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ABSTRACT
Large-scale computing often consists of many speculative
tasks to test hypotheses, search for insights, and review po-
tentially finished products. E.g., speculative tasks are issued
by bioinformaticists comparing dna sequences and computer
graphics artists adjusting scene properties. We promote a
way of working that exploits the inherent speculation in
application-level search made more common by the cost-
effectiveness of grid and cluster computing. Researchers and
end-users disclose sets of speculative tasks that search an ap-
plication space, request specific results as needed, and cancel
unfinished tasks if early results suggest no need to continue.
Doing so matches natural usage patterns, making users more
effective, and also enables a new class of schedulers.

In simulation, we show how batchactive schedulers reduce
user-observed response times relative to conventional mod-
els in which tasks are requested one at a time (interactively)
or in batches without specifying which tasks are speculative.
Over a range of situations, user-observed response time is
about 50% better on average and at least two times bet-
ter for 20% of our simulations. Moreover, we show how user
costs can be reduced under an incentive cost model of charg-
ing only for tasks whose results are requested.

Categories and Subject Descriptors: D.4.1 [Operating Sys-

tems]: Process Management

General Terms: Algorithms, Design, Performance

Keywords: speculative, optimistic, cluster, grid scheduling

1. INTRODUCTION
Large-scale computing often consists of many speculative
tasks to test hypotheses, search for insights, and review po-
tentially finished products. This work addresses how to re-
duce or eliminate user-observed response time by prioritizing
work that the user is waiting on and wasting fewer resources
on speculative tasks that might be canceled. This visible re-

sponse time is the time that a user actually waits for a result,
which is often less than the time that a speculative task has
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been in the system. Our target architecture is a computa-
tional grid [5] or shared cluster [3, 25]. Our deployment plan
is to replace or augment the extensible scheduling policies in
clustering software such as Condor, Beowulf, Platform lsf,
Globus, and the Sun ONE Grid Engine.

Speculative tasks are pervasive and intelligently scheduling
them is increasingly important in supercomputing and grid
architectures. A speculative task is one not yet known to be
required [12]. A task set is a collection of such tasks. The user
may want one, all, or some of these tasks. After requesting
a needed task, receiving the output, and considering this
output, the user decides whether to request the next task in
the set. This approach is commonly known as a speculative

search, speculative test, or parameter study.

Imagine a scientist using shared resources to validate a hy-
pothesis. She issues a task set that could keep the system
busy for hours or longer. Tasks listed earlier are to answer
pressing questions while those later are more speculative.
Early results could cause the scientist to reformulate her
line of inquiry; she would then reprioritize tasks, cancel later
tasks, issue new tasks. Moreover, the scientist is not always
waiting for tasks to complete; she spends minutes to hours
studying the output of completed tasks.

We promote a model that exploits the inherent speculation
in such scenarios. Users exploring search spaces disclose sets
of speculative tasks, request results as needed, and cancel

unfinished tasks if early results suggest no need to continue.
We call this the batchactive model in contrast to users that
interactively submit needed tasks one at a time and users
that submit batches of both needed and speculative tasks
without identifying which tasks are which.

In the batchactive model are batchactive schedulers that at-
tempt to maximize human productivity and minimize user
resource costs by scheduling speculative tasks differently.
Our heuristic is to segregate tasks into two queues based on
whether a task is speculative and give the non-speculative
tasks priority, resulting in better response time at lower re-
sources usage. This organization is shown in Figure 1.

Our approach applies best to domains in which several to
a potentially unbounded number of intermediate specula-
tive tasks are submitted and early results are acted on while
unfinished tasks remain. Considerable performance improve-
ments are found even when the average depth across users
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Figure 1: Models of user and scheduler behavior.
Users either request needed tasks one at a time
(interactive), or request needed and disclose spec-
ulative tasks together (batch and batchactive). Our
batchactive policies place requested and disclosed
tasks in different queues, in which the requested
queue has priority.

of disclosed speculative tasks is 3 or 4. The following are
several highly-applicable domains:

