visualizations cor-

rectly identified 192 out of 204 problems that we observed.



Chapter 10

Conclusion

This dissertation introduces chronicsperformance degradations or failures that are per-

ceivable by end-users, and that affect small subsets of end-users or requests. We devel-

oped a top-down statistical approach for detecting user-visible problems and localizing

the root-cause of chronics in production systems using unmodified white- and black-box

logs. Our approach relies on a suite of tools to diagnose problems namely: 1) an ex-

tensible log-analysis framework that uses a state-machine abstraction to infer end-to-end

flows from the unmodified white-box logs; 2) an anomaly-detection approach that uses

heuristics and peer-comparison to label each end-to-end flow as successful or failed; 3) a

problem-localization approach that identifies the root-cause of the problem by identifying

the groups of attributes that best discriminate between the success and failure labels; and 4)

a visualization tool that exploits peer-comparison to generate visual signatures of problems

in parallel-computing frameworks. We demonstrated the effectiveness of our approach on

real-incidents in two production systems namely: an academic cloud-computing cluster

that runs Hadoop, and a VoIP system at a major ISP.

Using both empirical and anecdotal evidence of problems experienced in production

systems, we demonstrated that chronic problems are more prevalent than major outages.

We also demonstrated that chronics can be notoriously difficult to diagnose: 1) their small

size makes setting alarm thresholds tricky; 2) there are many of them active concurrently

even when the system as a whole is mostly functional; 3) their symptoms often overlap with

each other; 4) they are triggered by complex corner cases involving multiple conditions; and

5) they persist for lengthy periods and can get absorbed into the system’s definition of what

is normal.

133



CHAPTER 10. CONCLUSION 134

The diagnostic framework presented in this thesis addresses the challenges faced when

detecting, localizing and visualizing chronics in production systems as follows:

Inferring knowledge of system dependencies from unmodified white-box logs. Our

white-box log-analysis framework infers end-to-end flows from unmodified white-box logs

in production systems by extracting data-flow and control-flow information from the logs,

and by deriving state-machine like views of the system’s execution. The knowledge of

system dependencies captured by the end-to-end flows facilitates the diagnosis of chronic

performance problems. For example, knowledge of system dependencies enables our

problem-localization approach to narrow down the source of a problem when errors prop-

agate across components.

Anomaly-detection. Whenever available, our approach relies on heuristics to detect

problems in end-to-end flows. In the absence of labeled failure-data, we rely on peer-

comparison to detect user-visible problems by flagging odd-man-out behavior in the end-to-

end flows. Our peer-comparison approach combines domain-specific knowledge about the

structure of Hadoop jobs to identify peers, with stepwise-regression to automatically fac-

tor out variance due to application-level differences, such as differences in data input sizes.

Any significant variance not explained by the regression models is labeled as anomalous.

Our anomaly-detection approach exploits a top-down strategy that focuses on the end-to-

end flows, rather than relying on bottom-up alarms based on server logsas the bottom-up

approach might fail to detect chronics that do not significantly perturb server behavior.

Problem localization. We rely on a top-down problem-localization approach to drill-

down on the root-cause of chronics. Our problem-localization approach uses the labeled

end-to-end flows generated during anomaly-detection to localize the root-causes of prob-

lems by comparing bad interactions with good ones from the same interval of time rather than

relying on historical data from good intervals of time, which might fail to detects chronics

that have persisted for long periods of time. We use a greedy, iterative search to determine

whether a problem is due to a combination of factors, or due to multiple ongoing problems.

We also incorporate black-box metrics, such as CPU-usage, to gain insight on whether the

problem was due to resource contention.

Visualization. Our visualization approach uses peer-comparison, coupled with heuris-

tics, to generate visual signatures of classes of chronic problems in parallel-computing



CHAPTER 10. CONCLUSION 135

frameworks such as Hadoop. At present, our visualizations distinguish between three

broad classes of problems namely: application-level problems such as software bugs, in-

frastructural problems such as bad disks, and data-skews due to imbalanced workloads.

Our problem-localization tool has been deployed on a major VoIP platform serving mil-

lions of users and handling tens of millions of calls a day, and is being successfully used by

its operations team. We provided examples of real chronics that our tool helped identify,

and demonstrated through fault-injection that our tool can provide coverage levels as high

as 97% with false positives as low as 4%. Our tool provides near-interactive performance

of < 1 second per chronic, all while running on a single server machine with middle of the

range hardware.

10.1 Open Questions and Future Work

The work presented in this dissertation raises a number of questions about the scientific

foundations, and the engineering choices that are required to diagnose chronics in produc-

tion systems. These open questions revolve around: 1) automatic identification of peers in

heterogeneous systems; 2) support for online monitoring and diagnosis in large production

systems.

