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Abstract

With a large percentage of total system cost going to system administra-
tion tasks, ease of system management remains a difficult and important
goal. As a step towards that goal, this dissertation presents a success story
on building systems that are self-predicting. Self-predicting systems contin-
uously monitor themselves and provide quantitative answers to What...if
questions about hypothetical workload or resource changes. Self-prediction
has the potential to simplify administrators’ decision making, such as acqui-
sition planning and performance tuning, by reducing the detailed workload
and internal system knowledge required.

Self-prediction has as the primary building block mathematical models,
that, once built into the system, analyze past, and predict future behavior.
Because of the traditional disconnect between systems researchers and the-
oretical researchers, however, there are fundamental difficulties in enabling
existing mathematical models to make meaningful predictions in real sys-
tems. In part, this dissertation serves as a bridge between research in theory
(e.g., queuing theory and statistical theory) and research in systems (e.g.,
database and storage systems). It identifies ways to build systems to sup-
port use of mathematical models and addresses fundamental show-stoppers
that keep models from being useful in practice. For example, we explore
many opportunities to deeply understand workload-system interactions by
having models be first-class system components, rather than developing and
deploying them separately from the system, as is traditionally done. As
another example, lack of good measurement information in a distributed

system can be a show-stopper for models based on queuing analysis. This
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dissertation introduces a measurement framework that replaces performance
counters with end-to-end activity tracing. End-to-end tracing allows contex-
tual information to be propagated with requests so that queuing models can
attribute resource demands to the correct workloads. In addition, this disser-
tation presents a first step towards a robust, hybrid mathematical modeling
framework, based on models that reflect domain expertise and models that
guide model designers to discover new, unforeseen system behavior once the
system is deployed. Such robust models could continuously evaluate their ac-
curacy and adjust their predictions accordingly. Self-evaluation can enable
confidence values to be provided with predictions, including identification of
situations where no trustworthy predictions can be produced.

Through an analysis of positive and negative lessons learned, in a stor-
age system that we designed from scratch as well as in a legacy commercial
database system, this dissertation makes the case that systems can be built
to accommodate mathematical models efficiently, but cautions that mathe-
matical models are not a panacea. Models are as good as the system is; to
make predictions more meaningful, systems should be built so that they are

inherently more predictable to start with.
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1 Introduction

This chapter motivates the need for building easy-to-manage and predictable

systems and overviews the contributions of this dissertation.

1.1 System management and predictability

Much successful research and engineering has gone and still goes into build-
ing high-performance, scalable systems. As users continue to expect more
from such systems, there is tension between system complexity and ease
of management. Good, reliable systems, in the traditional sense, are met
with skepticism and complaints from customers, because it is difficult to
find skilled administrators to tune them [Lohman, 2007].

Ease of management has been recognized as a crucial next step in build-
ing robust systems, as can be seen by the call-for-arms from different re-
search groups [Chaudhuri and Weikum, 2000; Ganger et al., 2003; Inter-
national Business Machines Corp., 2001], creation of specialized workshops
and conferences [ICAC, 2004; SAACS, 2005] and tracks on management in
well-established systems conferences [OSDI, 2004; Usenix, 2006].

One major subset of management tasks involves performance tuning
decisions, including decisions on trading off performance and other met-
rics such as availability, reliability, capacity and power consumption. Per-
formance tuning decisions involve acquisitions, component configurations,
assignment of datasets/workloads to components, and performance prob-
lem resolution. For example, in database systems, tuning problems include
creation of indexes to speed up data lookup, layout of data on physical

machines, selection of appropriate buffer cache parameters, etc. In storage
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systems, tuning problems include selecting the right data distribution and
load balancing. In operating systems, tuning problems include determining
when to upgrade resources (CPU/RAM/disks), how to best partition phys-
ical memory among virtual machines, determining which software models
may be performance bottlenecks, etc.

For many of these management tasks, the most complex aspect is
understanding the performance consequences of any given option. Non-
performance issues, related to other metrics such as availability, capacity
and power consumption, are also involved. But, these usually require much
less understanding of the inner workings of system components and ap-
plications. Performance tuning consequences usually depend on workload
specifics (e.g., the interleaved I/O patterns of the applications) and system
internal algorithms.

Traditionally, administrators use two tools when making such decisions:
their expertise and system over-provisioning [Weikum et al., 2002]. Most
administrators work with a collection of rules-of-thumb learned and devel-
oped over their years of experience. Combined with whatever understand-
ing of application and system specifics are available to them, they apply
these rules-of-thumb to planning challenges. For example, one administrator
might apply the rule “if average queueing delays are greater than 10 ms, then
spread data/work over more disks” to resolve a perceived performance prob-
lem. Since human-utilized rules-of-thumb are rarely precise and have trouble
scaling, over-provisioning is used to reduce the need for detailed decisions.
For example, one common historical rule-of-thumb calls for ensuring that
disk utilization stays below 30% (i.e., always have three times the necessary
disk throughput available). Both tools are expensive, expertise because it
requires specialization and over-provisioning because it wastes power, hard-

ware and human®

resources. Further, sufficient expertise becomes increas-
ingly difficult to achieve as systems and applications grow in complexity.
This thesis investigates how systems can provide better assistance to ad-
ministrators. I believe that systems should be self-predicting: able to provide
quantitative answers to administrators’ high-level questions involved with

!The additional hardware must be configured and maintained.
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their planning. With appropriate built-in monitoring and modeling tools,
this dissertation shows that systems can answer What...if questions about
potential changes. For example, “What would be the performance of work-
load X if its data were moved from device A to device B?”. With answers
to such What...if questions, administrators could make informed decisions
with much less expertise. Further, iterating over What...if questions (e.g.,
one for each possible option) enables a search-based approach to automat-
ing, or at least guiding, planning and tuning decisions. That approach has
the potential to form a major building block for internal system optimizers.

Self-prediction has as its primary building block mathematical models
that, once built into the system, analyze past behavior and predict future
behavior. Because of the traditional disconnect between systems researchers
and theoretical researchers, however, there are fundamental difficulties in
enabling existing mathematical models to make meaningful predictions in
real systems. In part, this dissertation serves as a bridge between research in
theory (e.g., queuing theory and statistical theory) and research in systems
(e.g., database and storage systems). It identifies ways to build systems to
support use of mathematical models and addresses broad show-stoppers on
the way to making them practical.

First, mathematical models need to be built inside the system they
model, to better understand workload-system interactions that are hard to
observe from outside the system. Second, mathematical models need good
measurements from the system, with appropriate context, at the right ab-
straction levels. Aggregate performance counters, the measurement mecha-
nism of most systems today, are fundamentally inadequate in shared, dis-
tributed systems. They are inadequate in shared systems because they do
not expose per-workload information. In distributed settings, it is difficult
to correlate or find causality links between them. For example, contextual
information (e.g., “which originating SQL query led to high I/O load on
the storage-nodes?”) is impossible to obtain definitively. Without context,
models are limited to making local optimizations. For example, a model that
looks at statistics obtained at a single disk may determine that there is op-

portunity to reduce its requests’ response times. However, a model that has
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more sophisticated statistics at all system levels may determine that only
1% of the requests go to that disk and focus should be placed on reduc-
ing network communication times instead. This thesis promotes end-to-end
tracing as a fundamental measurement tool in any system. End-to-end trac-
ing replaces existing counters with sequences of “activity records” that mark
steps reached in the processing of any given request. Contextual information
is carefully propagated with each request as it flows in the system.

Third, mathematical models need to be robust, or else they could become
obsolete in the field. Models must be able to cope with component upgrades,
human misconfigurations, and workload-system interactions that were not
anticipated. This thesis presents first evidence that self-evolving models may
be achievable. Such models continuously evaluate their accuracy and adjust
their predictions accordingly. Self-evaluation also makes it possible to pro-
vide confidence values with predictions, including identification of situations
where no trustworthy predictions can be produced.

Another show-stopper, separability of analysis, is indirectly addressed in
this thesis. Clients using a system must be sufficiently insulated from one
another so that their requests do not interfere in uncontrollable ways. In-
terference comes in terms of network, buffer cache and disk contention, and
if not controlled properly it can lead to inherently ad hoc system behav-
ior. In the face of such behavior, the performance of each workload can be
highly dependent on the characteristics of the other workloads in the sys-
tem (the models would have to check all possible ways the workloads could
interfere, and/or make a worst-case interference prediction). Checking all
dependencies leads to prohibitively expensive (and thus not scalable) pre-
dictions. Making worst-case predictions is not satisfactory in systems where
worst-case and best-case predictions are orders of magnitude different (as is
the case for storage systems). This dissertation shows that simple models
can be a useful tool to ensure performance insulation. In turn, performance
insulation ensures that models make predictions efficiently while still being
simple enough for the system designers and programmers to construct.

The mathematical tools explored in this thesis come from queuing theory

and statistical theory (“statistical theory” and “machine learning” are used
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interchangeably). This thesis shows how fundamental laws in queuing theory,
known as operational laws, are a good starting point for modeling system
components we are designing from scratch (thus, designers know the internal
system “queues”). Statistical theory, on the other hand, has proven useful
for further refining the queuing models in the field, and also to model off-
the-shelf, legacy components whose internals are unknown.

These mathematical tools, once built into the system, allow the system
components to expose What...if interfaces about their behavior. In a multi-
tiered system What...if questions can be layered, with high-level What...if
models combining the answers of multiple lower-level What...if models. For
example, “What would be the performance of client A’s workload if we add
client B’s workload onto the storage-nodes it is using?” needs answers to
questions about how the cache hit rate, disk workload and network uti-
lization would change. These latter resource-specific mathematical tools are
based on a spectrum of approaches, from direct measurements to analytical

formulae to simulation.

1.2 Thesis statement and contributions

The thesis of this work is:

Mathematical models can be integrated into systems and used
to guide decisions related to a broad range of performance tuning
problems.

My work and results support this thesis statement as follows:

(1) I show that a new measurement framework, based on end-to-end trac-
ing, enables mathematical models to make predictions in shared, dis-
tributed systems. Such predictions were difficult, if not impossible to
make before. I have incorporated this measurement framework (called

Stardust) into a cluster-based storage system (called Ursa Minor).

(2) I show how combining traditional queuing models with machine learn-
ing models leads to a robust modeling infrastructure that was not

achievable when these models were used in isolation. I have incorpo-



6 . Enabling what-if explorations in systems

rated a prototype of this modeling infrastructure (called Observer) into
Ursa Minor. The queuing models make good predictions in common
regions of system operation. The machine learning models help iden-
tify workload-system interactions that were not anticipated and guides
humans towards localizing sources of discrepancy. Observer provides
confidence values with predictions, so that higher level policy layers

can better judge if predictions are trustworthy.

(3) I demonstrate that a broad range of performance tuning decisions can
be better guided using built-in mathematical models. Such decisions

include data encoding, placement and system upgrades.

1.3 Example What. . . if explorations

This section provides illustrative interactions with Observer, the part of
the system that is responsible for answering high-level What...if questions,
posed by either external administrators or internal system tuning modules.
The first and third examples are treated and evaluated in later chapters in
this dissertation. The second example fits the broader claims of this thesis,
but it is not evaluated in this dissertation. Chapter 2 will develop a more
formal taxonomy of problems that this thesis does and does not address.

Should I migrate the data?: Whenever new storage-nodes are pur-
chased, a decision needs to be made as to what data should be migrated
to them. Ideally, the storage system itself would provide answers to ques-
tions of the form “What would be the performance of workload X if its data
is migrated to the new storage-nodes?” The process of deciding what data
should be migrated could then be reduced to searching for the best answer
to a series of such What...if questions.

To answer such a question, Observer would first determine the inher-
ent demand that workload X places on relevant system resources (network,
buffer cache and disk in this case). This could be done automatically, using a
combination of techniques such as direct measurements, analytical formulae
and simulation. For example, using an analytical formula, Observer could

determine that workload X needs 1 ms of network time to transmit a single
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block to the storage nodes. Through simulation it could determine a func-
tion between allocated buffer cache size and hit rate and a distribution of
disk service times for each request that misses in cache. Stardust, the mea-
surement framework, would collect the traces at the buffer cache and disk
levels in order to enable such simulation.

Observer would then translate the demands of workload X from the
current storage-nodes to the new storage-nodes. For example, if the new
storage-nodes only have 512 MB of buffer cache, a buffer cache simulator
could calculate the cache miss rate that workload X would experience when
moving to the new storage-nodes. A disk simulator could calculate the ser-
vice time of the requests that miss in the hypothetical 512 MB cache. The
new storage-nodes might have other workloads sharing them, and Stardust
would collect information on how loaded each resource is. The information
on the existing load would then be used to scale down the predicted perfor-
mance that workload X would see on the new storage-nodes.

Finally, Observer would determine the new bottleneck resource that
would result from the data migration. The bottleneck resource is the one
where requests from workload X would spend most of their time. With the
new configuration above, for example, workload X’s bottleneck might shift
from being the network to being the disk. Using bottleneck analysis, Ob-
server could then compute and report that workload X would get at most a
10 MB/s throughput and average response time of 4 ms.

Should I turn off machines to save power?: An administrator of a
data center may consider turning off a subset of the servers over the weekend,
to save power. Ideally, the system itself would provide answers to questions
of the form “What would be the performance of each workload if servers
1-54 are turned off ?” to assist with the decision.

Observer would first determine which workloads make use of those
servers through the traces collected by Stardust. Some workloads might be
replicated on other servers and could continue to run even if some replicas
go offline. For those workloads, Observer needs to calculate the new per-
formance that results from taking some resources offline. Other workloads

might not be replicated, and hence turning the servers off would mean that
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their performance would be zero.

Observer would then determine how requests would flow in the system if
some workload replicas were to be turned off. For example, if a workload’s
data was originally replicated 3 times, Observer would expect that on a
write, 3 storage-nodes would be contacted. With one of the replicas going
offline, only 2 storage nodes would be contacted on each write. That means
less load on the network. But, less parallelism would be achieved during
reads. Using operational laws from queuing analysis, Observer would esti-
mate the new throughput and response times of the workloads and report
them to the administrator. The administrator might check the service-level
agreement it has with the cluster’s clients (e.g., are they willing to tolerate
a 20% performance drop to save 10% on their power bill?) and then decide
whether turning off machines is safe.

An unexpected bottleneck: A bank may decide to encrypt customer
data before sending it to storage-nodes. Ideally, the system itself would pro-
vide answers to questions of the form “What would be the performance of
workload X if its data is encrypted?” Encryption places a large demand on
the CPU resource of the client machine, and Observer needs to predict that
demand. To do so, Observer poses the low-level Mﬁf question “What
would be the demand placed on the CPU if data was encrypted?” to the
component responsible for encryption. That component encrypts and de-
crypts a block and reports that it takes 1 ms to encrypt/decrypt a single
16 KB block of data.

Imagine a situation in which a certain workload gets less than half of its
predicted throughput in the field. A (traditional) manual inspection of the
resources consumed might reveal that the model was significantly under-
predicting the amount of CPU consumed and thus did not flag the CPU
as a potential bottleneck. Through trial and error, it could be later dis-
covered that this was because the workload used small block sizes (512 B),
and the kernel network stack consumed significant amounts of CPU per-
block. Hence, it was impossible to keep the network pipeline full, since the
CPU would bottleneck first. The initial CPU model might be built using

commonly-used block sizes of 8-16 KB for which the per-block cost is amor-
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tized by the per-byte cost. The model designers might not have foreseen
the different behavior from small block sizes (it is unreasonable to expect
designers to foresee all possible behavior).

A solution to such problems promoted in this dissertation is self-evolving,
robust models. Using self-evolving models could help in two ways. First, the
models themselves would localize the problem by self-checking during usage.
All resource models (CPU, network, cache, disks) would self-check and the
CPU one would be found to be the culprit (e.g., it may have predicted each
block needed 1ms of CPU time; in reality it was taking 2-3ms). Second,
a statistical model would correlate the attribute “block size” with the new
behavior of the CPU and would eventually adjust the initial model to handle
the unexpected low performance behavior. This dissertation examines the
role of models in localizing problems and discovering new correlations, and
role of humans in finding the actual root-cause of the problem and building

systems to expose more measurements to the models.

1.4 Thesis map and bibliographical notes

This dissertation consists of 7 chapters. Chapter 2 presents broad back-
ground and related work. It presents a taxonomy of common management
problems and focuses on performance self-prediction as a core technology
towards self-managing systems. The state-of-art in addressing most of these
management problems uses rules-of-thumb and over-provisioning. This chap-
ter describes why that is the case and explains the key challenges humans
face when they attempt to make predictions in distributed, shared systems.

Chapter 3 presents a common mathematical modeling infrastructure
that, once built into a system, could be used to make performance predic-
tions. A taxonomy of possible solutions is presented, based on how “black-
box” the system under consideration is assumed to be (i.e., based on how
much knowledge designers have of the system: are they building it from
scratch or is it a legacy component?). Show-stoppers that prevent this mod-

eling infrastructure from working in practice are discussed.
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Chapter 4 describes the solution to a main show-stopper: measuring
without context. That chapter is self-contained and includes relevant re-
lated work. The solution makes use of built-in, fine-grained, per-request,
per-resource statistics causally linked in a distributed system. This monitor-
ing layer exports querying interfaces to the models presented in Chapter 3
and enables them to produce informed predictions. This chapter evaluates
the effort that goes into building such a monitoring infrastructure and its
overhead on system resources and foreground performance. The main mes-
sage of this chapter is that monitoring should be ON at all times and can
be efficient.

Chapter 5 evaluates the efficacy of the Observer infrastructure in mak-
ing predictions. Common case studies, drawn from the Ursa Minor storage
system testbed [Abd-El-Malek et al., 2005], are used to illustrate how the
infrastructure works and its expected accuracy. Ursa Minor is an excellent
testbed since it has many performance tuning knobs, and it would be exceed-
ingly difficult for an administrator to fully understand the consequences of
using them. That chapter shows how the system itself can answer What...if
questions relating to data encoding, data placement, and system upgrades.
It also evaluates the need for separability of analysis and how models help
achieve that.

Chapter 6 addresses another show-stopper: handling unforeseen behav-
ior. The prototypes described use observation-based machine learning tech-
niques to augment the expectation-based models described in Chapter 3.
Observation-based models attempt to find new, unforeseen correlations be-
tween system-workload attributes and eventual performance. Strongly cor-
related attributes are eventually incorporated into the expectation-based
models (after verification from the designer/programmer.)

Chapter 7 summarizes the contributions of this thesis. Appendix A dis-
cusses lessons learned when a legacy system is made self-predicting and
describes the steps involved.

Parts of this dissertation have been previously published. A white-
paper that made the case for building self-predicting systems appeared
in [Thereska et al., 2005]. Chapter 4 appeared in [Thereska et al., 2006].
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Most of the ideas presented in Chapter 3 and Chapter 5 were published
in [Abd-El-Malek et al., 2006; Thereska et al., 2006]. A white-paper making
the case for building robust self-evolving models (discussed in Chapter 6)
appeared in [Thereska et al., 2007]. Appendix A contains ideas first pub-
lished in [Narayanan et al., 2005, 2006]. Finally, the architecture of Ursa
Minor, the testbed that is used for evaluation purposes throughout this case
study, is described in [Abd-El-Malek et al., 2005].
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2 Background

This chapter provides background and discusses broad related work on man-

agement tasks and mathematical modeling of computer systems.

2.1 Management tasks and current approaches

As systems become more complex, human administration becomes more ex-
pensive. Current methods to scale out systems often sacrifice predictability
and ease of management for traditional “success” metrics such as perfor-
mance and availability. However, with total system cost being a better met-
ric [Moore, 2005], it becomes clear that administrative and management
costs are non-negligible. For example, an organization purchasing a large-
scale database or storage system today will spend more on administration
and management than for actual software and hardware combined [Allen,
2001; Gray, 2003; Moore, 2005].

“Management” is a catch-all term for a large set of tasks, making it
a vague target for improvement. To clarify the targets of this thesis, this
section places the problems we target in the context of other system man-
agement tasks, shown in Table 2.1. Our compilation of this list is influenced
by systems on which this dissertation has concrete evidence from, namely
storage and database systems. I believe these tasks are also representative
of operating systems and networks systems (storage and database systems
sometimes make use of these latter two). There are other system types, such
as sensor networks and real time embedded systems for which this list may

be different, however.

13
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Task Sub-tasks Description
Protection  Data corruption User mistakes or software problems
Small-scale failures E.g., disk head failure
Large-scale failures E.g., building collapse
Archiving For short- and long-term
Tuning User complaints Root-cause analysis of user complaints
Index creation Speedup by indexing
Memory allocation How to partition RAM
CPU allocation How to partition work among CPUs
Data encoding Should one use replication or RAID
Data placement Where should I place the data?
Dewice configuration Configuring purchased devices
Planning Initial Determining initial purchases
capacity planning
Continuous Planning for system growth
capacity planning
Software updates Updating the software of the system
Monitoring System inventory Keeping track of resources
Statistics Collecting, organizing and accessing var-
management ious system statistics
Repair Restoring data E.g., after failure restore from backup
Replacing E.g., failed disks must be replaced even-
failed components tually
Security Investigating Going over access logs
NLTUSIons

Preventing breaches

Applying patches

Table 2.1. The focus of this thesis in the context of system manage-
ment tasks. The focus of our work has been on the entries in bold.

Although all of the management tasks listed are time consuming, several
of them, particularly in the categories of performance tuning, capacity plan-
ning and system monitoring, are especially hard and are the focus of this
thesis. These tasks require a deep level of understanding of the interactions
between a workload and the system (software and hardware). Administra-
tors often find it difficult to keep track of the capabilities of hundreds of
system resources, their internal algorithms, and the characteristics of the
many workloads supported. Most modern distributed systems do little more

than export hundreds of performance counters to the administrator; she still
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needs to filter the irrelevant ones, analyze the relevant ones, and understand
the consequences of a tuning decision.

In practice, administrators use rules-of-thumb and system over-
provisioning (“KIWI” or kill-it-with-iron) to address tuning and planning
tasks. Rules-of-thumb may work well in some cases, usually in small-scale
systems [Weikum et al., 2002], but fall short in others, especially in hetero-
geneous distributed systems, where resources may be shared among many
workloads. This is because rules-of-thumb are general (hence, rarely precise
for the system and workloads at hand); furthermore, it is sometimes hard
to resolve conflicts among rules-of-thumb [Salmon et al., 2003]. Because of
these shortcomings, the KIWI method is used, as well, to reduce the need
for precision.

Both rules-of-thumb and over-provisioning require the administrator to
have specialized knowledge of the system and workload characteristics to
know which rules-of-thumb to apply and what parts of the system to over-
provision and how. Blind over-provisioning can be prohibitively expensive,
adding not only to the acquisition costs but also to the administrative and
energy costs (power and cooling of the system). The goal of this thesis
is to have the system itself provide quantitative answers to What...if ques-
tions that explore tradeoffs among (over-)provisioning, performance and pre-

dictability, all with minimal administrator involvement.

2.1.1 Why are the problems challenging?

It is challenging for human administrators to predict the performance conse-
quences of potential changes. Doing so requires them to understand system
internals (e.g., buffer cache replacement policies) and keep track of the work-
loads each resource is seeing (e.g., buffer cache records on each storage-node).
The system itself is in a better position to keep track of this information.

However, there are challenges that need to be overcome for that to happen:

— Lack of formality in system design. Without a formal notion of ex-
pected behavior built into the system, the system cannot answer

What...if questions on hypothetical changes to that behavior. A for-
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mal notion of behavior would include a notion of structural behavior
(i.e., how are requests expected to flow through the system?) and per-
formance behavior (e.g., how long should it take for a request to be
serviced from a generic disk?). It is arguably more difficult today to
attempt to put a structure on system behavior due to added system
complexity. Because of tight deadlines, system designers do not codify
any notion of expected behavior into the systems they build, leaving

it to administrators to guess the internals of the systems they deploy.

Inadequate measurement infrastructures. Surprisingly, until recently,
there have not been any good performance measurement tools for
shared, distributed infrastructures. Good tools are needed to under-
stand how each workload interacts with a resource. The main difficulty
has been managing statistics for requests that may propagate through
different service centers in a distributed system. By the time a request
reaches service center N, all the context (e.g., where did that request

originate and how does it relate to the rest of the workload?) is lost.

Fragile tools that lose touch with reality. Many system administrators
and designers we have talked to know well that systems do not always
work as expected; hence, there is skepticism about using What...if tools
to automate or guide administrative decisions. Any serious solution has
to deal with rather harsh reality checks. First, models will have lim-
ited regions of operation (the designer cannot be realistically expected
to model all possible workloads and interactions with the service cen-
ter). These models will need to identify when they do and don’t work
and they also need to evolve over time, ideally with minimal human
involvement. Second, the system may be misconfigured to start with
(often by humans). Models are of more use if they help in localizing
misconfiguration problems, but they must indicate their lack of fidelity

in such cases.
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Figure 2.1. Spectrum of system models. System models range from
expectation-based to observation-based, depending on how black-box the
system is considered to be.

2.2 Toolbox of mathematical models and how they might help

System models allow one to reason about the behavior of the system while
abstracting away details. Models take as input a vector of workload and sys-
tem characteristics and output the expected behavior (e.g., performance) of
the modeled component. Models could make predictions to answer What...if
questions when it is prohibitively expensive to change the system to make
real assessments regarding these same questions. The spectrum of modeling
approaches, as shown in Figure 2.1, is bounded by purely expectation-based
and observation-based models. Neither alone is adequate for robust model-
ing, but this dissertation shows that each has a role to play.

Expectation-based models: Expectation-based models use designer
and programmer knowledge about how their systems behave; thus, the sys-
tem is viewed as “white-box”. The models have a built-in, hardwired defini-
tion of “normalcy” (e.g., see [He et al., 2005; Perl and Weihl, 1993; Reynolds
et al., 2006; Shen et al., 2005; Stewart and Shen, 2005; Uysal et al., 2001]).
Indeed, highly accurate models have been built for disk arrays, network
installations, cache behavior, and CPU behavior.

Designers can model both structural and performance properties of a

system and workload. For example, a structural expectation in a cluster-
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based storage system might be that, when RAID-5 encoding is used, five
storage-nodes should be contacted on a large read. A CPU model might
indicate that storage decryption of the read data should use 0.02ms for
16 KB blocks, and a network model that it should take 1.5 ms to send the
data from the five storage-nodes to the client over a 100 Mbps network. A
cache model could predict whether the requests will miss in cache, a disk
model could predict their service time, and so on.

A myriad of methods are available for making performance predictions.
For example, a CPU model may be based on direct measurements (i.e., it
decrypts a block and reports on the time it takes). A network model may
be an analytical formula that relates the request size and network speed to
the time it takes to transmit the request. The cache and disk models could
be based on simulation and could replay previously collected traces with a
hypothetical cache size and disk type. Each of these models shares the prop-
erty that the algorithms of the underlying modeled resource are well known
(i.e., the model for the cache manager knows the replacement algorithm for
the cache). This is the white-box method of modeling components.

