
So, youwant to trace your distributed system?
Key design insights from years of practical experience

Raja R. Sambasivan⋆, Rodrigo Fonseca†, Ilari Shafer‡, Gregory R. Ganger⋆
⋆Carnegie Mellon University, †Brown University, ‡Microso�

CMU-PDL-14-102
April 2014

ParallelData Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

End-to-end tracing captures the work�ow of causally-related activity (e.g., work done to process a request) within and among the components
of a distributed system. As distributed systems grow in scale and complexity, such tracing is becoming a critical tool for management
tasks like diagnosis and resource accounting. Drawing upon our experiences building and using end-to-end tracing infrastructures, this
paper distills the key design axes that dictate trace utility for important use cases. Developing tracing infrastructures without explicitly
understanding these axes and choices for them will likely result in infrastructures that are not useful for their intended purposes. In
addition to identifying the design axes, this paper identi�es good design choices for various tracing use cases, contrasts them to choices
made by previous tracing implementations, and shows where prior implementations fall short. It also identi�es remaining challenges on
the path to making tracing an integral part of distributed system design.

Acknowledgements:We thank themembers and companies of the PDLConsortium (including Acti�o, APC, EMC, Emulex, Facebook, Fusion-
io, Google, Hewlett-Packard Labs, Hitachi, Huawei Technologies, Intel, Microso� Research, NEC Laboratories, NetApp, Oracle, Panasas, Riverbed,
Samsung, Seagate, STEC, Symantec, VMWare, and Western Digital) for their interest, insights, feedback, and support. �is research was sponsored
in part by two Google research awards, NSF grant #CNS-1117567, and by Intel via the Intel Science and Technology Center for Cloud Computing
(ISTC-CC). While at Carnegie Mellon, Ilari Shafer was supported in part by a National Science Foundation Graduate Research Fellowship.



Keywords: Cloud computing, Distributed systems, Design, End-to-end tracing



1 Introduction

Modern distributed services are large, complex, and increasingly built upon other similarly complex distributed
services. For example, many Google services use various internal services (e.g., for ads and spell-checking)
and have been deployed atop infrastructure services like Bigtable [10], which itself is spread across 100s of
nodes and built atop other services like the Google File System (GFS) [21] and the Chubby lock service [7].
Even “simple” web applications generally involve multiple tiers, some of which are scalable and distributed.
Management and development tasks (e.g., performance debugging, capacity planning, and problem diagnosis)
are always di�cult, and are made even more so in such environments because traditional machine-centric
monitoring and tracing mechanisms [32, 46] are not e�ective. In particular, they cannot provide a coherent
view of the work done by a distributed service’s nodes and dependencies.

To address this issue, recent research has developed new tools and approaches based on work�ow-centric
tracing techniques, which we collectively refer to as “end-to-end tracing” [2, 5, 9, 11, 19, 20, 23, 25, 37, 38, 40, 43–
45, 47, 48, 53]. End-to-end tracing captures the detailed work�ow of causally-related activity within and among
the components of a distributed system. For example, for a request-based distributed service, each individual
trace would show the work done within and among the service’s components to process a request (see Figure 1
for an example).

As was the case with single-process debugging tools applied to single-process applications, the detailed
information provided by end-to-end tracing about how a distributed service processes requests is invaluable
for development and administration. To date, end-to-end tracing has been shown to be su�ciently e�cient
when using sampling (i.e., less than 1% runtime overhead [40, 43]) to be enabled continuously and has proven
useful for many important use cases, including anomaly detection [5, 11], diagnosis of steady-state correctness
and performance problems [11, 19, 20, 37, 40, 43], pro�ling [9, 43], and resource-usage attribution [18, 47]. As
such, there are a growing number of industry implementations, including Google’s Dapper [43], Cloudera’s
HTrace [13], Twitter’s Zipkin [50], and others [14, 49]. Looking forward, end-to-end tracing has the potential
to become the fundamental substrate for providing a global view of intra- and inter-datacenter activity in
cloud environments.

App server
Table store

Distributed
filesystem

Client Server

Trace points End-to-end traces Component boundary

2ms 3ms3ms

2ms 2ms1ms

Figure 1: Two end-to-end traces. Such traces show the work�ow of causally-related activity within and among the
components of a distributed system and (optionally) other distributed services it depends on. A trace can potentially
include information about the structure of the work�ow (i.e, the causal order of work executed, amount of concurrency,
and locations of forks and joins), its performance, and resource usage. However, only a subset of this information needs
to be collected for di�erent use cases. In this case, the traces show the structure and inter-trace-point latencies of two
requests submitted to a hypothetical application server that is backed by a shared table store and a shared distributed
�lesystem. �e data needed by the top request is in the table store’s cache, whereas the data needed by the bottom request
must be retrieved concurrently from two storage nodes. Trace points are simply markers indicating the locations in a
component’s so�ware reached by a work�ow.

1



Unfortunately, despite the strong emerging interest in end-to-end tracing, there exists too little infor-
mation to guide designers of new infrastructures. Most problematically, existing literature treats end-to-end
tracing as a generic “one-size-�ts-all” solution for many of its possible use cases (e.g., diagnosis of steady-
state problems or resource attribution). But, our experiences designing two of the most well-known tracing
infrastructures (Stardust [40, 47], and X-Trace [19, 20]) and building tools on top of them and Dapper [43]
have proven to us that such generality is unwarranted. For example, our initial experiences [41] building and
using Spectroscope [40], a tool that uses end-to-end traces to automatically localize the source of performance
changes, were immensely frustrating. Our initial design for this diagnosis tool reused a tracing infrastructure
that had previously been used for resource-attribution tasks, but this “one-size-�ts-all” belief resulted in
a very limited tool that incurred high overheads. Only a�er our initial failure did we realize that tracing
infrastructures designed with resource-attribution tasks in mind will not show critical paths in the face of
on-demand evictions, may not show synchronization points, and are incompatible with certain forms of
sampling to reduce overhead, thus limiting their utility for diagnosis. Our experiences modifying the original
tracing infrastructure (Stardust [47] to one that was useful for diagnosis tasks (the revised Stardust [40])
helped inform many of the insights presented in this paper.

�e basic concept of tracing is straightforward—instrumentation at chosen points in the distributed
service’s code produces data when executed, and the data from various points reached for a given request can
be combined to produce an overall trace. But, from our experiences, we have learned that four key design axes
dictate the utility of the resulting traces for di�erent use cases: which causal relationships should be preserved,
how causal relationships are tracked, how to reduce overhead by sampling, and how end-to-end traces should
be visualized. Designing tracing infrastructures without knowledge of these axes and the tradeo�s between
choices for them will lead to implementations that are not useful for their intended purposes. And, of course,
e�ciency concerns make it impractical to support all possible use cases. Indeed, since these axes have not
been previously identi�ed and are not well understood, many tracing implementations have failed to live up to
their potential.

�is paper helps guide designers of tracing infrastructures. Drawing on our experiences and the past
ten years of research on end-to-end tracing, we distill the key design axes of end-to-end tracing and explain
tradeo�s associated with the options for each. Beyond describing the degrees of freedom, we suggest speci�c
design points for each of several key tracing use cases and identify which previous tracing implementations
do and do not match up. We believe that this is the �rst paper to identify these design axes and show how
di�erent choices for them can drastically a�ect a tracing infrastructure’s usefulness.

�e remainder of this paper is organized as follows. Section 2 discusses use cases for and the basic
anatomy of end-to-end tracing. Sections 3–6 describe the design axes and their tradeo�s. Section 7 applies
these insights to suggest speci�c design choices for each of several use cases as well as to analyze the suitability
of existing end-to-end tracing infrastructures for those use cases. Section 8 discusses some challenges and
opportunities that remain in realizing the full potential of end-to-end tracing.

2 Background

�is section describes relevant background about end-to-end tracing. Section 2.1 describes its key use cases.
Section 2.2 lists the three commonly used approaches to end-to-end tracing and Section 2.3 describes the
architecture of the approach advocated in this paper.

2.1 Use cases

Table 1 summarizes the key use cases of end-to-end tracing and lists tracing implementations suited for them.
Note that some of the listed infrastructures were initially thought to be useful for a wider variety of use cases
than those attributed to them in the table. For example, we initially thought that the original Stardust [47]

2



Use case Implementations

Anomaly detection Magpie [5] Pinpoint [11]

Diagnosing steady-state
problems

Dapper [43]
Pip [37]
Pinpoint [11]

Stardust‡ [40]
X-Trace [20]
X-Trace‡ [19]

Distributed pro�ling ETE [23]
Dapper [43]

Whodunit [9]

Resource attribution Stardust [47] Quanto [18]

Workload modeling Magpie [5] Stardust [47]
All others

Table 1: Main uses of end-to-end tracing. �is table lists the key use cases for end-to-end tracing and tracing imple-
mentations suited for them. Some implementations appear for multiple use cases. �e revised versions of Stardust and
X-Trace are denoted by Stardust‡ and X-Trace‡. Almost all tracing implementations can be used to model or summarize
workloads, though the types of models that can be created will di�er based on the design choices made for them.

would be useful for both resource attribution and diagnosis. Similarly, Google’s Dapper has proven less useful
than initially thought because it cannot be used to detect certain types of anomalies [35]. It is these mismatches
between “thought to be useful for” and “actually useful for” that this paper hopes to minimize.

