
Toward Upgrades-as-a-Service in Distributed Systems
Tudor Dumitraş

Carnegie Mellon University
tudor@cmu.edu

Priya Narasimhan
Carnegie Mellon University

priya@cs.cmu.edu

ABSTRACT
Unavailability in distributed enterprise systems is usually the
result of planned events, such as upgrades, rather than fail-
ures. Major system upgrades entail complex data conversions
that are difficult to perform on the fly, in the face of live work-
loads. Minimizing the downtime imposed by such conversions
is a time-intensive and error-prone manual process. We pro-
pose upgrades-as-a-service, a novel approach that can elimi-
nate all the causes of planned downtime recorded during the
upgrade history of one of the ten most popular websites. Build-
ing on the lessons learned from past research on live upgrades
in middleware systems, upgrades-as-a-service trade off a need
for additional hardware resources during the upgrade for the
ability to perform end-to-end upgrades online, with minimal
application-specific knowledge.

1. INTRODUCTION
Software upgrades are unavoidable in enterprise systems. For
example, business reasons sometimes mandate switching ven-
dors; responding to customer expectations and conforming
with government regulations can require new functionality.
Moreover, many enterprises can no longer afford to incur the
high cost of downtime and must perform such upgrades on-
line, without stopping their systems. While fault-tolerance
mechanisms focus almost entirely on responding to, avoiding,
or tolerating unexpected faults or security violations, system
unavailability is usually the result of planned events, such as
upgrades.

Previous research has concentrated on performing upgrades
in-place, which requires tracking the complex dependencies of
the system-under-upgrade, and on supporting mixed versions,
which interact and synchronize their states in the presence of
a live workload. The correctness of the mixed-version interac-
tions is ensured through a time-intensive and error-prone man-
ual process, e.g., establishing constraints to prevent old code
from accessing new data or conducting an in-depth pointer
analysis to understand the nature and depth of the dependency
chain. Because of these fundamental limitations, industry best-
practices recommend “rolling upgrades,” which upgrade-and-
reboot one node at a time, in a wave rolling through the dis-
tributed system. However, because some data conversions are
difficult to perform on the fly, in the face of live workloads,
and owing to concerns about overloading the production sys-
tem, upgrades that involve computationally-intensive data con-
versions currently necessitate planned downtime, ranging from
tens of hours to several days.

2. CAUSES OF DOWNTIME
We study the upgrade history of Wikipedia—one of the ten

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

most popular websites1 to date—by combining data from a
rigorous study of Wikipedia’s schema evolution with infor-
mation from design documents and archived discussions [3].
Wikipedia provides a multi-language, free encyclopedia, with
2.9 million articles. The content of these articles is stored in
a 1 TB database, supported by 23 MySQL servers configured
for master/slave replication. The master database receives the
write queries and propagates the updates to the slaves, which
handle read-only queries. The business logic of the system is a
wiki engine called MediaWiki, which accesses the database and
generates the content of the articles. Between 2003 and 2008,
MediaWiki has released eleven versions (V1.1–V1.11), and the
database schema has gone through 171 evolution steps [3].

When an upgrade of the wiki engine requires schema
changes, which modify the definitions of the database tables, or
data conversions, which modify the information stored in the
database, Wikipedia tries to avoid downtime by performing a
rolling upgrade. This technique removes database slaves one-
by-one from the replication group, applies the schema changes,
and then restarts the replication.The application servers are
upgraded in a similar fashion, in a wave rolling through the
data center. To support rolling upgrades, the database repli-
cation mechanism must allow source and target tables that do
not have identical definitions. In general, however, rolling up-
grades require the new version to be backwards-compatible.
Only 5 out of the 55 possible upgrades among MediaWiki ver-
sions V1.1–V1.11 can be performed online, through a rolling
upgrade [3]:

Upgrade from version

U
pg

ra
de

 to
 v

er
si

on

V1.1

V1.2

V1.3

V1.4

V1.5

V1.6

V1.7

V1.8

V1.9

V1.10

V1.11

V1.1 V1.2 V1.3 V1.4 V1.5 V1.6 V1.7 V1.8 V1.9 V1.10 V1.11

Rolling upgrade possibleDB replication possibleDowntime required

The history of Wikipedia upgrades [3] reveals five common
reasons for upgrade-related downtime:

• Incompatible schema changes (e.g., renaming tables in the
database) prevent rolling upgrades and require upgrading
the schema and the application in an atomic step;

• Data dependencies (e.g., resulting from table joins) are hard
to synchronize in response to updates issued by the live
workload and can impose a high runtime overhead;

1According to http://www.alexa.com. Wikipedia handles
peak loads of 70,000 HTTP requests/s.

tudor@cmu.edu
priya@cs.cmu.edu
http://www.alexa.com

• Long-running data conversions compete with the live work-
load and might overload the database;

• Bulk updates issued during such long-running conversions
can interfere with the database replication;

• Competitive upgrades (i.e., replacing the wiki engine with
a different software) require data conversions and typically
impose downtime.

Conversely, complex database changes are often avoided be-
cause they might impose downtime, even when this amounts
to rejecting user-requested features. Furthermore, such com-
plex upgrades often fail, e.g., by breaking hidden dependencies
in the system-under-upgrade [4], and cause unplanned down-
time or data-loss.