Automatic Identification of Peers in Heterogeneous Systems. Our peer-comparison

based approaches for anomaly-detection and visualization rely on expert knowledge to

identify peers. For example, in Hadoop, peers can be defined as tasks belonging to the

same job or nodes executing the same set of jobs. Through our use of step-wise regression

during anomaly-detection, we automatically factored our variance due to application-level

characteristics, such as variations in input and output sizes in parallel-computing frame-

works such as Hadoop. [Kang et al., 2010; Ananthanarayanan et al., 2010] also relied on

expert knowledge and regression to identify peers in parallel-computing clusters and load-

balanced web servers. The notion of what constitutes a peer-group is less clear-cut in highly-

heterogeneous systems, such as VoIP, which comprise of many different types of compo-

nents with different performance characteristics. Researchers have automatically identified

peers in heterogeneous systems by clustering requests [Barham et al., 2004; Sambasivan

et al., 2011], or by using nearest-neighbor searches to find similar configurations [Thereska

et al., 2010]. However, these clustering techniques are better suited for handling static at-



CHAPTER 10. CONCLUSION 136

tributes (e.g., CPU type) rather than dynamic attributes (e.g., CPU usage) which vary over

time. Instance-based learning approaches [Smith, 2007; Kapadia et al., 1999; Kavulya et al.,

2010] combine clustering to find a set of similar jobs, with regression models to automat-

ically identify the attributes most correlated with job performance. These instance-based

approaches can cope with both static and dynamic attributes. The open question is whether

we can extend these instance-based approaches to cope with variance in both the white- and

black-box metrics in highly-heterogeneous production environments. One approach could

be to create virtual peer-groups by strategically factoring out sources of variance in hetero-

geneous systems. These virtual peer-groups could then be used to explore performance

characteristics, and flag outliers during anomaly-detection and problem visualization. For

example, a virtual peer-group could be created by normalizing for load differences across

servers in heterogeneous environmentsthereby making peer-comparison possible despite

the existence of heterogeneity. The notion of a virtual peer-group is also helpful when

membership in the group varies over time due to configuration changes. For example, in

virtualized environments, peer-groups may vary due to the migration of virtual machines.

Access to configuration-related information using tools such as vQuery [Ilari Shafer and

Snorri Gylfason and Gregory R. Ganger, 2012] would facilitate dynamic updates to the

definition of peer-groups whenever the configuration changes.

Online Monitoring and Diagnosis Our problem localization tool supports online di-

agnosis, however our white-box and black-box log-analysis tools for inferring end-to-end

flows were implemented offline. The open questions when developing online monitoring

and diagnosis frameworks are: 1) how to develop a scalable, streaming implementation

of the monitoring framework that captures both end-to-end dependencies and program-

mers’ expections; 2) how to sample end-to-end flows and still detect rare events such as

chronics; and 3) how to diagnose problems across multiple administrative domains in real-

time. There has been considerable research in developing robust monitoring frameworks

that automatically generate end-to-end flows by examining messages exchanged by com-

ponents [Barham et al., 2004; Fonseca et al., 2007; Sigelman et al., 2010]. However, these

frameworks do not completely capture the expectations of programmers. [Reynolds et al.,

2006] allows programmers to manually embed expectations about application behavior in

the source codethese expectations are extracted by Pip when generating end-to-end flows

in a distributed system. X-ray [Attariyan et al., 2012] automatically instruments binaries of



CHAPTER 10. CONCLUSION 137

stand-alone applications, and uses dynamic information flow tracking to narrow down the

root-cause of the problem. Through the instrumentation of binaries, X-ray captures a pro-

grammer’s expectations, but it does not support distributed environments. More research

is needed to develop frameworks that automatically infer system dependencies across a

distributed system, and capture the expectation of programmers.

Scalability and the incorporation of new data sources, such as those proffered by vir-

tualized environments, will continue to be a challenge for monitoring. Large-scale dis-

tributed systems exert pressure on online diagnosis systems to analyze massive amounts

of data, and produce a diagnosis outcome within minutes. Online monitoring and diagno-

sis frameworks exploit sampling to cope with the large volume of data. Chopstix [Bhatia

et al., 2008] uses sketchesa probabilistic data structure that allows the approximate track-

ing of a large number of events at the same cost as deterministically tracking significantly

fewer events. Sketches are an alternative to uniform sampling, which has the disadvantage

of drawing most of its samples from events with large populations. Research is needed to

determine the best sampling strategies for detecting chronic performance problems. For

example, whether sketches are effective for detecting chronics, or whether alternative sam-

pling strategies are needed.

In many domains such as Internet services and telecommunications, large systems are

increasingly built as a composition of multiple horizontal technology layers and vertical ad-

ministrative domains. For example, consider a typical Internet application constructed using

the Java runtime and its libraries, hosted in a Tomcat application server running on a Linux

OS inside a virtual machine at a particular data center of a cloud provider. In addition, this

application uses the Bing mapping service from Microsoft, obtains analytics support from

Google Analytics, and uses PayPal as a payment service. Each of these services also run on

very similar infrastructure layers, and depending on which cloud provider the application

users, some of these services may also share a data-center and/or a network provider with

the application.