Bioinformatics Bioinformaticists explore biological hypothe-
ses, searching among dna fragments with similarity tools
like blast [2] and fasta. These scientists share worksta-
tion farms — such as the dedicated 30 machines at the
Berkeley Phylogenomics Group [17] — and issue series of
fast, inaccurate searches (taking from 10 seconds to 10 min-
utes when matching against human genome sequences) fol-
lowed by slow, accurate searches to confirm initial findings.
A batchactive scheduler would enable scientists to explore
ambitious ideas potentially requiring unbounded resources
without fear that resources would be wasted on tasks that
might be canceled after early results were scrutinized. Some
scientists wish to submit 10,000 sequencing tasks because
they ‘really do not know what [ . . . ] sequences will work.’ [14]

Computer graphics Teams of hundreds of artists creating a
computer-animated film, such as at Dreamworks or Pixar,
submit shots for rendering, where each shot has roughly
200 frames, to a cluster of hundreds to thousands of pro-
cessors. Each frame, which consists of independent tasks
(for lighting, shading, animation, etc.) can take from min-
utes to hours to render.1 The artist submits the entire shot
at once. This work is highly speculative: the overwhelm-
ing majority of computation never makes it into the final
film. [13, 21] The artist requests key frames, those with more
action, for example, to decide on the finished product. With
a batchactive scheduler, the key frames would run before
speculative, remaining frames. If upon seeing these frames
the artist changes lighting attributes or moves objects, spec-
ulative frames would be canceled and would not have un-
necessarily competed against the key frames of other team
artists.

1Over a nine month production period, Weta digital em-
ployed 3,200 processors to create Lord of the Rings: The
Return of the King. In this film there were 1,400 special
effects shots, each containing at least 240 frames, and the
average frame took 2 hours to render. [16]

Simulation Computer scientists routinely use clusters to run
simulations exploring high dimensional spaces. Exploratory
searches, or parameter studies, for feature extraction, search,
or function optimization, can continue indefinitely, homing
in on areas for accuracy or randomly sampling points for cov-
erage.2 In our department, clusters are used for, among other
things, trace-driven simulation for studying microarchitec-
ture, computer virus propagation, and storage patterns re-
lated to I/O caching and file access relationships. With a
batchactive scheduler, such simulations could occur in par-
allel with the experimenter analyzing completed results and
guiding the search in new directions, with the speculative
work operating in the background when pressing tasks are
requested.

The batchactive model requires rethinking metrics and algo-
rithms. In particular, when the system is aware of specula-
tive tasks, the traditional response time metric should be re-
fined. We introduce visible response time, the time between
requesting and receiving task output, or the time ‘blocked
on’ output. Visible response time accrues only after a user
requests a task that may or may not have been already dis-
closed. In contrast, and less usefully, response time accrues
as soon as a task enters the system.

The batchactive model also suggests refining the cost model.
Traditionally, computing centers charge for resource usage
irrespective of whether a task was needed [20]. We introduce
an incentive cost model which charges for only resources
used by tasks whose results are requested. This encourages
users to disclose speculative work deeply, and prevents the
type of gaming in which users mark all tasks as high-priority,
requested tasks. We show that user costs are actually re-
duced under this cost model.

We show in simulation that discriminating between specu-
lative and conventional tasks improves on time and resource
metrics compared to traditional schedulers. Over a broad
range of simulated user behavior, we show that visible re-
sponse time is improved by about 50% on average under a
batchactive scheduler, and is at least two times better for
20% of our simulations. Beyond these benefits, the batchac-
tive computing model creates a new challenge for scheduling
theory and practice: how does one best schedule speculative,
abortable tasks to minimize visible response time?

2. USER AND TASK MODEL
We model a closed loop of a constant number of users in-
teracting with the system. Users disclose speculative work
as task sets, which are ordered lists of tasks. When a user
needs a result from a task set, the user requests the task.
After some think time, the user may request the next task
or cancel all unrequested tasks and issue a new task set. The
act of cancelation models a user that doesn’t need any more
results from the task set.

Figure 2 depicts this user interaction with the scheduler,
and the scheduler’s interaction with the computing system.

2The Xfeed agent with the Xgrid clustering software (from
Apple Computer, Inc.) explicitly supports this model. One
specifies a range of arguments (or a random sampling) to
pass to a command. Xfeed generates task specifications for
each possible combination of arguments and submits them.
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Figure 2: Interaction between users, the scheduler,
and the computing center’s resources.

Figure 3: Task state transitions.

Any number of users disclose, request, and cancel any num-
ber of tasks. The scheduling policy decides which and when
disclosed and requested tasks run. If a disclosed task is can-
celed, it is no longer a candidate. The scheduler communi-
cates decisions to the conventional clustering software which
handles the details of running tasks on the servers.