Anomaly detection: �is diagnosis-related use case involves identifying and debugging problems that
manifest as rare work�ows that are extremely di�erent (e.g., fall in the 99.9th percentile) from other work�ows.
Such problems can be related to correctness (e.g., component timeouts or failures) or performance (e.g., a slow
function or excessive waiting for a slow thread). �ey may manifest as work�ows that are extremely di�erent
than others with regard to their structures—(i.e, the causal order of work executed, amount of concurrency,
and locations of forks and joins)—latencies, or resource usages. Magpie [5] identi�es both correctness- and
performance-related anomalies, whereas Pinpoint’s [11] anomaly detection component focuses solely on
correctness problems.

Diagnosing steady-state problems:�is is another diagnosis-related use case, which involves identifying
and debugging problems that manifest in many work�ows (and so are not anomalies). Such problems a�ect the
50th or 75th percentile of some important metric, not the 99.9th. �ey may manifest in work�ows’ structures,
latencies, or resource usages, and are generally performance related—for example, a con�guration change
that modi�es the storage nodes accessed by a set of requests and increases their response times. Pip [37],
the revised version of Stardust (Stardust‡ [40]), both versions of X-Trace [19, 20], Dapper [43], and parts of
Pinpoint [11] are all most useful for diagnosing steady-state problems.

Distributed pro�ling: �e goal of distributed pro�ling is to identify slow components or functions.
Since the time a function takes to execute may di�er based on how it is invoked, pro�lers o�en maintain
separate bins for every unique calling stack, so full work�ow structures need not be preserved. Whodunit [9]
is explicitly designed for this purpose and can be used to pro�le entire workloads. Dapper [43] and ETE [23]
show visualizations that help pro�le individual work�ows.

Resource attribution: �is use case is designed to answer question “Who should be charged for this
piece of work executed deep in the stack of my distributed system’s components?” It involves tying work
done at an arbitrary component of the distributed system to the client or request that originally submitted it.
Quanto [18] and the original version of Stardust [47] are most useful for resource attribution. �e former ties
per-device energy usage to high-level activities (e.g., sensing or routing) in distributed-embedded systems.
�e latter ties per-component resource usages (e.g., CPU time or disk time) to clients in distributed storage
systems or databases. We note that resource-attribution-based tracing can be especially useful for accounting

3



and billing purposes, especially in distributed services shared by many clients, such as Amazon’s EC2 [51].
Workload modeling: �is catch-all use case involves using end-to-end traces to create workload sum-

maries, which can then be used for later analyses or inferences. One example in this vein is Magpie [5], which
clusters its traces to identify those unique sets of work�ows that are representative of the entire workload.
Stardust [47] can be used to create queuing models that answer “what-if ” questions (e.g., “What would happen
to the performance of workload A if I replaced the CPU on a certain distributed system component with a
faster one?”). Almost any tracing implementation can be viewed as useful for workload modeling. But, the
types of models that it can be create will be dictated by the design choices made for it.

2.2 Approaches to end-to-end tracing

Most end-to-end tracing infrastructures use one of three approaches to identify causally-related activity:
metadata propagation, schemas, or black-box inference. �is paper focuses on design decisions for tracing
infrastructures that use the �rst, as they are more scalable and produce more accurate traces than those that
use the other two. However, many of our analyses are also applicable to the other approaches.

Metadata propagation: Like security, end-to-end tracing works best when it is designed as part of
the distributed system. As such, many implementations are designed for use with white-box systems, for
which the components can be modi�ed to propagate metadata (e.g., an ID) delineating causally-related
activity [9,11,18–20,37,40,43,47]. All metadata-propagation-based implementations identify causality between
individual functions or trace points, which resemble log messages and record the fact that a particular point in
the system was reached at a particular time. To keep runtime overhead (e.g., slowdown in response time and
throughput) to a minimum so that tracing can be “always on,” most tracing infrastructures in this category use
sampling to collect only a small number of trace points or work�ows.

Schema-based: A few implementations, such as ETE [23] andMagpie [5], do not propagate metadata, but
rather require developers to write temporal join-schemas that establish causal relationships among variables
exposed in custom-written log messages. Schema-based approaches are not compatible with sampling, since
they delay determining what is causally related until a�er all logs are collected. �erefore, they are less scalable
than metadata-propagation approaches.

Black-box inference: Several end-to-end tracing implementations [2,6,25,28,38,44,45,53] do not modify
the traced systems. Rather, they infer causality by either correlating variables or timings from pre-existing
logs [6, 25, 45, 53] or making simplifying assumptions [44]. �ough the idea of obtaining end-to-end traces
without so�ware modi�cation is appealing, these approaches cannot properly attribute causality in the face
of asynchronous behaviour (e.g., caching, event-driven systems), concurrency, aggregation, or code-speci�c
design patterns (e.g., 2-of-3 storage encodings), all of which are common in distributed systems.

2.3 Anatomy of end-to-end tracing

Figure 2 shows the anatomy of most metadata-propagation-based end-to-end tracing infrastructures. �e
so�ware components work to identify work done in the distributed system, preserve the chosen causal
relationships, limit overhead, optionally persist trace data to storage, create traces, and present traces to
developers. �ey include individual trace points, the causal-tracking mechanism, the sampling mechanism,
the storage component, the trace construction code, and the presentation layer.

Developing such an infrastructure requires answering two conceptual design questions that will dictate
the infrastructure’s fundamental capabilities. �e �rst is: “what causal relationships should be preserved?”
Preserving all of them would result in too much overhead, yet preserving the wrong ones will will yield useless
traces. Section 3 describes which causal relationships should be preserved for the use cases identi�ed in the
previous section.

4



• Relationships to preserve

App server

Table store

Distributed
filesystem

Client Server

Trace storage
(optional)

Trace points

Storage / construction

Trace construction

Causal tracking

Presentation layer (visualization)

• Model to express relationships

Conceptual choices

(optional)

Example workflow

Sampling
decision

Figure 2: Anatomy of end-to-end tracing. �e elements of a typical metadata-propagation-based tracing infrastructure
are shown.

�e second conceptual design question is: “What model should be used to express relationships?” Spe-
cialized models can only represent a few types of causal relationships, but can be stored and retrieved more
e�ciently; expressive models make the opposite tradeo�. �e most popular specialized model is a directed
acyclic tree, which is su�cient for expressing sequential, concurrent, or recursive call/reply patterns (e.g., as
observed in RPCs). Forks and concurrency are represented by branches. It is used by the original X-Trace [20],
Dapper [43], and Whodunit [9]. Dapper additionally optimizes for call/reply patterns by using a storage
schema that is optimized for retrieving them. Pinpoint [11] uses paths, which are su�cient for representing
synchronous behaviour and event-based processing.

�ough useful, trees cannot be used to represent nodes with multiple parents. �is corresponds to cases
where a single distributed-system event is causally dependent on several previous events. Examples include
joins or processing that depends on several inputs. Since preserving joins is important for diagnosis tasks (see
Section 3.1.4), the revised version of Stardust [40] and the revised version of X-Trace [19] use general directed
acyclic graphs (DAGs) instead of trees. �e original version of Stardust [47] also uses DAGs to establish
relationships between original submitters of work and aggregated activity. Pip [37] has the same expressive
power as DAGs through its representation of arbitrary messages among its tasks.

We now brie�y describe the basic components of the infrastructure. �e causal-tracking mechanism
propagates metadata with work�ows to preserve the desired causal relationships. It is critical to end-to-end
tracing, and key design decisions for it are described in Section 4.

Individual trace points indicate locations in the codebase accessed by individual work�ows. Executing a
trace point creates a trace-point record, which contains information about the executed trace point, associated
metadata, and any additional data developers may want to capture (e.g., the current call stack). Trace points are
o�en embedded in commonly used libraries (e.g., RPC libraries) and added by developers in important areas
of the distributed system’s so�ware [19, 40, 43]. �ough many design decisions for where to add trace points
are similar to those for logging, trace points can also help distinguish work�ow structures (see Section 4.2) for
examples of how these structural trace points can be used to identify forks and joins). Alternatively, binary
re-writing or interposition techniques like aspect-oriented programming [27] can be used to automatically
add trace points at function boundaries [9, 17] or other locations, such as forks and joins.

Most tracing infrastructures use sampling techniques to limit runtime and/or storage overhead. Coherent
sampling is o�en used, in which either all or none of a work�ow’s trace points are sampled. For example,
by using coherent sampling to persist (i.e., store to stable storage) less than 1% of all work�ows’ trace-point

5



records, the revised version of Stardust [40] and Dapper [43] impose less than a 1% runtime overhead. �e
choice of what causal relationships are to be preserved dictates the sampling technique that should be used.
Section 5 describes di�erent sampling techniques and their tradeo�s.

�e storage component persists trace-point records. �e trace construction code joins trace-point records
that have related metadata to construct traces of causally-related activity. �ese components are optional, since
trace-point records need not be persisted if the desired analyses can be performed online. For example, for
some analyses, it is su�cient to propagate important data with causally-related activity and read it at executed
trace points.