In such a highly layered and highly silo’ed setup, faults can occur in each of the tech-

nology layers, or at the third-party providers that the service uses. Seemingly indepen-

dent third party providers may have common dependencies (e.g., using the same cloud

provider) resulting in correlated failures. No single layer or administrative domain may

have sufficient information to completely determine the root cause of a fault occurring in



CHAPTER 10. CONCLUSION 138

the system. These complications make diagnosis a challenging task. Our diagnostic frame-

work analyzes data across two technology layers in a single administrative domain namely:

the application-level logs, and the OS performance counters. [Kompella et al., 2005; Oliner

et al., 2010; Mahimkar et al., 2009] have done preliminary work on combining information

across technology layers within a single administrative domain. However, more research is

needed to develop comprehensive online-diagnosis algorithms that can capture a wholistic

view of the system across multiple domains and technology layers.



Bibliography

M. K. Agarwal, M. Gupta, V. Mann, N. Sachindran, N. Anerousis, and L. B. Mummert,

“Problem determination in enterprise middleware systems using change point corre-

lation of time series data,” in IEEE/IFIP Network Operations and Management Symposium

(NOMS), Vancouver, Canada, April 2006, pp. 471–482. 2, 4, 21

M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen, “Performance

debugging for distributed system of black boxes,” in ACM Symposium on Operating Sys-

tems Principles (SOSP), Bolton Landing, NY, Oct 2003, pp. 74–89. 22, 50, 53

G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris,

“Reining in the outliers in map-reduce clusters using mantri,” in USENIX Symposium

on Operating Systems Design and Implementation (OSDI), Vancouver, BC, Canada, October

2010, pp. 1–16. 135

Apache Software Foundation, “Hadoop,” 2007, http://hadoop.apache.org/core. 7, 28, 34,

50

—–, “Powered By Hadoop,” 2012, http://wiki.apache.org/hadoop/PoweredBy. 29

—–, “Apache’s JIRA issue tracker,” 2006, https://issues.apache.org/jira. 95

M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause diagnosis of perfor-

mance anomalies in production software,” in USENIX Symposium on Operating Systems

Design and Implementation (OSDI), Hollywood, CA, October 2012. 26, 53, 136

P. Bahl, R. Chandra, A. G. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang, “Towards

highly reliable enterprise network services via inference of multi-level dependencies,”

in ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications (SIGCOMM), Kyoto, Japan, August 2007, pp. 13–24. 17, 19, 20

139

http://hadoop.apache.org/core
http://wiki.apache.org/hadoop/PoweredBy
https://issues.apache.org/jira


BIBLIOGRAPHY 140

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using Magpie for request extraction and

workload modelling,” in USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI), San Francisco, CA, December 2004, pp. 259–272. 11, 24, 26, 52, 70, 135,

136

R. Bendel, S. Higgins, J. Teberg, and D. Pyke, “Comparison of skewness coefficient, co-

efficient of variation, and gini coefficient as inequality measures within populations,”

Oecologia, vol. 78, no. 3, pp. 394–400, March 1989. 40

Best Practical Solutions, “RT: Request Tracker - Issue tracking system,” 2013, http://

bestpractical.com/rt/. 35, 45

H. Beyer and K. Holtzblatt, Contextual Design: Defining Customer-Centered Systems, 1st ed.

San Francisco, CA: Morgan Kaufmann, September 1997. 36

S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson, “Lightweight, high-resolution

monitoring for troubleshooting production systems,” in USENIX Symposium on Operating

Systems Design and Implementation (OSDI), San Diego, CA, December 2008, pp. 103–116.

16, 137

P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen, “Fingerprinting the dat-

acenter: automated classification of performance crises,” in European conference on Com-

puter systems (EuroSys), Paris, France, April 2010, pp. 111–124. 2, 5, 25, 99, 108

M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,” IEEE Transactions

on Visualization & Computer Graphics (Proc. InfoVis), 2011. [Online]. Available: http:

//vis.stanford.edu/papers/d3 121

J. D. Campbell, A. B. Ganesan, B. Gotow, S. P. Kavulya, J. Mulholland, P. Narasimhan, S. Ra-

masubramanian, M. Shuster, and J. Tan, “Understanding and improving the diagnostic

workflow of MapReduce users,” in ACM Symposium on Computer Human Interaction for

Management of Information Technology CHIMIT, Boston, MA, December 2011. 35, 119

M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer, “Failure diagnosis using de-

cision trees,” in IEEE International Conference on Automatic Computing (ICAC), New York,

NY, May 2004, pp. 36–43. 25

http://bestpractical.com/rt/
http://bestpractical.com/rt/
http://vis.stanford.edu/papers/d3
http://vis.stanford.edu/papers/d3


BIBLIOGRAPHY 141

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint: Problem determina-

tion in large, dynamic internet services,” in IEEE Conference on Dependable Systems and

Networks (DSN), Bethesda, MD, Jun 2002. 25, 50

L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly? application

change? or workload change? towards automated detection of application performance

anomaly and change,” in IEEE Conference on Dependable Systems and Networks (DSN), An-

chorage, Alaska, June 2008, pp. 452–461. 18, 20, 71

I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox, “Capturing, index-

ing, clustering, and retrieving system history,” in ACM Symposium on Operating Systems