Observation-based models: Observation-based models do not make
a priori assumptions on the behavior of the system. Instead, they infer
“normalcy” by observing the workload-system interaction space. As such,
these models usually rely on statistical techniques (e.g., see [Aguilera et al.,
2003; Barham et al., 2004; Chen et al., 2004; Cohen et al., 2004; Dinda, 2006;
He et al., 2005; Mesnier et al., 2007; Wang et al., 2004]). These models
are often used when components of the system are “black-box” (i.e., no
knowledge is assumed about their internals).

For example, Mesnier et al. [2007] and Wang et al. [2004] built storage-
node models based on observing historical behavior and correlating workload
characteristics/attributes, such as inter-arrival time, request locality, etc.,
with storage system performance. The measurements of these attributes
was done at the entrance and exit points of the black-box storage-node.

Observation-based models are an option when pre-existing models are
not available. However, they require a large set of training data (i.e., pre-

vious observations), an issue that can be a show-stopper even for simple
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modeling tasks. In particular, observation-based models predict poorly the
effects of workload interference in shared systems. Consider a data center,
for example. The performance of any workload is strongly correlated with
the load placed on the system’s resources (e.g., CPU, network, cache, disk)
by other interfering workloads. With the “load” attribute taking values from
0-100% for each of the resources, the observation-based model would need
to have seen hundreds of distinct workload mixes to make a reasonable per-
formance prediction.

Many machine learning models are available to implement observation-
based models, including neural networks, classification and decision trees,
multi-dimensional regression tools, etc. Each of these tools shares the prop-
erty that algorithms of the underlying modeled resource are not known;
however, observations (also known as training data) are usually available,
and the tools make an educated guess at how the black-box component
operates.

A hybrid approach to modeling: Expectation-based models are the
right starting point for future system designers, and we start by describing
their design in Chapter 3. However, the issue remains on how to evolve these
models over time with minimal burden to humans. Models become obsolete
if they do not evolve as the system evolves. Indeed, we observed this to be the
case with performance models in systems that we originally considered to be
white-box, since we designed and built them from scratch. In addition, we
found black-box behavior that resulted from either 1) unforeseen workload
characteristics or system configuration characteristics, 2) unforeseen inter-
action among white-box components or 3) administrator misconfiguration
of the system.

We have come to believe that a robust solution will need to augment
expectation-based approaches with observation-based approaches. Known
expectations should be continuously observed and verified. Over time, high-
confidence suggestions from the observation-based models should be incor-
porated into the expectation-based models. This thesis explores this hybrid
modeling technique.

There is little previous work done on evaluating how hybrid modeling
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approaches can keep models from becoming obsolete. Standard machine
learning books (e.g., see chapter 12 of [Mitchell, 1997]) recognize that there
could be positive consequences to augmenting learning methods with domain
knowledge. A recent paper in network modeling evaluates the pros and cons
of white-box and black-box techniques and proposes an investigation into
hybrid models as future work [He et al., 2005]. Tesauro et al. [2006] inves-
tigates how machine learning tools can be used when there are transient
changes in the system (e.g., machines added or removed) that cannot be
easily modeled using expectation-based models that use queuing analysis.
This dissertation provides a first view of the challenges and opportunities
of hybrid models through case studies that touch many resource types (e.g.,
CPU, network, buffer cache and disks).

2.2.1 Queuing analysis as backbone

Irrespective of whether individual models are expectation-based or
observation-based (or a hybrid), one needs to have a framework to reason
about the effects on performance of a hypothetical change when combining
multiple models. In general, queuing analysis is the building block of such
a framework. In queuing analysis, the system is represented as a network
of queues. Each queue represents a resource, and customers or workloads
consume these resources. Some key results in queuing analysis that are es-
pecially relevant to this thesis are known as operational laws.

Figure 2.2 illustrates a network with two service centers, one representing
some CPU processing, and the other some disk processing. The queue part
of each service center indicates that a request may wait for other requests to
complete before entering the server part of the service center. Let’s illustrate
a common operational law through this diagram. This law is commonly
known as Amdahl’s law. Intuitively, it states that even if a component of
a system is sped up by several fold, that does not mean that the overall
system speed is increased by the same magnitude. For example, if the CPU
in Figure 2.2 is doubled in speed, the overall response time decreases by

at most 10% (intuitively, this best case happens when there is little or no
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queuing in the service centers). Chapter 3 will discuss in more detail how
to model a system using a network of queues. Note that the properties of
the individual resources could be derived from expectation models (e.g.,
a simulation of the disk) or observation models (e.g., observation on how
similar disks have been behaving on the past).

There is much related work on queuing analysis, and especially oper-
ational laws, dating back 30+ years (e.g., see [Denning and Buzen, 1978;
Lazowska et al., 1984; Menasce and Almeida, 1998]). This thesis does not
invent any new queuing laws. The contribution here is to enable them to
work in distributed, shared systems by removing show-stoppers that prevent
them from working in practice. More context than given here is needed to
fully understand these show-stoppers, and that is provided in Chapter 3.
However, some of these show-stoppers are so fundamental that they can be
understood with the context so far.

For example, queuing analysis assumes that detailed per-workload, per-
resource information is available, but this information is not trivial to ob-
tain. Lazowska et al., for example, state in Chapter 7 of their book that
“...most current measurement tools do not provide sufficient information to
determine the input parameters appropriate to each customer class with the
same accuracy as can be done for single class models. This not only compli-
cates the process of parameterization, but also means that the potentially
greater accuracy of a multiple class model can be offset by inaccurate in-
puts.” [Lazowska et al., 1984]. My work on end-to-end tracing described in
Chapter 4 solves this problem and the problem of obtaining these statistics
in a distributed system.

Fundamentally, queuing theory assumes knowledge of the way requests
flow through the system’s service centers. Our experience, discussed in Chap-
ter 5, shows that, even when building a system from scratch, it is very dif-
ficult for system designers and programmers to enumerate all of a system’s
flows and their characteristics. Hence, this thesis describes an approach to
making use of queuing analysis in systems more robust. That approach in-
volves guiding model designers to discover new service centers in the system

that have not been previously modeled and continuously calibrating param-
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CPU DISK
—2ms — —8ms—

Figure 2.2. A queuing network with two service centers. Making the
CPU twice as fast would only decrease response time by at most 10% (Am-
dahl’s law).

eters of existing queues in the system. Chapter 6 introduces my approach

for doing so.

2.2.2  Success stories using mathematical models

These have been several success stories in using mathematical models for
performance analysis and prediction in real systems.

Success stories in capacity planning: Mathematical models have tra-
ditionally been used in initial capacity planning approaches. Initial capacity
planning makes rough estimates about workloads that a system is expected
to service and rough estimates on the capability of system components. For
example, initial planning for setting up a system to host a World Cup web
site may result in the following estimates: approximately 100,000 people a
day are expected to view the web site (data from previous World Cups);
80% of the clients are interested in 20% of the web pages from the site, so
enough memory needs to be purchased to cache all those pages; availability
requirements may be high, but not as high as a bank or an online retailer.
Hence, it is determined that all data should be replicated once, and for that,
approximately 10 TB of storage space will be needed.

As a concrete example, the Disk Array Designer [Anderson et al., 2005]
computes a good initial configuration of a storage system by iterating over
the space of possible storage device attributes. Indy [Hardwick et al., 2001]
attempts to predict the bottleneck shifts resulting from resource upgrades

(i.e., changing system attributes). Many other case studies found in [La-
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zowska et al., 1984; Menasce and Almeida, 1998] show how the same ap-
proach can be used to design system components, from micro-processor
farms to large-scale distributed systems with hundreds of diverse resources.

Most of this previous work assumes humans know the parameters to
input into the mathematical models (workload characteristics and system
characteristics). That assumption, unfortunately, does not hold well in the
systems we looked at. A high-level difference between previous work and
this work is that we make no such assumptions. The models we built are
part of the system. As such, they continuously measure workload and sys-
tem characteristics, for each workload and resource in a multi-tier system.
A major focus of this dissertation is also designing systems to better as-
sist models. As the remainder of this dissertation will show, unless care is
taken in the system design phase to make the system algorithms inherently
more predictable, models by themselves will not be sufficient for meaningful
predictions.

Success stories in database systems: There have been a few ex-
amples of systems being able to answer What...if questions, especially in
the area of database systems (see [Chaudhuri and Weikum, 2000; Weikum
et al., 2002; Chaudhuri and Weikum, 2006] for calls to the database com-
munity to work on self-managing solutions). The AutoAdmin tool, for ex-
ample, can answer What...if performance questions regarding creation of
indices [Chaudhuri and Narasayya, 1998]. The DB2 advisor provides sim-
ilar functionality [Valentin et al., 2000]. The prototype Resource Advisor
we built into SQL Server answers What...if questions as a function of the
cache size [Narayanan et al., 2005]. This thesis presents a framework that

can answer a broad range of such What...if questions.

2.3 Alternative approaches to modeling

Modeling is not the only way to answer What...if questions. This section
surveys other ways that reduce the need for having accurate models.
Direct measurements: Answers to What...if questions can come from

direct measurements. For example, imagine that an administrator would like
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to know the consequences of migrating data from storage-node A to storage-
node B. The administrator could migrate a small fraction of the data and
observe the performance of that fraction over time. Indeed, if the data set
is small, migrating the data would be a fine way to answer the migration
What...if question. In general, however, there are many situations when the
penalty of direct measurements would be high. For the same example above,
it would be too expensive to perform direct measurements if the dataset was
large and had to be moved as a unit.

Predictable systems: Hand-in-hand with having models to make pre-
dictions, systems could be built so that they are inherently more predictable.
This does not entirely eliminate the need to model the system, but has the
potential to reduce the complexity of models. High predictability is espe-
cially desirable for shared systems, where uncontrolled workload interfer-
ence frequently leads to behavior that is difficult to model. A way to build
predictable systems is to ensure the system has the separability property:
the behavior of each workload can be analyzed separately form the behav-
ior of other workloads. This requirement is very hard to meet, because,
in practice, resource sharing means resource contention between workloads.
However, the separability property can be relaxed to demanding that that
any contention be bounded and/or predictable. Work done in this area re-
volves around insuring performance insulation of the various resources (e.g.,
CPU and network [Banga et al., 1998; Reumann et al., 2000] or buffer cache
and disks [Chambliss et al., 2003; Karlsson et al., 2004; Wachs et al., 2007].
A concrete example that will be directly relevant when we consider the case
studies in Chapter 5 is that of storage performance insulation [Wachs et al.,
2007]. Whenever a prediction is made that workload W, will get X MB/s of
throughput, that prediction should not be annulled when another workload
Wi +1 enters the system. The work presented by Wachs et al. [2007] com-
bines algorithms in smart cache partitioning, request scheduling, and deep
prefetching/write-back to guarantee performance insulation. In turn, that
keeps the models presented in this dissertation simple.

Another proposal for building more predictable systems has been to pro-

mote smaller, simpler components or appliances [Chaudhuri and Weikum,
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2000; Magoutis et al., 2000; Sapuntzakis and Lam, 2003]|. These components
should do one thing and do it well. For example, Chaudhuri and Weikum
[2000] describe how databases are getting ever more complex because they
need to support advanced features of SQL that few people use. They call for
“RISC-like” database components that behave predictably when answering
simple, common SQL queries. Although system complexity definitely needs
to be reduced, the “RISC-like” approach still needs models that answer

What...if questions, albeit the models may be simpler.
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3 Modeling for What. . . if analysis and the
reality check

This chapter describes the challenges to achieving the goals of a modeling
infrastructure: once built into a system, it should be able to answer a broad
range of What...if questions. A main challenge for such an infrastructure
involves ease of accommodation in the system. Another challenge is the

ability to evolve over time.

3.1 Modeling goals, non-goals and assumptions

This section describes the main goals of the modeling infrastructure as well
as the (few) assumptions it makes when operating in a general system.

Performance predictions as main focus: This dissertation’s focus
is on performance prediction and answering What...if questions related to
performance. Performance, however, is only one of many dimensions that
an administrator may care about. What...if questions may also be asked on
power consumption, availability and reliability metrics, security and confi-
dentiality metrics, etc. Chapter 5 will illustrate how these other dimensions
manifest themselves in a cluster-based storage system, but the main eval-
uation will focus on the performance dimension. Answering performance
What...if questions is a hard problem. It requires much understanding of the
inner workings of system components and workloads.

Performance metrics and success metrics: The two main perfor-
mance metrics of interest are throughput and response time. We differentiate

between a client’s performance and a dataset’s performance. For example,
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if a database is accessed by two clients A and B, the clients’ performance is
the throughput and response time each of A and B receive. The dataset’s
performance is the maximum throughput that the database can serve to
any number of clients. Although modeling should allow for both kinds of
predictions to be made, the focus here is on predicting performance from
the perspective of a client.

When making a prediction, as systems designers, we are not always con-
cerned about traditional “success” metrics like accuracy (e.g., expressed in
metrics such as root-mean-square-error). When evaluating a prediction al-
gorithm, we are often concerned with maximizing particular system-specific
“goodness” metrics. For example, a prediction algorithm could be accurate
99% of the time, but the cost of the 1% misprediction could outweigh the
benefit of being correct 99% of the time.

Adaptive models: A main message of this thesis is that each system
service should be designed with a What... Q" model as part of it. For exam-
ple, the designer of the storage-node service should incorporate a What...if
model of the storage-node that answers hypothetical questions on workload
or resource changes. Whereas it is reasonable to expect system designers to
construct good initial behavioral models for how the system should behave
(this belief stems from our experiences described in Chapter 5), one cannot
expect that the system designer is a modeling expert. The models should
ideally refine themselves over time, or at least guide humans to understand
the limitations of the model’s operations.

Few new mathematical tools: This thesis does not directly create
new mathematical tools. There are plenty of tools to choose from, and our

focus is on how to build systems to make use of them.

3.1.1 The impact of workload characteristics

Workload characteristics/attributes have always been a decisive factor in
determining how well models work. A general modeling infrastructure should

make few, if any, assumptions about them.
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In the general case, the main workload characteristic Observer (our mod-
eling infrastructure) needs is the demand a request from the workload places
on each of the system’s resources. Queuing analysis is able to give bounds
on mean throughput and response time based on only that information, as
discussed in Section 3.3. What is gained by making no other assumptions
is that reasonable performance bounds are always available. What is lost
is that second-order metrics, such as variance of throughput and response
time, cannot be predicted in the general case. To make such predictions,
further assumptions about workload characteristics are needed (e.g., expo-
nential inter-arrival times). Because the monitoring infrastructure collects
detailed statistics about a workload (as described in Chapter 4), if such as-
sumptions are found to hold, then further predictions (e.g., on variance) are
possible. Thus, the infrastructure is general, but allows for more specialized
models.

We assume that workloads will run for a while before any predictions are
made. This assumption allows the monitoring infrastructure to understand
the inherent demand that workloads place on a system’s resources. In prac-
tice, this is a reasonable assumption. Even when buying a new system (e.g.,
a bank buying a new storage array), a workload has usually been running on
a previous system (e.g., bank transactions have been running on the older
array), which allows demands to be extracted. Administrators may decide
to manually input information about future workloads into the modeling
infrastructure, but, confidence in predictions is only gained over time.

There are several worthwhile notes on how to interpret the predictions
based on several key workload characteristics:

Adaptive workloads: An implicit hope of any modeling tool, includ-
ing Observer, is that the application will not radically change its behavior
based on the performance of the underlying system. For example, Observer
assumes that, whether a storage system is “slow” or “fast”, the storage
system’s clients’ sequence of operations will be the same. This assumption
holds well in most cases, because most applications are not adaptive. How-
ever, there are some applications, such as web server workloads, that may

experience a different workload depending on the speed of the underlying
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storage system. That happens, for example, when a web user may depart
from the site (for example, if it is too slow) and go to another. In general, the
adaptive workload can be considered as coming from a self-tuning system
that adapts to our underlying system. Initial predictions for such workloads
may be inaccurate, but the least Observer could do is “remember” not to
predict again for such workloads.

Open-loop workloads: Workloads can be classified as open-, closed-
loop (or hybrid), depending on their request arrival times. Briefly, the arrival
time of requests in closed-loop systems is directly correlated with their de-
parture time (e.g., a new request is sent only after a previous one completes).
This correlation does not exist in open-loop systems (e.g., a client may send
one request a second, irrespectively of how long each request takes to com-
plete). Schroeder et al. [2006] provides a refreshing description of properties
of such workloads. In general, prediction bounds for closed-loop workloads
are tight for both throughput and response time. Intuitively, this is because
the closed-loop nature of the workloads “self-regulates” their behavior. How-
ever, response time for open-loop workloads, may, at least theoretically, be
unbounded. Intuitively, that is because the workload can, in theory, be in-
finitely bursty. However, in practice, our monitoring infrastructure observes
the smallest, largest and average bursts in the system, and can usually bound
the response time of the workload, based on past observations. Also, due to
an inherent limit on the number of outstanding threads a system supports,
high-rate open-loop workloads often still appear as closed-loop from the
perspective of the system.

In general, there are mathematical formulae that specialize in open-loop
and closed-loop workloads. The difficulties in making them apply in realistic
systems are the same in both cases, and alleviating those difficulties is what
this dissertation targets.

Phased-workloads: Phased workloads have repeatable phases of oper-
ation. Phases can be differentiated based on access patterns (e.g., sequential
accesses followed by random accesses) or workload intensity (e.g., Monday’s
vs. Sunday’s workloads). Figure 3.1, for example, illustrates the Cello and

DEAS workloads as having phases of high and low loads. Any of the models
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Figure 3.1. Three workloads with different load distributions. The
Cello workload is taken from a storage array at HP Labs [Hewlett-Packard,
2007]. The DEAS workload is taken from a file server servicing departmental
needs at the EECS department of Harvard University [Ellard et al., 2003].
The World Cup workload is taken from a web site hosting information about
the Soccer World Cup in 1998 [Arlitt and Jin, 2000]. A load factor of 1
denotes the day with the lowest request arrival rates.

presented in this dissertation can make predictions based on the “tail” of the
load distribution. For example, for the above two workloads, provisioning for
a 90" percentile load would mean handling cases in which the load is up to
4 times higher than the lightest load the system sees. The exact percentile
desired can be quantified in the SLA. Predicting for the tail is a standard
over-provisioning approach [Borowsky et al., 1998; Urgaonkar et al., 2002].

Drastically changing workloads: Figure 3.1 includes data for the
workload that a soccer World Cup 1998 web site saw over the course of
two months [Arlitt and Jin, 2000]. The load factor changes by 100 times
when the actual cup starts. It is clear that past load history does not help

the system with making predictions in this case. If the administrator has
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prior knowledge of future changes (e.g., World Cup starting, and a rough
estimate on how that will affect the load on system resources) she can still
use What...if models to guide her purchasing and provisioning decisions. If
the administrator has no such knowledge, the system will only be able to
make predictions after the change has been observed (in this example, after
the first day).

3.2 From black-box to white-box: spectrum of solutions

The general architecture for the mathematical models in a multi-tier system
is shown in Figure 3.2. As first discussed in Section 2.2, we identify two
approaches in designing system models. Expectation-based models use de-
signer and programmer knowledge of how systems behave; these systems are
considered to be white-box. The models have a built-in, hardwired definition
of “normalcy”. Observation-based models do not make a priori assumptions
about the behavior of the system. Instead, they infer “normalcy” by observ-
ing the workload-system interaction space. As such, these models usually
rely on statistical techniques that extrapolate future behavior from past
observations.

Observer takes a hybrid approach and uses both. The benefit of us-
ing expectation-based models is that no training data (in the form of pre-
vious observations) is needed to make predictions. The disadvantage of
expectation-based models is that they place some burden with the system
designer to develop them in addition to the system. The benefit of using
observation-based models is that they minimize that burden on the designer.
Once “reasonable-enough” expectation-based models have been created, the
observation-based models continuously refine them over time.

Expectation-based models, in general and as discussed in Section 3.4,
may make use of analytical and simulation-based techniques. For example,
model n’s expectation-based part in Figure 3.2 may be a simulator that
collects buffer cache traces, knows the cache manager algorithms, and re-
plays the traces with a hypothetical cache size. Observation-based models,

in general, and as discussed in Chapter 6, may make use of machine learn-
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Figure 3.2. Modeling architecture in a multi-tier system. Each model
self-checks and builds confidence for its predictions. New correlations discov-
ered by observation-based models, using attributes exposed by the system
designer, are eventually incorporated into expectation-based models by the
model designer. Expectation-based models are discussed in this chapter and
also Chapter 5. Observation-based models are discussed in Chapter 6.

ing techniques such as classification and regression models. These machine
learning techniques continuously adjust the parameters of the analytical
and simulation-based techniques that expectation-based models use. For ex-
ample, model n’s observation-based part may keep track of the accuracy
of the simulator over time. Irrespective of whether individual models are
expectation-based or observation-based (or a hybrid), one needs to have a
framework to reason about the effects on performance of a hypothetical
change in a system with multiple resources. In general, queuing analysis is
the building block of such a framework, and the next section discusses it in

greater detail.
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3.3  Queuing analysis as backbone

This section reviews one of the two main mathematical tools used to answer
What...if questions: queuing analysis. The second tool, statistical analysis,
augments queuing analysis and is discussed further in Chapter 6. This sec-
tion first reviews well-known queuing principles, known as operational laws
and then describes challenges that make it difficult for them to be used in

shared, distributed systems.

3.3.1 Overview of queuing analysis

The goal of queuing analysis is to compute performance metrics of interest
(e.g., throughput, response time, utilization, etc.) for a system under a given
workload. The “queuing” term refers to the particular way this analysis
works. The system is represented as a network of queues through which
requests flow. Figure 2.2 in Chapter 2 illustrated a simple network of two
service centers, a CPU and a disk. Each service center has a queue (analogous
to the queue of patients waiting to see a doctor) and a server (analogous to
the doctor doing the actual examinations).

There are two fundamental actions required to define a queuing network.
First, one must define its structure. Structural behavior is a term we use to
describe how the service centers are linked to one another. Section 3.4 de-
scribes how system designers can specify structural behavior expectations.
The second action required to define a queuing network is specifying its per-
formance behavior. This usually involves specifying the characteristics (e.g.,
arrival rate) of requests that enter a service center and the characteristics
of the server (e.g., how fast it can process a request of a given size — this
is also known as service demand). Section 3.4 describes how most perfor-
mance behavior can be automatically extracted using techniques such as
direct measurement, simulation or analytical techniques.

Once the queuing network has been defined, it can be used to compute
performance metrics of interest. In general, both asymptotic bounds and
exact values can be calculated. Asymptotic bounds are quick to calculate

and are usually sufficient for many What...if questions.
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Notations and basic operational laws

This subsection overviews common operational laws and provides the ba-
sic notation used throughout this dissertation. The notation used is most
consistent with the notation from Chapter 3 of Lazowska et al. [1984].
Assume we observe a service center for a time 7" and during that time, A,
requests arrive, C,. requests leave, and N, is the average number of requests
in the center, all from client ¢. Assume each client has a think time Z.. Then

we have the following definitions (Table 3.1 summarizes the notation used):

Ac

Definition 3.3.1 (arrival rate). The arrival rate A is defined as 7¢.

Definition 3.3.2 (throughput). The client throughput X, is defined as %

Definition 3.3.3 (utilization). For a system made of a single service center

k (e.g., a disk), if By is the measured length of time the service centers is

busy, then the utilization Uy of that center is defined as %.

Definition 3.3.4 (service time). The average service time for client ¢ on

. . . B,
service center k is S, and is defined as Cik
’ c

Definition 3.3.5 (response time). For any service center k in the system,
let W, 1, be the time requests from client ¢ spend in the service center’s queue.

Then, the average response time . for a request is defined as W, + Sc 1.

Definition 3.3.6 (visit count). The visit count from requests from client ¢
on a service center k is V, 1, the ratio of the number of request departures
from a service center (e.g., disk) to the number of request departures from
the whole system (e.g., a database that uses a disk). For example, if one
database transaction requires five disk accesses to complete, then V. prsx
is 5.

Definition 3.3.7 (demand). The service demand D, at service center k

is defined as V.. 1 S¢ k.-

From these basic definitions we have the following theorems. The inter-
ested reader is advised to consult Chapter 3 of Lazowska et al. [1984] for

proofs. We present sketches of derivations here:
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D, Demand of a request from client ¢ on resource k.
D¢ max Largest demand client ¢ places on any resource.
D, Sum of demands on all resources client ¢’s request uses.
Se.k; Service time for client ¢ on resource k.
R Response time for client ¢ on resource k.
R, Response time for client c.
X Throughput for client c.
N, Number of requests a client has outstanding.
N Threshold for determining if client ¢’s load is low or high.
Z. Client think time.

Table 3.1. Relevant notation in queuing analysis.

Theorem 3.3.8. The utilization theorem states that U,y = X, Sc . This
follows from the definition utilization 3.3.3, throughput 3.3.2 and service
time 3.3.4.

Theorem 3.3.9. Little’s law states that N. = X.(R.+ Z.). The derivation
of this law is subtle and we’ll not attempt to derive it here. Notice that the
utilization theorem 3.3.8 is a special case of Little’s law, where the system
under consideration is a single server, with no queue. The utilization U, (a
number between 0 and 1) can be alternatively viewed as the average number

of customers in the server. It follows from Little’s law that R, = % —Ze.

Theorem 3.3.10. The forced flow theorem states that the throughput X
of a service center k equals V.. X.. Intuitively, the throughput of a service
center (e.g., disk) equals the throughput of the whole system (e.g., database)

multiplied by the number of times each database transaction visits the disk.

Observation 3.3.11. For open-loop workloads, the flow balance observa-

tion states that A. = C., therefore A, = X, in practice.

Asymptotic bounds and exact solutions

The most computation-efficient way to answer several What...if questions is
to provide asymptotic bounds on throughput and response time. Asymp-

totic, in this context, means that either the workload “intensity” is low or is
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high. A low intensity workload is one where, on average, no requests spend
time queueing. A high intensity workload is one where a service center be-
comes saturated. At that point, the queue size of that service center grows
continuously. Often, these bounds are good enough; if more exact calcula-
tions are needed, however, other techniques can be used. Below we discuss
how the basic theorems described in Section 3.3.1 lead to reasonable perfor-
mance bounds.

Open-loop workloads: Bounds are computed differently depending on
the workload type (open or closed-loop, as first discussed in Section 3.1.
For open-loop workloads, the throughput and response time bounds are a
function of the request arrival rate A.. The function is straightforward for
throughput (X, = \;). The maximum obtainable throughput happens when
one of the service centers becomes saturated. The center that has the largest
service demand is, by definition, the bottleneck center because it saturates
first. If we denote the demand of the bottleneck center by D¢ 4., then we

have the following relationships:

Uc,ma:v()\c) - Acl)c,ma,x < 1
1
= Aemar < (3.1)
c,mazx

Response time R,, in the best case, equals the sum of the service demands
on all service centers k. That sum we denote by D.. Of course, for requests
that are processed in parallel by two or more service centers, only the demand
from one of the service centers is part of this sum. The other service centers
are ignored for the purpose of computing performance bounds. It is theoret-
ically impossible to provide a worst-case bound on response time, however.
Intuitively, that is because the workload can, in theory, be infinitely bursty.
However, in practice our monitoring infrastructure, described in Chapter 4,
observes the smallest, largest and average bursts in the system. Based on
those past observations, it can bound the response time of the workload
(this assumes that history is a good indicator of future behavior).

