
Diagnosing performance changes by comparing request flows

Raja R. Sambasivan⋆, Alice X. Zheng†, Michael De Rosa‡, Elie Krevat⋆,

Spencer Whitman⋆, Michael Stroucken⋆, William Wang⋆, Lianghong Xu⋆, Gregory R. Ganger⋆

⋆Carnegie Mellon University, †Microsoft Research, ‡Google

Abstract

The causes of performance changes in a distributed

system often elude even its developers. This paper de-

velops a new technique for gaining insight into such

changes: comparing request flows from two executions

(e.g., of two system versions or time periods). Build-

ing on end-to-end request-flow tracing within and across

components, algorithms are described for identifying and

ranking changes in the flow and/or timing of request pro-

cessing. The implementation of these algorithms in a

tool called Spectroscope is evaluated. Six case studies

are presented of using Spectroscope to diagnose perfor-

mance changes in a distributed storage service caused by

code changes, configuration modifications, and compo-

nent degradations, demonstrating the value and efficacy

of comparing request flows. Preliminary experiences

of using Spectroscope to diagnose performance changes

within select Google services are also presented.

1 Introduction

Diagnosing performance problems in distributed systems

is difficult. Such problems may have many sources and

may be contained in any one or more of the component

processes or, more insidiously, may emerge from the in-

teractions among them [21]. A suite of debugging tools

is needed to help in identifying and understanding the

root causes of the diverse types of performance prob-

lems that can arise. In contrast to single-process appli-

cations, for which diverse performance debugging tools

exist (e.g., DTrace [6], gprof [14], and GDB [12]), too

few techniques have been developed for guiding diagno-

sis of distributed system performance.

Recent research has developed promising new tech-

niques that can help populate the suite. Many build on

low-overhead end-to-end tracing (e.g., [4, 7, 9, 11, 31,

34]), which captures the flow (i.e., path and timing) of

individual requests within and across the components of

a distributed system. For example, with such rich infor-

mation about a system’s operation, researchers have de-

veloped new techniques for detecting anomalous request

flows [4], spotting large-scale departures from perfor-

mance models [33], and comparing observed behaviour

to manually-constructed expectations [26].

This paper develops a new technique for the suite:

comparing request flows between two executions to iden-

tify why performance has changed between them. Such

comparison allows one execution to serve as a model

of acceptable performance; highlighting key differences

from this model and understanding their performance

costs allows for easier diagnosis than when only a single

execution is used. Though obtaining an execution of ac-

ceptable performance may not be possible in all cases—

e.g., when a developer wants to understand why perfor-

mance has always been poor—there are many cases for

which request-flow comparison is useful. For example,

it can help diagnose performance changes resulting from

modifications made during software development (e.g.,

during regular regression testing) or from upgrades to

components of a deployed system. Also, it can help

when diagnosing changes over time in a deployed sys-

tem, which may result from component degradations, re-

source leakage, or workload changes.

Our analysis of bug tracking data for a distributed stor-

age service indicates that more than half of the reported

performance problems would benefit from guidance pro-

vided by comparing request flows. Talks with Google

engineers [3] and experiences using request-flow com-

parison to diagnose Google services affirm its utility.

The utility of comparing request flows relies on the

observation that performance changes often manifest as

changes in how requests are serviced. When comparing

two executions, which we refer to as the non-problem

period (before the change) and the problem period (after

the change), there will usually be some changes in the

observed request flows. We refer to new request flows

in the problem period as mutations and to the request

flows corresponding to how they were serviced in the

non-problem period as precursors. Identifying mutations

and comparing them to their precursors helps localize

sources of change and gives insight into their effects.

This paper describes algorithms for effectively com-

paring request flows across periods, including for iden-

tifying mutations, ranking them based on their contribu-

tion to the overall performance change, identifying their

most likely precursors, highlighting the most prominent

divergences, and identifying low-level parameter differ-

ences that most strongly correlate to each.