Principles (SOSP), Brighton, United Kingdom, October 2005, pp. 105–118. 2, 5, 25, 50, 99,

108

I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons, “Correlating instrumentation

data to system states: A building block for automated diagnosis and control,” in USENIX

Symposium on Operating Systems Design and Implementation (OSDI), San Francisco, CA,

December 2004, pp. 231–244. 25

G. F. Cretu-Ciocarlie, M. Budiu, and M. Goldszmidt, “Hunting for problems with artemis,”

in USENIX Workshop on Analysis of System Logs, San Diego, CA, December 2008. 27, 118

D. Crockford, “JavaScript Object Notation (JSON),” 2006, http://www.json.org/. 62

J. Dai, J. Huang, S. Huang, B. Huang, and Y. Liu, “Hitune: dataflow-based performance

analysis for big data cloud,” in USENIX Annual Technical Conference (ATC), Portland, OR,

Jun. 2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=2002181.2002188 118

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters.” Com-

munications of the ACM, vol. 51, pp. 107–113, 2008. 29

P. Desnoyers, T. Wood, P. J. Shenoy, R. Singh, S. Patil, and H. M. Vin, “Modellus: Automated

modeling of complex internet data center applications,” ACM Transactions on the Web

TWEB, vol. 6, no. 2, p. 8, May 2012. 18, 20

S. Duan and S. Babu, “Guided problem diagnosis through active learning,” in IEEE Inter-

national Conference on Automatic Computing (ICAC), Chicago, IL, June 2008, pp. 45–54. 25

http://www.json.org/
http://dl.acm.org/citation.cfm?id=2002181.2002188


BIBLIOGRAPHY 142

EMC, “Automating root cause analysis: Emc ionix codebook correlation technology vs.

rule-based analysis,” EMC, Tech. Rep. h5964, Nov 2009. 15

ExtraHop.com, “Blackouts, Brownouts, and Application Aware Network Performance

Management (AANPM),” January 2011, http://www.extrahop.com/post/blog/

extrahop-analysis/application-performance-management-blackouts-brownouts/. 1, 52

FCC, “The Proposed Extension of Part 4 of the Commission’s Rules Regarding Outage Re-

porting To Interconnected Voice Over Internet Protocol Service Providers and Broadband

Internet Service Providers,” Federal Communications Commission, Tech. Rep. PS Docket

No. 11-82, FCC 12-22, February 2012. 30

R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “X-Trace: A pervasive network trac-

ing framework,” in USENIX Symposium on Networked Systems Design and Implementation

(NSDI), Cambridge, MA, Apr 2007. 11, 26, 118, 136

D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso, C. Grimes, and

S. Quinlan, “Availability in globally distributed storage systems,” in USENIX Symposium

on Operating Systems Design and Implementation (OSDI), Vancouver, CA, October 2010, pp.

61–74. 122

C. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern match prob-

lem,” Artificial Intelligence, vol. 19, no. 4, pp. 17–37, 1982. 16

Ganglia, “Ganglia monitoring system,” 2007, http://ganglia.info. 27, 34, 118

E. Garduno, S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “Theia: Visual signatures

for problem diagnosis in large hadoop clusters,” in USENIX Large Installation System Ad-

ministration Conference (LISA), San Diego, CA, December 2012. 8

S. Ghemawat, H. Gobioff, and S. Leung, “The Google File System.” in ACM Symposium on

Operating Systems Principles (SOSP), Lake George, NY, Oct 2003, pp. 29 – 43. 30

M. Hauswirth, A. Diwan, P. Sweeney, and M. Hind, “Vertical profiling: Understanding the

behavior of object-oriented applications.” in ACM Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, Vancouver, BC, Canada, Oct. 2004, pp. 251 –

269. 16

http://www.extrahop.com/post/blog/extrahop-analysis/application-performance-management-blackouts-brownouts/
http://www.extrahop.com/post/blog/extrahop-analysis/application-performance-management-blackouts-brownouts/
http://ganglia.info


BIBLIOGRAPHY 143

E. Hoke, J. Sun, and C. Faloutsos, “Intemon: Intelligent system monitoring on large clus-

ters,” in ACM Conference on Very Large Data Bases (VLDB), Seoul, Korea, Sep. 2006, pp.