Closed-loop workloads: For closed-loop workloads, the bounds are a
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function of the number of customers in the system N.. This is a subtle,
but important difference from the open-loop case. In general, the maximum

throughput is derived similarly to the case for the open-loop derivation:

Uc,ma:c(Nc) = XCDCJHCLLL‘ <1

1
= X<

c >
Dc,ma:c

(3.2)

The maximum throughput intuitively happens when the request pipeline

in the system is full, because N, is large. When N, is small, indicating a

lighter load, each request spends at least D. units of time in the system,
hence the throughput in that case is:

N, N,

<X <

e 3.3
N.D.+Z.~ °“~ D.+ Z. (3.3)

The above equation has a pessimistic and an optimistic part to it. In the
pessimistic case, each of the N, requests in the system queues up behind
all the others and spends (N, — 1)D. + D, time units in the system, plus
Z. time thinking. Hence, the throughput of each request is m and
the client’s throughput is ﬁ. In the optimistic case, each of the N,
requests does not spend any time in queues at all. In this case, each of the
N, requests in the system spends D, time units in the system, plus Z. time
thinking. Hence, the throughput of each request is ﬁ and the client’s
throughput is DLNJ:ZC.

The threshold N} for determining if the load is light (so that Equation 3.3
applies) or high (so that Equation 3.2 applies) is N} = (D. + Z)/De¢.maz>

where N} can be thought of as the minimum number of requests required

to keep the request pipeline full. For example, N} would be % = 1.25 for
the queuing network shown in Figure 2.2, if client think time was 0.

Using Little’s law 3.3.9 the bounds for response time become
max(De, NeDemaz — Ze) < Re(N) < N.D, (3.4)

Figure 3.3 illustrates these bounds graphically. From these graphs, it
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Figure 3.3. Asymptotic bounds on performance. This way of visualizing
the formulae has been borrowed from Chapter 5 of Lazowska et al. [1984].

becomes clear that upgrading any other resource other than the bottleneck
resource provides only modest performance improvements. Upgrading the
bottleneck resource changes D 4, and thus leads to larger improvements
in performance.

Whenever bounds are not sufficient, exact solutions are also possible to
compute. A technique known as mean value analysis, or MVA, is often used
(e.g., see Chapters 6 and 7 of Lazowska et al. [1984]). MVA uses an iterative
approach to simultaneously solve a set of three equations which follow from

first principles:

Zc + Zi(:l Rc,k(Nc)

Xe(Ne) (3.5)

Qc,k(NC) = XC(NC)Rc,k(NC) (3-6)

where Q. is the queue length at center k from client c.

Rc,k(Nc) = Dc,k(l + Ac,k(NC)) (37)
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Little’s Law Ne=X(R:.+ Z.)
Forced flow theorem ek = VerXe
X, bound (open-loop) Ae = Xe < 5——
X, bound (closed-loop) ﬁ < Xe < min(%a m)
R. bound (open-loop) D. < R.(N.) 7
R, bound (closed-loop) | max (D¢, NeDemaz — Ze < Re(Ne) < NeD.

Table 3.2. Key operational laws.

where A, is the queue length at center £ seen by an arriving request from
client c.

The key to solving this set of equations is the relationship between A,
and Qcx, where A.;(N:) = Q¢ x(Ne — 1). Lazowska et al. [1984] describes
the method by which this set of equations is solved and also provide a more
efficient approximation algorithm for doing so. An off-the-shelf tool (e.g., the
one provided by Gunther [2005]) can be used to solve this set of equations.

Table 3.2 summarizes the basic relationships mentioned in this section.

3.3.2 Worap up on operational laws

In general, operational laws are simple and make few assumptions about
workload characteristics. Each of the metrics, such as N., D., etc., can rep-

0! quantile of resource

resent an average value, or a quantile value, e.g., the 9
demand. Hence, predictions can be made for the “tail” of the distribution
of each of these metrics.

The simplicity of the operational laws is also their main drawback. The
bounds on performance can sometimes be loose, depending on service center
implementations (e.g., scheduling policies). We do not have enough experi-
ence to show that more advanced, specialized models are more practical,
however. For example, the use of queuing analysis that builds upon expo-
nential distribution assumptions (e.g., M /M /m) is too specialized to make
assumptions that may hold for some (e.g., web server frontend), but not all,

parts of a system (e.g., backend DB and storage system). Hence, for the
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two systems our case studies are based on (a storage system and a database
system), operational laws were the most straightforward laws to use.

This dissertation needs the operational laws and concrete models to build
on, but the issues it addresses are relevant irrespective of the underlying
mathematical framework. Hence, for operational laws, or more sophisticated
queuing models (as well as for statistical models that we’ll discuss in Chap-

ter 6), several challenges make their use impractical in real systems.

3.3.3 Challenges and practical considerations

There are several challenges when using any of the mathematical models
described in Section 3.3. Most of these challenges have in common the lack
of system support for the models. Because, traditionally, models are built
separately from the system (i.e., they are not built-in), system designers
usually do not spend much time thinking about how to design systems to

help the models work better.

Aggregate measurements without context

As first overviewed in Section 2.2.1, mathematical models need good pa-
rameter values to be effective. In the case of distributed systems with multi-
ple clients/workloads, measuring the various performance behavior metrics
(such as visit counts V., demands D., etc.) is very difficult. For exam-
ple, performance counters measure an aggregate Dopy at the database, but
cannot provide fine-grained measurements per-client (i.e., cannot measure
D, cpv). Figure 3.4 illustrates another problem with performance counters
in a distributed system. It is impossible for the storage-node in the figure to
determine which storage requests relate to which original DB transactions.
The causality and context is not preserved through the system queues. So, in
practice, even with fine-grained per-client measurements, one could measure
D, cpu at the database and D, prsi at the storage-node, but one cannot
know for sure if x = y. Chapter 4 expands on this fundamental issue and

provides a solution.
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Figure 3.4. What is a request?. A database transaction propagates
through various system queues and can create multiple sub-requests. By
the time these sub-requests reach the storage subsystem the contextual in-
formation is lost.

Unforeseen behavior

As hinted in Section 2.2.1, models become obsolete if they do not evolve.
Indeed, we observed this to be the case with performance models in systems
that we considered to be white-box, since we designed and built them from
scratch. Unforeseen behavior can result from 1) unforeseen workload char-
acteristics or system configuration characteristics, 2) unforeseen interaction
among service centers, and 3) administrator misconfiguration of the system.

In practice, (1) means that all predictions of performance metrics, such as
throughput and response time, will have to be associated with a confidence
value that indicates how believable those predictions are in practice. (2)
means that the structure of the queuing network will have to be continuously
validated. While it is reasonable for system designers to specify a good-
enough starting structure, in practice they cannot know all service centers a
request flows through. Hence, new service centers will need to be discovered
in the field. (3) means that, even in face of good system and model design,
the human can be the weakest link and misconfigure the system (and then
later attempt to backtrack and locate the source of misconfiguration). Thus,
cases when there is a mismatch between model predictions and the system
will need to be identified. Chapter 6 introduces an approach for handling

this fundamental issue.
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Lack of separability of analysis

In shared systems (more than one workload sharing the resources), oper-
ational laws assume a basic level of performance insulation in the system
for meaningful predictions. Performance insulation is a mechanism that,
among other benefits, ensures that workloads do not misbehave by utiliz-
ing resources allocated to other workloads. For the purpose of this thesis,
the main reason why the systems that have performance insulation help the
models is a scalability issue. When adding workload W,,;1 to the system, it
is desirable that the queuing network does not have to be reevaluated for
the existing W,, workloads. A secondary reason is system performance. Fig-
ure 3.5 illustrates a case where two streaming workloads propagate through
the queues of a system, and, by the time they reach the storage system,
they may be interleaved in a number of ways. The resulting performance
varies drastically depending on the way requests interleave. Hence, although
complex models can be built to predict the variance, it is questionable if the
predictions are meaningful at all. After all, what is a prediction of the form
30 MB/s£30 useful for?

Although performance insulation for the CPU and network resources is
usually straightforward to do (utilizing well-known scheduling techniques),
it is much harder to enforce for storage systems. Storage systems have the
property that the cost of a “context switch” between workloads can be
very high (several milliseconds), and the performance of workloads can vary
by two or more orders of magnitude (due to cached, disk-bound streaming
and disk-bound random-access workloads). Our work in this area has found
that it is necessary to combine smart cache partitioning, request scheduling,
deep prefetching and smart write-back algorithms to guarantee performance
insulation for disks [Wachs et al., 2007]. Any of these in isolation have proven
insufficient in addressing the problem. Chapter 5 illustrates cases where,
without separability of analysis, the predictions would be hard to obtain and
the models would be forced to make worst-case predictions. Chapter 5 also
illustrates how the models themselves can be used to guide the mechanisms

needed to ensure performance insulation in a storage system.
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Figure 3.5. Inherent system unpredictability. If requests are allowed
to inter-mix in uncontrolled ways, the resulting performance variance can
be very high (for a disk that is the case independently of the scheduling
algorithm used). This figure shows how two sequential workloads may appear
as non-sequential by the time they reach the storage-node queue.

3.4 White-box modeling: expectation-based models

This section describes a general design of expectation-based models in sys-
tems. Chapter 5 describes concrete implementations through case studies.

Expectation-based models are a crucial part of the modeling architecture

43 )

shown in Figure 3.2. They are considered to be “white-box” since the sys-
tem designer is expected to create them. The assumption is that the system
designer can bootstrap the modeling process by providing reasonable expec-
tations for the system under consideration.

Creating expectation-based models involves several steps. First, the de-
signer must define structural expectations. Structural expectations enumer-
ate the ways requests are expected to flow in a system. Using the queuing
theory language developed in Section 3.3, this means that structural expec-
tations define the location of the service centers and how they are connected
to one another. Structural behavior can be expressed with a directional
graph (can be cyclic), in which nodes represent individual service centers.
An edge from service center SV to service center SV (s means that a
request departing from service center SV C; will enter service center SV s
next. Edges can contain a rich set of attributes, such as the probability that
a request will go to service center SV (s, the average time it takes to go
from one service center to another, etc.

Second, the designer must define performance expectations. Performance
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Figure 3.6. Example structural and performance expectations. A
simple structural expectation is that, when using 3-way replication, 3
storage-nodes should be contacted on a write. Performance expectations
can usually be automatically extracted once the structure of the queueing
network is known.

expectations are functions that relate workload characteristics (such as ar-
rival rate, request size, read:write ratio, etc.) and service center characteris-
tics (such as queue size, service time, etc.) to eventual performance metrics,
such as throughput and response time. The designer must create, for each
service center, low-level What...if models that take any hypothetical work-
load and service center characteristics and predict any performance metric of
interest. The What...if models are usually templates that describe the rela-
tionship between system-workload characteristics and performance. Specific
values for the system under consideration can be filled in automatically in
the templates.

Figure 3.6 illustrates one simple system expectation in a hypothetical
system consisting of a database and a storage system. The structural expec-
tation is that, when 3-way replication is used, three storage-nodes should be
contacted on a write, and acks should be subsequently received. A perfor-
mance expectation is that three times the original block size should be seen
on the client’s network card. Information on current CPU and network char-

acteristics can be automatically discovered, and performance expectations
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can then be automatically created about CPU and network consumption
for the write request (e.g., encoding should use 0.02ms and it should take
0.5ms to send the data to the storage-nodes). A structural expectation for
the DB is that a transaction should spend CPU time in the query evaluator
and optimizer, then access the buffer cache, and then access the underlying
storage system. The exact CPU time and cache miss rate for a transaction
type can be automatically discovered and can be part of the transaction
profile.

Evaluating how difficult it is to create expectation-based models can only
be done through case studies, and we present ours in Chapter 5. This thesis
makes the case that part of designing any new system component should be
defining the What...if interfaces to that component. Thus, we are asking that
the system designer put more effort into creating good models up-front. Out
experience supports that doing so helps with designing a more predictable
system. Our case studies show that it is reasonable to expect the designer
to augment key service centers with a What...if model. For example, the
designer of the buffer cache manager inside a database, operating system, or
storage system should model the behavior of the cache as a function of the
cache size and workload. The model should be part of the cache manager and

can export interfaces like “ What would be the new cache hit rate for workload

¢, if we double the amount of cache size?” or “What would be the new
cache hit rate for workload c, if the eviction algorithm changes from LRU to
MRU?”. This model could be based on simulation or an analytical formula
(depending on the complexity of the cache manager, sometimes it is not
possible to have a closed form analytical solution). Part of the contribution
of Chapter 5 is to evaluate the usefulness of a range of techniques (from
direct measurements to analytical formulae to simulation) that designers of

these white-box models have available in their toolbox.



4 Measuring with context in distributed,

shared systems

Tuning a distributed system requires good measurement infrastructures and
tools. Current systems provide little assistance. Most provide insights only
in the form of hundreds of performance counters that the system’s admin-
istrator can try to interpret, analyze, and filter to diagnose performance
problems. For example, most modern databases and operating systems come
loaded with an array of performance counters [IBM Corporation, 2004; Mi-
crosoft, 2005; Oracle Corporation, 2004]. Performance counters, however
plentiful, are inadequate for two primary reasons. First, in shared environ-
ments, aggregate performance counters do not differentiate between different
workloads in the system and give only combined workload measurements.
If the administrator is attempting to diagnose an issue with one of several
workloads, aggregate counters are not helpful. Second, in a distributed sys-
tem, performance counters cannot be easily correlated to high-level user ob-
servations about throughput and latency. The lack of causality and request
flow information makes combining information across components difficult.

Stardust is the infrastructure that I have created for collecting and query-
ing end-to-end traces in a distributed system. Trace records are logged for
each step of a request, from when a request enters the system to when it
is complete, including communication across distributed components. The
trace records are stored in databases, and queries can be used to extract
per-request flow graphs that show how requests flow through service cen-
ters, latencies, and resource demands.

This chapter is self-contained. It describes related work on measurement

47
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infrastructures as well as the design, implementation and evaluation of Star-
dust. It discusses the challenges faced in building this infrastructure and the
opportunities that arise from having it in the system. The challenges in-
cluded reducing the overhead the infrastructure places on foreground work-
loads, reducing the amount of spare resources needed to collect and process
the traces generated, and reducing the difficulty of trace analysis. The oppor-
tunities include concrete tuning problems we are able to solve using Stardust
and other tuning problems we have not yet addressed, but we believe are
solvable using this infrastructure. We also discuss the limitations of end-to-
end tracing, as a performance monitoring tool, and the kinds of problems it

will not solve.

4.1 Background and related work

Performance monitoring is useful throughout a system’s lifetime. In the ini-
tial system implementation stages, it can help developers understand inef-
ficiencies in the design or implementation that result in poor performance.
In the system deployment stages, it can help administrators identify bottle-
necks in the system, predict future bottlenecks, determine useful upgrades,
and plan for growth. When users complain, administrators can use the obser-
vations from periods of poor performance to help understand the source of
the problem. Observations from real systems even drive research into build-
ing better system models and capacity planning techniques (much related
work is described in [Lazowska et al., 1984; Menasce and Almeida, 1998]).

4.1.1 Three “simple” administrator questions

We use three concrete scenarios to illustrate how current measurement in-
frastructures are inadequate, even for simple administration tasks.

More RAM or faster disks?: When money is available to upgrade
hardware, administrators must decide how to spend their limited budget.
“Should I buy more RAM (for caching) or faster disks?” is a simple ex-
ample choice, and even it is not straightforward to answer. The value of in-

creased cache space is access pattern dependent and, worse, workload mixing
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can muddy the picture of what limits any given application’s performance.
When using performance counters, in particular, it is unclear which coun-
ters should be consulted to answer this question. In the systems that we
have observed, none of the performance counters are adequate. For exam-
ple, consider the counter that keeps track of buffer cache hits and misses.
Even if that counter indicates that client A’s workload never hits in the
cache, it does not mean that adding more RAM for the cache would not
help—a workload, for example, that scans a 500 MB object repeatedly, but
has been allocated only 499 MB of RAM space (and thus never hits in buffer
cache with an LRU replacement policy), would benefit greatly from a 1 MB
increase in RAM space. The workload would see a 100% hit rate. Similarly,
consider a counter that keeps track of the average disk queue size. A large
value does not necessarily mean that faster disks would be better than more
RAM.

Decisions are even more difficult for a shared infrastructure supporting
multiple clients. For example, one client may benefit most from a RAM up-
grade while another would benefit more from faster disks. Aggregate coun-
ters show overall averages, rather than per-workload information, so this
information is hidden. If one client is more important than the other, going
with an average-case choice is not appropriate. Interactions among work-
loads can also create situations where changing the amount of buffer cache
for one causes a ripple effect on the performance of the others (e.g., the
sequence of disk accesses changes). For example, we have seen cases where
improving the cache hit rate for one client also provides a bigger than ex-
pected efficiency boost for another by reducing disk-level interference.

Where does time go?: When a particular set of requests are slower
than expected, an administrator often needs to know why (and then imple-
ment a fix). “Where are requests from client A spending most of their time
in the system?” is an example administrator question. This question is rep-
resentative of situations in distributed environments with multiple service
centers (e.g., a request passing through a web server that queries a database
that retrieves data from a storage system). The administrator may want to

know which service center accounts for what fraction of the average request’s
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latency. This question can be answered by creating a request’s flow graph,
which represents the flow and timing of the request as it moves from service
center to service center in the distributed system. Current performance coun-
ters do not help with this. One needs to know how requests moved through
the system (counters only measure metrics locally) and how long they spent
at each component (aggregate counters give an average measurement for all
requests).

Why is the client complaining?: When users complain about their
performance, administrators must figure out what happened, differentiate
between transient problems (which can often be ignored) and recurring ones
(which should be fixed), and decide what to do. “Why was the application’s
performance unacceptable at 2pm?” is an example starting point. At a min-
imum, the system will need to retain performance observations for a period
of time so that administrators can go back and check. But, looking at per-
formance counters, like CPU load, disk I/O rate and buffer cache hits/miss
counts is rarely sufficient for root-cause analysis, for the reasons explained
above. As well, the administrator (and/or an internal tuning module that
makes use of mathematical models) may need to know the specific sequence
of requests that led to the poor performance the client experienced and how

those requests moved through the distributed system.

4.1.2 Traditional performance measurements

Traditional performance monitoring consists of pre-defined counters, such
as “number of requests completed” and “average queue length”. Such per-
formance instrumentation is common in single-node systems [Cantrill et al.,
2004; IBM Corporation, 2004; Microsoft, 2005; Oracle Corporation, 2004],
or in each node of a distributed system. There are some monitoring infras-
tructures designed for distributed systems [Anderson and Patterson, 1997;
Massie et al., 2004], but they focus on aggregate resource consumption statis-
tics rather than per-client or per-request information. Such aggregate perfor-
mance monitors provide little assistance with problems like those discussed

above.
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A second problem with performance counters is that their values can-
not be easily correlated to high-level user observations about throughput
and latency in a distributed system. In a busy web server with a backend
database, is the high CPU utilization at the web server, is the high I/O rate
at the database server, both, or are neither of them responsible for the high
latency clients are noticing?

Detailed process accounting systems can address some of the shortcom-
ings of performance counters. For example, Bouhana [1996] describes an
accounting system that keeps per-user, per-resource demands in order to
later bill the user appropriately. Existing accounting systems, however, are
limited to centralized systems and simple batch processing systems. In most
distributed systems, where request processing may involve applications run-
ning on several servers, existing approaches do not extend well. This is be-
cause such accounting systems do not provide support for causally linking
work across servers. Among other things, Stardust can be used as the mea-
surement component of an accounting system for distributed systems.

System logs are often used to capture basic workload or utilization infor-
mation. The Windows operating system, for example, offers the ability to log
performance counters and request/reply calls for later analysis [Microsoft,
2005]. The most common use of such logging is to retain a history of HTTP
calls or SQL database queries. Such logging is useful for workload analysis
and even trace-based simulation but, as commonly configured, provides little
help with performance analysis. Currently, there is little support for inte-
grated tools that allow the administrator to correlate log entries with system
performance information. Stardust builds on fine-grained logging/tracing of
activity across a distributed system, enabling both traditional information

extraction and detailed performance analysis.

4.1.3 Towards end-to-end monitoring

Researchers have started exploring the use of end-to-end tracing of requests
in a distributed system to better inform diagnosis and tuning questions.

End-to-end tracing refers to collection, storage, and correlation of activity
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Figure 4.1. The instrumentation framework depends on the sys-
tem under consideration. “Black-box” systems are systems whose com-
ponents work together through well-defined interfaces but are closed-source.
“Instrumented middleware systems” consist of black box components inter-
connected by a well-known middleware that provides resource multiplexing,
communication management and accounting. “White-box” systems are sys-
tems whose internals are completely known to those building the instrumen-
tation framework, either because the system is being built by those same
people or because its source code is available. Such systems offer the oppor-
tunity to have the necessary instrumentation built-in from the start.

records that are generated by a single request from the moment it enters
the first node in the distributed system until it leaves the system. Research
in this area has focused on three system types (illustrated in Figure 4.1):
black-box, middleware-based, and white-box systems.

“Black-box” systems are constructed of components that work together
through well-defined interfaces but are closed-source. Although only high-
level information can be determined in such an environment, researchers
are developing approaches to determine causal paths of requests and the
relationship between individual component performance and overall per-
formance. For example, Aguilera et al. [2003] showed that coarse-grained
end-to-end traces can be extracted via passive network monitoring without
requiring any legacy application changes. Further, they showed that such

tracing is sufficient to identify black-box components that are bottlenecks
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and guide an administrator’s focus to them. Cohen et al. [2004] explored the
efficacy of statistically correlating the values of per-black-box performance
counters with high-level user observations, such as throughput or latency, to
identify relationships that can guide diagnosis. These approaches improve
on traditional approaches and can work when otherwise uninstrumented
third-party applications are utilized.

“Instrumented middleware systems” are often deployed as a set of black
box components running on top of middleware, such as J2EE or .NET,
that provides resource multiplexing and management [Microsoft, 2005; Sun
Microsystems, 2005]. Systems such as Pinpoint tag requests as they flow
through the J2EE middleware and correlate middleware measurements with
application-level throughput and latency [Chen et al., 2002]. Xaffire Inc.
[2005] and Quest Software [2005] are commercial products that use similar
tagging techniques. Instrumented middleware system provide deeper insight
than pure black box and traditional approaches, but they still leave intra-
component resource usage and delay sources unclear.

We use the term “white-box” system to describe a system whose inter-
nals can be modified and understood, either because the system is being
built from the start or because its source code is available. Such systems
offer the opportunity to have fine-grain instrumentation built in. For exam-
ple, Magpie is a research system that collects traces at different points in
a system and reconstructs causal paths from those traces [Barham et al.,
2004; Isaacs et al., 2004]. Magpie relies on programmers to place instrumen-
tation points in the appropriate system modules. In return, it offers critical
path analysis and per-workload, per-resource monitoring. ETE is a similar
system that is used to measure end-to-end response times [Hellerstein et al.,
1999]. Hrischuk et al. [1995] define a specialized language to describe end-
to-end traces and measure per-workload and per-resource demand as well as
request response times. Stardust and this dissertation build on these ideas
by developing an efficient querying framework for traces, reporting experi-
ences from use in a cluster-based storage system, and performing feasibility

studies under various system loads.
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4.2 Stardust's design

Stardust’s design was motivated by several goals:

Resource usage accounting: The instrumentation framework should
provide accurate aggregate and per-client resource accounting. Aggregate
accounting is sufficient when the administrator is concerned with the load
on a resource. But, per-client accounting is needed to understand how indi-
vidual clients contribute to that load. In a distributed system, a request may
propagate through several service-centers, requiring per-client accounting of
all of them. Resources of interest include the CPU, buffer cache, network
and disks. There are other non-hardware resources too, for example a lock
service can be thought as a software resource. For simplicity, we will focus
on the hardware resources. Using queuing analysis notation, Stardust should
give us the metrics represented in Table 3.1.

Request latency accounting: The instrumentation framework should
provide per-client request latency information that records where each re-
quest spends its time as it flows through the system. Different clients may
have different latency profiles. A client whose requests hit in the buffer cache,
for example, will have a different profile than a client whose requests miss.
A request may span servers in a distributed system, so care must be taken
to causally link together sub-requests in each server that belong to the same
original request.

Long-term statistics maintenance: The instrumentation framework
should be able to maintain statistics for a long time, to allow for various cor-
relations to be made. For example, as Chapter 6 will describe, many machine
learning tools require system-level statistics to be exposed and maintained
over time.

Instrumentation framework efficiency: The instrumentation frame-
work should interfere minimally with the workloads running in the system.
We envision the framework to be monitoring the system at all times; hence,
overheads should be minimal. In addition, the programming burden for im-

plementing the framework inside a system should be low.
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Querying efficiency: The instrumentation framework should provide
a flexible query interface. In a distributed storage system with hundreds of
nodes and clients, it is important to have a versatile way to query the wealth

of information generated.

4.2.1 Activity tracking and querying

Stardust tracks every client request along its execution path. Stardust re-
tains activity records, such as buffer cache reference records, 1/O records,
and network transmit /receive records. The sequence of records allows track-
ing of a request as it moves in the system from one service center, through
the network, to another service center, and back. Of course, the definition
of “request” is specific to each service center. For example, from a client’s
perspective, a request may be a single SQL query. From a storage-node’s
perspective, a request may be a read or a write request (a SQL query may
be translated to multiple storage-node read/write sub-requests).

An activity record is a structure with a timestamp, a type, and type-
specific values. Figure 4.2 shows an example activity record. Each activ-
ity record contains an automatically-generated header comprised of a time-
stamp, a breadcrumb, a kernel-level process ID, and a user-level thread ID.
The timestamp is a unique value generated by the CPU cycle counter that
permits accurate timing measurements of requests. The breadcrumb is a re-
quest identifier (e.g., a 64-bit number) that permits records associated with
a given request to be causally linked across service centers. Activity records
are posted (i.e., trace records are generated) at strategic locations in the
code so that the demand on a resource is captured. These locations are of-
ten the point of arrival to and departure from a service center. For example,
the disk activity record is posted both when an I/O request is sent to disk
and when the I/O request completion is reported. Both postings contain
the same breadcrumb, because they belong to the same client request, and
so can be associated in post-processing. Records are posted on the critical
path; but, as this chapter’s evaluation shows, such posting causes minimal

impact on foreground performance.
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timestamp, breadcrumb ! pid ;tid | diskno, Ibn |size, op

header payload

Figure 4.2. Example activity record. Each activity record has a common
header and a payload of type-specific values. The payload for the disk request
activity record shown includes the disk ID, logical block number (LBN), size
of the I/O in bytes, and operation type.