Figure 3 details the states that a task can be in. Each task
has a resource usage that increases as the task runs. When a
task’s resource usage equals its service time, the task is con-
sidered executed. If a task is both executed and requested,
then the task is considered finished and the task’s output is
supplied to the requesting user. If a task executes and was
disclosed but not requested, then the task’s output is stored
until requested or canceled.

The probability that a given task’s results will cause a user
to cancel and issue a new task set is the task set change

probability. This parameter is modeled by a uniform random
variable whose lower bound is always 0 and whose upper
bound varies across runs. Each user is assigned a change
probability from this distribution for all the user’s tasks, so
that we simulate users who are more or less certain about
whether they will request their disclosed, speculative work.

The number of tasks per task set is another simulation pa-
rameter and is also drawn from a uniform random variable
for each user. Here, the lower bound is always 1, meaning no

disclosure. A low upper bound reflects shallow disclosure; a
scientist planning up to five or so experiments ahead. A high
upper bound, deep disclosure in the thousands, reflects task
sets submitted by an automated process for users searching
high-dimensional spaces.

Service time and think time for all tasks, irrespective of user,
drawn from the exponential distribution.

3. BATCHACTIVE SCHEDULING
People wish to batch their planning and submission of tasks
and pipeline the analysis of finished tasks with the execu-
tion of remaining tasks. Conventional interactive and batch
models are obstacles to this way of working.

In the interactive model, users request one task at a time. In
contrast, tasks can execute while task output is consumed in
the batchactive model. Endowing servers with knowledge of
future work in the form of disclosed tasks gives the servers an
early start, rather than being idle. In the batch model, the
scheduler does not discriminate between requests and dis-
closures. In contrast, distinguishing between disclosed and
requested tasks in the batchactive model enables the user to
disclose deeply, knowing that the scheduler will give prece-
dence to users waiting on requested tasks. In contrast to
both common practices, users will observe lower visible re-
sponse times, making them more productive and less frus-
trated. The profound effect on scheduling metrics exhibited
by batchactive scheduling is detailed by the simulation re-
sults in the evaluation section.

Our batchactive cost model charges for only resources used
by tasks whose results are requested. This encourages users
to disclose speculative work deeply, which enables the sched-
uler to best reduce visible response time. Note that if a user
attempts to gain scheduling priority by requesting instead
of disclosing speculative tasks, then the user will be charged
for those speculative resources.3

3.1 Metrics
Mean visible response time is our main metric. A task with
service time S is requested at time tr and is executed (com-
pletes) at time te. Each requested and executed task has a
corresponding visible response time denoted by

Vresp
def
=

(

0 if tr > te,

te − tr if tr ≤ te.

Recent work [15] argues that mean slowdown, which ex-
presses the notion that users are willing to wait longer for
larger work, should be minimized. Thus, we also study visi-

ble slowdown denoted by

Vslow
def
=

Vresp

S
.

3Moreover, a user who discloses a large task set but never re-
quests tasks will lessen the benefit of batchactive scheduling
for others because these unrequested tasks would compete
with speculative tasks that will probably be requested. This
might be unintentional or a denial-of-service. One solution
would be a disclosed task scheduler that favors users who
have historically been better speculators.
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metric description
visible response time blocked time
visible slowdown blocked time over service time
task throughput number of finished tasks
scaled billed resources billed over requested resources
load fraction of server busy time

Table 1: Metrics reported among schedulers.

Note the differences between these two metrics and the tra-
ditional response time and slowdown metrics. Because dis-
closed tasks can run before they are requested, visible re-
sponse time can be less than service time and visible slow-
down can be less than one.

We also measure task throughput: the number of finished
tasks (tasks that were requested and executed) over the du-
ration of our simulation. One of our results is that we im-
prove visible response time without hurting task through-
put, and in many cases we improve both.

We introduce a metric reflecting the billed resources wasted
on disclosed tasks that were never requested. In the in-
teractive and batchactive models, only requested tasks are
billed to the user. However, for the batch model, which does
not discriminate between requested and disclosed tasks, this
waste is significant. Scaled billed resources is the ratio of the
billed resources to the requested resources. For example, if
a scheduler charged for ten seconds of resource time but the
user only requested five seconds of resource time, then the
scaled billed resources is 2.

For any server, its load (also known as device utilization) is
the fraction of time that the server was running a task.