Several good engineering choices, as implemented by Dapper [43], can minimize the performance impact
of persisting trace-points records. First, on individual components, records of sampled trace points should be
logged asynchronously (i.e., o� the critical path of the distributed system). For example, this can be done by
copying them to an in-memory circular bu�er (or discarding them if the bu�er is full) and using a separate
thread to write trace points from this bu�er to local disk or to a table store. A MapReduce job can then be
used to construct traces. Both Stardust [47] and Dapper [43] suggest storing traces for two weeks for post-hoc
analyses before discarding them.

�e �nal aspect of an end-to-end tracing infrastructure is the presentation layer. It is is responsible for
showing constructed traces to users and is important for diagnosis-related tasks. Various ways to visualize
traces and tradeo�s between them are discussed in Section 6.

3 Which causal relationships should be preserved?

Since preserving causally-related activity is the ultimate goal of end-to-end tracing, the ideal tracing infrastruc-
ture would preserve all true or necessary causal relationships, and only those. For example, it would preserve
the work�ow of servicing individual requests and background activities, read-a�er-write accesses to memory,
caches, �les, and registers, data provenance, inter-request causal relationships due to resource contention (e.g.,
for caches) or built-up state, and so on.

However, it is di�cult to know what activities are truly causally related. As such, tracing infrastructures
resort to preserving Lamport’s happens-before relation (→), which states that if a and b are events and a→ b,
then a may have in�uenced b, and thus, b might be causally dependent on a [29]. But, the happens-before
relation is only an approximation of true causality: it can be both too indiscriminate and incomplete at the
same time. It can be incomplete because it is impossible to know all channels of in�uence, which can be
outside of the system [12]. It can be too indiscriminate because it captures irrelevant causality, asmay have
in�uenced does not mean has in�uenced.

Tracing infrastructures limit indiscriminateness by using knowledge of the system being traced and the
environment to capture only the slices of the general happens-before graph that are most likely to contain
necessary causal relationships. First, most tracing infrastructures make assumptions about boundaries of
in�uence among events. For example, by assuming a memory-protection model, the tracing infrastructure
may exclude happens-before edges between activities in di�erent processes, or even between di�erent activities
in a single-threaded event-based system (see Section 4 for mechanisms by which spurious edges are removed).
Second, they may ask developers to explicitly add trace points in areas of the distributed system’s so�ware they
deem important and only track relationships between these trace points [11, 19, 20, 37, 40, 43, 47].

Di�erent slices are useful for di�erent use cases, but preserving all of themwould incur toomuch overhead
(even the most e�cient so�ware taint-tracking mechanisms yield a 2x to 8x slowdown [26]). As such, tracing
infrastructures work to preserve only the slices that are most useful for how their outputs will be used. �e
rest of this section describes slices that have proven useful for various use cases.

6



3.1 Intra-request slices

When developing a tracing infrastructure, developers must choose a slice of the happens-before graph that
de�nes the work�ow of a request as it is being serviced by a distributed system. Work created by the submitting
request that is performed before the request responds to the client must be considered part of its work�ow.
However, latent work (e.g., data le� in a write-back cache that must be written to disk eventually) can either
be considered part of the submitting request’s work�ow or part of the request that forces that work to be
executed (e.g., via an on-demand cache eviction). �is observation forms the basis for two intra-request
slices—submitter-preserving and trigger-preserving—that preserve di�erent information and are useful for
di�erent use cases. We �rst identi�ed these slices and the di�erences between them while trying to understand
why the original Stardust [47] wasn’t useful for diagnosis tasks.

Section 3.1.1 and Section 3.1.2 describe the tradeo�s involved in preserving the submitter-preserving and
trigger-preserving slices in more detail. Section 3.1.3 lists the advantages of preserving both intra-request
slices. Section 3.1.4 discusses the bene�ts of delineating concurrent behaviour from sequential behaviour and
preserving forks and joins in individual traces. Table 2 shows intra-request slices most useful for the key uses
of end-to-end tracing.

3.1.1 The submitter-preserving slice

Preserving this slice means that individual end-to-end traces will show causality between the original submitter
of a request and work done to process it through every component of the system. It is most useful for resource
attribution, since this usage mode requires that end-to-end traces tie the work done at a component several
levels deep in the system to the client, workload, or request responsible for originally submitting it. Quanto [18],
Whodunit [9], and the original version of Stardust [47] preserve this slice of causality.�e two le�most diagrams
in Figure 3 show submitter-preserving traces for two write requests in a distributed storage system. Request
one writes data to the system’s cache and immediately replies. Sometime later, request two enters the system
and must evict request one’s data to place its data in the cache. To preserve submitter causality, the tracing
infrastructure attributes the work done for the eviction to request one, not request two. Request two’s trace
only shows the latency of the eviction. Note that the tracing infrastructure would attribute work the same way
if request two were a background cleaner thread instead of a client request that causes an on-demand eviction.

3.1.2 The trigger-preserving slice

�e submitter-preserving trace for request one shown in Figure 3 is unintuitive and hard to understand when
visualized because it attributes work done to the request a�er the client reply has been sent. Also, latent work

Intended use Slice Preserve forks/joins/concurrency

Anomaly detection Trigger Y

Diagnosing
steady-state problems

” ”

Distributed pro�ling Either N

Resource attribution Submitter ”

Workload modeling Depends Depends

Table 2: Suggested intra-�ow slices to preserve for various intended uses. Since the same necessary work is simply
attributed di�erently for both trigger- and submitter-preserving slices, either can be used for pro�ling. �e causality
choice for workload modeling depends on what aspects of the workload are being modeled.

7



Trigger-preserving

insert5block

write

evict
10µs

10µs

cache5write

block
persisted

write5reply

1min

insert5block

write
cache5write

write5reply

Request5one

Request5two

disk5write

10µs

10µs

30µs

10µs
10µs
10µs

Submitter-preserving
Request5one

Request5two

5µs

5µs

insert5block

write
cache5write

write5reply

10µs
10µs
10µs

write
cache5write

10µs

evict
10µs

10µs
block

persisted

disk5write

insert5block
write5reply

10µs

Figure 3: Traces for two storage system write requests when preserving di�erent slices of causality. Request one
places its data in a write-back cache and returns immediately to the client. Sometime later, request two enters the system
andmust perform an on-demand eviction of request one’s data to place its data in the cache. �is latent work (highlighted
in dotted green) may be attributed to request one (if submitter causality is preserved) or request two (if trigger causality
is preserved). �e one minute latency for the le�most trace is an artifact of the fact that the traces show latencies between
trace-point executions. It would not appear if they showed latencies of function call executions instead, as is the case for
Whodunit [9].

attributed to this request (i.e., trace points executed a�er the reply is sent) is performed in the critical path
of request two. In contrast, trigger causality guarantees that a trace of a request will show all work that must
be performed before a client response can be sent, including another client’s latent work if it is executed in
the request’s critical path. �e right two traces in Figure 3 show the same two requests as in the submitter-
preserving example, with trigger causality preserved instead. Since these traces are easier to understand when
visualized (they always end with a client reply) and always show all work done on requests’ critical paths,
trigger causality should be preserved for diagnosis tasks, which o�en involve answering questions of the form
“Why is this request so slow?”

Indeed, switching from preserving submitter causality to preserving trigger causality was perhaps the
most important change we made to the original version of Stardust [47] (useful for resource attribution) to
make it useful for diagnosis tasks [40]. Many other tracing implementations implicitly preserve this slice of
causality [11, 19, 37, 43].

3.1.3 Is anything gained by preserving both?

�e slices suggested above are the most important ones that should be preserved for various use cases, not
the only ones that should be preserved. Indeed, preserving both submitter causality and trigger causality will
enable a deeper understanding of the distributed system than is possible by preserving only one of them. For
example, for diagnosis, preserving submitter causality in addition to trigger causality will allow the tracing
infrastructure to answer questions such as “Who was responsible for evicting my client’s cached data?” or,
more generally, “Which clients tend to interfere with each other most?”

3.1.4 Preservingwork÷ow structure (concurrency, forks, and joins)

For both submitter-preserving causality and trigger-preserving causality, preserving work�ow structure—
concurrent behaviour, forks, and joins—is optional. It is not necessary for some use cases, such as resource
attribution or pro�ling. However, it is useful to preserve them for diagnosis tasks. Preserving concurrency and
forks allows developers to diagnose problems due to excessive parallelism or too little parallelism. Additionally,

8



preserving joins allows developers to diagnose excessive waiting at synchronization points and allows them to
easily identify critical paths.

�e original version of X-Trace [20] used trees to model causal relationships and so could not preserve
joins. �e original version of Stardust [47] used DAGs, but did not instrument joins. To become more useful
for diagnosis tasks, in their revised versions [19,40], X-Trace evolved to use DAGs and both evolved to explicitly
include APIs for instrumenting joins.

3.2 Preserving inter-request slices

In addition to relationships within a request, many types of causal relationships may exist between requests.
�is section describes the two most common ones.

�e contention-preserving slice: Requests may compete with each other for resources, such as access to
a shared variable. Preserving causality between requests holding a resource lock and those waiting for it can
help explain unexpected performance slowdowns or timeouts. Only Whodunit [9] preserves this slice.

�e-read-a�er-write-preserving slice: Requests that read data (e.g., from a cache or �le) written by
others may be causally a�ected by the contents. For example, a request that performs work dictated by
the contents of a �le—e.g., a map-reduce job [15]—may depend on that �le’s original writer. Preserving
read-a�er-write dependencies can help explain such requests’ behaviour.