1239–1242. 23

K. Huh, K. Han, D. Hong, J. Kim, H. Kang, and P. Yoon, “A model-based fault diagnosis

system for electro-hydraulic brake,” SAE International, Warrendale, PA, USA, SAE Tech-

nical Paper Series 2008-01-1225, April 2008. 17

IBM, “Tivoli enterprise console,” 2010, http://www.ibm.com/software/tivoli/products/

enterprise-console. 16

Ilari Shafer and Snorri Gylfason and Gregory R. Ganger, “vQuery: A platform for con-

necting configuration and performance,” VMware Technical Journal, Tech. Rep. VMware

Technical Journal, Vol. 1, No. 2, December 2012. 136

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg, “Quincy: fair

scheduling for distributed computing clusters,” in ACM Symposium on Operating Systems

Principles (SOSP), Big Sky, Montana, Oct. 2009, pp. 261–276. 41

G. Jiang, H. Chen, K. Yoshihira, and A. Saxena, “Ranking the importance of alerts for prob-

lem determination in large computer systems,” in IEEE International Conference on Auto-

matic Computing (ICAC), Barcelona, Spain, June 2009a, pp. 3–12. 22

M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward, “System monitoring with

metric-correlation models: problems and solutions,” in IEEE International Conference on

Automatic Computing (ICAC), Barcelona, Spain, June 2009b, pp. 13–22. 22

K. R. Joshi, W. H. Sanders, M. A. Hiltunen, and R. D. Schlichting, “Automatic model-

driven recovery in distributed systems,” in IEEE Symposium on Reliable Distributed Systems

(SRDS), Orlando, Florida, October 2005, pp. 25–38. 17, 19

R. S. Kalawsky, “Gaining greater insight through interactive visualization: A human fac-

tors perspective,” in Trends in Interactive Visualization, ser. Advanced Information and

Knowledge Processing, R. Liere, T. Adriaansen, and E. Zudilova-Seinstra, Eds. Springer

London, 2009. 123

http://www.ibm.com/software/tivoli/products/enterprise-console
http://www.ibm.com/software/tivoli/products/enterprise-console


BIBLIOGRAPHY 144

S. Kandula, D. Katabi, and J.-P. Vasseur, “Shrink: A Tool for Failure Diagnosis in IP Net-

works,” in ACM SIGCOMM Workshop on mining network data (MineNet-05), Philadelphia,

PA, August 2005. 19

S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl, “Detailed diagnosis

in enterprise networks,” in ACM Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications (SIGCOMM), Barcelona, Spain, August 2009, pp.

243–254. 2, 4, 21, 27

H. Kang, H. Chen, and G. Jiang, “Peerwatch: a fault detection and diagnosis tool for vir-

tualized consolidation systems,” in IEEE International Conference on Automatic Computing

(ICAC), Washington, DC, June 2010. 23, 135

N. H. Kapadia, J. A. Fortes, and C. E. Brodley, “Predictive application-performance model-

ing in a computational grid environment,” in International Symposium on High-Performance

Distributed Computing, Redondo Beach, CA, Aug. 1999, p. 6. 71, 136

M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan, “Black-box problem diagnosis in parallel

file systems,” in USENIX Conference on File and Storage Technologies (FAST), San Jose, CA,

Feb. 2010, pp. 43–56. 22, 23, 70, 111, 120

S. Kavulya, R. Gandhi, and P. Narasimhan, “Gumshoe: Diagnosing performance prob-

lems in replicated file-systems,” in IEEE Symposium on Reliable Distributed Systems (SRDS),

Naples, Italy, October 2008, pp. 137–146. 70, 71

S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces from a produc-

tion mapreduce cluster,” in IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, Melbourne, Australia, May 2010, pp. 94–103. 8, 9, 32, 71, 136

S. Kavulya, K. R. Joshi, M. A. Hiltunen, S. Daniels, R. Gandhi, and P. Narasimhan, “Practi-

cal experiences with chronics discovery in large telecommunications systems,” Operating

Systems Review, vol. 45, no. 3, pp. 23–30, 2012a. 3, 8, 9

S. P. Kavulya, K. Joshi, M. Hiltunen, S. Daniels, R. Gandhi, and P. Narasimhan, “Practi-

cal experiences with chronics discovery in large telecommunications systems,” in ACM

Workshop on Managing Systems via Log Analysis and Machine Learning Techniques (SLAML),

Cascais, Portugal, October 2011. 9



BIBLIOGRAPHY 145

S. P. Kavulya, S. Daniels, K. R. Joshi, M. A. Hiltunen, R. Gandhi, and P. Narasimhan, “Draco:

Statistical diagnosis of chronic problems in large distributed systems,” in IEEE Conference

on Dependable Systems and Networks (DSN), Boston, MA, June 2012c, pp. 1–12. 8, 9

S. P. Kavulya, K. Joshi, F. Di Giandomenico, and P. Narasimhan, “Failure diagnosis of com-

plex systems,” in Resilience Assessment and Evaluation of Computing Systems. Springer

Berlin Heidelberg, 2012b, pp. 239–261. 8

T. Kelly, “Detecting performance anomalies in global applications,” in USENIX Workshop

on Real Large Distributed Systems (WORLDS), San Francisco, CA, December 2005. 18, 20,

71

G. Khanna, M. Y. Cheng, P. Varadharajan, S. Bagchi, M. P. Correia, and P. Verissimo, “Au-

tomated rule-based diagnosis through a distributed monitor system,” IEEE Transactions

on Dependable and Secure Computing, vol. 4, no. 4, pp. 266–279, 2007b. 19, 20

G. Khanna, I. Laguna, F. A. Arshad, and S. Bagchi, “Distributed diagnosis of failures in a

three tier e-commerce system,” in IEEE Symposium on Reliable Distributed Systems (SRDS),