We categorize mutations into two types: Response-

time mutations correspond to requests that have in-

creased only in cost between the periods; their precursors

are requests that exhibit the same structure, but whose re-

sponse time is different. Structural mutations correspond

to requests that take different paths through the system in

the problem period. Identifying their precursors requires

analysis of all request flows with differing frequencies in

the two periods.

jdigney
Text Box
8th USENIX Symposium on Networked Systems Design and Implementation (NSDI'11).
March 30 - April 1, 2011. Boston, MA.

Figure 1 illustrates a (mocked up) example of two mu-

tations and their precursors. Ranking and highlighting

divergences involves using statistical tests and compari-

son of mutations and associated precursors.

We have implemented request-flow comparison in a

toolset called Spectroscope and used it to diagnose per-

formance problems observed in Ursa Minor [1], a dis-

tributed storage service. By describing five real problems

and one synthetic one, we illustrate the utility of compar-

ing request flows and show that our algorithms enable

effective use of this technique. To understand challenges

associated with scaling request-flow comparison to very

large distributed systems, this paper also describes pre-

liminary experiences using it to diagnose performance

changes within distributed services at Google.

2 End-to-end request-flow tracing

Request-flow comparison builds on end-to-end tracing,

an invaluable information source that captures a dis-

tributed system’s performance and control flow in detail.

Such tracing works by capturing activity records at each

of various trace points within the distributed system’s

software, with each record identifying the specific trace-

point name, the current time, and other contextual infor-

mation. Most implementations associate activity records

with individual requests by propagating a per-request

identifier, which is stored within the record. Activity

records can be stitched together, either offline or online,

to yield request-flow graphs, which show the control flow

of individual requests. Several efforts, including Mag-

pie [4], Whodunit [7], Pinpoint [9], X-Trace [10, 11],

Google’s Dapper [31], and Stardust [34] have indepen-

dently implemented such tracing and shown that it can be

used continuously with low overhead, especially when

request sampling is supported [10, 28, 31]. For example,

Stardust [34], Ursa Minor’s end-to-end tracing mecha-

nism, adds 1% or less overhead when used with key

benchmarks, such as SpecSFS [30].

End-to-end tracing implementations differ in two key

respects: whether instrumentation is added automatically

or manually and whether the request flows can disam-

biguate sequential and parallel activity. With regard to

the latter, Magpie [4] and recent versions of both Star-

dust [34] and X-Trace [10] explicitly account for concur-

rency by embedding information about thread synchro-

nization in their traces (see Figure 2). These implemen-

tations are a natural fit for request-flow comparison, as

they can disambiguate true structural differences from

false ones caused by alternate interleavings of concurrent

activity. Whodunit [7], Pinpoint [9], and Dapper [31] do

not account for parallelism.

End-to-end tracing in distributed systems is past the

research stage. For example, it is used in production

Google datacenters [31] and in some production three-

Cache

hit

Reply

Read

Cache

miss

Start

Reply

Read
20 4s

10 4s

5,000 4s

20 4s

100 4s

Precursor Mutation Precursor

End

100 4s

Reply

Write

Start Start

End End

10 4s

Rank: 1

Requests: 7,000

Type: Structural

Rank: 2

Requests: 5,000

Type: Response time

5,000 4s

Reply

Write

Start Start

End End

10 4s

10 4s

5,000 4s

Mutation

2,000 4s

10 4s

Figure 1: Example output from comparing request flows.

The two mutations shown are ranked by their effect on the

change in performance. The item ranked first is a structural

mutation and the item ranked second is a response-time muta-

tion. Due to space constraints, mocked-up graphs are shown in

which nodes represent the type of component accessed.

tier systems [4]. Research continues, however, on how to

best exploit the information provided by such tracing.