Each server in an instrumented system runs a single Stardust client li-
brary. A Stardust client library is responsible for presenting any process
running on that server with APIs for posting and querying activity records.
For querying flexibility, Stardust records are stored in relational databases
(Activity DBs). Activity records posted to a Stardust instance are buffered
and the buffers are periodically sent to an Activity DB. Activity DBs are
designed to run on the same infrastructure servers as the rest of the system.
The DBs store the records in relational tables and answer queries on those
records. Storing activity records in a database allows a flexible querying
interface.

Activity DBs are part of the querying infrastructure, and they can be
queried using SQL. For example, to get a disk I/O trace for a certain storage-
node, one might query the Activity DB that keeps records for that storage-
node’s disk activity records. Collections of activity records are effectively
super-sets of performance counters. Many performance counter values of

interest can be computed by querying the Activity DBs.

4.2.2 Resource usage accounting

This section describes how Stardust enables the extraction of the per-
workload demand placed on four common storage system resources: CPU,
buffer cache, network and disk. When client requests enter an instrumented
system, they are tagged with an initial breadcrumb value by the first ser-
vice center. This breadcrumb value is passed between service centers as the

request is serviced.
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CPU demand: To allow measurement of per-client CPU demand,
D.cpu, a component must post activity records related to thread context
switching!. Context switching happens both in preemptive systems (when
the scheduler decides to run another thread) and non-preemptive systems
(when a thread yields). Thus, CPU processing of a request may be suspended
and resumed several times (this is known as a processor sharing scheduling
approach in queuing analysis). By monitoring the context switches and the
requests being processed during a thread’s run time, Stardust charges a re-
quest the exact amount of CPU time it used. That time is the sum of the
time any thread spent processing that request and any of its sub-requests
(that go to other service centers).

Buffer cache usage: Buffer cache usage for an individual client is cap-
tured by posting activity records each time the buffer cache is accessed.
Buffer cache usage is defined as the sequence of buffer cache accesses during
period T, that include read hits and misses, writes, readaheads and evictions.

Network demand: Network demand for an individual client, D, ygT,
is captured by posting a NetworkTransmit activity record each time data
is transmitted from one server to another. These records contain, among
other attributes, the number of bytes sent from the source to the destination
service center. For any period 7', the demand is then the total number of
bytes transmitted during that period.

Disk demand: Disk demand for an individual client, D. prsk, is cap-
tured by posting a DiskOp activity record each time a client request initiates
a disk request. A DiskOp record denotes the beginning or completion of a
disk read or write. The disk demand during any time 7" is the sum of disk

service times for the user’s requests.

Measuring delayed demands

There are two important and tricky cases that complicate resource demand
accounting. First, whereas read requests are usually synchronous (the user

We have not experimented with event-driven systems, but, at least conceptually, cal-
culating the CPU demand would be similar. An activity record could be posted each time
processing of a request resumes.
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Figure 4.3. Example causal path created by a generic Write call.
This diagram shows the creation of a causal path in a distributed environ-
ment with two components. Nodes in this illustration show instrumentation
points in the system, and links show a request propagating through two such
points. This diagram also illustrates the case when a Write request is de-
clared complete (component 1, time 3) before it is propagated to the second
component and when multiple writes are coalesced (component 1, time 5).

has to wait until the read completes before proceeding), there are asyn-
chronous requests (e.g., writes). A write will often be inserted into a cache
and have control returned to the user. The write propagates to other service
centers (e.g., disk) at a later time. This is often done to hide the latency
of writes and results in significant performance gains. Resource accounting
for those requests must occur, however, even after control is returned to the
user. In general, this problem arises anytime there is delayed processing of
a request in the system.

Second, some requests from different users may be coalesced into a single,
larger request to improve performance (e.g., coalescing disk requests). It is
important to bill the resource usage of this larger request to the proper
original requests.

Figure 4.3 illustrates both problems by illustrating the typical path of a
write request. The request arrives in the system (denoted by the first black
node) and departs (the second black node) after it has been stored in cache.
At a later time, denoted by the dotted arrow (depicting the first problem),

the request is coalesced with other requests and sent to the storage-node



4.2 Stardust’s design . 59

(depicting the second problem). The storage-node, in turn may split it into
sub-requests. For accounting purposes, it is important to capture these cases,
especially because writes are frequent in most systems.

Stardust solves the first issue by storing the breadcrumb together with
the data in the cache. When the request is later processed, any sub-requests
it generates use that breadcrumb, allowing the original request to be properly
billed. If that sub-request is coalesced with other sub-requests, the many-
to-one relationship is noted (through an explicit “stitch” record), and any
resources the larger sub-request subsequently uses are billed to each original

request (currently equally proportional).

4.2.3 Request latency accounting

This section describes how Stardust provides per-client request latency in-
formation that shows where a request spends its time as it is processed in the
system. Each instrumentation point can be considered as a node in a latency
graph, with links between nodes denoting causal relationships. These links
also capture latency information between the instrumentation points. As a
simple example, if one instrumentation point was before a disk request and
another after the request completed, the link between them would denote
the disk response time.

Identifying causal paths in a distributed environment: The pro-
cessing of requests often generates multiple activity records at different
servers in a distributed system. The servers in a distributed system are
not expected to have synchronized clocks. It is important to causally link,
or stitch, activity records together so that the path of the original request
can be reconstructed in such environments. On the same server, two records
R; and R, are totally ordered by their timestamp. If R; and Ry have the
same breadcrumb, but R; happens before Ry then Rp is a parent of R».
On different servers, such ordering is possible only if the records R, and Rs
(which are created on their respective servers) are explicitly related through
a “stitch” record that contains the breadcrumb of R (or any of its children’s

sub-requests) and the breadcrumb of Ry (or any of its parents’ requests).
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The example path in Figure 4.3 can be used to explain the above rules.
Two physical servers are connected through a network. In a distributed stor-
age system, for example, the first server could be a Metadata Server (which
keeps information on where data is located) and the second a Storage-Node
(which actually stores the data). Nodes in this illustration show activity
records. Links between records show nodes that are related because they are
associated with the same breadcrumb (i.e., breadcrumb 10). On each server,
all records are totally ordered by a local timestamp, denoted by the timeline
at the bottom. To show that all of the records on the first server happened
before any of the records on the second server, a “stitch” record of the form
(bc = 11,bc = 12) is posted just before the request leaves the first server.
The stitch record links the last record on the first server (child record of the
originating request) to the first record on the other server (parent record
for all subsequent records on that server). The reason a new breadcrumb
is assigned every time a request moves to a new server is implementation-
dependent and is described in Section 4.3.

Request flow graphs can be constructed for a batch of requests, as well as
for each individual request. When creating a graph for a batch of requests,
the graphs of individual requests are aggregated into a set that is the union
of the individual request graphs. A main question that the set of graphs data
structure can answer is “what is the average demand and/or response time
between two instrumentation points A and B?” To answer that question,
the latencies between nodes A and B are averaged for each graph in the set

that contains those nodes.

4.2.4 Collection efficiency

There is overhead associated with collecting the traces. However, the over-
head can be made negligible in most cases. CPU overhead at servers posting
events is kept to a minimum by reducing the Stardust client work. The client
only has to encode the trace records to network byte order and place them

in pre-allocated buffers. When the buffers fill up, records are sent to the
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Activity DBs. Thus, we are accepting the possibility of partial trace loss
due to server failure in order to reduce tracing overhead.

Network and storage overheads are closely related; both depend on the
quantity of trace data generated. Ultimately, the quantity of trace data
generated depends on intended usage. Chapter 5 describes several concrete
experiences that we have had in solving real problems using such traces.
In general, performance problems that can be answered by looking at only
resource loads require only per-client, per-resource performance counters.
For such problems, it is possible to drastically reduce the amount of traces
kept. This is done by transforming the raw traces into per-workload, per-
resource demand information, every period T'. Section 4.4 quantifies the
space reduction from such pruning.

There are, however, several performance tuning problems that require
certain types of records to be kept in their raw form (e.g., online performance
anomaly detection). Section 4.4 analyzes the feasibility of keeping full traces

and the efficiency of pruning them.

4.2.5 Querying efficiency

Activity records are stored in Activity DBs, which use relational tables. Any
internal system entity (or external administrator) can use SQL to analyze
traces. Each Activity DB contains all the trace records associated with a
set of clients and servers. Thus, no query will involve accessing more than
one Activity DB. We considered using distributed databases, but opted for
simplicity.

Each Activity DB stores activity records in a number of tables, one for
each record type. The system is designed such that the Activity DBs do not
need to be restarted or recompiled if a component posts new record types.
New tables can be created on-the-fly based on an XML description of the
new record type.

One can generate any performance counter from the end-to-end activity
traces. We call the performance counters generated from the traces virtual

performance counters, because they are not hard-coded into the code, but
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are instead generated on the fly using SQL queries on the trace tables.
As a simple example, consider the traditional counter that keeps track of
the number of hits in a component’s buffer cache (e.g., on a Storage-Node
component). In Stardust, that counter can be generated from the following
SQL query on the table that holds the buffer cache records for that Storage-
Node:

SELECT count(x)
FROM STORAGE_NODE_ BUFFER CACHE TABLE
WHERE optype = BUFFER_READ_HIT

4.3 Stardust's implementation

4.3.1 Brief introduction to Ursa Minor

We have designed and implemented a cluster-based storage system, Ursa
Minor, to target research problems in system management. Ursa Minor was
designed from a clean slate; hence, we had the opportunity to include the
instrumentation in the design of the system from the beginning without the
need to retrofit an existing system. This section briefly describes it so that
this chapter remains self-contained. Chapter 5 further describes features of
Ursa Minor that will be relevant then.

The goals of Ursa Minor are described by Ganger et al. [Ganger et al.,
2003], and the architecture and implementation are described by Abd-El-
Malek et al. [Abd-El-Malek et al., 2005]. At the core of the architecture
is the separation of mechanical functions (servicing client requests) from
managerial functions (automating administrative activities). The manage-
rial tier consists of agents and algorithms for automating internal decisions
and helping administrators understand the consequences of external ones.
The mechanical tier is designed to self-monitor, through Stardust, so as to
provide information to the managerial tier. Below we define the main struc-

tural components of the system.
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Clients: Clients of the system access data. Different data may have dif-
ferent availability, confidentiality and performance goals. Clients make use
of the PASIS protocol family to read and write data [Goodson et al., 2004;
Wylie, 2005]. Currently, clients in our setting use the NFS data access pro-
tocol [Sun Microsystems, 1989] to interact with intermediary NFS servers,
which in turn use the PASIS protocols to read and write data to the storage-
nodes on behalf of the clients.

Storage-nodes: The storage-nodes have CPUs, buffer cache and disks.
Storage-nodes are expected to be heterogeneous, as they get upgraded or
retired over time and sometimes are purchased from different vendors.

Metadata service: The metadata service (or MDS) is responsible for
keeping track of files in the system. It is also responsible for authorizing
client access to storage-nodes through the use of capabilities. An access to
a file usually is preceded by an access to the MDS to get the metadata
for accessing that file. Once the metadata is obtained, the client interacts
directly with the storage-nodes to access the data.

Stardust client: A Stardust client (not to be confused with Ursa Mi-
nor clients described above) is any service in Ursa Minor that links to the
Stardust client library. Currently, all the above services are Stardust clients
as well.

Figure 4.4 shows a typical request flow through Ursa Minor. There are
several resources used by a request as it flows through the system. First,
significant CPU computation is required at both the NFS server and at the
storage nodes. The client requires CPU computation to encode (decode)
the data into (from) fragments that are stored onto N storage-nodes (e.g.,
when data is striped across N storage-nodes). Part of encoding may be
compressing or encrypting the data. The storage nodes require CPU to check
the integrity of data blocks, through checksums. Second, buffer cache space is
required at the client, metadata service, and storage-nodes to hold frequently
accessed data or metadata. Third, network bandwidth is required to transmit
requests and responses from the various components in the system. Fourth,
disk bandwidth is required at the storage-nodes to process read requests

that miss in the cache and write requests.
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Figure 4.4. Typical request path through Ursa Minor. A request from
a client enters the storage system at an NFS server. The server consults the
metadata service to get the relevant metadata for the client request. Once
the metadata is received, any data access for the request is served through
the data path. The request may hit in the NF'S server cache or miss and have
to be serviced from the storage-nodes. The request may be sent to more than
one storage-node, for example, when the data is replicated or striped among
many nodes. A queuing network representation of this path is deferred to
Chapter 5.

4.3.2 Instrumentation points

Table 4.1 shows the records used to measure resource demands. Table 4.2
shows the records used to measure latencies. Some records are used for both.
There are approximately 200 instrumentation points in Ursa Minor, which
currently has over 250,000 lines of code. Almost all instrumentation points
are posted from user-level processes, because most request processing in Ursa
Minor is done in user-level threads. The only exceptions are the kernel-level
context switch records (KernelProcessSwitch), which are posted by the
Linux kernel. This was the only modification necessary to the operating
system. User-level context switches (UserThreadSwitch) are posted from
the State Threads library [SourceForge.net, 2006]. Figure 4.5 shows a snippet
of code and two posting calls to the Stardust client library, when a request
enters and leaves the disk service center.

In Ursa Minor, monitoring is performed at all times. Additional record

types can be added by programmers through new releases of the system.



65

4.3 Stardust's implementation

Record Type

Arguments

Description

CPU demand UserThreadSwitch oldthread, newthread A user-level context switch
KernelProcessSwitch | CPU ID, old PID, new PID | A kernel-level context switch

Buffer cache demand | BufferReadHit file, offset, size Denotes a buffer cache hit
BufferReadMiss file, offset, size Denotes a buffer cache miss
Buffer Write file, offset, size Marks buffer dirty
BufferReadAhead file, offset, numpages, psize Prefetch pages (non-blocking)
BufferFlush file, offset, size Flush a dirty page to disk
BufferFEwvict file, offset, size Evict a page from the cache

Network demand Network Transmit sender, recetver, numbytes Monitors network flow

Disk demand DiskOp disk ID, LBN, size, operation | Monitors disk activity

Table 4.1. Activity records used to measure resource consumption. KernelProcessSwitch records are
provided by the Linux kernel (other operating systems, such as Windows, already expose kernel-level context
switches [Microsoft, 2005]). The remainder are posted from instrumentation points in user-level processes. Note
that there are multiple buffer caches in the system (e.g., at client, metadata service and storage-nodes), hence the
buffer cache records are posted at all those levels.
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Record Type Arguments Description

NFS service | NESCall_type user ID, call args Request arrives at the NFS service
Buffer_type buffer args. See Table 4.1 | Request accesses the NFS buffer cache
NFSReply_type | reply args Request exits from the NFS service

MDS service | MDSCall_type | call args Request arrives at the MDS service
Buffer_type buffer args. See Table 4.1 | Request accesses the MDS buffer cache
MDSReply_type | reply args Request exits from the MDS service

Storage-node | S-NCall_type call args Request arrives at the storage-node
Buffer_type buffer args. See Table 4.1 | Request accesses the storage-node buffer cache
S-NReply_type | reply args Request exits from the storage-node
DiskOpCall call args Request accesses the storage-node’s disk
DiskOpReply call args Request exits from the storage-node’s disk

Table 4.2. Activity records used to measure request latency. The above records capture entrance
and exit points for key services in the system. NFS calls monitored include most calls specified in the
NFS protocol [Sun Microsystems, 1989], of which the most common are : NFS_GETATTR, NFS_SETATTR,
NFS_LOOKUP, NFS_READ, NFS.WRITE, NFS_CREATE, NFS_MKDIR, NFS_REMOVE, NFS_RMDIR,
NFS_RENAME and NFS_COMMIT. MDS calls monitored include: MDS_LOOKUP, MDS_CREATE_OBJECT,
MDS_RELEASE_OBJECT, MDS_APPROVE_WRITE, MDS_FINISH_ WRITE. Storage-node calls monitored in-
clude: READ, WRITE, CREATE, DELETE. Disk calls monitored include: READ, WRITE.
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File Edit Options Buffers Tools C Cscope Help

CerxIBr AU RIHE?

diskobj-»stats.coalescedRequests++;

numBlocks = scheddbj-»ioRegion-»ioSize / S4_DISK _BLOCK_SIZE;
S4_DPRINTF(S4_DEBUC_SCHED, 3, "Sched - DiskIssue: Issuing requestin");

A% add request to dissued queus */
SchedQueueaddIssuedischedob], &diskobi-»issuedqueus);

B_t ate PE = {schedObj-:type == S4_DISK_READ) ?
DISK_READ_START : DISK_WRITE_START

DISK_OP_post(DISK_OP_T¥PE, © /* ts */, schedObj->breadcrumb,
diskOb]j->deviceHandle, schedObj->ioRegion->io0ffset,
schedObj->1oRegion->10Size, atcTYPED;

/* Issue reguest to the drive */
S4Disk_IssueRequest{diskobj->deviceHandle, schedobj, schedobj-:ioRegion,
schedobi—»typed;

/% ATC record Achronous _case -
if hedObj->callback == NULL) §
atcTYPE = (schedobj-»type == S4_DISK_READ) ?

DISK_READ_END : DISK_WRITE_END

DISK_OP_post(DISK_QF_TYFE, ¢ /* ts */, scheddbj-»breadcrumb,
diskobj-s>deviceHandle, schedobji-»>ioRegion-:io0ffset
chedobj->ioRegion->10Size, atcTYPED;

Figure 4.5. Example instrumentation of a Disk request.

Such record types may be enabled or disabled at run time. We believe that
this will encourage programmers to insert as many record types as necessary
to diagnose a problem; they can always turn them off by default and re-
enable them when associated components need to be analyzed. We currently
use a small embedded database, SQLite [SQLite, 2005], for the ActivityDBs.

4.3.3 Implementation details and APlIs

The design document for the Ursa Minor project has the latest implementa-
tion details for the Stardust client. This subsection extracts the salient points
from it. The interested reader is advised to consult the design document for
more details.

This subsection provides details on the seven main building blocks of
Stardust:

(1) The APIs for posting activity records.
(2) The storage of the activity records.

(3) The stitching of activity records with the originating requests.
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(4) The querying of the activity records across multiple service centers.
(5) The generation of statistics and virtual counters.
(6) Turning activity collection on and off.

(7) Balancing the load of ActivityDBs.

Posting activity records

Request activity is captured by inserting activity records inside the Ursa
Minor code. As a simplified example, in order to allow one to determine
how much CPU a storage-node has spent on behalf of requests from a cer-
tain client, the storage-node posts (Start Work: breadcrumb=5, time=0) and
(EndWork: breadcrumb=5, time=0.0001) records whenever it starts and
ends work on a particular request with breadcrumb 5. The CPU time for
this request is then simply the difference in timestamps between these two
records (assuming no context switches happened in between; in practice con-
text switches do happen, and we handle them as well). One design goal is
to provide a flexible, unified way of posting activity records.

An activity record is composed of a common activity record header and
one or more tuples of the form (attribute, value). The activity record header
is described in detail below.

Each record type has a unique API function used to post activity. The
API is shown below:

recordtype_post

— Input arguments:
Header Common header
Flags Various flags

Value 1 Value that corresponds to Attribute 1

Value N Value that corresponds to Attribute N

— Output arguments:
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void

— Description:

Any module posting this record includes the common activity record
header and n values, one for each of the n attributes the activity
record has. Currently, the only flag is called NODROP, which tells the
Stardust client that it should not lose this record even if that means

that the performance of the system could degrade.

The code used to implement the posting functions is automatically gen-
erated, much like with RPC stub generators. The provider specifies in a
special file, called records.txt, the argument types the function takes and
their respective names: RecordType _Post(Namel, typel, Name2, type2, ...,
...). RecordType_Post is the name of the function the code will call to post
the record that contains N types, typel, ..., typeN. The types are the usual
BYTE, SHORT, INTEGER, LONG, STRING, etc.

Once the module implementor defines the record types in the file men-
tioned above, a script called register_records.pl is run manually. This script
generates automatically a .h file with the function definition and also creates
a table in the database with name FUNCTION_NAME_TABLE. Existing
tables are not affected by the script.

In addition to the types each user may specify, there is a common header
prepended to each activity record. The format of the header is illustrated
in Figure 4.6. The CPU Cycle Timestamp is a unique timestamp for this
record on the given physical server. The Breadcrumb field is a unique request
ID assigned to a request that created this activity record. In the current
implementation, the breadcrumb is a 64 bit CPU cycle counter value, whose
uppermost 8 bits contain the client’s ID?. The Kernel PID is the process
ID of the process that is posting the record. The User-thread PID is the
thread ID of the user-lever thread that posted the record. It could be the ID
of a state thread or pthread, depending on the particular implementation.

2For clients connecting through the NFS server the client ID is assigned by the admin-
istrator.
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CPU Cycle Timestamp
(8 bytes)

Breadcrumb
(8 bytes)

Kernel PID
(4 bytes)

User-thread TID
(4 bytes)

Figure 4.6. The common activity record header. This figure depicts
the common activity record header prepended to every record. It’s total size
is 24 bytes.

These fields are usually filled in automatically by the Stardust client during

a record posting.

Storage of activity records

Posted records are eventually stored in a relational database. There were
several design considerations that led to deciding to store the activity in a
relational database. Below, we briefly discuss each approach that was con-
sidered.

The first approach stores the trace records in flat files, with the file name
being the time of the first trace recorded. This is similar to the way most
trace-collectors have stored and distributed traces. For example, the HP
Lab Cello traces [Hewlett-Packard, 2007] and the Harvard NFS traces [El-
lard et al., 2003] were collected this way. An advantage of flat files is that
compression is straightforward (e.g., tightly padding the records so that not
many bytes are wasted, or gzip). Also, trace record entries do not have to
be the full length of the type; diffs can be kept as described in [Samples,
1989; Verbowski et al., 2006]. The main drawback is in querying of the trace.
Unless all queries want to query traces by time (the only implicit index),
querying can be extremely inefficient. For example, listing all requests of
from client ¢ would require scanning through all the traces. In fact, most

queries that relate to other information in addition to time, require scan-
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ning through all the traces. We are interested in flexible querying of activity
records, hence this approach did not work well for us.

The second and third approaches use databases as the way to store online
traces. They differ on the way the table layouts are built. The second ap-
proach uses just one big table. The table has numbered columns (1 through
N). One of the first columns is the activity record type. To determine the
meaning of the N columns for this type one has to consult a second small
table that, for each type, keeps a mapping between column numbers and
string describing what those columns are. The advantage of this approach
is that each query only has to consider one table and the number of joins
is reduced. The main disadvantage is that indexing any of the N columns
is difficult (if not impossible), because they will be of different types. Also,
we would have to declare the type of each of the columns as generic (in
database jargon, BLOB). That could mean less efficient querying. Another
disadvantage is the storage space wasted. Each row must have N columns,
where N is the number of columns the largest row has. An improvement to
this approach would be to have a certain number of columns dedicated to
keeping integers, strings, etc., and have each record type use the appropriate
columns. Although this approach would allow indexing of columns, it still
suffers from the having storage space wasted.

In the third approach, each activity type has a separate table as shown
in Figure 4.7. The main disadvantage of this approach is that join operations
are required to collect demands and latency graphs. For example, if two ta-
bles are used, one for storing activity records that indicate a START event
and the second for storing END events, calculating the time difference be-
tween END and START requires a join on the breadcrumb column. Hence,
we have a classic tradeoff between storage space and querying speed. Our
particular implementation chooses the third approach, but these tradeoffs
need to be considered for other environments.

Pruning traces: The activity traces can take considerable space. How-
ever, we do not expect to maintain all raw traces forever. From our experi-
ence with using these traces, we have found that pruning the CPU, network,

and disk traces to generate per-client, per-resource performance counters and
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RecordType_START| [RecordType_END STITCH BC_INDEX

Figure 4.7. The four main table types in Activity DBs. Each START
and END activity record goes to a separate table. There is a pair of such
tables for records collected from each service center. There are STITCH
tables that contain relationships between breadcrumbs. There is one such
table for each Stardust client. There is only one breadcrumb index table per
Activity DB that, for each breadcrumb in the system, contains a pointer to
tables in which a record with that breadcrumb is stored.

request flow graphs every T seconds (e.g., 1 second) is acceptable for per-
formance predictions. For performance anomaly detection, traces may have
to be kept for longer, e.g., 1 to 2 weeks. Although some basic performance
anomaly detection to verify model correctness is in the scope of this thesis
(and is presented in Chapter 6), general anomaly detection, for example for
security or intrusion detection purposes, is not. The storage space needed for
several workload types, together with savings to be expected from pruning,
are evaluated in Section 4.4.

Activity DB APIs: The insertion of records into the database is done
in two steps. First, the Stardust client periodically sends to the Activity DBs
large buffers containing activity records. Second, the Activity DB accepts
these buffers and inserts the records they contain into the database.

The second step is done in a database-specific manner, using SQL. The
first step is done using a data transport layer. The format of the message
sent from the Stardust client to the DBs is:

records_send:<Buffer>. A buffer containing multiple records is sent to
the Activity DBs through this message. Care is taken that network priority
scheduling is used so that large buffers of records do not add to the latency
of foreground requests. To do that, we changed the RPC layer in Ursa Minor
to have scheduling support for Stardust traces. Without scheduling support,
large buffers of traces are periodically sent to the Activity DBs. Any fore-

ground requests that are blocked behind the buffers incur a large latency.
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Scheduling support mitigates this effect. With scheduling support in the cur-
rent implementation, the activity trace buffers are split into smaller sizes,
and each small chunk is given a lower scheduling priority than foreground
requests. This greatly reduces the additional latency seen by foreground
requests, as Section 4.4 quantifies.

Activity DBs processing: During online collection, records are ini-
tially stored in a staging area, which is a flat file. This allows for very high
throughput (e.g., 500,000 records/sec) at the Activity DB. A thread period-
ically takes records from the staging area and stores them in the relational
database, thus enabling querying. It is expected that a database has lower
insertion throughput (e.g., 50,000 records/sec, i.e., usually an order of mag-
nitude higher than flat files). Records are written in bulk, i.e., one SQL
query is made for inserting thousands of records at a time.

The layout of traces in tables is as follows: There is a unique per-endpoint
(endpoint means service ID, e.g., the NFS, MDS services all have an endpoint
associated with them), per-record type table. For example, if there are 100
endpoints in the system and each can post 1000 different record types, there
will be 100x1000 = 100,000 tables in the database. The timestamp is the
only primary key for each of these tables. Figure 4.7 shows the START and
END table types (these two tables are there for most record types).

Handling changes in activity record schemas: It is not inconceiv-
able that activity record types for a certain entity may change. For example,
a provider could decide to add or remove an attribute. Another change could
be to change the type of one of the attributes, say from an INTEGER to a
STRING. The issue is: what happens to the database tables that store those
entries and what happens to modules that query those records by using the
old version of the query?

Currently we do not provide an implementation of a solution. The design,
however, allows for the following workaround. In the case when new columns
are added, no special care must be taken. The previous values obtained
when the column was missing can be all NULL. In the case when columns
are deleted, the whole column can be deleted and queries that needed that

column will have to be modified. In the case when column types are changed,
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old values can be substituted by NULL.

Preserving context through stitching

Most client requests generate multiple activity records, as they move through
the system. Stardust needs to associate activity records with client requests.