4 How should causal relationships be tracked?

All end-to-end tracing infrastructures must employ a mechanism to track the slices of intra-request and
inter-request causality most relevant to their intended use cases. To avoid capturing super�uous relationships
(e.g., portions of undesired slices or false causal relationships), tracing infrastructures “thread” metadata along
with individual work�ows and establish happens-before relationships only to items with the same (or related)
metadata [9, 11, 19, 20, 37, 40, 43, 47, 48]. Section 4.1 describes di�erent types of metadata and tradeo�s between
them.

In general, metadata can be propagated by storing it in thread-local variables when a single thread is
performing causally-related work, and encoding logic to propagate metadata across boundaries (e.g., across
threads, caches, or components) in commonly used libraries. We argue that systems should be designed with
the ability to propagate reasonably generic metadata with their �ow of execution and messages, as this is a key
underlying primitive of all tracing infrastructures we describe.

�ough any of the approaches discussed below can preserve concurrency by establishing happens-before
relationships, additional instrumentation is needed to capture forks and joins. Such structural trace points are
discussed in Section 4.2. Of course, the causal-relationship model used by the tracing infrastructure must also
be expressive enough to represent concurrency, forks, and joins.

4.1 Tradeoés between metadata types

Per-work�ow metadata can either be static or dynamic. Dynamic metadata can additionally be �xed-width
or variable-width. �ere are three main issues to consider when determining which type of metadata to use.
First is size. Larger metadata will result in larger messages (e.g., RPCs) or will constrain payload size. Second
is brittleness (or resilience) to lost or unavailable data. �ird is whether the approach enables immediate
availability of full traces (or other data needed for analysis) without trace construction.

Comparing the three approaches, �xed-width approaches limit metadata size compared to variable-width
approaches. All �xed-width approaches are also brittle to data availability or loss, though in di�erent ways and
to di�ering degrees. Dynamic, variable-width approaches can be extremely resilient to data loss, but at the
cost of metadata size. Additionally, dynamic, variable-width approaches are o�en necessary to avoid trace

9



construction. Table 3 summarizes the tradeo�s between the various metadata-propagation approaches. �e
rest of this section describes them in more detail.

Static, �xed-width metadata: With this approach, a single metadata value (e.g., a randomly chosen
64-bit work�ow ID) is used to identify all causally-related activity. Tracing implementations that use this
method must explicitly construct traces by joining trace-point records with the same metadata. When doing
so, they must rely on clues stored with trace-point records to establish happens-before relationships. For
example, to order causally-related activity within a single thread, they must rely on an external clock. Since
network messages must always be sent by a client before being received by a server, tracing infrastructures that
do not rely on synchronized clocks might establish happens-before relationships between client and server
work using network send and receive trace points on both machines. To identify concurrent work within
components, tracing implementations that use this approach might establish happens-before relationship via
thread IDs. Pip [37], Pinpoint [11], and Quanto [18] use static, �xed-width metadata.

�is approach is brittle because it will be unable to properly order activity in cases where the external
clues are lost (e.g., due to losing trace-point records) or are unavailable (e.g., because developers are not blessed
with the ability to modify arbitrary sections of the distributed system’s codebase). For example, if thread IDs
are lost or are not available, this approach might not be able to properly identify concurrent activity within a
component.

Dynamic, �xed-width metadata: With this approach, simple logical clocks (i.e., single 64-bit values),
in addition to a work�ow ID, can be embedded within metadata, enabling tracing infrastructures to encode
happens-before relationships without relying on external clues. To limit metadata size, a single logical times-
tamp is used. Vector clocks are not feasible with �xed-width metadata because they would require metadata as
wide as the number of threads in the entire distributed system. At each trace point, a new random logical-clock
value is chosen and a happens-before relationship is created by storing both new and old logical-clock values
in the corresponding trace record. Counters that are incremented at each trace point could also be used
to implement logical clocks, but would be insu�cient for ordering concurrent accesses. Both versions of
X-Trace [19, 20] use dynamic, �xed-width metadata. Dapper [43] and both versions of Stardust [40, 47] use a
hybrid approach that combines the previous approach and this one. For example, Stardust [40,47] relies on an
external clock to order activity within components and uses logical clocks to order inter-component accesses.

�e dynamic, �xed-width approach is also brittle because it cannot easily order trace-point records when
a subset of them are lost. For example, if a single trace-point record is lost, this approach will be unable to
order the two trace fragments that surround it because both will have completely di�erent logical-clock values
for which no explicit happens-before relationship exists. Hybrid approaches, which do not change metadata
values as o�en, are slightly less susceptible to this problem than approaches that always change metadata
between trace points. Other approaches are also possible to reduce brittleness, but at the expense of space.

Type Resilient Traces avail. Constant
(∼Brittle) immediately size Use cases

Static 3 All
Dynamic, �xed-width 3 ”
Hybrid, �xed-width — 3 ”
Dynamic, variable-width 3 3 ”

Table 3: Tradeo�s between metadata types. Static and dynamic, �xed-width approaches are of constant size (e.g., a
minimum of one or two 64-bit values), but are brittle and do not enable immediate use of trace data. Dynamic variable-
width approaches can enable resiliency by incorporating interval-tree clocks and can be used to obtain traces immediately,
but the resultingmetadata can be very large (e.g., its size could be proportional to the amount of intra-request concurrency
and number of functions executed). Hybrid approaches represent a good in�ection point because they are less brittle
than pure static or dynamic approaches and are of constant size (e.g., a minimum of two 64-bit values).

10



Dynamic, variable-width metadata: With this approach, metadata assigned to causally-related activity
can change in size in addition to value. Doing so would allow metadata to include interval-tree clocks [3]
instead of simple logical clocks. Like vector clocks, interval-tree clocks reduce brittleness since any two
timestamps can be compared to determine if they are concurrent or if one happened before another. But,
unlike vector clocks, interval-tree clocks can grow and shrink in proportion to the number of active threads.
In contrast, variable-width vector clocks cannot shrink and so require width proportional to the maximum
number of threads observed in a work�ow. Vector clocks also require globally unique, well-known thread
IDs [3]. Currently, no existing tracing infrastructure uses vector clocks or interval-tree clocks.

Tracing infrastructures that wish to make full traces (or other data that requires tying together causally-
related activity) available immediately without explicit trace construction must use dynamic, variable-width
metadata. For example, tracing infrastructures that use dynamic, variable-widthmetadata could carry executed
trace-point records within metadata, making them immediately available for use as soon as the work�ow ends.
Whodunit [9] is the only existing tracing implementation that carries trace-point records (i.e., function names)
in metadata. To reduce metadata size, heuristics are used to reduce the number of propagated trace-point
records, but trace �delity is reduced as a result.

4.2 How to preserve forks and joins

For the static and dynamic, �xed-width metadata-propagation approaches discussed above, forks and joins
can be preserved via one-to-many and many-to-one trace points. For the static approach, such trace points
must include clues that uniquely identify the activity being forked or waited on—for example, thread IDs. For
dynamic, �xed-width approaches, one-to-many trace points should include the current logical-clock value and
the logical-clock values that will be initially used by each of the forked descendants. Join trace points should
include the current logical-clock value and the logical-clock values of all events that must complete before
work can proceed. Dynamic, variable-width approaches can infer forks and joins if they include interval-tree
clocks.

An alternate approach, used by Mann et al. [31], involves comparing large volumes of traces to automati-
cally determine fork and join points.

5 How should sampling be used to reduce overhead?

Sampling determines which trace-point records are persisted by the tracing infrastructure. It is the most
important technique used by end-to-end tracing infrastructures to limit runtime and storage overhead [9,
19, 40, 43, 47]. For example, even though Dapper writes trace-point records to stable storage asynchronously
(i.e., o� the critical path of the distributed system), it still imposes a 1.5% throughput and 16% response time
overhead when persisting all trace points executed by a web search workload [43]. When using sampling to
capture just 0.01% of all trace points, the slowdown in response times is reduced to 0.20% and in throughput
to 0.06% [43]. Even when trace-point records need not be persisted because the required analyses can be
performed online, sampling is useful to limit the sizes of analysis-speci�c data structures [9].

�ere are three fundamentally di�erent options for deciding what trace points to sample: head-based
coherent sampling, tail-based coherent sampling, or unitary sampling. Coherent sampling methods, which
guarantee that all or none of the trace points executed by a work�ow will be sampled, must be used if traces
showing causally-related activity are to be constructed. Additionally, head-based sampling will o�en result
in high overheads if it is used to preserve submitter causality. Figure 4 illustrates the tradeo�s between the
di�erent sampling schemes when used to preserve di�erent causality slices. �e rest of this section further
describes the sampling schemes.