3 Behavioural changes vs. anomalies

Our technique of comparing request flows between two

periods identifies distribution changes in request-flow

behaviour and ranks them according to their contribu-

tion to the observed performance difference. Conversely,

anomaly detection techniques, as implemented by Mag-

pie [4] and Pinpoint [9], mine a single period’s request

flows to identify rare ones that differ greatly from oth-

ers. In contrast to request-flow comparison, which at-

tempts to identify the most important differences be-

tween two sets, anomaly detection attempts to identify

rare elements within a single set.

Request-flow comparison and anomaly detection serve

distinct purposes, yet both are useful. For example, per-

formance problems caused by changes in the compo-

nents used (e.g., see Section 8.2), or by common requests

whose response times have increased slightly, can be eas-

ily diagnosed by comparing request flows, whereas many

anomaly detection techniques will be unable to provide

guidance. In the former case, guidance will be diffi-

cult because the changed behaviour is common during

the problem period; in the latter, because the per-request

change is not extreme enough.

4 Spectroscope

To illustrate the utility of comparing request flows, this

technique was implemented in a tool called Spectroscope

and used to diagnose performance problems seen in Ursa

Minor [1] and in certain Google services. This section

provides an overview of Spectroscope, and the next de-

scribes its algorithms. Section 4.1 describes how cate-

2

Figure 2: Example request-flow graph. The graph shows

a striped READ in the Ursa Minor distributed storage system.

Nodes represent trace points and edges are labeled with the

time between successive events. Parallel substructures show

concurrent threads of activity. Node labels are constructed by

concatenating the machine name (e.g., e10), component name

(e.g., NFS3), trace-point name (e.g., READ CALL TYPE), and an

optional semantic label (e.g., NFSCACHE READ MISS). Due to

space constraints, trace points executed on other components

as a result of the NFS server’s RPC calls are not shown.

gories, the basic building block on which Spectroscope

operates, are constructed. Section 4.2 describes Spectro-

scope’s support for comparing request flows.

4.1 Categorizing request flows

Even small distributed systems can service hundreds to

thousands of requests per second, so comparing all of

them individually is not feasible. Instead, exploiting

a general expectation that requests that take the same

path should incur similar costs, Spectroscope groups

identically-structured requests into unique categories

and uses them as the basic unit for comparing request

flows. For example, requests whose structures are identi-

cal because they hit in a NFS server’s data and metadata

cache will be grouped into the same category, whereas

requests that miss in both will be grouped in a differ-

ent one. Two requests are deemed structurally identical

if their string representations, as determined by a depth-

first traversal, are identical. For requests with parallel

substructures, Spectroscope computes all possible string

representations when determining the category in which

to bin them. The exponential cost is mitigated by im-

posing an order on parallel substructures (i.e., by always

traversing them in alphabetical order, as determined by

their root node names) and by the fact that parallelism is

limited in most request flows we have observed.

For each category, Spectroscope identifies aggregate

statistics, including request count, average response

time, and variance. To identify where time is spent, it

also computes average edge latencies and correspond-

ing variances. Spectroscope displays categories in ei-

ther a graph view, with statistical information overlaid,

or within train-schedule visualizations [37] (also known

as swim lanes), which more directly show the constituent

requests’ pattern of activity.

Spectroscope uses selection criteria to limit the num-

ber of categories developers must examine. For exam-

ple, when comparing request flows, statistical tests and

a ranking scheme are used. The number of categories

could be further reduced by using unsupervised clus-

tering algorithms, such as those used in Magpie [4], to

bin similar but not necessarily identical requests into the

same category. Initial versions of Spectroscope used

off-the-shelf clustering algorithms [29], but we found

the groups they created too coarse-grained and unpre-

dictable. Often, they would group mutations and pre-

cursors within the same category, masking their exis-

tence. For clustering algorithms to be useful, improve-

ments such as distance metrics that better align with de-

velopers’ notions of request similarity are needed. With-

out them, use of clustering algorithms will result in cate-

gories composed of seemingly dissimilar requests.