There are certain requirements that drive our context preservation de-
sign and implementation. First, adding breadcrumbs and propagating them
should require minimal programmer effort and minimal code changes (e.g.,
APIs should ideally not change). Second, the activity tracking should be
done incrementally, and meaningful activity records should still be posted
even though not all service centers through which a request is passing are
posting activity. Third, a request could spawn multiple sub-requests. There
needs to be activity records matching every parent request with children
requests. Fourth, multiple sub-requests could be coalesced into one sub-
request. There need to be activity records matching every request with the
coalesced request. Fifth, if a request crosses server boundaries, the bread-
crumb must be propagated. This means that the messaging layer has to be
agnostic to the breadcrumbs.

Without the stitching of activity records to preserve context, Stardust
is still an interesting unified framework for collecting traces. However, it is
the stitching of activity records that allows end-to-end tracing of requests
through the system.

A challenge in implementing stitching is the tradeoff among 1) doing a
lot of computation on the critical path for stitching activity records and 2)
doing a lot of computation off the critical path during a query. Our current
bias is for 2), i.e. very little computation should be done on the critical
path (while still allowing for specialized tools to make use of such traces).
However, given that some queries could happen online, Stardust cannot
afford to be too slow in querying either.

Another approach that was considered, but not implemented, is de-
scribed by Isaacs et al. [2004]. It consists of temporal joins on attributes

that make up an activity record. That approach was subsequently used in
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the Magpie project [Barham et al., 2004]. Such an approach does not re-
quire passing breadcrumbs around, making it more elegant in that respect.
A parser stitches requests together in a chain and it looks at any arbitrary
attribute when performing the join. There are tradeoffs between Magpie’s
approach and Stardust’s. Magpie’s approach is more generic and flexible.
Stardust’s approach trades off flexibility in describing types of requests with
efficiency of querying. It is well-known in the database literature that joins
are expensive operations; Magpie’s approach requires joins to track a request
even within a single server, and each join may be on multiple attributes,
whereas Stardust uses fewer joins (for example, no joins are needed when a
request maintains the same breadcrumb) and they are only done on a single
attribute (the breadcrumb). However, Stardust needs more information to
be recorded (the breadcrumb) in each record.

The current implementation of Stardust propagates breadcrumbs
through private state in user-level threads, rather than through API mod-
ifications. A user-level thread may call many functions. Instead of adding
another parameter to these functions, the breadcrumb is made part of the
thread structure. Of course, care is taken to propagate breadcrumbs from
thread to thread as request processing moves through the system. The APIs
used to get a unique breadcrumb is:

get_breadcrumb

— Input arguments:
void

— Output arguments:

breadcrumb An opaque data structure representing the breadcrumb.

— Description:

A unique breadcrumb is received this way. The breadcrumb is unique

within each server.

Relationships between breadcrumbs are posted as special activity
records. For example, if request with breadcrumb 5 generates two new sub-

requests, A and B, two new records of type “stitch” will be posted, with
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record payloads of the form (breadcrumb of 5, breadcrumb of A) and (bread-
crumb of 5, breadcrumb of B). The API that does this is :
stitch_breadcrumbs
— Input arguments:
Source breadcrumb The breadcrumb initiating the link.
Destination breadcrumb The breadcrumb linked to the source
breadcrumb.
— Output arguments:

void

— Description:
Two breadcrumb values are linked in a causal chain by posting a

“stitch” record.

Whenever processing of a request moves from one thread to another,
so does the breadcrumb (we as programmers had to find those places and
explicitly pass the breadcrumbs from one thread to the other). Getting and
setting the thread’s breadcrumb is done through the APIs below:

get_current_breadcrumb

— Input arguments:

void

— Output arguments:

Breadcrumb Current breadcrumb of the processing thread.

— Description:

This function returns the breadcrumb associated with the currently

executing user-level thread.
set_current_breadcrumb

— Input arguments:
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Breadcrumb Breadcrumb of the request this thread is processing.

— Output arguments:

void

— Description:

This function sets the breadcrumb of the current thread.

If a request spawns many sub-requests (one-to-many), each of the new
requests will have a new breadcrumb, and a record that stitches the old and
a new breadcrumb will be posted. If multiple requests spawn one common
request (many-to-one), as is the case when multiple write requests are coa-
lesced into one large request, for example, then one new breadcrumb will be
generated for the new request and records will be posted that stitch each of
the old breadcrumbs to the new breadcrumb.

If a request moves from one Stardust client to another, for any reason,
a new breadcrumb is assigned to that request before it leaves for the new
Stardust client, and a record is posted that stitches the old breadcrumb that
request had with the new one. The reason a new breadcrumb is assigned is to
create the “happened-before” relationship. There is no synchrony assump-
tion between Stardust clients (and the servers they reside on), hence this
stitching serves as an ordering mechanism.

When stitching together a causal request chain for post-analysis, the
program needs to know where to find the next request to stitch with. For
example, a request at the NFS server may hit in cache (so the next record is
in the CACHE_HIT table). It may also miss in cache (so the next record is
in the CACHE_MISS table). Should the stitcher program check both tables?
Once one considers the general problem that a request may potentially go
anywhere, we are faced with the problem of having to potentially check
each table in the Activity DB to find the next record. That is extremely
expensive.

There are two ways to handle this situation. The first is by making
assumptions about the structural behavior of the system. For example, a

cache model can be used to predict if a request hits or misses in cache.
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These expectations can be encoded in the form of a request path graph
as described in Section 3.4 and Section 5.2. The second option is to make
no structural behavioral assumptions. Instead of checking every Activity
DB table, however, an index table (currently called BC_INDEX, as shown
in Figure 4.7) is created which contains, for each breadcrumb seen in the
system, the name of the instrumentation point it was posted from (and
thus, implicitly the name of the Activity DB table to find the complete
record). Any insertion in any Activity DB table incurs an insertion into the
BC_INDEX table .

Currently, a hybrid version is implemented. After expectations are
checked and verified, the index entries can be deleted. If the BC_INDEX
table records unexpected relationships, the administrator may have to ad-

just the expectations as described in Section 6.1 and Section 6.3.

Querying activity records

Activity records are stored in relational Activity DBs to make querying
easier. The database schema is such that resource demands can be extracted
using simple queries that require no joins (or at most one join, if START
and END activity records are in separate tables). Request latency graphs do
require joins, however (on the breadcrumb column of the database tables).
Queries can be made directly with the database, by initiating a connec-
tion to it. This is the default and easiest way to query. A second supported
way is to query through a Stardust interface below. First, the Stardust client
for a desired entity is asked to provide the endpoint of the Activity DB on
which it is storing its traces. This is done through the following API:
find_db

— Input arguments:

Endpoint Endpoint identifying the Stardust client of an endpoint

— Output arguments:

DB _Endpoint Endpoint of the Activity DB containing the records
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— Description:
The Activity DB endpoint for use by this Stardust client is returned.

Once the DB’s endpoint is found, the APIs for querying are straightfor-
ward. A query is initialized through :

init_query

— Input arguments:
DB _Endpoint Endpoint identifying the DB containing the records
SQLQueryString An SQL statement

CallbackFunction Callback function called when records returned

from this query are available.

— Output arguments:

QueryID Cookie that identifies this query.

— Description:

A query is initiated through this call. A callback is specified. Whenever
the query records are ready, the callback function is called. Note that
depending on the implementation, multiple records may be returned
through one callback call. Currently there can only be one callback

attached to a single query.

Note that there is an equivalent method of querying: the pull model,
where a user initiates a query and then periodically pulls results from it.
Yet another way of obtaining query results is to save the output of a query
to a file and return the file ID to the interested party. That party then reads
the file. These approaches suffer from the problem of garbage collection.

Handling old files/handlers and knowing when to delete them is not trivial.

Statistics and virtual counters

Many systems have hard-coded counters that calculate metrics of interest.
For example, the performance counters found in Windows calculate the av-

erage number of disk I/Os, buffer cache misses, current CPU utilization etc.
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(over a period T'). These statistics are important to understand the overall
health of the system. In addition to a set of well-known counters, Stardust
supports “virtual counters”, which are counters obtained through database
queries. Unlike hard-coded counters, virtual counters can be generated when

needed using the collected traces.

Turning activity collection on and off

By default, activity tracking is on all the time. If found necessary, each
activity record type can be grouped into well-known groups. Tracing for any
of these groups can be controlled through the following APIs:

set_filter

— Input arguments:
Endpoints List of endpoints.
My _Endpoint Endpoint of the entity setting the mask.
Filter Filter that specifies what group will be turned on and off. A
filter may contain regular expressions or wild characters.

— Output arguments:

Void

— Description:

A filter can specify which activity records should be collected (and/or
which should not).

In addition to stopping record generation at the source, records can be
filtered at the Activity DBs through a similar interface as the above. That
interface interacts directly with the Activity DBs. Whether users will opt
to stop records at the source or at the Activity DBs is left up to their
preference. In general, stopping records at the source minimizes any impact
on foreground workloads and is currently the only way we are using the
filters.
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Balancing the load of Activity DBs

The system has a pool of Activity DBs that holds the records from multi-
ple Stardust clients. Each Activity DB consists of a database process and a
frontend that receives queries and replies with answers to clients. A design
decision to reduce complexity dictates that there should be no interactions
between Activity DBs. A client’s traces should fully reside on only one Ac-
tivity DB. Each Stardust client chooses an Activity DB at random, the first
time it executes. Thereafter, the Stardust client uses that Activity DB for-
ever (the mapping between client and Activity DB is logged). Although the
design is flexible, all our experiments have used one Activity DB.

We currently do not implement a solution to the case when an Activity
DB is permanently removed. Also, if an Activity DB is temporarily down,
the data to be sent to it is temporarily buffered at the Stardust client and
then lost if the Activity DB does not come up on time. However, in theory,
another Activity DB can be used as temporary storage for the Activity DB
that is down. However, we have not experimented yet with graceful handling
of Activity DB failures.

4.4 Evaluation

This section is self-contained and limits the evaluation to the efficiency of
collection and querying of the activity records. Chapter 5 further evaluates

the usefulness of this infrastructure.

4.4.1 Experimental setup

In the following experiments, we used Dell PowerEdge 650 servers equipped
with a single 2.66 GHz Pentium 4 processor, 1 GB of RAM, and two Sea-
gate ST33607LW (36 GB, 10k rpm) SCSI disks. The network configuration
consisted of a single Intel 82546 gigabit Ethernet adapter in each server,
connected via a Dell PowerConnect 5224 switch. The servers ran the Debian
“testing” distribution and used Linux kernel version 2.4.22. The same server

type was used for all clients and storage-nodes. The storage-nodes used one
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of the two local disks for data and the other for the operating system. Each
NFS server and storage-node was configured to use 256 MB and 512 MB for
its buffer cache, respectively. The experiments used several workloads with
varying characteristics to assess the efficiency and efficacy of Stardust. These
are all workloads a storage system is expected to handle.

OLTP workload: The OLTP workload is a TPCC-like [Transaction
Processing Performance Council, 2002] workload that mimics an on-line
database performing transaction processing. The workload is run on the
Shore database storage manager [Carey et al., 1994] and configured to use
8 KB pages, 10 warehouses and 10 clients, giving it a 5 GB footprint. This
workload is closed-loop. The performance of this workload is reported in
transactions per minute (tpm).

Postmark workload: Postmark [Katcher, 1997] is a file system bench-
mark designed to emulate small file workloads, such as e-mail and netnews.
It measures the number of transactions per second that the system is capa-
ble of supporting. A transaction is either a file create or file delete, paired
with either a read or an append. The configuration parameters used were
100000 files, 50000 transactions, and 224 subdirectories. All other parame-
ters were left at their default values. Postmark is a closed-loop workload.
Postmark’s performance is reported in transactions per second (tps).

I0zone workload: 10zone is a general file system benchmark that can
be used to measure streaming data access performance [Norcott and Capps,
2002]. For our experiments, IOzone measures the performance of 64 KB se-
quential writes and reads to a single 2 GB file. IOzone is a closed-loop work-
load. IOzone’s performance is reported in megabytes per second read.

“Linux build” development workload: The “Linux build” workload
measures the amount of time to clean and build the source tree of Linux
kernel 2.6.13-4. The benchmark copies the source tree onto a target system,
then cleans and builds it. The results provide an indication of storage system
performance for a programming and development workload. The source tree
consumes approximately 200 MB before the build. This workload is closed-
loop. The performance of this workload is measured in seconds to complete

the build process.
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SPEC SFS Suite: SPEC SFS is a benchmark suite designed to measure
the response time of NFS requests for varying throughput levels [Standard
Performance Evaluation Corporation, 1997]. The latency of the NFS server
is measured as a function of throughput. This workload is open-loop.

“S1-V0” scientific workload: This workload corresponds to storing
the output from sample queries performed by a system designed to analyze
multi-dimensional wavefield datasets. Query outputs are written to storage
for subsequent processing. S1 and VO correspond to sample queries on multi-
gigabyte seismic wave-fields produced by numerical simulations of ground
motion wave propagation during strong earthquakes in Southern Califor-
nia [Akcelik et al., 2003]. S1 corresponds to the output of temporal queries
on a surface, and VO corresponds to the output of temporal queries on a
volume. The performance of this workload is measured as the overall run
time for each query. This workload is closed-loop.

All experiments are run five times and the average is reported (together

with confidence intervals), unless otherwise mentioned.

4.4.2 Instrumentation framework efficiency

Baseline experiments: Table 4.3 shows the overheads of the end-to-end
tracing when each of these workloads is run in isolation. The application
data was stored on a single storage-node (i.e., there is no data replication).
There is a single Activity DB for the traces. The baseline performance (with
tracing disabled) and performance with tracing enabled is shown. As seen
from the table, Stardust’s demands on the CPU, network, and storage are
relatively small. IOzone generates the largest amount of traces, because it
processes many more requests per second than the other workloads. The in-
strumentation added at most a 6% performance penalty. The performance
standard deviations for the performance metrics were as follows: for Post-
mark, the baseline and new standard deviations (STDEV) were both 0. For
OLTP, the baseline STDEV was 3.4, whereas the new STDEV was 8.5. For
IOzone, the baseline and new standard deviations were both 0. For Linux-
build, the baseline STDEV was 3.3, whereas the new STDEV was 5.1. For
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CPU Network and Perf. Perf.

demand storage without with
demand (MB/s) | tracing | tracing

Postmark 0.9% 0.34 11 tps 11 tps
OLTP 0.7% 0.57 910 tpm | 898 tpm
10zone 0.1% 3.37 38 MB/s | 36 MB/s
Linux-build 0.1% 0.49 1094 secs | 1101 secs
S1-VO0 0.8% 1.85 669 secs | 686 secs

Table 4.3. Macro-benchmark performance. This table illustrates the
overheads of Stardust. Stardust places demands on the CPU for encoding
and decoding trace records and on network and storage for sending the
traces to the Activity DBs and storing them. It also places a fixed demand
of 20 MB (by default) of buffer cache at each client machine. The impact of
the instrumentation on the workload’s performance is less than 6% in these
experiments.

S1-VO0, the baseline STDEV was 1.9, whereas the new STDEV was 1.8.
The standard deviations for the CPU, network and storage demands were
negligible.

Figure 4.8 shows the output from the SPEC SFS benchmark. Through-
out the curve (from low to high NFS server load) the impact of the instru-
mentation on average throughput and latency is low.

Figure 4.9 shows the contents of the Activity DB for different workloads,
after the workloads have finished running. For all workloads, most of the
content represents CPU context switches. Each time a context switch (at
the kernel or user level) occurs, it is logged (“CPU Kernel” and “CPU User”
categories). Many of the workloads fit fully in buffer cache, and only a few of
them generate disk I/O records. A considerable fraction of the database size
is used for keeping causal path information in the form of STITCH tables.

Network scheduling support for traces: Figure 4.10 shows the im-
pact of adding network scheduling support for the activity traces. We mod-
ified the RPC layer in Ursa Minor to give priority to other activities over
delivery of traces. Without such scheduling support, large buffers of traces

are periodically sent to the Activity DBs. Any foreground requests that
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Figure 4.8. Impact of instrumentation on latency of SFS workload.
For all throughput and latency levels, the overhead of instrumentation is
low (6.8% in the worst case). Standard error bars are shown.

are blocked behind the buffers suffer a large latency. The scheduling sup-
port mitigates this effect. With it, the activity trace buffers are split into
smaller sizes, and each small chunk is given a lower priority than foreground
requests. This reduces the additional latency seen by foreground requests.
Efficiency with data redundancy: Because Ursa Minor is built on
commodity components, data is often replicated across storage-nodes to en-
sure an acceptable level of reliability and crash tolerance (Chapter 5 de-
scribes an alternative to replication, called erasure coding, but this discussion
focuses on the former without loss of generality.) N-way replication refers to
data being replicated across IV storage nodes. During a write, data is written
to all N nodes, and, during a read, data is read from one of the IV storage
nodes. Figure 4.11 shows the storage demand required when replication is
used for each of the representative workloads. In general, the storage demand
increases linearly with the replication degree, since an increase in the repli-
cation factor results in an increase in the number of storage nodes accessed.

The overhead increases for several reasons. First, there are more network
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Figure 4.9. Contents of Activity DB.

interactions and thus more network records, since more storage-nodes are
accessed (during writes). Second, there are more buffer cache accesses and
thus more cache records, since now a data block resides on N nodes. Third,
there are more disk accesses and thus more disk records, since a data block
is written on N disks. In general, the number of trace records increases as

replication increases, and the trend is similar for all workloads.
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Figure 4.10. Network scheduling support for Stardust. Latency as
seen by a sequence of Postmark NFS_CREATE requests, with and without
scheduling support. The average latency with and without scheduling sup-
port is 8.2 ms and 8.3 ms respectively. The standard deviation is 0.18 ms and
0.3 ms respectively.

——Postmark -=OLTP  -+10zone

»n 6 —-Linux-build ==ST-V0 —*
S~
)
=
o
S 4
E /
(]
ge)
()
22
o e
(@)
-
n

0

1-way 2-way 3-way 4-way 5-way
Replication level

Figure 4.11. Amount of trace data as a function of replication level.
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Workload | Read | Write Memory
runtime (s) | path | path | needed (MB)
Postmark 9792 8.5 19 220
OLTP 636 8.5 135 103
10zone 329 114 109 323
Linux-build 1786 8.2 42.9 103
S1-VO 670 4 12.5 263

Table 4.4. Number of SQL queries for creating a single request path.
10000 causal paths are created and averaged to give the average number of
queries needed for a single request path. In all cases, the information needed
to create all paths for all requests can fully reside in memory for the duration
of the run. The standard deviation for all the metrics, except for the read
path, is negligible. However, the standard deviation for the read path is 5,
5, 3, 5, 0 for each of the workloads, respectively.

4.4.3 Querying framework efficiency

In addition to trace capture overheads, an important property of Stardust
is ease of querying. In particular, creating a request flow graph (or causal
path) for a request is a common operation that needs to be efficient. Table 4.4
shows the average number of SQL queries required to create such a path for
each of the workloads (these queries are issued internally). Providing the
number of queries is more useful than providing the time required to create
the path, since that time depends on factors such as the database used,
amount of buffer cache dedicated to the database, whether the database is
over a network link or is local. The number of SQL queries provides a more
standard way to compare the work needed to create a path. All queries are
simple SELECT queries that just select all columns of a row with a given
breadcrumb. These queries do not involve joins (the joins are done by the
algorithm that creates the request flow graph in memory, and not by issuing
JOIN statements to the database). The breadcrumb column has an index
on it.

The time to create a path depends on two main workload factors. First,
the deeper a request flows into the system (e.g., when it misses in the NFS

server cache and has to go to the storage-nodes), the longer it takes to re-
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create its path. Writes, for example, tend to have deeper paths than reads,
since many reads hit in the buffer cache. Second, coalescing (many-to-one)
and splitting (one-to-many) requests causes the path of a request to include
sub-paths of other requests. Re-creating the full path of an original request
currently re-creates the path of all other requests that were coalesced with
it. Thus, the cost of re-creating the write path is usually larger than for
reads. Some workloads do not exhibit sequential behavior (e.g., Postmark),
and little or no coalescing happens for them.

Table 4.4 also shows the amount of data (in form of trace records) needed
to construct the request path. The information can usually reside in memory
for the duration of the workload run, which speeds up the path construction
algorithm. In practice, we have seen individual path creation times ranging
from a few microseconds, when the breadcrumbs are still in the buffer cache
of the Activity DBs, to a few milliseconds when the breadcrumbs need to
be retrieved from disk. For example, creating request flow graphs for all
requests of the OLTP workload when the database resides fully in mem-
ory, takes on average 2714 seconds (147 seconds for the 90546 read requests
and 2567 seconds for the 111858 write requests). The rather large time to
construct write flows is due to write coalescing. As another example, creat-
ing request flow graphs for all requests of the Postmark workload when the
database fully resides in memory, takes on average 526 seconds (42 seconds
for the 25673 read requests and 484 seconds for the 150086 write requests).
For both benchmarks, the time to create the full request flow graphs can
be an order of magnitude or more higher if the database resides on disk or
over the network. We believe that techniques such as sampling could be used
to create request flow paths for a percentage of the requests, thus further
reducing the path construction time. However, we have not experimented
with such techniques.

In addition to the main read and write calls, request flow graphs can
be created for other NF'S calls as well. For example, Figure 4.12 shows the
request flow graph taken by NFS_Create calls from a specific client for the
Postmark workload. A graph is created for 140 randomly chosen requests

and the time between instrumentation points is averaged, as first described
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NFS3_CREATE_CALL_TYPE

140 times --- 23 psecs

MDS_CREATE_OBJECT_CALL_TYPE

140 times --- 1220 psecs

MDS_CREATE_OBJECT_REPLY_TYPE

140 times - 12 psecs

MDS_LOOKUP_CALL_TYPE_MDSCLIENTCACHE_MISS

140 times --- 268 psecs

MDS_LOOKUP_REPLY_TYPE

140 times -—- 10 psecs

iy ——
MDS_APPROVE_WRITE_CALL_TYPE_MDSCLIENTCACHE_MISS

140 times -—- 268 psecs

MDS_APPROVE_WRITE_REPLY_TYPE

140 times --- 6807 psecs

140 times --- 46 psecs

NETWORK_TRANSMIT_OP_TYPE

MDS_FINISH_WRITE_CALL_TYPE

|
140 times - 1151 psecs | 140 times --- 6751 psecs

STORAGE_NODE_WRITE

Figure 4.12. Example (simplified) path of NFS_Create calls. This
path was obtained using the Postmark workload and averaging 140 paths.
The nodes contain information such as the unique identifier of the compo-
nent posting the record and the string name of the record. The edges contain
latency information between two instrumentation points. Some requests may
be processed in parallel. These graphs can be generated using the trace data
and a readily available visualization tool called DOT [GraphViz, 2006].

MDS_FINISH_WRITE_REPLY_TYPE

in Section 4.2.3. Such graphs can be reconstructed offline by querying the
ActivityDBs.

4.4.4 Trace pruning methods

The trace-based approach to measuring performance allows for easy integra-
tion into a system. However, the system is not expected to maintain all raw
traces forever, since they consume storage space. From our current experi-
ence with using these traces, we have found that pruning the CPU, network,

and disk traces to generate per-client performance resource and latency in-
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Figure 4.13. Space savings from pruning. The graph illustrates the
average storage savings from pruning the CPU, network and disk traces to
get demand and latency information. However, full traces of buffer cache
and disk accesses are still kept and their cost dominates. The table beneath
shows the amount of data needed for just resource demands and latency
information as a function of pruning interval 7" (which serves as the graph’s
x-axis as well). The standard deviation is negligible in all cases.

formation is acceptable for performance predictions. However, we keep full
buffer cache and disk traces as well.

Figure 4.13 shows the storage demand after the traces derived from the
workloads are pruned every T units of time. The pruning happens offline,
after the full traces have been collected. As T increases, the amount of trace
data decreases proportionally. The graph shows the amount of trace data
from keeping pruned CPU, network, and disk traces and also full buffer
cache and disk traces (pruned disk traces reveal disk utilization metrics,
whereas the full traces can be used for trace re-play). The table beneath
the graph shows that further savings can be made if the full buffer cache
and disk traces are not kept. The table shows just the capacity needed if
only the per-client, per-resource demands are kept, or if only the latency

graphs are kept. Chapter 5 discusses cases when we have found it useful to
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keep the full buffer cache and disk traces, in addition to the resource and
latency information. In addition, that chapter discusses how models can
predict future resource demands. In those cases, traces can be immediately

discarded once the models have learned how to predict well.

4.5 Summary, lessons learned, and limitations

Stardust is a measurement infrastructure for shared, distributed systems. It
is based on monitoring entry and exit points from software modules that
make use of the four common resource types (CPU, network, buffer cache
and disks). It can be easily extended to monitor other resource types, such
as lock resources. Stardust should be ON at all times, and the collection of
activity records is relatively lightweight. Querying the wealth of information
is done through the SQL language on Activity DBs, which are relational
databases.

We learned several things in the process of working with Stardust traces.
First, the management of the instrumentation points has proven to be a
headache. The instrumentation is inserted manually in the code, and needs
to be maintained as a first class aspect of each instrumented software mod-
ule. Every time the code base is changed, there is the potential that the
request causal paths change. Hence, the person that introduces the change
must also worry about maintaining the instrumentation points. In practice,
we have observed that most instrumentation points are not affected most
of the time. But, sometimes, some are. Ideally, the instrumentation infras-
tructure would be self-maintaining and discover when request causal paths
change and instrument the code automatically. Some dynamic programming
analysis techniques have been successful in automatically instrumenting pro-
grams that reside on a single server (e.g., see papers from the Paradyn
group [Hollingsworth et al., 1994]). A very recent paper discusses extending
these techniques to a distributed environment [Chanda et al., 2007].

Second, Stardust was designed with performance prediction in mind,
and there is still room for improvement if it is to be used for performance

anomaly detection and diagnosis. For the latter, which often seeks to discover
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a problem’s root cause, much more fine-grained instrumentation may be
needed. For example, Stardust maintains an activity record each time a
request goes to the disk subsystem (from the Ursa Minor file system to the
kernel) and comes back (to our filesystem from the kernel). If a disk request
takes unreasonably long, the trace records will not indicate whether the
disk hardware or some module in the kernel slowed it down, because these
components are lumped into one black box.

Third, there is room for maintaining the full request traces with im-
proved encoding (while still maintaining the querying flexibility relational
databases provide). For example, if a file is accessed 1000 times sequentially,
we currently record the file name 1000 times. Doing so consumes significant
storage space. Maintaining records in terms of well-defined “diffs” would be
a good approach [Samples, 1989; Verbowski et al., 2006], but may not easily
fit a database storage constraint.