Head-based coherent sampling: With this method, a random sampling decision is made for entire
work�ows at their start (e.g., when requests enter the system) andmetadata is propagated along with work�ows

11



Submitter-preserving

Trace point records

Head-based Tail-based Unitary

Cached

Discarded

Sampled

Aggregating component 
(e.g., cache)

Sampling decision

Trigger-preserving

Head-based

Propagate
decision

Figure 4: Trace points thatmust be sampled as a result of using di�erent sampling schemes andpreserving di�erent
causality slices. In this example, the right-most work�ow in each of the four diagrams causes an on-demand eviction
and, as part of this process, aggregates latent work stored in other cache blocks. Head-based sampling greedily decides
whether to sample work�ows at their start. As such, when preserving submitter causality using head-based sampling,
all trace points executed by work�ows that aggregate latent work (e.g., the work�ow forcing the on-demand eviction
in this example) must be sampled if any one of the aggregated set was inserted into the system by a sampled work�ow.
With each aggregation, the probability of sampling individual trace points will increase, resulting in high storage and
runtime overheads. Since tail-based sampling defers sampling decisions to when work�ows �nish, it does not in�ate the
trace-point-sampling probability as a result of aggregations. However, it requires that records of trace points executed by
work�ows that leave latent work be cached until the latent work is aggregated. Unitary sampling also does not su�er
from sampling in�ation because it does not attempt to coherently capture work�ows’ trace-point records. However, with
unitary sampling, data required to obtain traces or for needed analysis must be propagated with metadata and stored in
trace-point records. �e rightmost diagram shows that head-based sampling can be used to preserve trigger causality
with low overhead because latent work is always attributed to the aggregator. As such, only the sampling decision made
for the aggregator matters when deciding whether to sample the trace points it executes.

indicating whether to collect their trace points. �e percentage of work�ows randomly sampled is controlled
by setting the work�ow-sampling percentage. When used in conjunction with tracing infrastructures that
preserve trigger causality, the work�ow-sampling percentage and the trace-point-sampling percentage (i.e.,
the percentage of trace points executed that are sampled) will be the same. Due to its simplicity, head-based
coherent sampling is used by many existing tracing implementations [19, 40, 43].

Head-based coherent sampling will not reduce runtime and storage overhead for tracing infrastructures
that preserve submitter causality. �is is because the e�ective trace-point-sampling percentage will almost
always be much higher than the work�ow-sampling percentage. To understand why, recall that preserving
submitter causality means that latent work is attributed to the original submitter. So, when latent work is
aggregated by another request or background activity, trace points executed by the aggregator must be sampled
if any one of the aggregated set was inserted into the system by a sampled work�ow. In many systems, this
process will result in sampling almost all trace points deep in the system. For example, if head-based sampling
is used to sample trace points for only 0.1% of work�ows, the probability of sampling an individual trace point
will also be 0.1% before any aggregations. However, a�er aggregating 32 items, this probability will increase
to 3.2% and a�er two such levels of aggregation, the trace-point-sampling percentage will increase to 65%.
�e le�most diagram in Figure 4 illustrates this in�ationary process for one level of aggregation. �e overall
e�ective trace-point-sampling percentage depends on several parameters, including the work�ow-sampling
percentage, the number of aggregation levels, and the number of trace points between aggregation levels.

When developing the revised version of Stardust [40], we learned of this incompatibility between head-
based coherent sampling and submitter causality the hard way. Head-based sampling was the �rst feature we
added to the original Stardust [47], which previously did not use sampling and preserved submitter causality.
But, at the time, we didn’t know anything about causality slices or how they interact with di�erent sampling
techniques. So, when we applied the sampling-enabled Stardust to our test distributed system, Ursa Minor [1],
we were very confused as to why the tracing overheads did not decrease. Of course, the root cause was that

12



Ursa Minor contained a cache very near the entry point to the system, which aggregated 32 items at a time.
We were using a sampling rate of 10%, meaning that 97% all trace points executed a�er this aggregation were
always sampled.

Tail-based coherent sampling: �is method is similar to the previous one, except that the work�ow-
sampling decision is made at the end of work�ows, instead of at their start. Delaying the sampling decision
allows for more intelligent sampling—for example, the tracing infrastructure can examine a work�ow’s
properties (e.g., response time) and choose only to collect anomalous ones. But, trace-point records for every
work�ow must be cached somewhere until the sampling decision is made for them. Because many work�ows
can execute concurrently, because each request can execute many trace points, and because work�ows with
latent work will remain in the system for long periods of time, such temporary collection is not always feasible.

Tail-based sampling avoids in�ating the trace-point-sampling percentage because it does not commit to a
sampling decision upfront. As such, it can be used to preserve submitter causality with low runtime and storage
overhead. For work�ows that carry aggregated work, tail-based sampling guarantees that either all or none of
the trace points executed by work�ows whose work has been aggregated are sampled. Accomplishing this
requires maintaining a mapping between aggregators’ work�ow IDs and the IDs of the work�ows whose work
they have aggregated. �e second-le�most diagram in Figure 4 illustrates the trace-point records that must
be cached when preserving submitter causality with tail-based sampling. Due to its high memory demand,
tail-based sampling is not used by most tracing infrastructures.

Some tracing infrastructures use a hybrid scheme, in which they nominally use head-based coherent
sampling, but also cache records of recently executed trace points in per-node circular bu�ers. �e circular
bu�ers are o�en sized to guarantee a request’s trace-point records will not be evicted as long as it’s execution
time does not exceed the 50th or 75th percentile. �is technique allows tracing infrastructures to backtrack
and collect traces for non-sampled work�ows that appear immediately anomalous (e.g., fail or return an error
code soon a�er starting execution). However, it is not su�cient for performance anomalies (e.g., requests that
take a very long time to execute).

Unitary sampling: With this method, developers set the trace-point-sampling percentage directly and
the sampling decision is made at the level of individual trace points. No attempt is made at coherence (i.e.,
capturing all trace points associated with a given work�ow), so traces cannot be constructed using this
approach. �is method is best for use cases, such as resource attribution, where the information needed for
analysis can be propagated with work�ows (assuming dynamic, variable-width metadata) and retrieved at
individual trace points directly.

In addition to deciding how to sample trace points, developers must decide how many of them to sample.
Many infrastructures choose to randomly sample a small, set percentage—o�en between 0.01% and 10%—of
trace points or work�ows [9, 19, 40, 43]. However, this approach will capture only a few trace points for small
workloads, limiting its use for them. Using per-workload sampling percentages can help, but this requires
knowing workload sizes a priori. A more robust solution, proposed by Sigelman at al. [43], is an adaptive
scheme, in which the tracing infrastructure aims to always capture a set rate of trace points or work�ows
(e.g., 500 trace points/second or 100 work�ows/second) and dynamically adjusts the trace-point- or work�ow-
sampling percentage to accomplish this set goal. �ough promising, care must be taken to avoid biased results
when the captured data is used for statistical purposes. For distributed services built on top of shared services,
the adaptive sampling rate should be based on the tracing overhead the lowest-tier shared service can support
(e.g., Bigtable [10]) and proportionately propagated backward to top-tier services.

6 How should traces be visualized?

Good visualizations are important for use cases such as diagnosis and pro�ling. E�ective visualizations will
amplify developers’ e�orts, whereas ine�ective ones will hinder their e�orts and convince them to use other

13



tools and techniques [30, 39]. Indeed, Oliner et al. identify visualization as one of the key future challenges
in diagnosis research [34]. �is section highlights common approaches to visualizing end-to-end traces.
�e choices between them depend on the visualization’s intended use, previous design choices, and whether
precision (i.e., the ability to show forks, joins, and concurrency) is preferred over volume of data shown.
Furthermore, the underlying trace representation limits which visualizations can be used. DAGs can support
any of the approaches in this section. All but �ow graphs can also be built from directed trees.

Table 4 summarizes the tradeo�s among the various visualizations. Figure 5 shows how some of the
visualizations would di�er in showing requests. Instead of visualizing traces, Pip [37] uses an expectation
language to describe traces textually. Formal user studies are required to compare the relative bene�ts of
visualizations and expectations, and we make no attempt to do so here.

Gantt charts (also called swimlanes): �ese visualizations are most o�en used to show individual traces,
but can also be used to visualize multiple requests that have identical work�ows. �e Y-axis shows the overall
request and resulting sub-requests issued by the distributed system, and the X-axis shows relative time. �e
relative start time and latency (measured in wall-clock time) of items shown on the Y-axis are encoded by
horizontal bars. Concurrency can easily be inferred by visually identifying bars that overlap in X-axis values.
Forks and joins must also be identi�ed visually, but it is harder to do so. Both ETE [23] and Dapper [43]
use Gantt charts to visualize individual traces. In addition to showing latencies of the overall request and
sub-requests, Dapper also identi�es network time by subtracting time spent at the server from the observed
latency of the request or sub-request.

Flow graphs (also called request-�ow graphs): �ese directed-acyclic graphs faithfully show requests’
work�ows as they are executed by the various components of a distributed system. �ey are o�en used to
visualize and show aggregate information about multiple requests that have identical work�ows. Since such
requests are o�en expected to perform similarly, �ow graphs are a good way to preserve precision, while still
showing multiple requests. Fan-outs in the graph represent the start of concurrent activity (forks), events on
di�erent branches are concurrent, and fan-ins represent synchronization points (joins). �e revised version of
Stardust [40] and the revised version of X-Trace [19] visualize traces via �ow graphs.