Finally, we report an improvement factor between a new,
batchactive scheduler and some baseline. For example, if a
metric is better when lower and if the baseline scheduler
simulation gave 50 as the metric and the new scheduler sim-
ulation gave 25, then the improvement is 2.

We summarize these metrics in Table 1.

3.2 Scope
We make some simplifying assumptions: A task uses only
one resource significantly. For example, a processor-intensive
task might access the disk to load a dataset, but those ac-
cesses must be an insignificant part of the task’s work. More-
over, we assume that preemption costs are low. Our poli-
cies have not been tailored to tasks with out-of-core mem-
ory requirements, for example, although we believe adapting
known techniques would be straightforward. Further, we as-
sume no complex interactions among tasks, like contention
for shared locks. Finally, we assume that there is sufficient
storage to hold speculative output from disclosed tasks that
have not yet been requested or canceled.

3.3 Policies
Any scheduler that behaves differently based on whether
a task is requested or disclosed is a batchactive scheduler.
Thus, there are many possible batchactive schedulers, such
as using any combination of traditional policies separately

for requested and disclosed tasks. We notate batchactive
schedulers by requested task policy × disclosed task policy

(for example, srpt × fcfs).

We wish to minimize mean visible response time across all
tasks. Since requested work is more important than specula-
tive work, our heuristic gives requested tasks priority. That
is, if an idle processor and a pending requested task exist,
this task runs before any pending disclosed tasks. Most of
the time, this is the right choice.

srpt (shortest-remaining-processing-time), which optimally
minimizes response time in non-speculative contexts [10,
ch. 8], is used for requested tasks for most of our batchac-
tive results. We also show that non-size-based policies (fcfs)
provide nearly identical improvements. Thus, knowing ser-
vice time is not required for batchactive scheduling.4

The disclosed queue from the batchactive scheduler are run
according to fcfs (first-come-first-serve). The motivation
behind fcfs for this queue is to quickly run tasks that will
be requested first. Recall that task sets are ordered lists of
disclosed, speculative tasks. Since our simulated users re-
quest tasks in this order, then applying fcfs to the task set
order is a perfect estimate of request order within one user,
and a reasonable estimate across all users.

4. EVALUATION
We demonstrate that the batchactive user model of disclos-
ing speculative tasks combined with batchactive schedulers
that segregate requested and disclosed tasks into two queues
provides better visible response time, visible slowdown, task
throughput, and scaled billed resources.

Evaluation is a simulation fed the synthetic tasks and user
behaviors described in Section 2. Time, such as service time,
is stated in seconds. We simulate rather than analytically
model due to the complexities of our user model which in-
cludes probabilistic task cancelation motivated by the per-
vasive and important scenarios of Section 1.

Our simulations explore a range of user and task behavior.
Each run simulates two weeks of time after two warmup days
(see Section 4.3) were ignored.

The choice of simulation parameters is key to arguing for
the batchactive computing model. We can make batchactive
computing look arbitrarily better than common practice by
selecting parameters most appropriate to the batchactive
scheduler. However, this would not be a convincing argu-
ment. Instead, we have chosen parameter ranges that not
only include what we believe to be reasonable uses of spec-
ulation for our target applications, but also ranges that in-
clude little or no speculation. We show that under no spec-
ulation, we do no worse than conventional models.

4Using service time predictions provides better absolute per-
formance for batchactive and non-batchactive schedulers.
Spring, et al. show that the service time of the complib
biological sequencing library is highly predictable from in-
put size [27]. In computer rendering, once a shot is being
processed, the runtimes of individual tasks are ‘generally
predictable’ [13]. Kapadia et al. use regression to predict
the resource requirements of grid applications [18].
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parameter range
number of users 4–16
task set change prob. 0.0 to 0.0–0.4 (uni.)
tasks in a task set 1 to 1–19 (uni.)
service time (s) 20–3,620 (exp.)
think time (s) 20–18,020 (exp.)

Table 2: The parameter ranges used in simulating
users. The parameters were defined in Section 2.
Parentheses indicate random variables (uniform and
exponential). Uniform distributions are notated by
‘lower bound to upper bound,’ where the upper
bound is a range.

4.1 Summarizing results
We used the parameter ranges listed in Table 2 for the results
in this section unless otherwise noted. For each parameter,
we sampled several points in its range. All told, each sched-
uler was evaluated against 3,168 selections of parameters.