4.2 Comparing request flows

Performance changes can result from a variety of factors,

such as internal changes to the system that result in per-

formance regressions, unintended side effects of changes

to configuration files, or environmental issues. Spectro-

scope helps diagnose these problems by comparing re-

quest flows and identifying the key resulting mutations.

Figure 3 shows Spectroscope’s workflow.

When comparing request flows, Spectroscope takes as

input request-flow graphs from two periods of activity,

which we refer to as a non-problem period and a prob-

lem period. It creates categories composed of requests

from both periods and uses statistical tests and heuristics

to identify which contain structural mutations, response-

time mutations, or precursors. Categories containing mu-

tations are presented to the developer in a list ranked by

expected contribution to the performance change. Note

that the periods do not need to be aligned exactly with

the performance change (e.g., at Google we often chose

day-long periods based on historic average latencies).

Visualizations of categories that contain mutations

are similar to those described previously, except per-

period statistical information is shown. The root cause

of response-time mutations is localized by showing the

edges responsible for the mutation in red. The root cause

of structural mutations is localized by providing a ranked

list of the candidate precursors, so that the developer can

determine how they differ. Figure 1 shows an example.

Spectroscope provides further insight into perfor-

3

Categorization

Response.time

mutation

identification

Structural mutation

and precursor

identification

Problem

period grap

Probl period

graphs

Ranking

1. Structural

2. Response time

3. ...

Ranked list of categories

containing mutations

Visualization

layer

Low.level

difference

identification

Non.problem

period graphs

Problem

period graphs

Figure 3: Spectroscope’s workflow for comparing request

flows. First, Spectroscope groups requests from both periods

into categories. Second, it identifies which categories contain

mutations or precursors. Third, it ranks mutation categories

according to their expected contribution to the performance

change. Developers are presented this ranked list. Visualiza-

tions of mutations and their precursors can be shown. Also,

low-level differences can be identified for them.

mance changes by identifying the low-level parameters

(e.g., client parameters or function call parameters) that

best differentiate a chosen mutation and its precursors.

For example, in Ursa Minor, one performance slow-

down, which manifested as many structural mutations,

was caused by a change in a parameter sent by the client.

For problems like this, highlighting the specific low-level

differences can immediately identify the root cause.

Section 5 describes Spectroscope’s algorithms and

heuristics for identifying mutations, their corresponding

precursors, their rank based on their relative influence

on the overall performance change, and their most rele-

vant low-level parameter differences. It also describes

how these methods overcome key challenges—for ex-

ample, differentiating true mutations from natural vari-

ance in request structure and timings. Identification of

response-time mutations and ranking rely on the expecta-

tion (reasonable for many distributed systems, including

distributed storage) that requests that take the same path

through a distributed system will exhibit similar response

times and edge latencies. Section 7 describes how high

variance in this axis affects Spectroscope’s results.

5 Algorithms for comparing request flows

This section describes the key heuristics and algorithms

used when comparing request flows. In creating them,

we favoured simplicity and those that regulate false

positives—perhaps the worst failure mode due to devel-

oper effort wasted—whenever possible.

5.1 Identifying response-time mutations

When comparing two periods, there will always be some

natural differences in timings. Spectroscope uses the

Kolmogorov-Smirnov two-sample, non-parametric hy-

pothesis test [20] to differentiate natural variance from

true changes in distribution or behaviour. Statistical hy-

pothesis tests take as input two distributions and output

a p-value, which represents uncertainty in the claim that

the null hypothesis, that both distributions are the same,

is false. Expensive false positives are limited to a preset

rate (almost always 5%) by rejecting the null hypothe-

sis only when the p-value is lower than this value. The

p-value increases with variance and decreases with the

number of samples. A non-parametric test, which does

not require knowledge of the underlying distribution, is

used because we have observed that response times are

not governed by well-known distributions.