3. UPGRADES-AS-A-SERVICE
We propose an alternative approach for software upgrades,
which reduces the system unavailability by performing an off-
site upgrade and by avoiding states with mixed versions. Rely-
ing on additional storage and computational resources—leased
from existing cloud-computing infrastructures (e.g. the Ama-
zon Web Services)—for the duration of the upgrade, we install
the new version in a parallel universe, and we opportunisti-
cally transfer the persistent data from the production system
in to the new version (Figure 1). This approach enables long-
running data migrations in the background, during an online
upgrade, as the new version is inactive, and does not need to
be in a consistent state, until the atomic switchover. More-
over, because it does not require correctness constraints for
the mixed-version interactions or knowledge of the old version’s
dependencies, this approach reduces the manual interventions
needed for preparing the upgrade and is easier to use than the
current techniques. As it effectively separates the mechanisms
for performing an online upgrade from the functional aspects
of the upgrade, we call this approach upgrades-as-a-service.

We have developped a prototype, called Imago [4], for per-
forming online software upgrades with complex data conver-
sions. The opportunistic data-conversion procedure takes into
account the effect of the updates issued by the live workload
and synchronizes the data in the new version. The business
logic never interacts with a data schema belonging to a dif-
ferent version, and the live workload accesses either the old
version (before the switchover) or the new version (after the
switchover), but not both. Because the new version does not
need to be in a consistent state until the switchover, the data
dependencies are synchronized lazily, in the parallel universe,
which prevents disrupting the live workload during the up-
grade. Moreover, knowledge of the system’s workload (i.e.,
the database queries issued by the old and new versions of the
business logic) can be incorporated in the conversion sched-
uler, in order to perform the incremental data-conversions ef-
ficiently. Imago supports all the schema changes that have
imposed downtime during Wikipedia’s upgrade history.

This approach can be implemented efficiently by using the
GORDA API [1], which provides a uniform reflective inter-
face for several database servers. Using this API, we monitor
the data updates performed by the live workload by retriev-
ing the object-sets from the executor stage of the old version’s
database. This reflective information allows us to avoid bypass-
ing the database scheduler in order to control the serialization
of concurrent transactions, a technique frequently used in sys-
tems for database clustering and replication (e.g. C-JDBC [2]).
Aside from reducing the performance penalty during the up-
grade, our approach allows us to test the new version in a real-

HTTP

Original System

I E

Requests &

Replies

Persistent

data

Live

queries

Differences:

• Data-formats

Front-end

Data

store

Parallel Universe

• Data-formats

• APIs

• Behaviors

Application flow Upgrade flow
I EIngress interceptor Egress interceptor

Legend

Figure 1: Upgrades-as-a-Service.

istic environment, where the concurrency-control mechanisms
of the database are not disabled.

Current online-upgrades techniques, such as rolling up-
grades, provide limited opportunities for testing the new ver-
sion and the intermediate steps of the upgrade. Unlike these
techniques, Imago does not upgrade the system in place.
Imago’s parallel universe allows us to test the new version on-
line, using the live requests, before exposing its functionality
to the clients. This testing strategy can reveal bugs and mis-
configurations in the new version or incompatibilities with the
deployment environment.

Additionally, we have shown that Imago significantly reduces
the rate of upgrade failures by eliminating the risk of breaking
hidden dependencies in the system-under-upgrade [4]. There-
fore, upgrades-as-a-service will reduce both the planned and the
unplanned downtime due to software upgrades. Because it
does not require correctness constraints for the mixed-version
interactions or knowledge of the old version’s dependencies,
this approach also reduces the manual interventions needed
for preparing the upgrade and is easier to use than the exist-
ing techniques. From our experiences and observations with
a previous online-upgrade approach [5], nearly a decade ago,
we gained the intuition that leasing hardware resources for the
duration of the upgrade costs less than the process of planning
an in-place, online upgrade. Upgrades-as-a-service are likely to
be more practically usable, less error-prone and better suited
to fast upgrade cycles than the existing upgrade approaches.

4. REFERENCES
[1] N. Carvalho, A. C. Jr., J. Pereira, L. Rodrigues,

R. Oliveira, and S. Guedes. On the use of a reflective
architecture to augment database management systems.
Journal of Universal Computer Science, 13(8):1110–1135,
2007.

[2] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC:
Flexible database clustering middleware. In USENIX
Annual Technical Conference, 2004.

[3] T. Dumitraş and P. Narasimhan. No downtime for data
conversions: Rethinking hot upgrades. Technical Report
CMU-PDL-09-106, Carnegie Mellon University, 2009.

[4] T. Dumitraş and P. Narasimhan. Why do upgrades fail
and what can we do about it? toward dependable, online
upgrades in enterprise systems. In ACM/IEEE/IFIP
Middleware Conference, pages 349–372,
Urbana-Champaign, IL, Nov/Dec 2009.

[5] L. Moser, P. Melliar-Smith, P. Narasimhan, L. Tewksbury,
and V. Kalogeraki. Eternal: fault tolerance and live
upgrades for distributed object systems. In Information
Survivability Conference and Exposition, pages 184 – 196,
Hilton Head, SC, Jan 2000.

	Introduction
	Causes of downtime
	Upgrades-as-a-Service
	References