We simulate one server, and restrict to 16 the maximum
number of users concurrently issuing task sets to the server.
The probability after receiving a requested task’s output
and thinking about it that the user cancels the rest of the
task set ranges from those who always need their speculative
work to those who cancel task sets 40% of the time. Tasks
per task sets range from no disclosure to about twenty dis-
closures, reflecting those using domain-specific knowledge to
plan small to medium-sized task sets.

Service times, which vary from one third of a minute to
about one hour, are modeled after blast dna similarity
searches [14] and frame rendering [16, 13, 21]. Think times,
which vary from a third of a minute to roughly five hours,
reflect a user who can make a quick decision about a task’s
output to one who needs to graph, ponder, or discuss results
with colleagues before deciding to request the next task or
cancel and start a new task set.

The following figures are cumulative improvement graphs
that show the fraction of runs in which the performance of
the batchactive model was at least a certain factor better
than the non-batchactive schedulers. The x-axes are factor
improvements and the y-axes are the metrics. For example,
in Figure 4, the solid line intersection with the x-axis at 3
says that in 10% of all simulation parameters, the ratio of
the mean visible response time for interactive srpt to the
mean visible response time for srpt × fcfs was at least 3.

Figure 4 shows how srpt × fcfs compares to interactive
srpt and batch srpt for visible response time. srpt × fcfs

and interactive srpt perform the same for about 65% of the
runs, while srpt × fcfs does better than batch srpt for
many more situations. However, there are more situations
where the batchactive scheduler is between two and four
times better than the interactive scheduler. Against both ex-
isting models, batchactive performs at least two times bet-
ter for about 20% of the runs. The mean improvement is
over 50%.

It is important to know whether these results hold using non-
size-based schedulers since size cannot always be obtained

Figure 4: Cumulative factor improvement of srpt

× fcfs over interactive and batch srpt for visible
response time. Against both schedulers, batchactive
performs at least twice as better for about 20% of
the simulated behaviors. The mean improvement is
1.525 over interactive and 1.537 over batch.

or predicted. We find in Figure 5 that the improvements
of batchactive scheduling over interactive and batch using
fcfs scheduling are quite similar to those in Figure 4.

We now compare batchactive with batch fcfs
5 in Figure 6

for scaled billed resources (the ratio of the billed resources
to the requested resources) and find that the user cost for
resources is considerably lower under the batchactive model.
Recall that in the batchactive model, disclosed tasks, which
run when the server would otherwise be idle, are free unless
they eventually are requested. But because the batch model
does not discriminate between requested and disclosed tasks,
it charges for them all. (The interactive model, not shown,
charges the same as the batchactive model because only re-
quested tasks are run.) In sum, batchactive charges at least
four times less for about 40% of the runs.

To the resource provider’s benefit, the batchactive model can
provide more total billed resources over the same time period
compared to the interactive model. Both models charge only
for requested resources. But since the batchactive model pro-
vides better task throughput, there can be more requested
tasks completed in the same time.

For a small percentage of the runs, batchactive did slightly
worse. We believe this is not an actual performance drop,
but error introduced due to variations in the number of fin-
ished tasks: different schedulers complete different numbers
of tasks during the same virtual time. Thus, metrics among
two schedulers running with the same parameters are tallied
from a different number of finished tasks. The confidence in-
tervals for a small subset of runs shown in Section 4.3 suggest
that for the cases in which batchactive’s mean is worse, the
95% confidence intervals between batchactive and baseline
schedulers overlap.

5We compared against batch fcfs instead of batch srpt

because it provided better competition against batchactive
srpt × fcfs for scaled billed resources.
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Figure 5: Cumulative factor improvement of fcfs

× fcfs over interactive and batch fcfs for visible
response time. Against both schedulers, batchactive
performs at least twice as better for about 20% of
the simulated behaviors. The mean improvement is
1.615 over interactive and 1.595 over batch.

Figure 6: Cumulative factor improvement of srpt ×

fcfs over batch fcfs for scaled billed resources. As
only requested tasks are charged, batchactive per-
forms much better than batch. Batchactive charges
at least four times less for about 40% of the runs.
The mean improvement is 3.647.

parameter setting
number of users 8
task set change prob. 0.0 to 0.2 (uni.)
tasks in a task set 1 to 15 (uni.)
service time (s) 600 (exp.)
think time (s) 6000 (exp.)