Beijing, China, October 2007a, pp. 185–198. 19

E. Kiciman and A. Fox, “Detecting application-level failures in component-based internet

services,” IEEE Trans. on Neural Networks: Special Issue on Adaptive Learning Systems in

Communication Networks, vol. 16, no. 5, pp. 1027– 1041, September 2005. 8, 24, 93, 103, 104

E. Kiciman, “Using statistical monitoring to detect failures in internet services,” Ph.D. dis-

sertation, Stanford University, Sep. 2005. 1, 28

R. R. Kompella, J. Yates, A. G. Greenberg, and A. C. Snoeren, “Ip fault localization via

risk modeling,” in USENIX Symposium on Networked Systems Design and Implementation

(NSDI), Boston, MA, May 2005. 17, 19, 138

E. Krevat, J. Tucek, and G. R. Ganger, “Disks are like snowflakes: No two are alike,” in

USENIX Workshop on Hot Topics in Operating Systems (HotOS), Santa Ana Pueblo, NM,

May 2011, pp. 1–5. 72

S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of Mathematical

Statistics, vol. 22, pp. 79–86, March 1951. 10, 80, 82, 96



BIBLIOGRAPHY 146

A. H. Land and A. G. Doig, “An automatic method of solving discrete programming prob-

lems,” Econometrica, vol. 28, no. 3, pp. 497–520, 1960. 85

P. E. Lanigan, S. Kavulya, T. E. Fuhrman, P. Narasimhan, and M. A. Salman, “Diagnosis in

automotive systems: A survey,” Carnegie Mellon University PDL, Tech. Rep. CMU-PDL-

11-110, May 2011. 14, 17

J. C. Laprie, “Dependable computing: Concepts, limits, challenges,” in IEEE International

Symposium on Fault-Tolerant Computing: Special Issue, 1995, pp. 42–54. 13

C. Liu, Z. Lian, and J. Han, “How Bayesians debug,” in IEEE International Conference on Data

Mining (ICDM), Hong Kong, China, December 2006, pp. 382–393. 22, 83

G. Liu, A. Mok, and E. Yang, “Composite events for network event correlation,” in Interna-

tional Symposium on Integrated Network Management, Boston, MA, May 1999, pp. 247 –260.

16

X. Liu, J. Heo, and L. Sha, “Modeling 3-tiered web applications,” in International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MAS-

COTS), Atlanta, GA, September 2005, pp. 307–310. 18

Z. Liu, B. Lee, S. Kandula, and R. Mahajan, “Netclinic: Interactive visualization to enhance

automated fault diagnosis in enterprise networks,” in IEEE Conference on Visual Analytics

Science and Technology, Salt Lake City, UT, October 2010, pp. 131–138. 27

A. A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and Q. Zhao, “Towards

automated performance diagnosis in a large IPTV network,” in ACM Conference on Appli-

cations, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM),

Barcelona, Spain, August 2009, pp. 231–242. 2, 22, 23, 52, 138

H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochas-

tically larger than the other,” The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 50–60,

1947. 90

G. McCullough, N. McDowell, and G. Irwin, “Fault diagnostics for internal combustion en-

gines – current and future technologies,” SAE International, SAE Technical Paper Series

2007-01-1603, April 2007. 17



BIBLIOGRAPHY 147

P. McLachlan, T. Munzner, E. Koutsofios, and S. C. North, “Liverac: interactive visual explo-

ration of system management time-series data,” in Conference on Human Factors in Com-

puting Systems, CHI, Florence, Italy, April 2008, pp. 1483–1492. 27, 118

Nagios Enterprises., “Nagios,” 2008, http://www.nagios.org. 35

A. Oliner, A. P. Iyer, E. Lagerspetz, S. Tarkoma, and I. Stoica, “Carat: Collaborative energy

debugging for mobile devices,” in USENIX Workshop on Hot Topics in Dependable Systems

(HotDep), Hollywood, CA, Oct. 2012. 22

A. J. Oliner, A. V. Kulkarni, and A. Aiken, “Using correlated surprise to infer shared in-

fluence,” in IEEE Conference on Dependable Systems and Networks (DSN), Chicago, IL, July

2010, pp. 191–200. 2, 22, 23, 52, 138

H. Packard, “HP operations manager,” 2010, http://www.managementsoftware.hp.com.

16

X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Ganesha: Black-Box Diagnosis of

MapReduce Systems,” in Workshop on Hot Topics in Measurement and Modeling of Computer

Systems (HotMetrics), Seattle, WA, Jun. 2009b. 9

—–, “Blind Men and the Elephant: Piecing together Hadoop for diagnosis,” in International

Symposium on Software Reliability Engineering (ISSRE), Mysuru, India, Nov. 2009a. 8, 9, 22,

23, 70, 71, 72, 94, 95, 97, 122

Parallel Data Lab, “OpenCloud cluster,” 2012, http://wiki.pdl.cmu.edu/opencloudwiki/

Main/WebHome. 30, 33, 39, 120

E. Plugge, T. Hawkins, and P. Membrey, The Definitive Guide to MongoDB: The NoSQL

Database for Cloud and Desktop Computing, 1st ed. Berkely, CA, USA: Apress, 2010. 61

K. Ren, J. López, and G. Gibson, “Otus: resource attribution in data-intensive clusters,” in

Workshop on MapReduce and its applications (MapReduce), San Jose, CA, June 2011. 118

K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s adolescence: A comparative

workload analysis from three research clusters,” Carnegie Mellon University, Tech. Rep.