Fourth, there is much room for improved visualization tools that display
different “views” obtained from the measurement framework. Such views
could be useful for anomaly detection, diagnosis and so on. Challenges in-
clude building automatic tools that show only relevant changes to the system
state during an anomaly. A recent white paper describes efforts within our
research group to build visualization tools on top of Stardust [Sambasivan
et al., 2007].
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5 Case studies with expectation-based

models

Whereas Chapter 4 evaluated the efficiency of the measurement framework,
this chapter evaluates the efficacy of the modeling framework in answering
several important What...if questions. The testbed used in this chapter is a
system that we designed from scratch, Ursa Minor. Hence, we had the op-
portunity to design into it the modeling infrastructure. Appendix A outlines
an experience with incorporating such a framework in a legacy system.
Ursa Minor, first briefly discussed in Section 4.3, is a cluster-based stor-
age system that exposes a large number of performance tuning knobs and
choices. Thus, it provides an excellent testbed for the modeling infrastruc-
ture. This section overviews the knobs and the difficulties administrators

have with tuning them.

5.1 Overview of Ursa Minor's versatility

Traditional storage systems are built around a single-vendor, monolithic disk
array design. Such systems provide high performance and availability, but
they are expensive and do not scale easily. Incremental scaling is not an
option with such systems, as a client must buy and manage another mono-
lithic system when scalability requirements slightly exceed the existing array
system. Ursa Minor is a cluster-based storage system, built from commod-
ity hardware, that has been developed to address these scalability and cost
issues [Abd-El-Malek et al., 2005]. The individual servers are often called

storage-nodes, and each provides a certain amount of CPU, buffer cache and

95
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storage. Incremental scalability is provided by addition of storage-nodes into
the system. These components can be inexpensive mass-produced commodi-
ties and often contain heterogeneous resources. Even when buying from the
same vendor, year after year, the components change (e.g., they may con-
tain faster CPUs, more memory, and faster network cards). Ursa Minor is
designed to be shared among many clients with potentially different work-
loads.

Commodity hardware is often less reliable than customized hardware,
and individual storage-nodes usually have lower performance than cus-
tomized disk arrays. To make up for the lower storage-node reliability and
performance, data is strategically distributed to enable access parallelism
and reliability in the face of node failures. A data distribution for a dataset
describes how it is encoded (e.g., replication vs. erasure coding) and assigned
to storage-nodes within the cluster.

There is no single data distribution that is best for all data. The data dis-
tribution choice has major impact on three crucial system metrics: availabil-
ity, confidentiality, and performance. The data that a bank stores, for exam-
ple, has different availability goals than the data of an online retailer [Keeton
et al., 2004], and thus may require a different encoding. The online retailer
may have a stricter confidentiality goal than an email provider and thus may
require encryption. The online retailer may have more stringent performance
requirements than the bank and may require that response times be kept
below a threshold. Ursa Minor is versatile, in that it allows each client to
use a different data distribution.

In face of system and workload heterogeneity and system scale, the trade-
offs involved when choosing the data distribution for a client or choosing how

to upgrade the system, are complicated.

5.1.1 Challenges in predicting data distribution consequences

Predicting performance for a data distribution is a complex function of I/O
workload characteristics and storage-node attributes. Selecting the right en-

coding requires knowledge of the access patterns and the bottleneck re-
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sources. For example, small random-access writes often interact poorly with
erasure coding, but large streaming writes benefit from the reduced net-
work bandwidth relative to replication. Data placement requires similar
knowledge plus information about how workloads will interact when sharing
storage-nodes. For example, two workloads that benefit from large caches
may experience dramatic performance decreases if assigned to the same
storage-node. Answering What...if questions about data distribution choices
requires accounting for all such effects.

Predicting data encoding consequences: A data encoding specifies
the degree of redundancy with which a piece of data is encoded, the manner
in which redundancy is achieved, and whether or not the data is encrypted.
Availability requirements dictate the degree of data redundancy. Redun-
dancy is achieved by replicating or erasure coding the data [Chen et al.,
1994; Rabin, 1989]. Most erasure coding schemes can be characterized by
the parameters (m,n). An m-of-n scheme encodes data into n fragments
such that reading any m of them reconstructs the original data. Figure 5.1
shows an example 3-of-5 encoding that tolerates up to two storage-node
crashes. Other schemes that tolerate the same number of crashes include
1-0f-3 replication, 4-of-6 and 10-of-12 erasure coding schemes. Confidential-
ity requirements dictate whether or not encryption is employed. Encryption
is performed prior to encoding and decryption is performed after decoding.
Once the availability and confidentiality requirements are known, we need
to know the performance implications of picking any candidate encoding
scheme.

There is a large trade-off space in choosing an encoding scheme. Fig-
ure 5.2 illustrates several of these tradeoffs. For example, as n increases,
relative to m, data availability increases. However, the storage capacity con-
sumed also increases, as does the network bandwidth required during data
writes. As m increases, the encoding becomes more space-efficient; less stor-
age capacity is required to provide a specific degree of data redundancy.
However, availability decreases; more fragments are needed to reconstruct
the data during reads. When encryption is used, the confidentiality of the

data increases, but the demand on CPU increases (to encrypt the data).
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Figure 5.1. Example 3-of-5 encoding scheme. This diagram illustrates a
client encoding a block of data using the 3-of-5 encoding scheme and writing
to 5 storage-nodes. Another client is decoding the data from 3 storage nodes.
3-of-5 encoding tolerates loss of up to 2 storage-nodes.

The workload for a given piece of data should also be considered when
selecting the data encoding. For example, it may make more sense to increase
m for a write-mostly workload, so that less network bandwidth is consumed.
As the evaluation section shows, 3-way replication (i.e., a 1-of-3 encoding)
consumes approximately 40% more network bandwidth than a 3-of-5 erasure
coding scheme for an all-write workload. For an all-read workload, however,
both schemes consume the same network bandwidth. Others have explained
these trade-offs in significant detail [Weatherspoon and Kubiatowicz, 2002;
Wylie, 2005].

Because of this large trade-off space and the dependence on workload
characteristics, it is very difficult for an administrator to predict the conse-
quences of an encoding change — hence the need for system self-prediction.
This chapter shows that Observer can answer high-level performance ques-
tions related to throughput and latency by answering and combining sub-
questions of the form “What would be the CPU /network/storage demand
of client ¢, if data is encoded using scheme E?”.

Predicting data placement consequences: In addition to selecting

the data encoding, the storage-nodes on which encoded data fragments are
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Figure 5.2. Example tradeoffs when choosing the encoding scheme.
The administrator currently has to understand the direction, size and im-
portance of these arrows in order to pick the right encoding scheme.

placed must also be selected. When data is initially created, the question of
placement must be answered. Afterwards, different system events may cause
the placement decision to be revisited — for example, when new storage-
nodes are added to the cluster, when old storage-nodes are retired, and when
workloads have changed sufficiently to warrant re-balancing load. Quantify-
ing the performance effect of adding or subtracting a workload from a set of
storage-nodes is non-trivial. Each storage-node may have different physical
characteristics (e.g., the amount of buffer cache, types of disks, and network
connectivity) and may host different pieces of data whose workloads lead to
different levels of contention for the physical resources.

Workload movement What...if questions (e.g., “What is the expected
throughput /response client ¢ can get if its workload is moved to a set of
storage-nodes S7”) need answers to several sub-questions. First, the buffer
cache hit rate of the new workload and the existing workloads on those
storage-nodes need to be evaluated (i.e., for each of the workloads the
question is “What is the buffer cache hit rate if I add/subtract client c’s

workload to/from this storage-node?”). The answer to this question will

depend on the particulars of the buffer cache management algorithm the
storage-node uses. Second, the disk demand (or service time) for each of
the I/O workloads’ requests that miss in buffer cache will need to be pre-
dicted (i.e., for each of the workloads, the question is “What is the average

I/0O service time if I add/subtract client ¢’s workload to/from this storage-
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Figure 5.3. Automation agents and low-level What...if models. A log-
ical and physical view of the modeling and monitoring infrastructure that
is weaved within the system. Automation agents receive What...if questions
and answer them by consulting and combining resource-specific What...if
models.

node?”). Third, the network load on each of the storage-nodes that results
from adding/subtracting workloads needs to be predicted as well.

It is challenging for administrators to answer What...if questions such as
the above. Doing so requires one to understand the system internals (e.g.,
buffer cache replacement policies) and to keep track of the workloads each
resource is seeing (e.g., buffer cache records for each workload and storage-

node).

5.2 Incorporating expectation-based models in Ursa Minor

This section describes the integration of parts of Observer (the expectation-
based models) in Ursa Minor. Figure 5.3 shows two views of the way the
models are incorporated in Ursa Minor. The first (a) is a logical view. The
administrator (or internal tuning modules) interacts with automation agents
through high-level What... z_f questions. The automation agents have an un-
derstanding of the underlying queuing network in the system and solve the

necessary queuing equations to answer the What...if questions. At the ser-
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Figure 5.4. Simplified queuing network in Ursa Minor. This queuing
diagram shows the path for writes, from a single client. The clouds represent
major software components in Ursa Minor.

vice center level, each service center answers its own set of low-level What...if
questions and keeps its own statistics in Activity DBs, as first described in
Chapter 4. The second (b) is a view of the physical system. Each server
in the cluster, in addition to hosting specific services, monitors itself and
exposes a set of low-level What...if questions.

An important message to take away is that Observer and Stardust are
built into Ursa Minor (although most of the modeling analysis is currently
done offline). Each server has dedicated resources (CPU, memory, network,

disk) to host this infrastructure.

5.2.1 Queuing network structure

Figure 5.4 shows a simplified queuing network (only for write requests) in-
side Ursa Minor, mirroring the system diagram shown in Figure 4.4. We
explicitly defined the structural behavior of the system during the system
design phase. This was not an easy task. However, the energy spent on it is
a small fraction of the energy already spent verifying the correctness of the

various algorithms and protocols in the system. Once the correctness of the



102 . Enabling what-if explorations in systems

protocols has been verified, the “extra work” needed to codify expectations
in the form of a queuing network is minimal. Concretely, several months
were spent by several people designing and reviewing how requests would
flow in Ursa Minor, whereas translating that previous work into a queuing

network took me less than a month.

5.2.2 Performance expectations

This section describes the main service center types in Ursa Minor and how

each of them uses built-in models to answer specific What...if questions.

CPU encode/decode What. . . if model: direct measurement

The goal of the client CPU model' is to answer sub-questions of the form
“What is the CPU demand D, cpy for requests from client ¢ if the data is
encoded using scheme E?”. The CPU model uses direct measurements of
encode/decode and encrypt/decrypt costs to answer these questions. Direct
measurements of the CPU cost are acceptable, since each encode/decode
operation is short in duration. Direct measurements eliminate the need to
construct analytical models for different CPU architectures. Inputs to the
CPU model are the hypothetical encoding E and the measured read:write
ratio of the workload. Each time the above question is asked, the CPU
model encodes and decodes one block several times with the new hypothet-
ical encoding and produces the average CPU demand for reads and writes
(Chapter 6 shows how the answer can be remembered after the first time,
however, the rationale for doing so will be deferred to that chapter).

As Section 6.4.3 elaborates?, a secondary CPU-consuming service center,
which we initially did not consider, models the CPU consumed by TCP
network stack processing inside the kernel. There are regions of the workload-
system operation space for which CPU consumed by the network stack is

!There is CPU consumed at the storage-nodes and MDS as well (e.g., during data copy-
ing). However, the storage-node and MDS CPUs do not become a bottleneck in practice,
so we focus on the client CPU, which is used for encoding/decoding and encryption.

2Section 6.4.3 describes how we initially discovered that we were not modeling the CPU
consumption correctly.
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non-negligible. The CPU consumed by the network stack is a function of
the request size, and the model uses direct measurements in this case too.
A tool called Iperf [Iperf, 2007] generates network-bound workloads and is

run with various request sizes to record the CPU consumption incurred.

Network What. . . if model: analytical model

The goal of the network model is to answer sub-questions of the form “What
is the network demand D, npr for requests from client ¢ if the data is en-
coded using scheme E?”. To capture first-order effects, the network model
uses a simple analytical function to predict network demand based on the
number of bytes transmitted. Inputs to the network model are the hypo-
thetical encoding F and the measured read:write ratio of the workload. In
Ursa Minor, a write updates n storage-nodes, and a read retrieves data from
only m storage-nodes. The network demand for a single request is the min-
imum time needed to transmit the data for a request (i.e., if that request
was the only one using the network) plus a fixed cost for the network stack
processing. The time to transmit data equals the amount of data transmit-
ted divided by the network bandwidth. The fragment’s size (a fragment is a
fraction of data sent to each storage-node) is the original request block size
divided by m:

Bytes sent = preqaBlockSize + pwm-teBlock:é%ﬂzeﬁ (5.1)
m
Byt t
Time % + network setup time (5.2)

Modeling modern LAN network protocols can be much more compli-
cated, in practice, since there are factors outside of Ursa Minor’s control to
be considered. For example, we do not have direct control over the switches
and routers in the system. TCP can behave in complex ways depending on
timeouts and drop rates within the network [He et al., 2005]. However, the

above analytical model is a good starting point, and it can be refined by the
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observation-based models (e.g., the network setup time may be server and

switch dependent).

Buffer Cache What. . . if model: simulation-based model

The goal of a general buffer cache model is to answer sub-questions of the
form “What is the probability p. grr that requests from client ¢ are ab-
sorbed?® in cache, if the cache size is X MB?” As shown in Figure 5.4, there
are caches at many points in the system. In this dissertation, we focus the
discussion on the buffer cache at the storage-nodes.

A disk access requires orders of magnitude more time than a buffer cache
access, hence the performance that the client sees is very much dependent
on the storage-node’s buffer cache. The buffer cache behavior of a workload
depends on its access patterns, working set size, and the cache size and
replacement policy.

The buffer cache model uses simulation to make a prediction. The model
uses buffer cache records of each of the Wy, Ws, ..., W,, workloads, collected
through Stardust, and replays them using the buffer cache size and policies
of the target storage-node. In Ursa Minor, the cache size is partitioned and
dedicated to each client (as further described in Section 5.3.4). Hence, the
analysis above can be done independently for every workload W;, without
considering how other workloads may interfere with it (because the interfer-
ence is explicitly disallowed — there are potential benefits of interference,
such as sharing cache blocks, but, in practice, sharing happens rarely.) The
What...if model computes, for each workload, a cache curve that indicates
the cache absorption rate as a function of the cache size.

The output from this model is the absorption rate and a trace of requests
that have to go to disk for each workload. Simulation is used, rather than an
analytical model, because buffer cache replacement and persistence policies
are often complex and system-dependent. In Ursa Minor, they cannot be
accurately captured using analytical formulae. The storage-node buffer cache

3For reads, “absorbed” means the request is found in cache; for writes “absorbed”
means a dirty buffer is overwritten in cache.
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policy in Ursa Minor is a variant of least-recently-used (LRU) with certain

optimizations.

Disk What. . . if model: simulation-based and analytical model

The goal of the disk model is to answer sub-questions of the form “What is
the average service time D, pjsk of a request from client c if that request
accesses a particular disk?” The average service time for a request is depen-
dent on the access patterns of the workload and the policies of the under-
lying storage-node. Storage-nodes in Ursa Minor are optimized for writes,
utilize NVRAM, use a log-structured layout on disk [Soules et al., 2003],
and prefetch aggressively [Wachs et al., 2007]. Request scheduling is round-
robin across each workload, where the length of the scheduling quanta for
each round is determined analytically as described by Wachs et al. [2007].
The quanta is determined using a combination of the very buffer cache and
disk models this section describes; a sketch of the approach is given in Sec-
tion 5.3.4, which also sketches the approach taken to determine how deep
prefetching must be.

When a disk is installed, a model is built for it. The model is based on the
disk’s average random read RN D,..qq and write RN D ;e service times and
average sequential read SEQ,cqq and write SEQqrite service times. These
four parameters are usually provided by disk vendors and are also easy to
extract empirically.

The disk model is a combination of simulation-based and analytical
methods. It receives the sequence of I/Os from each of the workloads (from
the buffer cache What...if model), scans the combined trace to find sequen-
tial and random streams within it, and assigns an expected service time
to each request. The service time is based on the four extracted disk pa-
rameters, the length of the scheduling quanta, and the prefetching policy.
Within a quanta, each request gets a service time as follows. Let RUN be
an ordered set of requests that are consecutively sequential (reads or writes

respectively), and let RUN[i] be the i*" request in the run. Then, within a
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quanta Q.:

SEQeqq  if ¢ € read RUN A ¢! # RUNJ1]

9 ) SEQurite if ¢ € write RUN A ¢ # RUN(1]
¢-DISK ) RNDy,eqq  if ¢ = read RUN[1] V ¢ ¢ RUN
RN Dyypite  if ¢ = write RUN[1] V ¢! € RUN

(5.3)

Thus, when considering the quanta length |Q.| for each of the clients,
the expected service demand for each client request, assuming request from

all clients arrive uniformly distributed during the quanta times, is:

v Q| ' Doire Q51 (22201951
D prsk = (m) D prsk + ( ij|Qj’ < ! 5 > (5.4)

The length of the quantas to achieve a desired client response time and

throughput are estimated by inverting the above equation and solving for
the quanta times. The description of the policy for choosing the quanta times
in Ursa Minor is beyond the scope of this thesis, and is explained by Wachs
et al. [2007]. The mechanism is sketched in Section 5.3.4.

5.2.3 Answering high-level What. .. if questions

To predict client ¢’s throughput after a data distribution change or resource
upgrade, the automation agents solve a queuing network by consulting the
resource-specific What...if models to determine which of the resources will
be the bottleneck resource. Client ¢’s peak throughput will be limited by the
throughput of that resource. As first described in Section 3.3.1, a tool like
the one provided by Gunther [2005], provides exact throughput and response
time solutions.

For example, a workload movement What...if question of the form “What
is the expected throughput /response client ¢ can get if its workload is moved
to a set of storage-nodes S?7” needs answers to several sub-questions. First,
the buffer cache hit rate of the new workload and the existing workloads on

those storage-nodes need to be evaluated by the buffer cache model. Sec-
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ond, the disk service time for each of the I/O workloads’ requests that miss
in buffer cache will need to be predicted by the disk model. Third, the net-
work load on each of the storage-nodes that results from adding/subtracting
workloads needs to be predicted by the network model. Using the throughput
bounding formula in Table 3.2, bounds can be provided on peak throughput

that each workload could achieve if sharing the storage-nodes S.

5.3 Evaluation

This section evaluates the use of expectation-based queuing models in an-
swering several What...if questions on data distribution changes and com-
ponent upgrades. Initially experiments are shown to evaluate the individual
What...if models in isolation. Then, the complexity of the experimental setup
increases gradually and multiple What...if models are used to answer high-

level What...if questions.

5.3.1 Experimental setup

The experimental setup and workloads used are identical to the ones first
described in Section 4.4.1. In addition to the benchmarks described there,
we use the following benchmark in this section:

SSIO_BENCHMARK: This micro-benchmark allows control of the
workload read:write ratio, access patterns, and number of outstanding re-
quests. Performance is reported in terms of requests/second, MB/s, and
response time per request. The access size is 32 KB for this benchmark. The
number of outstanding requests is N, = 8 and the file size is 32 MB, unless
otherwise mentioned. This workload is closed-loop.

For conciseness, we present how Observer chooses the right data dis-
tribution by using six data encodings. These results are indicative of the
many other encodings we explored. “l-of-1” refers to 1-way replication.
“1-of-1 encr” is 1-way replication where the data is also encrypted to ensure
confidentiality. For encryption, we use the AES cipher with a key size of 128
bits in CBC mode. “1-0f-3” is 3-way replication, which tolerates two storage-

node crashes. “1-of-3 encr” is 3-way replication with encryption. “3-of-5” is
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an erasure coding scheme that tolerates two storage-node crashes, but is
more storage efficient than “1-of-3”. “3-of-5 encr” is the “3-of-5” scheme
with encryption.

Unless otherwise mentioned, all experiments are run ten times, and the
average and the standard deviation are reported. The average client think

time Z. is zero in all experiments.

5.3.2 Individual resource models

This section evaluates the resource-specific What... z_f models in isolation. The
CPU and network What...if models are based on direct measurements, hence
the prediction accuracy is usually perfect. However, we defer to Section 6.4
discussion of how surprising, non-linear behavior for both resources mani-
fests itself. For those two resources, we just show how resource consumption
changes as a function of encoding choice. The memory and disk What...if
models are based on simulation and analytical models, respectively, and so
we concentrate on the prediction accuracy of those models.

CPU What...if model: Recall from Section 5.2.2 that the goal of the
CPU model is to answer questions of the form “What is the CPU demand
D cpy for requests from client c if the data is encoded using scheme E7”.
Figure 5.5 shows how the CPU demand varies based on the encoding scheme
used. The model runs 100 encode/decode operations and reports the average.
Some encoding schemes differ from others in CPU demand by more than an
order of magnitude, and as we show later in this evaluation, the client CPU
can become a bottleneck. Two trends are worth noting. First, the cost of
encryption dominates the cost of data encoding/decoding. Second, erasure
coding requires more CPU than replication for encoding data.

Network What...if model: Recall from Section 5.2.2 that the goal of
the network model is to answer sub-questions of the form “What is the
network demand D, ypr for requests from client ¢ if the data is encoded
using scheme E?7”. Figure 5.6 shows how the network demand varies based
on the encoding scheme used. A trend worth noting is that replication places

a larger demand on the network than erasure coding, for the same number
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Figure 5.5. CPU What...if model output. This figure illustrates how the
CPU demand per request_ differs based on the chosen data encoding. The
cost for encoding data (during a write) and decoding it (during a read) are
shown for six encoding choices.

of storage-node crashes tolerated. We defer discussion of variance in network
demand to Section 6.4.3, because it is surprisingly specific to the network
switch type.

Buffer Cache What...if model: Recall from Section 5.2.2 that the goal
of the buffer cache model is to answer sub-questions of the form “What is the
probability p. g7 that requests from client ¢ are absorbed in cache, if the
cache size is X MB?” Figure 5.7 illustrates the accuracy of the buffer cache
model for predicting read hits under three workloads of varying working-set
size and access patterns. The encoding for these workloads is 1-of-1. This
experiment illustrates what would happen if, for example, another workload
was added to the storage-node such that the amount of buffer cache available
to the original one shrank. Or, if a workload was removed from the storage-
node, and the amount of buffer cache available to the original one increased.

For each of the workloads, Stardust collected the original buffer cache
reference trace when the buffer cache size was 512MB, and the What...if

model predicted what would happen for all other buffer cache sizes. (The
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Figure 5.6. Network What...if model output. This figure illustrates the
network demand per request as a function of the chosen data encoding.

choice of 512 MB is rather arbitrary, but we have verified that any other size
in the range shown gives similar results).

An important metric for evaluating the efficiency of the buffer cache
What...if model is the simulator’s throughput, in terms of requests that can
be simulated per second. We have observed that for cache hits the simulator
and real cache manager need similar times to process a request. The sim-
ulator is on average three orders of magnitude faster than the real system
when handling cache misses. The simulator spends at most 9,500 CPU cycles
handling a miss, whereas, on a 3.0 Ghz processor, the real system spends the
equivalent of about 22,500,000 CPU cycles.

Disk What...if model: Recall from Section 5.2.2 that the goal of the
disk model is to answer sub-questions of the form “What is the average
service time D, prsk of a request from client ¢ if that request accesses a
particular disk?” Figure 5.8 illustrates the accuracy of the disk model. The
buffer cache model produces a disk reference trace (for requests that miss
in buffer cache). The disk model takes those requests, analyzes their access

patterns, and predicts individual request service times. The model captures
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Figure 5.7. Buffer Cache What...if model output. This figure illustrates
the accuracy of the buffer cache simulator in predicting the storage-node
buffer cache read hit rate under various workloads. For Postmark and I10-
zone, the measured and predicted hit rate are almost indistinguishable, in-
dicating excellent prediction accuracy. Error bars in all cases are invisible,
since the variance is negligible.

well the service time trends, but there is room for improvement, as seen in
the Postmark case. The rather large inaccuracy at the 512 MB buffer cache
size shows a limitation of expectation-based models. It occurs because more
requests are hitting in the buffer cache, and the few requests that go to disk
are serviced in FIFO fashion, thereby reducing the efficiency of the disk head
scheduler. Recall, from Section 5.2.2, that the disk model is built using four
parameters extracted from the disk: random-access read and write service
times and streaming read and write service times. The reported service times
usually assume that the disk queue is full, which allows for more efficient
disk scheduling. Thus, our disk model also ends up assuming that the disk
queues are always full when making a prediction. That leads to inaccuracies
when the disk queue is not full, as is the case for Postmark at 512 MB.

In general, predicting the size of the disk queue requires assumptions

about arrival patterns (e.g., Poisson arrivals) that we do not wish to make.
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Figure 5.8. Disk What...if model output. This figure illustrates the accu-
racy of the disk model in predicting request service times for several work-
loads with different access patterns. Error bars in all cases are invisible, since
the variance is negligible.

However, as described in Section 6.3, statistical observation-based models
may be able to specialize their predictions by “discovering” correlations be-
tween attributes that the designer could not build expectation-based models

for (like queue size) and performance.

5.3.3 Answering high-level What. . . if questions

This subsection evaluates the accuracy of the automation agents in predict-
ing throughput and response time using several of the What...if models in
combination.

Predicting cost of encryption: The first experiment is illustrated in
Figure 5.9. The high-level performance question that this experiment an-
swers is “What is the peak throughput client ¢ can get if its workload’s en-
coding changes from 3-way replication to 3-way replication with encryption
(or the other way around)?”. The workload hits fully in the storage-nodes’

buffer caches, and, hence, the two resource types that could be a bottleneck
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Figure 5.9. Predicting peak throughput for CPU-bound workloads.
SSIO_BENCHMARK is used to measure throughput for different read:write
ratios. The highest standard deviation seen among all measured data points
was 2 MB/s.

are the CPU and network resources. For each of the predicted datapoints in
the graph, the CPU and network model report on the demands placed on
those resources respectively. The automation agents then use the throughput
bounding formula in Table 3.2 to determine the peak throughput resulting
from the bottleneck resource.

There are several trends worth noting. First, the predictions track well
the actual throughput lines. Second, when using encryption, the client’s
CPU is the bottleneck resource. Third, although the CPU cost of encoding
is higher than that of decoding when using encryption, the throughput in-
creases slightly as the read percentage increases. This is because writes are
sent to three machines, thus requiring more network bandwidth than reads.
As described in Section 5.2.2, the higher the network bandwidth required,
the higher the CPU demand needed for TCP processing. Thus, less CPU
time is available for the encoding and encryption of data. Fourth, as the
read percentage increases, the throughput for the encoding without encryp-

tion increases, since reads obtain data from only one of the storage-nodes.
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Figure 5.10. Predicting peak throughput for network-bound work-
loads. SSIO_BENCHMARK is used to measure throughput for different
read:write ratios. The highest standard deviation seen among all measured
data points was 1.75 MB/s.

Writes, instead, need to update all three storage-nodes, thus placing more
load on the network and CPU.

Replication vs. erasure codes: The second experiment is illustrated
in Figure 5.10. The high-level performance question that this experiment
answers is “What is the peak throughput client ¢ can get if its workload’s
encoding changes from 3-way replication to a 3-of-5 erasure coding scheme
(or the other way around)?”. A 3-of-5 scheme is more storage efficient than
3-way replication, while tolerating the same number of storage-node crashes
(two).