Table 3: The fixed parameters used to compare
schedulers. For each run, all but one were held
constant at these values. Parentheses indicate ran-
dom variables. Uniform distributions are notated by
‘lower to upper bound.’
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Figure 7: The effect of the number of users on visible
response time. With few users, interactive is better
than batch; with many, batch is better than inter-
active. Almost always, batchactive adapts and wins.

4.2 Per-parameter investigations
Now we look closely at what affects performance. We re-
port metrics for different scheduling models while consider-
ing slices of the user and task behavior parameter space.

The following graphs have the same format. Each set of three
bars corresponds to one selection of parameters. The left bar
is the batch model, the middle bar is the interactive model,
and the right bar is the batchactive model. Each graph varies
one parameter. The fixed parameters are taken from those
listed in Table 3 unless otherwise noted.

Figure 7 shows how the number of users affects visible re-
sponse time. Batch is suited to few users because execu-
tion time and think time are pipelined and the load is suf-
ficiently low that one’s disclosed but never requested tasks
don’t overly interfere with other requested tasks. Interac-
tive is suited to many users because the server is always
busy with requested tasks.

Nearly always, batchactive performs best, exhibiting adapt-
ability to load. Batchactive is better than batch under many
users because requested tasks never wait for disclosed tasks;
it is better than interactive under few users because it con-
sumes idle time with disclosed tasks. At the busiest part,
interactive and batchactive are equivalent because the re-
quested task queue is never empty.
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Figure 8: The effect of the number of users on visi-
ble slowdown. In nearly all cases, batchactive wins.
(Note: visible slowdown can be under one.)
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Figure 9: The effect of the number of users on
task throughput (number of times requested out-
put was delivered to the user) over the simulation
run. Batchactive provides the best task throughput.

Figure 8 repeats the runs of Figure 7 but plots visible slow-
down instead. Batchactive still outperforms the alternatives.
In contrast to the visible response time results, with many
users the visible slowdowns of batch and interactive con-
verge. This occurs because the visible response times of the
large tasks affect visible slowdown less.

Figure 9 shows how the number of users affects task through-
put (how often a user received requested task output) over
two simulated weeks. Batchactive finishes more tasks while
providing the better visible response times and slowdowns
in Figures 7 and 8. Only toward the highest number of users
does interactive throughput converge to batchactive.

Additional insight is found by comparing Figures 7, 8, and 9
with Figure 10, which is the same run except that load is
plotted. The load under the batch and batchactive mod-
els are similar. As their loads increase, batchactive provides
better visible response time than batch because batchac-

Figure 10: The effect of the number of users on load
(utilization). The price batchactive schedulers pay
for significantly improving visible response time rel-
ative to interactive schedulers is increased load. In
comparison to batch schedulers, however, batchac-
tive induces little extra load while delivering signif-
icantly better visible response time. (See Figure 7.)
This illustrates that conventional load does not fully
convey batchactive behavior: what matters is the
fraction of load made up of tasks that have been or
will be requested.

tive favors requested tasks. Batchactive provides better vis-
ible response time and slowdown than interactive because
batchactive pipelines disclosed tasks with think time. Coun-
terintuitively, when batchactive’s load is higher than interac-
tive, it still performs better than interactive. What matters
isn’t merely load, but the fraction of load made up of tasks
that have been or will be requested. Only when the batchac-
tive and interactive loads approach one (near 14 users), do
their visible response times and slowdowns converge.

In Figure 11, we vary the upper bound of the task set change
probability from 0.0–0.4 and plot visible response time. This
parameter does not affect the interactive model, which does
not submit disclosed tasks. We notice a greater dependence
on this parameter with the batch model compared to the
batchactive model because batchactive avoids speculative
tasks when requested work remains.

Now we show large task sets reflecting users searching high-
dimensional spaces. We varied the upper bound of the tasks
per task set uniform distribution from 1–1024 in multiples
of 2. We also set the task set change probability to 0.1 so
that task sets are not canceled as often.