Call graphs and focus graphs: �ese visualizations are also o�en used to show multiple traces, but do
not show concurrency, forks, or joins, and so are not precise. Call graphs use fan-outs to show functions
accessed by a parent function. Focus graphs show the call stack to a chosen component or function, called
the “focus node,” and the call graph that results from treating the focus node as its root. In general, focus
graphs are best used for diagnosis tasks for which developers already know which functions or components are
problematic. Dapper [43] uses focus graphs to show multiple requests with identical work�ows, but owing to
its RPC-oriented nature, nodes do not represent components or functions, but rather all work done to execute
an RPC at the client and server. Note that when used to visualize multiple requests with di�erent work�ows,

Precision Many �ows?
Forks Joins Conc. Same Di�erent

Gantt charts I I I Y N
Flow graphs Y Y Y Y N
Call & focus graphs N N N Y Y⋆
CCTs N N N Y Y

Table 4: Tradeo�s between trace visualizations. Di�erent visualizations di�er in precision—i.e., if they can show forks,
joins and concurrency (“Y”), or if it must be inferred (“I”).�ey also di�er in their ability to show multiple work�ows,
and whether those multiple work�ows can be di�erent. To our knowledge, these visualizations have been used to show
traces that contain up to a few hundred trace points. Note that though call graphs and focus graphs are sometimes used
to visualize multiple di�erent work�ows, they will show infeasible paths when used to do so.

14



Figure 5: Comparison of various approaches for visualizing traces. Gantt charts are o�en used to visualize individual
requests. Flow graphs allow multiple requests with identical work�ows to be visualized at the same time while showing
forks, joins, and concurrency. However, they must show requests with di�erent work�ows separately (as shown by
requests one and two). CCTs trade precision for the ability to visualize multiple requests with di�erent work�ows (e.g.,
an entire workload). Call graphs can also show multiple work�ows, but may show infeasible paths that did not occur in
an actual execution. For example, see the a→ b→ c→ d path in the call graph shown, which does not appear in either
request one or two.

call graphs can show infeasible paths [4]. �is is demonstrated by the a→ b→ c→ d path for the call graph
shown in Figure 5.

Calling Context Trees (CCTs) [4]: �ese visualizations are best used to show multiple requests with
di�erent work�ows, as they guarantee that every path from root to leaf is a valid path through the distributed
system. To do so in a compact way, they use fan-outs to show function invocations, not forks, and, as such,
are not precise. CCTs can be constructed in amortized constant time and are best used for tasks for which a
high-level summary of system behaviour is desired (e.g., pro�ling). Whodunit [9] uses CCTs to show pro�ling
information for workloads.

7 Putting it all together

Based on the tradeo�s described in previous sections and our experiences, this section identi�es good design
choices for the key uses of end-to-end tracing. We also show previous implementations’ choices and contrast
them to our suggestions.

7.1 Suggested choices

�e italicized rows of Table 5 show suggested design choices for key use cases of end-to-end tracing. For the
causal-tracking mechanism, we suggest the hybrid static/dynamic, �xed-width approach for most use cases
because it requires constant size, reduces the need for external clues, and is less brittle than the straightforward
dynamic, �xed-width approach. Static metadata is also a good choice if the needed external clues (e.g., to
establish happens-before relationships) will always be available or if many events that require clues, such
as forks, joins, and concurrency, need not be preserved. Developers should consider using variable-width

15



Design axes

Use Name Sampling Causality
slices

Forks/
joins/conc.

Metadata Visualization

Anomaly
detection

Suggested Coherent (T) Trigger Yes S/DF Flow graphs

Magpie [5] No Any ” None Gantt charts (V)
Pinpoint [11] ” Trigger No S Paths

Diagnosing
steady-state
problems

Suggested Coherent (H) Trigger Yes S/DF Flow graphs

Stardust‡ [40] ” ” ” ” ”
X-Trace‡ [19] ” ” ” DF ”
Dapper [43] ” ” Forks/conc. S/DF Gantt charts &

focus graphs
Pip [37] No ” Yes S Expectations
X-Trace [20] ” Trigger &

TCP layers
Forks/conc. DF Call graphs &

network layers
Pinpoint [11] ” Trigger No S Paths

Distributed
pro�ling

Suggested Unitary Either No DV CCTs

Whodunit [9] ” Submitter ” ” ”
Dapper [43] Coherent (H) Trigger Forks/conc. S/DF Gantt charts &

focus graphs
ETE [23] No Any No None Gantt charts

Resource
attribution

Suggested Unitary Submitter No DV None

Stardust [47] No ” Forks/conc. S/DF Call graphs
Quanto [18] No ” No S None

Workload
modeling

Suggested Depends Depends Depends Depends Flow graphs or CCTs

Magpie [5] No Depends Yes None Gantt charts (V)
Stardust [47] No Submitter Forks/conc. S/DF Call graphs

Table 5: Suggested design choices for various use cases and choices made by existing tracing implementations.
Suggested choices are shown in italics. Existing implementations’ design choices are qualitatively ordered according
to similarity with our suggested choices. For comparison, two schema-based approaches, Magpie and ETE, are also
included. �e revised versions of Stardust and X-Trace are denoted by Stardust‡ and X-Trace‡. Static approaches to
metadata propagation are denoted by S, Dynamic, �xed-width approaches by DF, Hybrid, �xed-width approaches by
S/DF, and dynamic, variable-width approaches by DV. (V) indicates that a variant of the stated item is used.

approaches if feasible. For use cases that require coherent sampling, we conservatively suggest the head-based
version when it is su�cient, but tail-based based coherent sampling should also be considered since it subsumes
the former and allows for a wider range of uses. �e rest of this section explains design choices for the various
use cases.

Anomaly detection: �is use case involves identifying rare work�ows that are extremely di�erent from
others so that developers can analyze them. As such, tail-based coherent sampling should be used so that traces
can be constructed and so that the tracing infrastructure can gauge whether a work�ow is anomalous before
deciding whether or not to sample it. Either trigger causality or submitter causality can be preserved with low
overhead. But, the former should be preferred since work�ows that show trigger causality show critical paths
and are easier to understand when visualized. To identify anomalies that result from excessive parallelism,
insu�cient parallelism, or excessive waiting for one of many concurrent operations to �nish, implementations
should preserve forks, joins, and concurrent behaviour. Flow graphs are best for visualizing anomalies because

16



they are precise and because anomaly detection will, by de�nition, not generate many results. Gantt charts can
also be used.

Diagnosing steady-state problems: �is use case involves diagnosing performance and correctness
problems that can be observed in many requests. Design choices for it are similar to anomaly detection, except
that head-based sampling can be used, since, even with low sampling rates, it is unlikely that problems will go
unnoticed.

Distributed pro�ling: �is use case involves sampling function or inter-trace-point latencies. �e inter-
and intra-component call stacks to a function must be preserved so that sampled items can be grouped
together based on context, but complete traces need not be constructed. Since call stacks can be represented
compactly [9], these requirements align well unitary with sampling and dynamic, variable-width metadata-
propagation approaches. Combined, these options allow for trace-point records to be carried as metadata and
pro�les to be collected online. If metadata size is a concern, �xed-width metadata, combined with head-based
or tail-based sampling can be used as well, but online pro�ling will not be possible. Call stacks do not need to
preserve forks, joins, or concurrency. CCTs are best for visualizing distributed pro�les, since they can show
entire workloads and infeasible paths do not appear.

Resource attribution: �is use case involves attributing work done at arbitrary levels of the system to the
original submitter, so submitter causality must be preserved. Resource attribution is best served by dynamic,
variable-width metadata-propagation approaches and unitary sampling. �is combination will allow client
IDs of aggregated items to be carried in metadata, thus enabling immediate, online analyses without having to
construct traces. If metadata size is a concern, tail-based sampling and �xed-width metadata could be used
instead, but online, immediate analyses will not be possible. Head-based sampling can be used, but will likely
result in high overheads because it will result in sampling almost all trace points a�er a few levels of aggregation.
�ough forks, joins, and concurrency need not be preserved, DAGs must be used as the underlying data model
to preserve relationships between original submitters and aggregated work. Visualization is not necessary for
this use case.

Workload modeling: �e design decisions for this use case depend on what properties of the workload
are being modeled. For example, when used to model workloads, Magpie [5] aims to identify a set of �ows
and associated resource usages that are representative of an entire workload. As such, it is useful for Magpie to
preserve forks, joins, and concurrent behaviour. If traces for this use case are to be visualized, �ow graphs or
CCTs should be used, since they allow for visualizing multiple traces at one time.

7.2 Existing implementations’ choices

Table 5 also lists how existing tracing implementations �t into the design axes suggested in this paper. Tracing
implementations are grouped by the use case for which they are most suited (a tracing implementation may
be well suited for multiple use cases). For a given use case, tracing implementations are ordered according to
similarity in design choices to our suggestions. �is ordering shows that that tracing implementations suited
for a particular use case tend to make similar design decisions to our suggestions for that use case. �e rest of
this section describes key cases where our suggestions di�er from tracing implementations’ choices.

For anomaly detection, we suggest tail-based sampling, but both Magpie [5] and Pinpoint [11] do not use
any sampling techniques whatsoever. Collecting and storing trace points for every request guarantees that
both implementations will not miss capturing any rare events (anomalies), but also means they cannot scale to
handle large workloads. Magpie cannot use sampling, because it does not propagate metadata. Pinpoint is
concerned mainly with correctness anomalies, and so does not bother to preserve concurrency, forks, or joins.