The workload hits fully in the storage-nodes’ buffer caches, and, hence,
the two resource types that could be a bottleneck are the CPU and network
resources. For each of the predicted datapoints in the graph, the CPU and
network model report on the demands placed on those resources respec-
tively. The automation agents then use the throughput bounding formula in
Table 3.2 to determine the peak throughput resulting from the bottleneck

resource.
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A trend worth noting is that, for a mostly-write workload, the 3-of-5
encoding performs best, since the workloads are network bound. For 3-way
replication the amount of data that needs to be transmitted to tolerate two
crashes is three times more than the data that needs to be transmitted when
no crashes are tolerated. But, the 3-of-5 scheme only transmits g times more
data. Hence, the network demand is less for that scheme.

Data placement: The next experiment answers the question “What is
the peak throughput client A can get if its workload is moved to a new set
of storage-nodes?”. Client A’s workload is encoded using 3-way replication.
Two sets of possible storage-nodes are considered for data placement. The
first set S is currently not utilized. However, one of the nodes is behind a
100 Mbps network (the other nodes are behind a 1000 Mbps, or gigabit, net-
work). The second set Sy currently services a second workload, and Stardust
measures a utilization of 50% on the network of the set S; nodes.

The workload hits fully in the storage-nodes’ buffer caches, and, hence,
the two resource types that could be a bottleneck are the CPU and network
resources. For each of the two choices, the CPU and network model report on
the demands placed on those resources respectively. The automation agents
then use bottleneck analysis to determine the peak throughput resulting
from the bottleneck resource. Figure 5.11 shows the accuracy of the predicted
performance.

Effects of N, on throughput and response time: The next ex-
periment answers the question “What is the distribution of throughput
and response time if the number of outstanding requests N, from client
¢ changes?”. It is intuitive that the client’s throughput will peak after a
certain number of outstanding requests, while the response time may con-
tinue to increase after that point as more requests are queued. Our models
quantify the change in both metrics.

Figure 5.12 illustrates the prediction accuracy for a client that is using
the 3-of-5 scheme and is network-bound. After the request pipeline fills up
(N} = 3), the throughput peaks, while the response time increases linearly

as the formulae in Section 3.3.1 predict.
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Figure 5.11. Predicting peak throughput for workload movements.
The high-level performance question that this experiment answers is “ What
is the peak throughput client A can get if its workload is moved to a new set
of storage-nodes?” In this experiment, the first set of storage-nodes is not
utilized, but one of the storage-nodes in that set is behind a slow network.
The second set of storage-nodes contains a workload that places a 50%
utilization on the network. Both SSIO_ BENCHMARK workloads consist
entirely of writes.

5.3.4 Modeling scalability and complexity

This next experiment illustrates the implications of having no support in
the system for separability of analysis when analyzing the performance of
workloads. Lack of this property is a show-stopper for queuing analysis,
as first discussed in Section 3.3.3. Without separability of analysis, each
workload’s prediction needs to be re-evaluated each time another workload
is added by considering every possible way requests from those workloads
might interfere. Such re-evaluation is expensive (sometimes prohibitively
so, such as in the case of the buffer cache simulator. It would have to be
invoked during each re-evaluation step to examine all possible interleavings
among workload requests). Often, to sidestep the need to re-evaluate all

possible interleavings, either worst-case predictions are made that assume
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Figure 5.12. Predicting throughput and response time as a function
of N.. The high-level performance question that this experiment answers
is “What is the distribution of throughput and response time if the number
of outstanding requests N, from client ¢ changes?” SSIO_BENCHMARK is
used to control the number of outstanding requests. The workload consists
entirely of reads. The highest standard deviation seen among all measured
throughput data points was 2.2 MB/s, and among measured response time
data points was 0.1 ms.

requests always interfere in the worst possible way with one another, or
only a few interleavings possibilities are examined. For example, for a disk,
worst-case interleaving happens when two requests require data that resides
furthest apart in terms of disk seek distance and rotational distance. It
is clear that, in storage-systems, worst-case predictions can be one to two
orders of magnitude worse than best-case predictions.

A mechanism that ensures performance insulation ensures, among other
things, that once a workload gets a “share” of a resource, no other work-
load can steal that share away (“share” is used loosely here. It could be a
scheduling quanta for the CPU, network and disk resources, or a fraction of
the buffer cache size).

The experiment in this section is also concerned with the data placement

question “What is the peak throughput client B can get if its workload
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Figure 5.13. Predicting peak throughput from workload interfer-
ence. The high-level performance question that this experiment answers
is “What is the peak throughput client A can get if its workload is moved
to a new set of storage-nodes?” SSIO_.BENCHMARK is used to control
the workload access patterns. The error bars indicate the 95% percentile of
throughput.

is moved to a new set of storage-nodes?”. The encoding is again 3-way
replication but there are several setup differences. The first set of nodes Sy
is currently being used by a streaming workload A that hits in the buffer
cache of the storage-nodes. Workload B is also a streaming workload, and
the administrator wants to know the performance implication of moving
that workload to the S set of storage-nodes. Figure 5.13 shows the results.

For this particular experiment, the models have two options. The first
option is to predict worst-case behavior. The models would assume all re-
quests miss in cache and all requests incur a large seek and rotational time
from the disk. The second option, shown in Figure 5.13, is to consider only
one of the many interleaving options and predict for that interleaving. Both
options are unsatisfactory, but it would be prohibitively expensive to evalu-
ate the buffer cache and disk models for all request interleavings.

How performance insulation helps to keep models simple:
Rather than going with the above options, we chose to change the system

algorithms to reduce the interference to start with. Our solution, perfor-
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mance insulation, hinted at throughout Section 5.2.2 as key to making the
What...if models work, was developed in Ursa Minor by Wachs et al. [2007].
The complete work on making the necessary system changes to enable per-
formance insulation is not a direct contribution of this dissertation. However,
the models developed in this dissertation were the underlying technology to
help with performance insulation; in turn, performance insulation allowed
the models to stay simple, by reducing complexity from uncontrolled inter-
ference in the system. Below, we sketch how the models helped the system
isolate the workloads from one another at the storage-nodes.* The interested
reader is advised to consult [Wachs et al., 2007] for the full details.

Disks involve mechanical motion in servicing requests, and moving a
disk head from one region to another is slow. The worst-case scenario is
when two sequential access patterns become tightly interleaved causing the
disk head to bounce between two regions of the disk; performance goes
from streaming disk bandwidth to that of a random-access workload. Like-
wise, cache misses are two orders of magnitude less efficient than cache hits.
Without proper cache partitioning, it is easy for one data-intensive service
to dominate the cache with a large footprint, significantly reducing the hit
rates of other services. Two consequences of disk and cache interference are
significant performance degradation and lack of performance predictability
(e.g., to predict the performance of a streaming workload, one must ana-
lyze all possible ways in which other workloads may interfere with it). As a
result, interference concerns compel many administrators to statically par-
tition storage infrastructures among services.

Our implementation of performance insulation combines three mecha-
nisms plus automated configuration to achieve the above goal. First, detect-
ing sequential streams and using sufficiently large prefetching/write-back
ranges amortizes positioning costs to achieve the configured efficiency value
of streaming bandwidth. The disk model helps with automatically determin-
ing the prefetch size (e.g., it answers a series of What...if questions on how

4Others have described the mechanisms needed to insulate performance for other re-
sources like CPU and network [Banga et al., 1998; Reumann et al., 2000].
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performance would change as a function of the prefetch size and chooses the
best answer).

Second, explicit cache partitioning prevents any one service from squeez-
ing out others. To maximize the value of available cache space, the space al-
located to each service is set to the minimum amount required to achieve the
configured efficiency. For example, a service that streams large files and ex-
hibits no reuse hits only requires enough cache space to buffer its prefetched
data. The cache model performs on-line cache simulation to determine the
required cache space (e.g., it answers a series of What...if questions on how
performance would change as a function of the cache size and chooses the
best answer).

Third, disk time scheduling quanta are used to separate the disk 1/O
of services, eliminating interference that arises from workload mixing. The
length of each quantum is determined analytically by a combination of the
cache and disk models.

The combination of cache partitioning, deep prefetching, and quanta-
based disk scheduling leads to workloads being sufficiently insulated from
one another. The current policy in Ursa Minor allows the performance of
each of n workloads to be analyzed independently and provides soft guaran-
tees that whenever the n workloads are combined, each gets 1/n'" of their
stand-alone throughput. The models help with automatically choosing the
right cache size, prefetching depth, and scheduling quanta.

Going back to Figure 5.13, each of the workloads is analyzed indepen-
dently and assigned a cache size, prefetching size and scheduling quanta so
that the efficiency when combined would be close to 1/2 of their original
efficiency®. In this particular setup, the variance in performance is also re-
duced, however, performance insulation does not necessarily reduce variance

at all times, as explained by Wachs et al. [2007].

®1/n is the ideal efficiency. As Wachs et al. [2007] discusses, there are several reasons
why the theoretical ideal may be slightly higher than what is practically possible to achieve.



5.4 Summary, lessons learned, and limitations . 121

5.4 Summary, lessons learned, and limitations

This chapter illustrated the usefulness of Observer, the modeling infrastruc-
ture, when answering What...if questions related to data distributions and
resource upgrades in Ursa Minor. The first part of Observer (the expectation-
based models) made accurate predictions in common regions of operation.
The expectation-based models are treated as first-class citizens in Ursa Mi-
nor.

A main lesson learned in this chapter is that, if the models appear to get
too complex, it could be time to look at the system algorithms and simplify
them. Subtle changes in the system algorithms can make a large difference
in inherent system predictability. In particular, performance insulation in
Ursa Minor allowed the behavior of the individual workloads to be more
predictable, by allowing each workload to be analyzed independently. In
turn, that allowed the models to remain simple, and still predict well.

An interesting area worth exploring in the future is extending the
What...if models to software components. For example, it would be interest-
ing to examine whether questions of the form “What happens to performance
if T upgrade a software component (e.g., hash algorithm)?” can be answered.
Currently the models only predict the effects of hardware upgrades.

A discussion of other limitations of expectation-based models, together

with ways to address some of them, is deferred to Chapter 6.
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6 Towards robust modeling for the

unexpected

Our experiences to date with using the expectation-based models presented
in Chapter 3 and Chapter 5 have been positive. However, there have been
times when the models proved to be too brittle and failed to predict well.
From our initial experience, we found several reasons for being cautious with
the initial models. These reasons are illustrated in Figure 6.1.

Misconfigured or buggy components: Systems may be designed and
implemented well, but could be misconfigured when deployed. Also, some-
times systems are designed well, but the implementation may not perform
as expected in certain circumstances. In these cases, the models’ predic-
tions, which contain simplified design invariants, may be different from the
system’s behavior. Misconfigurations and performance bugs that we have
seen include DB table placement misconfigurations causing excessive lock-
ing, buffer cache misallocations, routing errors, incorrect implementation of
disk drivers that leads to poor performance, etc.

Limited or incorrect behavioral models: The models I initially built
were not flawless either. In general, most individual resource models have re-
gions of system-workload interactions in which they work well, and regions
in which they do not. Reasons that such regions exist include non-linear
behavior that is mathematically difficult to model and non-deterministic
behavior that can only be statistically modeled. In addition, incomplete un-
derstanding by the model creator on how the system behaves under certain

conditions can lead to incorrect behavioral models (e.g., behavior of a RAID
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Missing structural information

Lack of internal knowledge misconfiguration

Figure 6.1. Brittleness of expectation-based models. In practice, some
system components may be buggy or misconfigured, models may have lim-
ited regions of operation, and some system components may be black-box
and not expose enough measurements.

array when one of the disks has failed is more difficult to model than the
non-failure behavior).

Limited inputs to the models: We had complete access to the source
code of Ursa Minor, hence Stardust, as Chapter 4 described, was able to
provide the models with good measurements from it. Even in Ursa Minor,
however, Stardust only monitors the service centers along the critical path
of requests; it does not monitor the many background maintenance activi-
ties, such as the buffer cache syncer daemon, garbage collection thread(s),
etc. This reflected my perception that time is saved by monitoring only
the critical path of requests. In many scenarios, maintenance activities do
not change the predictions significantly; however, when they did, we did
not have enough information to find the root cause of the problem. Ursa
Minor also makes use of legacy components (e.g., the Linux kernel), which
we treat as black-box. These legacy components do not provide end-to-end
measurements to the mathematical tools.

This chapter describes a second (logical and physical) component to the
modeling architecture presented in Chapter 3: observation-based models.
Observation-based models are a step towards robust and meaningful pre-

dictions in the face of the above issues. First, such models can help localize
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the potential sources of a prediction mismatch by verifying system behavior.
Localization can guide humans towards the root-cause of the problem. Sec-
ond, in many cases, the models can re-train while deployed to adjust to un-
expected workload-system attributes. Third, observation-based models can
give fidelity estimates by keeping track of historical information about their
predictions. System-workload regions of operation where the models being

used have frequently mispredicted will have low fidelity.

6.1 Mismatch localization based on resource consumption

We believe that a robust model should detect when there is a deviation be-
tween the model expectations and observed behavior. Thus, in addition to
answering hypothetical What...if questions, individual models should con-
tinuously self-check. There are two general types of deviations:

Structural deviations: Structural expectation mismatches happen
when designer expectations do not cover all possible ways requests can flow
through service centers (or when the designer misconfigures the service cen-
ter topology). Concrete examples of when structural deviations might hap-
pen in a storage system include: re-entering a service center a second time
because a sub-request timed out the first time, entering a data repair phase
and having storage-nodes interact differently with one another, going to the
Metadata Service several times because of a poor implementation of an ac-
cess control protocol, etc.

For white-box systems, a starting point towards detecting structural de-
viations is having a good measurement infrastructure in place that keeps
track of the requests at entry and exit points from each service center in the
system. Stardust does just that. A causal graph similar to the one shown in
Figure 4.12 can be created for every request. That graph can then be “diffed”
with the graph of structural expectation that the designer first inputs.

The situation when few or no structural expectations exist is a special
case of the above. In this case, initial expectations may be “bootstrapped”
by obtaining the causal path of requests from the initial workloads running

in the system.
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Figure 6.2. Structural deviations during failure and repair for 3-way
replication. The initial structural expectation for write requests indicates
that a write contacts three storage-nodes. If one of the storage-node fails,
one of the writes times out and reenters the sending service center. During
repair, a spare storage-node takes over from the failed one and is populated
by the two remaining storage-nodes.

Structural deviations within black-box components cannot be obtained
by the above method. A black-box component is treated as a large service
center. The system monitors requests arriving and departing from this ser-
vice center and only detects deviations external to the black-box component.

Performance deviations: Performance deviations occur when the ini-
tial models have limited regions of operation (e.g., there could be non-linear
behavior that the designers did not foresee or the system could be configured
in an unexpected way). Concrete examples in a storage system might include
performance drops when striping data over more than five storage-nodes due
to switch buffer congestion, misconfiguration of a hash table algorithm that
hashes files using only the low bits of their ID (which, over time, leads to
performance degradation), and an adaptive application that continuously
changes its behavior depending on the speed of the system.

A starting point towards detecting performance deviations is to keep
track of historical data while deployed in the field. The historical data should
be kept for each service center to indicate how well it has been predicting in
the past. For service centers for which there are expectation-based models,
the system should compare the expectations with the historical data. For
service centers for which there are no expectation-based models, the system
could compare new observations with a historical average. For example, a
metric could be considered to deviate if its value is outside the one-standard-

deviation region (other policies could be used as well). Much previous work
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in the general field of anomaly detection (e.g., [Cohen et al., 2005; Sun et al.,
2005]) can be used to analyze the strength of the correlation. Our goal is
to investigate how we can use performance models to establish a state of
“normalcy” that subsequent behavior can be compared against.

From a feasibility perspective, there are challenges. First, the self-
checking must be managed in terms of when it should happen and how
frequently. For example, self-checking might happen online when a service
level objective is not met or offline during idle time (e.g., nightly). Second,
care must be taken to build efficient models that do not consume unrea-
sonable amounts of resources to self-check. Because management is quickly
becoming the dominant cost in systems [Moore, 2005], it may be justified to
throw money at dedicated hardware for self-checking, but the costs need to

be examined.

6.2 Model refinement and fidelity

After a successful mismatch localization, a relearning component should be
applied to evolve the existing models or at least making educated suggestions
to the model designers. Any such component must address two issues. First,
it should discover new attributes of the workload-system interaction space
that should be incorporated into the model. Second, it should discover re-
gions of operation where the prediction confidence is high and regions where
it is low. Hence, any subsequent model outputs can have a notion of confi-

dence associated with them.

6.2.1 The general learning problem

In general, we want a learner that approximates the function F(Ay, ..., A4,) =
P, where A; is an element of the workload-system attribute space and P is
the performance metric of interest. Attributes can be any relevant observa-
tions about the operating environment. For example, for a black-box disk
resource, traditional attributes of interest include disk type, request inter-
arrival time, read:write ratio, etc. Non-traditional, but still important at-

tributes, could be things like day of week (workloads can behave differently
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Figure 6.3. Illustration of a learner. The learner observes correlations
between inputs and the output and fits a function to them. In a storage
system, A; could be the number of storage-nodes data is striped on, and P
could be the observed throughput.

on Mondays than Sundays). P can be any metric of interest we want to
validate, such as, throughput X;. Figure 6.3 shows this generic learner.
The above classification problem translates into these primary require-

ments that a generic learner needs to satisfy:

— Handling of mixed-type attributes. Workload-system attributes
can take on categorical, discrete or continuous values. For example,
average inter-arrival time is an attribute that takes a continuous value,

but day of week has categorical attributes (Monday, ..., Sunday).

— Handling of combinative associations. A system’s behavior may
depend on combinations of attributes. For example, the expected
throughput from a disk array may depend on both workload burstiness

and request locality.

— Reasonably fast. The learner must be able to make predictions rea-
sonably fast, and ideally train itself quickly. In many scenarios, the
training and predictions can be made offline, perhaps at night when
the system utilization is low. In addition, making the prediction must

be inexpensive in terms of computational and storage requirements.

— Adaptive. The learner must efficiently adapt to new workloads and

learn incrementally from each individual observation.
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— Cost-sensitive. The learner should be able to reduce the overall cost
of mispredictions by taking application-specific cost functions into con-
sideration during training. For example, a learner could be accurate
99% of the time, but the cost of the 1% misprediction could outweigh
the benefit of being correct 99% of the time. The need for cost-sensitive

models was first described in Section 3.1.

— Interpretable. Newly learned rules or correlations should ideally be
human-readable. System designers and administrators we talk to place
a lot of emphasis on needing to build their trust in the system and

verifying the new rules with their intuition.

6.2.2 Z-CART: combining domain expertise with observations

Many algorithms have been developed in the machine learning community.
We chose to use classification and regression trees (CART). Trees handle
mixed attributes easily, and combinations of related attributes (i.e., AND
and OR) are naturally captured. Moreover, trees require minimal storage,
quickly make predictions, are easy to interpret, and can learn incrementally
over time [Utgoff et al., 1997]. Training time is O(nHeight(n)) time, but
predictions only take O(Height(n)) time, where n is the number of observa-
tions and Height(n) is the height of the decision tree (which, for most trees
we have constructed, is between 3 and 10).

We augment CART to be zero-training (Z-CART). Traditional CART
models (much like other models, like Bayes Nets or neural nets) suffer from
requiring much training data before even simple classifications can hap-
pen. Z-CART derives its initial structure from the expectation-based models
(think of the latter as domain knowledge in this setting) and, hence, does not
require any training data to start making predictions. This section describes
how Z-CART works.

Figure 6.4 shows an example starting point for a Z-CART model. The
goal of the model is to predict the maximum throughput from the CPU
resource X.cpy. To construct the initial model, the CPU Mz_f model,
first presented in Section 5.2.2, is asked the question “What is the CPU
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Figure 6.4. Initial Z-CART model. The initial model is built using
expectation-based models (domain expertise) and requires no training data.
DTVIEW is used to generate this diagram [Borgelt, 2007].

demand D cpy for requests from client ¢ if the data is encoded using scheme
E?”, for each of the hypothetical schemes the client is interested in (e.g.,
1-0f-3 with encryption, 3-of-5 with encryption, etc.) The CPU model uses
direct measurements to answer that question.

Imagine a situation in which, after the encoding scheme has been chosen,
a certain workload gets less than half of its predicted throughput in the field.
After successful mismatch localization, the CPU encode/decode service cen-
ter might be identified as the culprit. Stardust has meanwhile collected trace
records containing workload attributes (e.g., block size, read:write ratio, file
name, etc.) for all requests passing through that service center. To see if any
of these attributes are correlated to the unexpected drop in performance,
Z-CART uses the original CART algorithm for selecting the most relevant
attribute. CART computes a metric called the information gain on each
available attribute, and then greedily chooses the attribute with the largest
information gain. Intuitively, the higher the information gain, the higher
the correlation of an attribute and classification metric. Analytically, the

information gain from choosing attribute A; with value a is:

Gain(S, A;) = Entropy(S) — Z %Entropy(&)) (6.1)
a€A;



6.2 Model refinement and fidelity . 131

where S is a set of classification instances with probability distribution
P(s) and

Entropy(S) = — Z P(s)logaP(s) (6.2)

all classes s

In general, a very difficult problem for any machine learning algorithm
is the attribute selection problem. It is best if all important attributes are
available for the models to choose from, hence systems should be built to
expose as many potentially important attributes to the tools as possible.
However, there is a risk of having the machine learning algorithm “confused”
by having too many attributes to choose from (this is known as the curse-of-
dimensionality [Mitchell, 1997]). Initially, we exposed the machine learning
tool to the workload attributes that are collected through the request flow
traces collected by Stardust (i.e., those shown in Table 4.1).

Figure 6.5 shows the modified Z-CART model after the block size at-
tribute has been incorporated into it. The leaves of the Z-CART model
contain classification information and confidence information. Confidence is
defined as the number of pure samples seen in the field (i.e., how many of
the samples does it classify correctly?). If P is categorical (e.g., a yes/no
answer to “is D,cpy less than 1ms?”), the leaf maintains counters that
keep track of observations for each category. If P is discrete or continuous
(e.g., an answer to “what is D.cpy?”), the leaf maintains a histogram of
observations. At one extreme, the histogram could keep a bucket for each
unique observation. That, however, may be expensive, hence, in practice a
limited number of buckets (e.g., 10) is kept.

Observer’s architectural diagram, shown in Figure 3.2, illustrates how
expectation-based and observation-based models interact with one another.
Every What...if question is answered by the observation-based model. The
first time the question is posed, the observation-based model checks with
the expectation-based model (domain expertise). The answer from the
expectation-based model is used to construct the initial Z-CART model and
is also returned as the answer to the What...if question. After observations

in the field, the observation-based models further refine their predictions.
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Figure 6.5. Modified Z-CART model. After several observations with
new experiments, the initial Z-CART model automatically evolves to in-
corporate the new block size attribute. The predicted value (vertical line)
together with one standard deviation (shaded area around vertical line) is
shown by the GUI tool. The location of the predicted value is relative to the
minimum and maximum values observed (in this case 3.6 MB/s and 57 MB/s
respectively).

Any subsequent What...if questions obtain answers with confidence metrics

associated with them.

6.2.3 An aside: why learning is not sufficient

Learner models based on observations can, in theory, “discover” expected
system behavior, and hence it seems there would be no need for designers to
define expectation-based models. Indeed, most of the queuing formulae de-
scribed in Chapter 3 can be discovered by fitting functions to observed data
while deployed. So, why not use only learner models and sidestep the need to
have system designers think about structural and performance expectations
for their systems? There are several answers to this question. Most of them

focus on efficiency and correctness, and one is more subjective.
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First, there is an efficiency issue. Observation-based models require a
large set of distinct observations, an issue that can be a show-stopper even
for simple modeling tasks. In particular, observation-based models predict
poorly the effects of workload interference in shared systems. Consider a data
center, for example. The performance of any workload is strongly correlated
with the load placed on the system’s resources (e.g., CPU, network, cache,
disk) by other interfering workloads. With the “load” attribute taking values
from 0-100% for each of the resources, the observation-based model would
need to have seen hundreds of distinct load configurations in order to make a
reasonable performance prediction (which can be made in a straightforward
manner when employing expectation-based models that use queuing analysis
coupled with domain knowledge on each service center).

A simple analogy that illustrates the efficiency issue exists in the game
of chess. One can make the next move by knowing nothing about chess rules
(i.e., black-box) and only considering an annotated database of board setup
images obtained from all chess games played in the last 100+ years. Another
option is to make the move by using a model that has the chess rules em-
bedded (i.e., white-box). Systems and workloads change over time (whereas
the chess rules remain the same), so purely black-box observations in sys-
tems could not only take a long time to observe enough unique interactions,
but they also risk becoming obsolete quickly (e.g., every time a new device
is added). Although several research groups have used purely observation-
based models [Aguilera et al., 2003; Cohen et al., 2004; Mesnier et al., 2007;
Wang et al., 2004], no analysis of their long-term behavior and “refresh”
requirements has been clearly shown.

Second, there is a correctness issue. Just because an observation is true
most of the time (and thus strongly correlated), it does not mean the ob-
servation matches the intended system behavior. Figure 6.6 shows how a
learner model fits the data in the field. This graphs shows throughput as a
function of number of storage-nodes data is striped on. The learned behav-
ior differs from the expected behavior, especially as data is striped over a
large number of storage nodes. It is very good that the designer took time

to define the expected behavior in this case, since the discrepancy reflects
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Figure 6.6. Observed versus expected behavior. Discrepancies in ob-
served vs. expected behavior could indicate serious anomalies in the system.
This particular figure illustrates how throughput changes as a function of
the number of storage-nodes data is striped onto. Observations indicate a
potential problem. The human is still needed to find the root-cause of the
problem when it first occurs.

a serious performance anomaly in the system (known as the TCP-incast
problem [Nagle et al., 2004], and further discussed in Section 6.4.3). Simply
looking at observed data would not expose the anomaly.

The third reason designers should provide expectation-based models is
more of a personal belief. I believe that thinking of models may force the
designer (and programmer) to write more predictable algorithms and bet-
ter code. Designing systems in an ad-hoc way and hoping that a learning
algorithm will figure out how it works is wishful thinking. (There are cases,
however, especially with legacy systems, when it is not possible to look at
the source code to build good expectations. In those cases, purely statistical
observations are the only option.)

The counter-argument is “why design models if discovering the sys-
tem properties can be (eventually) accurate?” Proponents of this argument
may point out that the system is probably behaving correctly most of the
time [Kremenek et al., 2006], hence, structural expectations can be inferred

by running a few workloads on the system and observing how requests flow
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through it. Others may have scenarios where only eventual accuracy mat-
ters, rather than the ability to predict well on day 1. Thus, performance
expectations can be discovered over time, after many workload mixes have
been observed. In general, the right answer depends on the client require-
ments and uses of the models. However, if a system is designed with a clean
slate (like Ursa Minor was), we believe that it is natural to incorporate do-
main expertise into the models. Appendix A describes our experiences with

a legacy system (Microsoft’s SQL Server).