Visible slowdown results are in Figure 12. When all task sets
have only one task, then all models provide the same visi-
ble slowdown. Task sets as small as several tasks — easily
realizable by users performing exploratory searches — pro-
vide good improvement over interactive. As the task set size
increases, both batch and batchactive provide visible slow-
downs less than one. This occurs because there is now user
think time that can be leveraged to run disclosed tasks. Soon
batch performance becomes unusable as its single queue is
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Figure 11: The effect of the task set change prob-
ability on visible response time. The probability is
a uniform random variable and shown on the x-axis
is the average of its lower and upper bounds. The
interactive model is unaffected, while the batchac-
tive model is affected less than the batch model and
outperforms both.

overwhelmed with speculative tasks. The interactive model
is immune to the task set size because each user will have at
most one task (a requested task) in the system. The batchac-
tive model is always best compared to the other models.
Compared to itself, its performance gets worse as the task
set size increases because there is more competition among
speculative tasks, some of which run but are never needed.

Figure 13 shows how service time affects visible response
time. As service time increases, the load increases and the
performance of interactive and batchactive converge. As a
limiting case, when a server is always running requested
work, the batchactive model does not help performance.

Think time, the remaining parameter, works inversely to ser-
vice time: the more think time, the more opportunity for the
batchactive scheduler to reduce visible response time. Once
the ratio of think time to service time is sufficiently high,
which results in a low load, batchactive performs no better
than batch while continuing to outperform interactive. We
omit results to save space.

4.3 Simulation details
Warmup period The queue length near the start of the sim-
ulation is not representative of the behavior of the system
over steady-state. At start, all users begin submitting tasks
and only after task results are received do users enter their
think times. We avoid including warmup time in our re-
ported metrics by conservatively dropping all data in the
first two simulated days. Since each run simulates 16 days,
our metrics reflect two weeks at steady-state.

Confidence intervals Our parameter studies show that the
parameters have a significant effect on scheduling metrics
and that batchactive scheduling performs best nearly all of
the time (Section 4.2). To reinforce these observations, we
took confidence intervals of mean visible response time for a
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Figure 12: The effect of the tasks per task set on vis-
ible slowdown. (This graph is log-linear.) The tasks
per task set is a uniform random variable and shown
on the x-axis is the average of its lower and upper
bounds. Batchactive always wins. Batch is unusable
at a task set size with an upper bound of 100. (At
1024, its visible slowdown is over 170.)
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Figure 13: The effect of service time on visible re-
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tunity for batchactive to improve performance.
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Figure 14: Confidence intervals for a small run sug-
gest that our results are significant. Plotted is the
mean visible response time across ten service times.
The 95% confidence intervals were from 40 runs us-
ing different random seeds at each service time.

small interactive srpt run in which service time was varied
in six minute increments while other parameters were held
constant (Figure 14). Each reported visible response time
mean and confidence interval was the result of 40 simulations
that were started with different random seeds. Out of ten
selections of service times, only one pair of 95% confidence
intervals overlapped, and all confidence intervals were less
than 5% of their respective mean visible response times. A
normal probability plot (not shown) of the response times
for each service time was sufficiently Gaussian to suggest
that the confidence intervals are reliable.

Implementation Our simulator is in C and has modules that
simulate user, task, and server behavior. One Perl script
executes large numbers of this program to explore the simu-
lation parameter space and stores its results into a MySQL
relational database. Other scripts query this database, an-
alyze the results in conjunction with matlab, and process
them for visualization. Roughly 50,000 runs were performed
on a set of shared 2.4 GHz Pentium iv machines each with
512 MB of memory. Most took tens of seconds and less than
100 MB of memory to simulate 16 days of virtual time while
some with parameters causing many more tasks to be cre-
ated took roughly ten minutes to run.6

5. RELATED WORK
Speculation is a pervasive concept found at the level of I/O
requests, program blocks, and instructions across all areas of
computing including architecture, languages, and systems.
We apply speculation to tasks using the processor resource.
We find great opportunity here for our application domains:
there are negligible costs to storing speculative results and
no need to isolate or rollback such results if not needed.
Here, we focus on the closest related systems work.

Bubenik and Zwaenepoel modeled a cluster of users engaged

6We desired a batchactive system while exploring our sim-
ulator’s large parameter space. The service and think times
of this research were ideal for batchactive scheduling.

in software development using a modified make tool [6]. At
each save of a source code file, their system speculatively
runs the compiler. This is possible because build rules are en-
coded in the Makefile. Their work isolates speculative com-
pilations from the rest of the system. This is not needed in
our system which stores speculative results until requested.
Their simulator models only one task (rebuild) pending per
user. Our user model is broader, encompassing users who
operate interactively or who submit long batches of specu-
lative work for the kinds of important and pervasive param-
eter studies described in Section 1. Beyond their reported
metrics, we also study resource cost, throughput, and slow-
down.