For diagnosing steady-state problems, we suggest that forks, joins, and structure be explicitly preserved,
but Dapper [43] cannot preserve joins because it uses a tree as its model for expressing causal relationships,
not a DAG. Recent work by Mann et al. [31] focuses on learning join-point locations by comparing large
volumes of Dapper traces. Dapper traces are then reformatted to show the learned join points. Pip [37] also

17



di�ers from many other tracing implementations in that it uses an expectation language to show traces. Pip’s
expectation language describes how other components interact with a component of interest and so is similar
in functionality to focus graphs. Both are best used when developers already have a component-of-interest in
mind, not for problem-localization tasks.

Both the revised version of Stardust [40] and the revised version of X-Trace [19] were created as a result
of modifying their original versions [20, 47] to be more useful for diagnosis tasks. Both revised versions
independently converged to use almost the same design choices. Sambasivan et al. initially tried to use the
original version of Stardust, which was designed with resource attribution in mind, for diagnosis, but found it
insu�cient, motivating the need for the revised version. �e original X-Trace was designed by Fonseca et al.
to help with diagnosis tasks. But, as a result of experiences applying X-Trace to additional real systems [19],
they eventually found the design choices listed for the revised version to be more useful than the ones they
originally chose.

For distributed pro�ling, existing infrastructures either meet or exceed our suggestions. For resource
attribution, existing implementations do not use sampling and hence cannot scale.

8 Challenges& opportunities

�ough end-to-end tracing has proven useful, many important challenges remain before it can reach its full
potential. �ey arise in collecting and presenting trace data, as a result of the complexity and volume of traces
generated by today’s large-scale distributed systems. Also, we have only touched the tip of the iceberg in
developing analysis techniques for end-to-end traces; many opportunities remain to better exploit this rich
data source.

8.1 Challenges in trace collection

As instrumented systems scale both in size and workload, tracing infrastructures must accommodate larger,
more complex, traces at higher throughput, while maintaining relevance of tracing data. �ough head-based
sampling meets the �rst two criteria of this key challenge, it does not guarantee trace relevance. For example, it
complicates diagnostics on speci�c traces and will not capture rare bugs (i.e., anomalies). Conversely, tail-based
sampling, in which trace points are cached until requests complete, meets the relevance criteria, but not the
�rst two.

An in-between approach, in which all trace points for requests are discarded as soon as the request is
deemed uninteresting, seems a likely solution, but important research into �nding the trace attributes that
best determine when a trace can be discarded is needed before this approach can be adopted. An alternate
approach may be to collect low-resolution traces in the common case and to increase resolution only when a
given trace is deemed interesting. However, this approach also requires answering similar research questions
as that required for the in-between approach.

Another challenge, which end-to-end tracing shares with logging, involves trace interpretability. In many
cases, the developers responsible for instrumenting a distributed system are not the same as those tasked
with using the resulting traces. �is leads to confusion because of di�erences in context and expertise. For
example, in a recent user study, Sambasivan et al. had to manually translate the trace-point names within
end-to-end traces from developer-created ones to onesmore readily understood by general distributed-systems
experts [39]. To help, key research must be conducted on how to de�ne good instrumentation practices, how
to incentivize good instrumentation, and how to educate users about how to interpret instrumented traces or
logs. Research into automatic instrumentation and on the �y re-instrumentation (e.g., as in DTrace [8]) can
also help reduce instrumentation burden and help interpretability.

A �nal important challenge lies in the integration of di�erent end-to-end tracing infrastructures. Today’s
distributed services are composed ofmany independently-developed parts, perhaps instrumentedwith di�erent

18



tracing infrastructures (e.g., Dapper [43], Stardust [40, 47], Tracelytics [49], X-Trace [19, 20], or Zipkin [50]).
Unless they are modi�ed to be interoperable, we miss the opportunity to obtain true end-to-end traces of
composed services. �e provenance community has moved forward in this direction by creating the Open
Provenance Model [33], which deserves careful examination.

8.2 Challenges in visualization

As the volume and size of end-to-end traces increase, a key challenge lies in understanding how to visualize
them e�ectively. �e techniques described in Section 6 o�en only scale to a few hundred trace points at
best, but many distributed services can generate a lot more. For example, Wang [52] describes how tools like
Graphviz [22] cannot e�ectively visualize HDFS traces, which, due to its large write sizes of 64MB or more, can
generate individual traces comprised of 1,000s of trace points. Even navigating graphs with 100s of trace points
was challenging for users in a study by Sambasivan et al. [39]. Higher-level summaries of large end-to-end
traces could help, but research is needed into how to preserve appropriate attributes, include multiple levels of
detail, and summarize and collapse similar subgraphs in meaningful ways. Interactivity seems paramount for
allowing users to �lter, query, and display only relevant information.

8.3 Opportunities in trace analysis

�e use cases of end-to-end tracing described in this paper represent only a handful of all potential ones.
Signi�cant opportunities remain to discovermore. For example, one recent research e�ort focuses on using end-
to-end traces to automatically identify and assign extra resources to bottlenecked services in large distributed
systems [36]. Many research opportunities also remain for the use cases already identi�ed in this paper. For
example, for diagnosis, longitudinal comparisons across traces are useful to identify outliers or undesirable
di�erences between distributed systems components. Spectroscope [40], which uses statistical techniques
to identify timing variations among graphs and simple heuristics to compare their structures, is an initial
step, but is not su�cient. Research into whether more advanced techniques, such as graph kernels [42] and
frequent-subgraph mining [24], can be used for such comparisons is needed. Along these lines, Eberle et
al. [16] present potentially useful techniques for identifying structural anomalies. Despite their promise, it
remains to be seen whether these techniques can scale while simultaneously accounting for the structure,
labels, timings, and domain-speci�c semantics present in end-to-end traces.

9 Conclusion

End-to-end tracing can be implemented in many ways, and the choices made dictate the utility of the resulting
traces for di�erent development and management tasks. Based on our experiences developing tracing infras-
tructures and past research on the topic, this paper provides guidance to designers of such infrastructures and
identi�es open questions for researchers.

19



References

[1] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R. Ganger, James Hendricks,
Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq
Sinnamohideen, John Strunk, Eno�ereska, MatthewWachs, and JayWylie. Ursa minor: versatile cluster-
based storage. In FAST’05: Proceedings of the 4th USENIX Conference on File and Storage Technologies,
December 2005. Cited on page 12.

[2] Marcos K. Aguilera, Je�rey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthitacharoen.
Performance debugging for distributed systems of black boxes. In SOSP ’03: Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003. Cited on pages 1 and 4.

[3] Paulo S. Almeida, Carlos Baquero, and Victor Fonte. Interval tree clocks: a logical clock for dynamic
systems. In OPODIS ’08: Proceedings of the 12th International Conference on Principles of Distributed
Systems, 2008. Cited on page 11.

[4] Glenn Ammons, �omas Ball, and James R. Larus. Exploiting hardware performance counters with
�ow and context sensitive pro�ling. In PLDI ’97: Proceedings of the 11th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1997. Cited on page 15.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and RichardMortier. Using Magpie for request extraction
and workload modelling. In OSDI ’04: Proceedings of the 6th USENIX Symposium on Operating Systems
Design and Implementation, 2004. Cited on pages 1, 3, 4, 16, and 17.

[6] Ledion Bitincka, Archana Ganapathi, Stephen Sorkin, and Steve Zhang. Optimizing data analysis with a
semi-structured time series database. In SLAML ’10: Proceedings of the 1st USENIXWorkshop onManaging
Systems via Log Analysis and Machine Learning Techniques, 2010. Cited on page 4.

[7] Michael Burrows. �e Chubby lock service for loosely-coupled distributed systems. In OSDI ’06:
Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation, 2006. Cited
on page 1.

[8] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instrumentation of production
systems. In ATC ’04: Proceedings of the 2004 USENIX Annual Technical Conference, 2004. Cited on page
18.

[9] Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. Whodunit: transactional pro�ling for multi-tier
applications. In EuroSys ’07: Proceedings of the 2nd ACM SIGOPS European Conference on Computer
Systems, 2007. Cited on pages 1, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, and 17.

[10] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed storage system for
structured data. In OSDI ’06: Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, 2006. Cited on pages 1 and 13.

[11] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, David Patterson, Armando Fox, and Eric
Brewer. Path-based failure and evolution management. In NSDI ’04: Proceedings of the 1st USENIX
Symposium on Networked Systems Design and Implementation, 2004. Cited on pages 1, 3, 4, 5, 6, 8, 9, 10,
16, and 17.

[12] David R. Cheriton and Dale Skeen. Understanding the limitations of causally and totally ordered
communication. In SOSP ’93: Proceedings of the 14th ACM Symposium on Operating Systems Principles,
1993. Cited on page 6.

20



[13] Cloudera HTrace. http://github.com/cloudera/htrace. Cited on page 1.

[14] Compuware dynaTrace PurePath. http://www.compuware.com. Cited on page 1.

[15] Je�rey Dean and Sanjay Ghemawat. MapReduce: simpli�ed data processing on large clusters. In OSDI
’04: Proceedings of the 6th USENIX Symposium on Operating Systems Design and Implementation, 2004.
Cited on page 9.

[16] William Eberle and Lawrence B. Holder. Discovering structural anomalies in graph-based data. In
ICDMW ’07: Proceedings of the 7th IEEE International Conference on Data Mining Workshops, 2007. Cited
on page 19.