CMU-PDL-12-106, June 2012. 32, 41

http://www.nagios.org
http://www.managementsoftware.hp.com
http://wiki.pdl.cmu.edu/opencloudwiki/Main/WebHome
http://wiki.pdl.cmu.edu/opencloudwiki/Main/WebHome


BIBLIOGRAPHY 148

P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat, “Pip: Detect-

ing the unexpected in distributed systems,” in USENIX Symposium on Networked Systems

Design and Implementation (NSDI), San Jose, CA, May 2006. 26, 136

I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik, “Real-time problem determi-

nation in distributed systems using active probing,” in IEEE/IFIP Network Operations and

Management Symposium (NOMS), Seoul, South Korea, April 2004, pp. 133–146. 17, 19, 20

RuleQuest Research Data Mining Tools, “See5/C5.0,” 2011, http://www.rulequest.com/.

103

A. Ryan, “Under the Hood: Hadoop Distributed Filesystem reliability with Namenode

and Avatarnode,” June 2012, http://www.facebook.com/notes/facebook-engineering/

under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/

10150888759153920. 29

R. R. Sambasivan and G. R. Ganger, “Automated diagnosis without predictability is a recipe

for failure,” in USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), Boston,

MA, Jun. 2012a, pp. 1–6. 4, 11, 71

—–, “Automated diagnosis without predictability is a recipe for failure,” in USENIX Work-

shop on Hot Topics in Cloud Computing (HotCloud), Boston, MA, Jun. 2012b. 40

R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, S. Whitman, M. Stroucken, W. Wang,

L. Xu, and G. R. Ganger, “Diagnosing performance changes by comparing request flows,”

in USENIX Symposium on Networked Systems Design and Implementation (NSDI), Boston,

MA, March 2011, pp. 43–56. 2, 8, 25, 70, 93, 103, 105, 135

B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance comput-

ing systems,” in Dependendable Systems and Networks, Philadelphia, PA, Jun. 2006. 21

B. Schroeder and G. A. Gibson, “Disk failures in the real world: What does an MTTF of

1, 000, 000 hours mean to you?” in USENIX Conference on File and Storage Technologies

(FAST), San Jose, CA, February 2007, pp. 1–16. 21

K. Shen, C. Stewart, C. Li, and X. Li, “Reference-driven performance anomaly identifica-

tion,” in ACM Conference on Measurement and Modeling of Computer Systems (SIGMET-

RICS), Seattle, WA, June 2009, pp. 85–96. 22

http://www.rulequest.com/
http://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
http://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
http://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920


BIBLIOGRAPHY 149

B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan,

and C. Shanbhagy, “Dapper, a large-scale distributed systems tracing infrastructure,”

Google, Tech. Rep. dapper-2010-1, April 2010. 11, 26, 27, 52, 118, 136

W. Smith, “Prediction services for distributed computing,” in International Parallel and Dis-

tributed Processing Symposium, Long Beach, CA, March 2007, pp. 1–10. 71, 136

Splunk Inc., “Splunk: The it search company,” 2005, http://www.splunk.com. 27

M. Steinder and A. S. Sethi, “A survey of fault localization techniques in computer net-

works,” Science of Computer Programming, vol. 53, no. 2, pp. 165–194, July 2004. 14, 16

C. Stewart, T. Kelly, and A. Zhang, “Exploiting nonstationarity for performance prediction,”

in European conference on Computer systems (EuroSys), Lisbon, Portugal, March 2007, pp.

31–44. 18, 20, 71

G. W. Stewart, “Collinearity and least squares regression,” Statistical Science, vol. 2, no. 1,

pp. 68–84, 1987. [Online]. Available: http://www.jstor.org/stable/2245615 77

J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Mochi: Visual Log-Analysis

Based Tools for Debugging Hadoop,” in USENIX Workshop on Hot Topics in Cloud Com-

puting (HotCloud), San Diego, CA, Jun. 2009. 27, 44, 63

J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “SALSA: Analyzing Logs as StAte

Machines,” in USENIX Workshop on Analysis of System Logs, ser. WASL’08. San Diego,

California: USENIX Association, 2008. 8, 9, 22, 23, 54, 56, 67, 71, 72

J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Visual, log-based causal tracing for

performance debugging of mapreduce systems,” in IEEE International Conference on Dis-

tributed Computing Systems (ICDCS), Genova, Italy, June 2010b, pp. 795–806. 9, 118

J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and P. Narasimhan, “Kahuna: Problem

diagnosis for mapreduce-based cloud computing environments,” in IEEE/IFIP Network

Operations and Management Symposium (NOMS), Osaka, Japan, Apr. 2010a, pp. 112–119.