In storage, the tip system showed how performance increases
if the application discloses storage reads in advance of when
data is needed [24]. Their work addressed storage and mem-
ory questions such as how to balance cache space between
prefetches and lru caches.

In networking, the bandwidth-delay product of current and
future grids have spurred speculative approaches to speeding
up tightly-coupled applications [9, 19]. Such work examines
how to rollback unneeded computation and throttle work
so that speculation does not overly consume resources. In
contrast, we speculate among multiple independent (non-
communicating) tasks. Further, we study how to schedule
among task sets from multiple users.

Some work discriminates between speculative and requested
network transmissions. Padmanabhan et al. showed a trade-
off in visible response time and fractional increase in network
usage when varying the depth of their web prefetcher [23].
In Steere et al.’s system, people manually construct sets of
web prefetch candidates and the browser prefetches candi-
dates simultaneously until all are fetched, or until the person
initiates new activity [28].

In databases, Polyzotis et al.’s speculator runs queries dur-
ing the think time when one constructs complex queries. [26]

Some speculative approaches require a user or user agent
to disclose speculative work. Others automatically generate
speculative work. In our work, Steere’s system, and the tip

system, speculative work is generated by the user. In the sys-
tems of Padmanabhan et al., Polyzotis et al., and Bubenik
and Zwaenepoel, the system queues speculative tasks in ad-
dition to scheduling them. An extension to tip by Chang
et al. introduces automatic I/O disclosure generation [8].
Other work transforms a single executable into speculative
pieces, yet programmer annotations are needed, and intra-
task speculation has not been considered [7, 11]. It does
not seem possible to automatically speculate computation
in general without domain-specific knowledge or user agents
tailored to specific applications.

6. CONCLUSION
Ideally, a grid scheduler would run speculative tasks while
users were analyzing completed tasks, minimizing the users’
waiting time. The catch is that speculative tasks will take
contended resources from users who are waiting for requested
tasks unless the two types of tasks can be discriminated.
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The solution we promote exploits the inherent speculation in
application-level search: users disclose speculative task sets,
request results as needed, and cancel unfinished tasks if early
results suggest no need to continue. We observe that not all
tasks are equal — only tasks blocking users matter — lead-
ing us to introduce the visible response time metric which
measures the time between a task being requested and ex-
ecuted, independent of when it was speculatively disclosed.
Our batchactive scheduler segregates requested and disclosed
tasks into two queues, giving priority to the requested queue,
toward minimizing mean visible response time.

We simulated a variety of user and task behavior and found
that for several important metrics our batchactive model
nearly always does better than conventional models where
tasks are requested one at a time (interactively) or requested
in batches without specifying which are speculative. We have
found that visible response time is improved by about 50%
on average under a batchactive scheduler, and is at least
two times better for 20% of our simulations. These results
hold for both size-based (srpt) and non-size-based (fcfs)
policies. Compared to a batch scheduler, for about 40% of
the runs, the average user pays for a fourth of the resources.

Batchactive scheduling is adaptive: it is at least as good
as interactive or batch as load varies between extremes,
and in the middle ranges it is better than both (Figures 7
and 8). Many studies show that idle processing time is abun-
dant [22, 4, 1]. Anecdotally, some report that during ‘crunch
times,’ resources are saturated [13, 21]. While this might
occasionally occur now, we believe that once users discrimi-
nate between speculative and demand work, this will be even
rarer: resources will not be saturated with demand work and
batchactive scheduling will provide the benefits shown even
during peak usage.

Our cost model charges for only requested tasks to encour-
age deep speculative disclosure, which enables the scheduler
to best reduce visible response time. Certainly it is true that
not charging for speculative work means that some comput-
ing resources are consumed without being billed. However,
our results suggest that disclosed speculation benefits the
overall effectiveness of the computing resource. When the
system approaches saturation, so that all schemes charge
the same amount, the unexposed speculation in traditional
batch scheduling delivers fewer results per hour (Figures 9
and 10). And when the system is not saturated, so that
resources are going idle anyway, exposed speculation deliv-
ers significantly reduced visible response time relative to no
speculation at all, so charging only for requested tasks de-
livers better use of unutilized cycles (Figures 7 and 10).
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