6.3 Incorporating observation-based models in Ursa Minor

The observation-based models in Ursa Minor are responsible for helping
model designers detect new structural and performance behavior in the sys-
tem. The key to detecting new structural behavior is having a good mea-
surement infrastructure in place that keeps track of the requests at entry
and exit points for each service center in the system. Stardust does just this.

Every time a request passes through an instrumentation point, a record is
stored in the appropriate Activity DB table. Using the information contained
in the Activity DB tables, the system can discover how requests are prop-
agating through it, even when few or no expectation models are available.
The system periodically constructs and maintains a graph of how requests
are flowing through the system as a DOT graph data structure [GraphViz,
2006].

A simple example illustrates how the structural path can be discovered.
Assume no expectation-based structural models exist for Ursa Minor. One
way to bootstrap the discovery process is to run a few workloads in the
system. Each time a request from these workloads propagates from service
center to service center, the system posts activity records at their entrances
and exits. These records are stored in the Activity DB tables, and they are
sufficient to understand how most requests flow in the system.

The prototype in Ursa Minor for localizing performance deviations cur-

rently only works offline. It calculates various statistics based on observed
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Resource Some relevant system and workload attributes

CPU Request type, encoding (m, n, encryption style),
read:write ratio, block size, kernel version,

TCP offload(yes/no), CPU type

Network Encoding (m, n, encryption style), block size,
read:write ratio, endpoints, NIC type, switch type
Buffer cache | sequence of accesses, adaptive workload(yes/no)
Disk sequential (yes/no), request size, disk type,

arrival rate, spatial locality

Table 6.1. Relevant system-workload attributes. In bold are the at-
tributes we felt sure had a direct relationship with performance, primarily
because there is theoretical backing of their correlation. The system itself
discovers the strength of the correlation with the various attributes.

throughput and response time and compares those to what expectation-
based models predict.

Model re-learning is done through Z-CART, which currently uses the I'TI
package as the underlying classification and regression tree structure [Utgoff
et al., 1997]. In addition to the attributes exposed by Stardust (summa-
rized in Table 4.1), Table 6.1 shows several other attributes for which we
knew the correlation with performance was important, though we did not
know the exact nature of the correlation. We exposed these attributes at Z-
CART, which then discovered the strength of the correlation between those
attributes and performance. It is worth stressing that the process of discover-
ing new correlations is incremental. The attributes presented here represent
what we know so far, from the various experiments we have run on Ursa
Minor. Future workloads could expose the need for having more attributes

to chose from.

6.4 Evaluation

This section evaluates the efficacy of the observation-based models to locate

mismatches with expectations and learn revised expectations. The perfor-
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mance problems illustrated have been encountered in Ursa Minor during the
last two years. Because self-checking has only recently been prototyped into
the system, we were not able to evaluate its usefulness when the problems
first arose. Instead, we replicated the problems as best as possible with the

current code base.

6.4.1 Experimental setup

The experimental setup and workloads used are identical to the ones first
described in Section 4.4.1 and Section 5.3.1.

6.4.2 Localizing sources of mismatch

This subsection experiments with cases when the localizer can and cannot
be used to guide human attention and help with the diagnosis of problems.
For the purposes of this discussion, we differentiate between cases when the
system was found to be buggy or misconfigured, while the models correctly
reflected the designers intentions, and cases when the system was operating
as expected, but the models had limitations and incorrectly flagged the
system behavior as suspicious. This classification was done after the root
cause of the problem was discovered and is based on whether the system or
the models had to be eventually fixed. However, both the system component
and its model are flagged as suspicious before the root cause is identified.

The overheads of self-checking are equivalent to the overheads of creating
latency graphs, as first evaluated in Section 4.4.3. Currently, once a latency
graph is created, a human needs to visually “diff” it with the expected
latency graph. As part of future work, we are considering building tools
that “diff” general graphs more efficiently than by visualization. Below, we
discuss broad problem categories that the behavioral models can and cannot
localize, generalizing from the experience so far.

Buggy system implementations or misconfigurations: A represen-
tative problem in this category relates to poor aging of data structures that
leads to degradation in performance. Two concrete instances of this prob-

lem that we have experienced are degraded hash table performance over
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Figure 6.7. Performance degradation over time. A hashing algorithm
bug leads to unexpected performance drops over time (bold edges).

time and degraded disk performance as the disk gets fuller. For the pur-
poses of this discussion, we focus on degradation of hash table performance.
An initial hashing algorithm had a bug that led to non-uniform hashing.
Figure 6.7 shows how the latency graph changes as more files are stored
in the system. The Postmark benchmark is run, and the measurements are
taken after 10,000, 20,000 and 30,000 files are created. The drastic degrada-
tion over time is not anticipated by the models (that predict the same disk
service time in each case). When the problem was experimentally replicated,
the storage-node model raised a flag to report the discrepancy in expected
and measured performance. The localization directs the human’s attention

between two instrumentation points.
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For other system bugs or misconfigurations we have seen, the mismatch
is shown as an increase or decrease in edge latencies.

Model bugs: A representative problem in this category relates to non-
linear behavior of the individual models that I did not correctly model
initially. A concrete instance involves the CPU model. As described in
Section 5.2.2, our CPU model predicts the CPU demand needed to en-
code/decode and encrypt a block of data when a particular data encoding
scheme is used (e.g., replication or erasure coding). In experiments, we ob-
served that an SSIO_ BENCHMARK run was getting less than half of its
predicted throughput. A manual inspection of the resources consumed re-
vealed a CPU bottleneck on the client machine. The model was significantly
under-predicting the amount of CPU consumed and thus did not flag the
CPU as a potential bottleneck. It was later discovered that this was be-
cause SSIO_.BENCHMARK was configured to use small block sizes (512 B),
and the kernel network stack consumed significant amounts of CPU per-
block, as shown in Figure 6.8. Hence, it was impossible to keep the network
pipeline full, since the CPU could not keep up. Our CPU model was built
using commonly-used block sizes of 8-16 KB, for which the per-block cost is
amortized by the per-byte cost. In creating the model, we did not foresee
the different behavior resulting from the small block sizes. The discrepancy
showed up between two instrumentation points at the entrance and exit of
the encode/decode module and the human’s attention was directed there.

Section 6.4.3 describes a bug with the network model as well, and shows
how both CPU and network model can evolve over time semi-automatically.

Handling multiple symptoms: Localization of mismatches is most
useful when the mismatch is found between two instrumentation points.
There are times, however, when the usefulness of the localizer in under-
standing the source of the problem was diminished because of multiple mis-
matches in the system. A concrete case of this happening is when we up-
graded the Linux kernel from version 2.4 to version 2.6. Several performance
benchmarks experienced performance changes after that. Through Stardust,
latency graphs were obtained for each of the workloads under the 2.4 and 2.6

versions and compared. Furthermore, each of the expectation-based models
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Figure 6.8. Non-linear demand on the CPU. When keeping the network
pipeline full, a large fraction of the CPU consumption goes towards handling
network traffic. The variance is negligible in all cases.

self-checked to see if the expectations matched the observations. (When this
particular upgrade happened we did have the models in place.)

Figure 6.9 shows two latency graphs obtained when the Postmark work-
load was run on the 2.4 and 2.6 versions, respectively. These graphs only
illustrate the changes for one of the many request types that experienced
performance changes (create calls) and is shown for only the NFS Server
(i.e., the full graph is much larger and is edited to reduce clutter). Bold
edges indicate discrepancies from version 2.4 to 2.6 (for this example, a
discrepancy is noted whenever a new value falls outside the one-standard
deviation range).

In a system with many services, localizing the problem to four graph
edges on a single server does indeed reduce the search space (for example, we
knew the problem was not related to the buffer cache or disk resources in the
system). However, understanding the root cause of the problem would have
been easier if only one of the edges had a discrepancy. In this particular case,

several edges had discrepancies, since a change in the TCP stack processing
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Figure 6.9. Multiple mismatches due to software changes. Latency
graphs created under the 2.4 and 2.6 Linux kernel. Only part of the full
graph is shown in each case. The graphs cover the movement of requests
through a single NF'S server. Edges in bold indicate discrepancies between
the runs on the different kernels.

(which was new in 2.6) affected both network transmission times and CPU
consumption.

As part of future work, we plan on exploring orthogonal diagnostic meth-
ods that could be built on top of a robust modeling layer that self-checks.
Such diagnostic methods could, for example, perform a large run of tests that
are slightly different from one another. It could make use of the modeling
layer to see how each test interacts with parts of the system.

Handling anomalies external to the system: There were several
performance problems our benchmarks had that could not be localized
within Ursa Minor. In one concrete instance, Ursa Minor had a thread ex-

haustion problem at the NFS server that implicitly put pressure on the
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client/benchmark to send fewer requests. The symptoms of this problem
were that fewer outstanding requests were observed in Ursa Minor. How-
ever, the number of outstanding request is an input to the models, not a
metric that they can predict. In another instance, the client running the
“S1-V0” scientific workload was having a problem with the network link
just before entering Ursa Minor. From Observer’s perspective, the requests
were behaving as expected, once in the system.

In these instances, the models could report back and inform the client
to look for the problem elsewhere.

Handling adaptive workloads: Adaptive workloads, first discussed in
Section 3.1.1), might change their behavior depending on the performance of
the underlying system. For example, Observer assumes that, whether Ursa
Minor is “slow” or “fast”, any Ursa Minor client’s sequence of operations will
be the same. This assumption holds well, especially for static benchmarks.
Many real-world applications are also not adaptive. However, there are some
applications, such as web servers, that may experience a different workload
depending on the speed of the underlying storage system. That happens, for
example, when a web user may depart from the site (e.g., if it is too slow)
and go to another.

As a concrete instance, we set up a synthetic OLTP database workload
that kept changing its indexing behavior as a function of Ursa Minor’s per-
formance. Observer’s models assume that historical characteristics of the
workload do not change, and were not helpful in diagnosing why the pre-
dicted and observed performance were different. For example, the buffer
cache model would simulate the effect of doubling the buffer cache size and
find it beneficial to double it. After the cache size was doubled, the sequence
of accesses the database sent to it were different from what was originally
simulated. The predicted and observed hit rate would significantly differ.

Currently, if discrepancies at the buffer cache accesses are observed for a

given workload, Observer chooses not to make predictions for that workload.
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6.4.3 Relearning and deriving confidence

This section illustrates how observation-based models could help model de-
signers discover new workload-system correlations. In addition, this section
describes how confidence can be reported with each prediction. Confidence
about past predictions could then be used when making predictions about
new changes.

Unexpected CPU bottleneck: The localization of this problem in-
stance was first described in Section 6.4.2. Examining this situation with
observation-based models after the fact, we found that the models could lo-
calize the problem between two Stardust instrumentation points. When all
resource models (CPU, network, cache, disks) self-check, the CPU model is
found to be the culprit (i.e., it under-predicted the CPU demand). Z-CART
noticed that the attribute “block size” is significantly smaller than in the
test cases and eventually incorporates that attribute in the decision tree
(the resulting tree and confidence values were first shown in Figure 6.5).
Of course, “block size” is an attribute that the programmer had to expose
to Z-CART, for Z-CART to discover the correlation. Figure 6.10 shows the
improvement in accuracy from the hybrid modeling technique.

When striping goes wrong: As described in Section 5.2.2, the network
model in our system predicts the network time to read and write a block
of data when a particular data encoding scheme is used. In experiments,
we observed that a particular SSIO_.BENCHMARK configuration led to the
benchmark having larger-than-expected response times when data was read
from multiple storage-nodes at once (e.g., when striping data over more than
5 servers).

The manual diagnosis of the problem, done when it was originally en-
countered, took unreasonably long. Different tests were run, on different ma-
chine types, kernels and switches. Using this semi-blind search, the problem
was eventually localized at a switch. Deeper manual investigation revealed
that overflowing of switch buffers, leading to packet drops, was the root
cause. That started TCP retransmissions on the storage nodes. The problem

is known as the “incast” problem [Nagle et al., 2004], and is rather unique
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Figure 6.10. Improved prediction from hybrid models. After learning
the new correlation from observations on a particular server, the results from
the Z-CART model generalize on any server with the same CPU type. The
standard deviation for the measured performance is negligible, whereas for
the predicted performance it is shown in Figure 6.5.

to storage systems that read data from multiple sources synchronously (i.e.,
all storage-nodes were sending data to the client at the same time).

Using model self-checking after the fact, the diagnoses are better guided.
For example, the cache model predicts that the workload would get a hit
rate of 10% with 256 MB, and indeed that is what the workload is getting.
However, the network model reveals that remote procedure calls (RPCs) are
taking 20 ms, when they should only be taking 0.2 ms.

For erasure coding schemes, this incast problem is related to m, the
number of nodes the client reads from. To make matters worse, the min-
imum m for which this problem arises is dependent on the switch type.
The switches in Ursa Minor are off-the-shelf commodity components, and
Observer considers them them to be black-box (i.e., Observer has no un-
derstanding of their internal algorithms). To explore how Z-CART could
help, we extended it to incorporate the switch type as one of the attributes

to check. We ran 825 experiment instances with erasure coding schemes
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Figure 6.11. Z-CART adapts the predictions to the switch type. Ursa
Minor has three types of donated switches (anonymized to srs, ss3x, ss7z),
and each of them behaves differently as a function of m for erasure coding
schemes. We treat them as black-box and Z-CART discovers their behavior
over time. The location of the predicted value is relative to the minimum and
maximum values observed (in this case 2.1 MB/s and 77 MB/s respectively).

chosen randomly among 5-of-6, 7-0of-8 and 9-of-10. Given this experimental
setup, the Z-CART network model automatically adjusted its expectations
for the relationship between performance and m, as shown in Figure 6.11.
Currently, we are living with this problem (“fixing” it would require buying
new switches). Hence, the current network model is adjusted to account for
the switch type.

A remaining issue is how to handle predictions for an unseen switch type.
For example, if a switch of type SwitchNew is to be purchased, we would
like the system to make a prediction about its performance (together with
providing confidence values). To solve this issue, a new Z-CART model can
be built, this time without the switch type as an attribute. Figure 6.12 plots
the average throughput predicted, together with standard deviation. It is
up to a higher policy layer to make the decision on what m to use based on

such predictions.

6.5 Summary, lessons learned, and limitations

Figure 6.13 summarizes the main idea of this chapter. By using robust mod-
els, the human’s job is simplified. Models are used not only to predict, but

also to localize deviations from expectations. Humans ultimately need to fix
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Figure 6.12. Confidence when making predictions for a new switch
type. When buying a new switch, the best the models can do is provide
confidence on their predictions based on m only. The location of the pre-
dicted value is relative to the minimum and maximum values observed (in
this case 2.1 MB/s and 77 MB/s respectively).

the root cause of a problem, but the models help them focus their atten-
tion. Over time, machine learning techniques discover new, unforeseen cor-
relations between attributes of the workload-system space and performance
metrics of interest. In many cases, system designers know the workload and
system attributes that are correlated with the workload’s eventual behavior,
but not the exact nature of the correlation. Hence, systems are designed to
expose many of these attributes, and the models automatically calculate the
correlation strength of each of them.

The main lesson learned is that queuing-based expectation-based models
are brittle. System or model misconfigurations, coupled with limited inputs
to the models, happened often enough in Ursa Minor to lead us to develop
observation-based models to partially mitigate them.

Although combining statistical techniques with queuing analysis has
proven useful, there are several limitations that this dissertation does not
address and leaves as future research.

Zooming-in on root cause: The simple mismatch localization method
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Figure 6.13. The synergy between robust models and humans. Mod-
els localize mismatches between models and the components they model
and guide the human’s attention. Models also test for correlation strengths
and continuously reevaluate their predictions. Humans ultimately fix the
bugs that cause the mismatches and build systems to expose a rich pool of
attributes to the models.

used to illustrate the approach can be improved. Currently, it localizes prob-
lems that lead to resource consumption deviations, and the localization gran-
ularity is limited by the granularity of measurements collected by Stardust.
Getting close to root cause analysis will involve collecting many more at-
tributes, at different abstraction/semantic levels in the system. For example,
in Ursa Minor, we have started to collect environmental data (temperature,
humidity, etc), hardware demands (per-request, per-machine), error mes-
sages, request flow traces, hardware and software configuration data (com-
ponents, topology, users), and annotations of human activity.

Ideally, one would have a measurement mechanism in place that, on
demand, allows for the collection of more statistics at lower layers, if a
problem in the upper layers is detected. The Paradyn project [Hollingsworth
et al., 1994] has shown how self-propelling instrumentation can do just that
(however, the technique does not currently extend to distributed systems).
It would be interesting to collect case studies that show what is gained by
finer grained instrumentation. As Section 6.2.2 cautioned, however, machine
learning tools are not mature enough to handle many attributes because of

the curse of dimensionality. This chapter examined the benefits from using
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hand-picked attributes that the system designer exposes through Stardust.

Active probing and the big, red button: We believe that two ap-
proaches could be used to accelerate the process of discovering strongly
correlated attributes: active probing and some human involvement. With-
out acceleration, important correlations may be missed due to infrequent
observations (e.g., one in 100 clients uses small stripe units, and their effect
might not have been modeled).

First, once an attribute is observed to have some correlation with the
model’s output, active probing (generating synthetic workloads to test that
hypothesis) could be used. The challenges here involve how to have the sys-
tem itself construct meaningful probes, what kind of physical infrastructure
is needed to run the probes, and when these probes should run. Currently,
Observer does not actively probe in Ursa Minor.

Second, there needs to be a way to involve a human in directing and
shaping the algorithm’s focus. There may be plenty of “false alarm” events
that may trigger the system to behave strangely for a while (e.g., power
outages, backups, machine re-configuration). In those cases, the human could
perhaps advise the algorithm to ignore what it learned. The challenge is
to have the system designed with a “big, red button” in mind that the

administrator can press when such false alarm events happen.



7 Conclusions

A self-predicting system monitors itself and answers What...if questions
about hypothetical changes. This dissertation describes and evaluates our
experiences with making Ursa Minor self-predicting. Such self-prediction
has the potential to reduce the amount an administrator must understand
about complex workload-system interactions and can be a step towards the
goal of self-managing distributed systems. The mathematical models within
Ursa Minor can answer What...if questions about the performance impact of
data encoding changes, adding or removing datasets/workloads, and adding
or removing storage-nodes. The results demonstrate the feasibility of self-
prediction in a real system, and we believe that the same modeling archi-
tecture could work in general. (Appendix A provides early experience with

a legacy database system upon which we base this generalization.)

7.1 Contributions

The key contribution of this thesis is identifying and handling show-stoppers
that prevented mathematical models from making predictions in many
shared, distributed systems. From a theoretical perspective, these show-
stoppers were surprising because the mathematical models appear so simple.
From a practical perspective, these show-stoppers needed to be addressed to
make even simple predictions. Discovering them required deploying proto-
type models in realistic systems and performing case studies. In particular,
mathematical models explored in this dissertation require system support for
end-to-end monitoring, performance insulation, and collection of historical

data on system behavior.

149
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End-to-end monitoring can provide models with the right measurements
in distributed, shared systems. Such measurements include per-client, per-
resource demands and per-client request flow graphs. I identified and in-
strumented key service centers in a cluster-based storage system and in a
commercial database system. These service centers represent four key re-
source types (CPU, network, buffer cache, and disks) that are common in
many systems. I demonstrated that end-to-end monitoring can be efficient
in both collection and querying phases, allowing it to be ON at all times.

Performance insulation allows independent analysis of workloads in the
system, thus side-stepping the need for complex modeling of workload in-
teractions. I built models that help the performance insulation algorithms
work. In particular, the buffer cache and disk models answer a series of
What...if questions to determine good cache partitioning, prefetching and
quanta-based scheduling policies. In turn, the models I built stayed simple
because of the guarantees that performance insulation provided.

Collection of historical data helps in localizing sources of system and
model bugs and misconfigurations and allows for fidelity metrics to be pro-
vided with predictions. I demonstrated how combining queuing operational
laws with a machine learning algorithm, like CART, provides a good start-
ing point towards the vision of robust system models that handle unforeseen
behavior. Models need to be robust to minimize the human effort needed to

maintain and update them.

7.2 Thoughts on future work

There are several directions in which this work could be extended. Currently,
three concrete directions have emerged and are being actively pursued. First,
the observation-based models, discussed in Chapter 6 are being researched
further now that they are included in Ursa Minor. We want to create a
taxonomy of problems they can address and their limitations. Ideally, to
create a good, complete taxonomy, several months to years of deployment

would be necessary.
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Second, the predictive infrastructure presented in this thesis creates a
building block on top of which optimization tools can be built. Iterating
over What...if questions (e.g., one for each possible option) is one way such
optimizers can work. However, building optimization tools was not in the
scope of this thesis. Other people in the Parallel Data Lab (e.g., John Strunk)
have currently built a prototype optimizer, that incorporates not only my
performance models, but also models built for other system metrics, such as
availability, reliability, capacity, and power. John’s research, in particular,
analyses how to combine the outputs from all models to a single answer that
the client can reason about.

Third, the infrastructure is being specialized to help with anomaly detec-
tion in the system. Stardust is a key enabler, and visualization techniques are
being developed to cluster and analyze anomalies in system behavior [Sam-
basivan et al., 2007].

In the short- to medium-term, investigating ways to layer two or more
self-predicting systems in a decentralized way is warranted. Some recent
work has shown that another discipline, control theory, is useful in guiding
local optimizations to a stable global state in a multi-tiered system, at least
when there exists a centralized decision-making module [Padala et al., 2007].
Without that control, two self-predicting system tiers may keep making local
optimizations without ever reaching a good overall system configuration.
When two or more systems in separate administration domains are layered
(e.g., a DB on top of Ursa Minor), however, there are several differences from
the centralized case. First, the systems may have incomplete information
about each other. A DB has no easy way to infer what other workloads are
running on Ursa Minor and how those workloads interact with Ursa Minor’s
resources. Ursa Minor does not know how the DB manages its resources, such
as buffer cache. Control theory assumes measurements from both systems
are visible to a third entity (the controller). That may not be the case,
in practice. Second, both systems may make local optimizations and have
separate decision making processes. For example, index tuning agents may

decide online what indices should be created [Chaudhuri and Narasayya,
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1998; Valentin et al., 2000]. Ursa Minor may attempt to maximize storage-
node utilization with its decisions on data placement and encoding.

In the long-term, the role of humans in the face of self-predicting system
will have to be evaluated. Currently, administrators we talk to want to ask
What...if questions to gain the trust of the system. How smart do humans
have to be to ask the right What...if questions? Will self-managing systems
be more difficult to debug by humans, when some optimization goes wrong?
CMU’s Self-* Storage project is a long-term research endeavor meant to
explore storage automation, including such questions (Ursa Minor is the

first prototype of this project).



A Lessons from a legacy system

A common question I have had when presenting this work to colleagues in
industry has been “how difficult is it to make an existing legacy system self-
predicting?” Ursa Minor was a system we designed from scratch, and hence
we did not have to deal with legacy concerns. In addition, we did not feel
the same pressure that product teams have to meet project timelines. This
appendix informs this question with one concrete experience with taking a
commercial, legacy database (Microsoft’s SQL Server) and enabling it to
answer What...if questions. One concrete important What...if question in
SQL Server is “What happens to each transaction type’s performance, if we
change the total amount of buffer cache?”

This appendix will not evaluate the accuracy of the results, which are
very similar to those obtained in Ursa Minor (the interested reader is advised
to consult [Narayanan et al., 2005, 2006]). Instead, we focus on what it took
to add an end-to-end measurement framework and mathematical models to

an existing system and how it can be done incrementally.

A.1 Initial state of system

Our experience was with a single instance of the SQL Server 2005 prototype
running on Windows Server 2003. Thanks to the developers of SQL Server,
we were given access to its source code.

SQL Server, at the time, had highly-configurable performance counters,
but no end-to-end tracing. The Windows operating system, however, had
a basic framework called ETW [Microsoft, 2005] that allowed traces to be
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collected efficiently (and stored them to a flat file)!. ETW exposed interfaces
for posting activity records and storing them. However, at the time, no
request IDs/breadcrumbs were maintained. SQL Server itself did not make
use of ETW and maintained its own measurement framework.

SQL Server did not have mathematical models to address the types of

What...if questions we were interested in.

A.2  Adding measurements with context

The first changes involved adding a measurement framework that could keep
track of requests as they passed through the DB layers. First, we identified
the points in the system where ETW traces should be collected. Just like in
Ursa Minor, these points involved entrance and exit points from the common
service centers in the system (e.g., task scheduler, buffer cache, disk driver).
At each of these points, we inserted activity record posting calls to the ETW
library. This first step did not involve propagating contextual information
and made use of an already-existing tracing infrastructure in the Windows
operating system. Some effort was required to find the locations to instru-
ment, however, just like in Ursa Minor, these were usually well-defined in
the documentation of the system and were easy to spot by looking at the
code.

Second, we added contextual information by using the Magpie stitching
framework (some differences between Magpie and Stardust are described in
Section 4.3.3). The stitching did not require any changes to SQL Server’s
API, but did require a human (me) to define the structural behavior of the

system and describe how requests are supposed to flow through it.

A.3 Adding mathematical models

The low-level mathematical models that we built into SQL Server were
similar to the ones in Ursa Minor, except that the CPU model was only
observational-based. The SQL language allows a lot of flexibility in defining
1A similar framework for Linux is the Linux Tracing Toolkit [GNU, 2002].
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transactions; in practice, that makes it very difficult to build expectation-
based models for query CPU behavior. Ursa Minor, on the other hand,
exports a relatively small set of interfaces (approximately 19 NF'S calls), for
which is possible to construct expectation-based models. The backbone of
the analysis engine in SQL Server used queuing analysis, just like in Ursa
Minor.

The models in SQL Server were built as a separate library and ran of-
fline. In Ursa Minor, many of the models can now run online. In practice,
for performance predictions, offline predictions are sufficient. For anomaly

detections, however, online analysis might be crucial.

A.4 What worked and didn't

Adding the instrumentation and building offline models took two people
about 2 months. Refining and testing took one person an additional 2
months. So in total, 6 man-months were spent.

We ran several experiments on SQL Server, with an OLTP benchmark
that emulated multiple clients. Answers to the question “What happens to
each transaction type’s performance, if we change the total amount of buffer
cache?” were accurate for predicting averages. However, both throughput
and latency in SQL Server had a high variance, for many of the same reasons
discussed in Section 5.3.4 (e.g., no performance insulation between transac-
tion types). Because of the lack of performance insulation, the buffer cache
and disk models were forced to make worst-case predictions. Although some
of the mechanisms for ensuring performance insulation to SQL Server are
similar to the mechanisms in Ursa Minor, we did not implement them.

Another observation we made while experimenting with SQL Server is
that, in addition to hardware resources, there are software resources that
need to be modeled as well. For example, there were cases when the lock
service would become a bottleneck, before any of the hardware resources
were saturated. Coming up with a taxonomy of such non-hardware resources

and modeling them is an area of future work for us.
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