[17] Ulfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. Fay: extensible distributed tracing
from kernels to clusters. In SOSP ’11: Proceedings of the 23nd ACM Symposium on Operating Systems
Principles, 2011. Cited on page 5.

[18] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: tracking energy in networked
embedded systems. In OSDI ’08: Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation. USENIX Association, 2008. Cited on pages 1, 3, 4, 7, 10, and 16.

[19] Rodrigo Fonseca, Michael J. Freedman, and George Porter. Experiences with tracing causality in
networked services. In INM/WREN ’10: Proceedings of the 1st Internet Network Management Work-
shop/Workshop on Research on Enterprise Monitoring, 2010. Cited on pages 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12,
13, 14, 16, 18, and 19.

[20] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. X-Trace: a pervasive
network tracing framework. In NSDI ’07: Proceedings of the 4th USENIX Symposium on Networked
Systems Design and Implementation, 2007. Cited on pages 1, 2, 3, 4, 5, 6, 9, 10, 16, 18, and 19.

[21] SanjayGhemawat, HowardGobio�, and Shun-Tak Leung.�eGoogle �le system. In SOSP ’03: Proceedings
of the 19th ACM Symposium on Operating Systems Principles, 2003. Cited on page 1.

[22] Graphviz - graph visualization so�ware. http://www.graphviz.org. Cited on page 19.

[23] Joseph L. Hellerstein, Mark M. Maccabe, W. Nathaniel Mills III, and John J. Turek. ETE: a customizable
approach to measuring end-to-end response times and their components in distributed systems. In
ICDCS ’99: Proceedings of the 19th IEEE International Conference on Distributed Computing Systems, 1999.
Cited on pages 1, 3, 4, 14, and 16.

[24] Ruoming Jin, ChaoWang, Dmitrii Polshakov, Srinivasan Parthasarathy, and Gagan Agrawal. Discovering
frequent topological structures from graph datasets. In KDD ’05: Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2005. Cited on page 19.

[25] Soila P. Kavulya, Scott Daniels, Kaustubh Joshi, Matt Hultunen, Rajeev Gandhi, and Priya Narasimhan.
Draco: statistical diagnosis of chronic problems in distributed systems. In DSN ’12: Proceedings of the
42nd IEEE/IFIP International Conference on Dependable Systems and Networks, 2012. Cited on pages 1
and 4.

[26] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D. Keromytis. libd�: prac-
tical dynamic data �ow tracking for commodity systems. In VEE ’12: Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments, 2012. Cited on page 6.

21

http://github.com/cloudera/htrace
http://www.compuware.com
http://www.graphviz.org


[27] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programming. In ECCOP’96: Proceedings of the 11th European
Conference on Object-Oriented Programming, June 1997. Cited on page 5.

[28] Eric Koskinen and John Jannotti. BorderPatrol: isolating events for black-box tracing. In Eurosys ’08:
Proceedings of the 3rd ACM SIGOPS European Conference on Computer Systems, 2008. Cited on page 4.

[29] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the
ACM, 21(7), July 1978. Cited on page 6.

[30] Zhicheng Liu, Bongshin Lee, Srikanth Kandula, and Ratul Mahajan. NetClinic: Interactive visualization
to enhance automated fault diagnosis in enterprise networks. In VAST ’10: Proceedings of the 2010 IEEE
Symposium on Visual Analytics Science and Technology, 2010. Cited on page 14.

[31] Gideon Mann, Mark Sandler, Darja Krushevskaja, Sudipto Guha, and Eyal Even-dar. Modeling the
Parallel Execution of Black-Box Services. In Proceedings of the 3rd USENIXWorkshop on Hot Topics in
Cloud Computing, 2011. Cited on pages 11 and 17.

[32] Matthew L. Massie, Brent N. Chun, and David E. Culler. �e ganglia distributed monitoring system:
design, implementation, and experience. Parallel Computing, 30(7), July 2004. Cited on page 1.

[33] Luc Moreau, Ben Cli�ord, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia Kwasnikowska,
Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh Simmhan, Eric Stephan, and Van den Bussche.
�e open provenance model core speci�cation (v1.1). Future Generation Computer Systems, 27(6), June
2010. Cited on page 19.

[34] Adam J. Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in log analysis. Communica-
tions of the ACM, 55(2), February 2012. Cited on page 14.

[35] Personal communication with Google engineers, 2011. Cited on page 3.

[36] Personal communication with researchers at Carnegie Mellon University, 2012. Cited on page 19.

[37] Patrick Reynolds, Charles Killian, Janet L. Wiener, Je�rey C. Mogul, Mehul Shah, and Amin Vahdat. Pip:
detecting the unexpected in distributed systems. In NSDI ’06: Proceedings of the 3rd USENIX Symposium
on Networked Systems Design and Implementation, 2006. Cited on pages 1, 3, 4, 5, 6, 8, 9, 10, 14, 16, and 17.

[38] Patrick Reynolds, Janet L. Wiener, Je�rey C. Mogul, Marcos K. Aguilera, and Amin Vahdat. WAP5:
black-box performance debugging for wide-area systems. In Proceedings of the 15th ACM International
World Wide Web Conference, 2006. Cited on pages 1 and 4.

[39] Raja R. Sambasivan, Ilari Shafer, Michelle L. Mazurek, and Gregory R. Ganger. Visualizing request-�ow
comparison to aid performance diagnosis in distributed systems. IEEE Transactions on Visualization and
Computer Graphics (Proceedings Information Visualization 2013), 19(12), December 2013. Cited on pages
14, 18, and 19.

[40] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat, SpencerWhitman, Michael Stroucken,
WilliamWang, Lianghong Xu, and Gregory R. Ganger. Diagnosing performance changes by comparing
request �ows. In NSDI’11: Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, 2011. Cited on pages 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 18, and 19.

[41] Raja R. Sambasivan, Alice X. Zheng, Eno�ereska, and Gregory R. Ganger. Categorizing and di�erencing
system behaviours. In HotAC II: Proceedings of the 2nd workshop on Hot Topics in Autonomic Computing,
2007. Cited on page 2.

22



[42] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12, November 2011. Cited on
page 19.

[43] Benjamin H. Sigelman, Luiz A. Barroso, Michael Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-scale distributed systems tracing infrastructure.
Technical Report dapper-2010-1, Google, April 2010. Cited on pages 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16,
17, and 19.

[44] Byung C. Tak, Chunqiang Tang, Chun Zhang, SriramGovindan, Bhuvan Urgaonkar, and Rong N. Chang.
vPath: precise discovery of request processing paths from black-box observations of thread and network
activities. In USENIX ’09: Proceedings of the 2009 USENIX Annual Technical Conference, 2009. Cited on
pages 1 and 4.

[45] Jiaqi Tan, Soila P. Kavulya, Rajeev Gandhi, and Priya Narasimhan. Visual, log-based causal tracing for
performance debugging of mapreduce systems. In ICDCS ’10: Proceedings of the 30th IEEE International
Conference on Distributed Computing Systems, 2010. Cited on pages 1 and 4.

[46] �e strace system call tracer. http://sourceforge.net/projects/strace/. Cited on page 1.

[47] Eno �ereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio Lopez,
and Gregory R. Ganger. Stardust: tracking activity in a distributed storage system. In SIGMETRICS
’06/Performance ’06: Proceedings of the Joint International Conference on Measurement and Modeling of
Computer Systems, 2006. Cited on pages 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, and 19.

[48] Brian Tierney, William Johnston, Brian Crowley, Gary Hoo, Chris Brooks, and Dan Gunter. �e
NetLogger methodology for high performance distributed systems performance analysis. In HPDC ’98:
Proceedings of the 7th International Symposium on High Performance Distributed Computing, 1998. Cited
on pages 1 and 9.

[49] Tracelytics. http://www.tracelytics.com. Cited on pages 1 and 19.

[50] Twitter Zipkin. https://github.com/twitter/zipkin. Cited on pages 1 and 19.

[51] MatthewWachs, Lianghong Xu, Arkady Kanevsky, and Gregory R. Ganger. Exertion-based billing for
cloud storage access. In HotCloud ’11: Proceedings of the 3rd USENIXWorkshop on Hot Topics in Cloud
Computing, 2011. Cited on page 4.

[52] William Wang. End-to-end tracing in HDFS. Technical Report CMU-CS-11-120, Carnegie Mellon
University, July 2011. Cited on page 19.

[53] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. Detecting large-scale system
problems by mining console logs. In SOSP ’09: Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, 2009. Cited on pages 1 and 4.

23

http://sourceforge.net/projects/strace/
http://www.tracelytics.com
https://github.com/twitter/zipkin

	Introduction
	Background
	Use cases
	Approaches to end-to-end tracing
	Anatomy of end-to-end tracing

	Which causal relationships should be preserved?
	Intra-request slices
	The submitter-preserving slice
	The trigger-preserving slice
	Is anything gained by preserving both?
	Preserving workflow structure (concurrency, forks, and joins)

	Preserving inter-request slices

	How should causal relationships be tracked?
	Tradeoffs between metadata types
	How to preserve forks and joins

	How should sampling be used to reduce overhead?
	How should traces be visualized?
	Putting it all together
	Suggested choices
	Existing implementations' choices

	Challenges & opportunities
	Challenges in trace collection
	Challenges in visualization
	Opportunities in trace analysis

	Conclusion