9, 71, 72, 111

http://www.splunk.com
http://www.jstor.org/stable/2245615


BIBLIOGRAPHY 150

S. Tati, B.-J. Ko, G. Cao, A. Swami, and T. F. L. Porta, “Adaptive algorithms for diagnosing

large-scale failures in computer networks,” in IEEE Conference on Dependable Systems and

Networks (DSN), Boston, MA, Jun. 2012, pp. 1–12. 17, 19

E. Thereska, B. Salmon, J. D. Strunk, M. Wachs, M. Abd-El-Malek, J. López, and G. R.

Ganger, “Stardust: tracking activity in a distributed storage system,” in ACM Conference

on Measurement and Modeling of Computer Systems (SIGMETRICS), Saint Malo, France, Jun.

2006, pp. 3–14. 52

E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel, “Practical performance models for com-

plex, popular applications,” in ACM Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS), New York, NY, Jun. 2010, pp. 1–12. 24, 70, 135

E. R. Tufte, The Visual Display of Quantitative Information, 2nd ed. Graphics Pr,

May 2001. [Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/0961392142 124

B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. N. Tantawi, “An analytical model

for multi-tier internet services and its applications,” in ACM Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS), Banff, Alberta, Canada, June 2005, pp.

291–302. 18

C. Ware, Visual Thinking: for Design. San Francisco, CA, USA: Morgan Kaufmann Publish-

ers Inc., 2008. 123

G. M. Weiss and F. J. Provost, “Learning when training data are costly: The effect of class

distribution on tree induction,” Journal of Artificial Intelligence Research (JAIR), vol. 19, pp.

315–354, 2003. 104

W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale system

problems by mining console logs,” in ACM Symposium on Operating Systems Principles

(SOSP), Big Sky, MT, October 2009, pp. 117–132. 23

Yahoo!, “Hadoop capacity scheduler,” 2008, https://issues.apache.org/jira/browse/

HADOOP-3445. 41

—–, “M45 supercomputing project,” 2009, http://research.yahoo.com/node/1884. 30, 33,

39

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0961392142
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0961392142
https://issues.apache.org/jira/browse/HADOOP-3445
https://issues.apache.org/jira/browse/HADOOP-3445
http://research.yahoo.com/node/1884


BIBLIOGRAPHY 151

S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie, “High speed and robust event

correlation,” Communications Magazine, IEEE, vol. 34, no. 5, pp. 82–90, May 1996. 2, 15,

23, 47, 52

C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y. Ma, “Automated known

problem diagnosis with event traces,” in European conference on Computer systems (Eu-

roSys), 2006, pp. 375–388. 25

S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox, “Ensembles of models for au-

tomated diagnosis of system performance problems,” in IEEE Conference on Dependable

Systems and Networks (DSN), Yokohoma, Japan, July 2005, pp. 644–653. 25


	Title
	1 Introduction
	1.1 Challenges in Diagnosing Chronics
	1.2 Thesis Statement
	1.3 Thesis Map
	1.4 Contributions
	1.5 Applying Approach to Different Systems
	1.6 Limitations

	2 Related Work
	2.1 Rule-based Techniques
	2.2 Model-based Techniques
	2.3 Statistical Techniques
	2.4 Machine Learning Techniques
	2.5 Tracing and Visualization Techniques

	3 Workload Characterization
	3.1 Target Systems
	3.2 Characterization of Hadoop Workloads
	3.3 Prevalence of Chronics
	3.4 Anecdotal Evidence of Chronics in VoIP
	3.5 Summary

	4 White-box Analysis
	4.1 State-Machine Abstraction for Log Analysis
	4.2 Extensible Log-analysis Framework
	4.3 End-to-end Flows in VoIP
	4.4 Summary

	5 Anomaly Detection
	5.1 Peer-comparison for Anomaly Detection
	5.2 Summary

	6 Problem Localization
	6.1 Scalable Anomaly Score Computation
	6.2 Attribute Group Generation
	6.3 Architecture and Design of Diagnosis Engine
	6.4 Fusing Black-box Metrics
	6.5 Why does it work?
	6.6 Summary

	7 Experimental Evaluation
	7.1 Impact of Knowledge of Dependencies
	7.2 Impact of Fusion of White- and Black-box Metrics
	7.3 Impact of Fault Probability
	7.4 Impact of Multiple Ongoing Problems
	7.5 Impact of Noise
	7.6 Benchmarking Against Existing Algorithms
	7.7 Summary

	8 Case Studies
	8.1 Hadoop Case Studies
	8.2 VoIP Case Studies
	8.3 Performance of Problem Localization
	8.4 Summary

	9 Problem Visualization
	9.1 Visual Signatures for Hadoop
	9.2 Visualizations and Case Studies
	9.3 Visualization Results
	9.4 Summary

	10 Conclusion
	10.1 Open Questions and Future Work

	Bibliography