The Kolmogorov-Smirnov test is used as follows. For

each category, the distributions of response times for

the non-problem period and the problem period are ex-

tracted and input into the hypothesis test. The category

is marked as containing response-time mutations if the

test rejects the null hypothesis. By default, categories

that contain too few requests to run the test accurately

are not marked as containing mutations. To identify the

components or interactions responsible for the mutation,

Spectroscope extracts the critical path—i.e., the path of

the request on which response time depends—and runs

the same hypothesis test on the edge latency distribu-

tions. Edges for which the null hypothesis is rejected

are marked in red in the final output visualization.

5.2 Identifying structural mutations

To identify structural mutations, Spectroscope assumes a

similar workload was run in both the non-problem period

and the problem period. As such, it is reasonable to ex-

pect that an increase in the number of requests that take

one path through the distributed system in the problem

period should correspond to a decrease in the number of

requests that take other paths. Since non-determinism

in service order dictates that per-category counts will al-

ways vary slightly between periods, a threshold is used

to identify categories that contain structural mutations

and precursors. Categories that contain SM THRESHOLD

more requests from the problem period than from the

non-problem period are labeled as containing mutations

and those that contain SM THRESHOLD fewer are labeled

as containing precursors.

Choosing a good threshold for a workload may require

some experimentation, as it is sensitive to both the num-

ber of requests issued and the sampling rate. Fortunately,

4

it is easy to run Spectroscope multiple times, and it is not

necessary to get the threshold exactly right—choosing a

value that is too small will result in more false positives,

but they will be given a low rank and so will not mislead

the developer in his diagnosis efforts.

If per-category distributions of request counts are

available, a statistical test, instead of a threshold, could

be used to determine those categories that contain mu-

tations or precursors. This statistical approach would

be superior to a threshold-based approach, as it guar-

antees a set false-positive rate. However, building the

distributions necessary would require obtaining many

non-problem and problem-period datasets, so we opted

for the simpler threshold-based approach instead. Also,

our experiences at Google indicate that request structure

within large datacenters may change too quickly for such

expensive-to-build models to be useful.

5.3 Mapping mutations to precursors

Once the total set of categories that contain structural

mutations and precursors has been identified, Spectro-

scope must iterate through each structural-mutation cate-

gory to determine the precursor categories that are likely

to have donated requests to it. This is accomplished via

three heuristics, described below. Figure 4 shows how

they are applied.

First, the total list of precursor categories is pruned to

eliminate categories with a different root node than those

in the structural-mutation category. The root node de-

scribes the overall type of a request, for example READ,

WRITE, or READDIR, and requests of different high-level

types should not be precursor/mutation pairs.

Second, remaining precursor categories that have de-

creased in request count less than the increase in re-

quest count of the structural-mutation category are also

removed from consideration. This 1:N heuristic reflects

the common case that one precursor category is likely to

donate requests to N structural-mutation categories. For

example, a cache-related problem may result in a portion

of requests that used to hit in that cache to miss and hit

in the next-level cache. Extra cache pressure at this next-

level cache may result in the rest missing in both caches.

This heuristic can be optionally disabled.

Third, the remaining precursor categories are ranked

according to their likelihood of having donated requests,

as determined by the string-edit distance between them

and the structural-mutation category. This heuristic re-

flects the intuition that precursors and structural muta-

tions are likely to resemble each other in structure. The

cost of computing the edit distance is O(NM), where N

and M are the lengths of the string representations of the

categories being compared.

Read

Mutation Precursor categories

Read Read Read

Lookup

NP: 700

P: 1,000

NP: 300

P: 200

NP: 550

P: 150

NP: 650

P: 100

ReadDir

NP: 200

P: 100

NP: 1,100

P: 600

Figure 4: How the precursor categories of a structural-

mutation category are identified. One structural-mutation

category and five precursor categories are shown, each with

their corresponding request counts from the non-problem (NP)

and problem (P) periods. For this case, the shaded precursor

categories will be identified as those that could have donated

requests to the structural-mutation category. The precursor cat-

egories that contain LOOKUP and READDIR requests cannot

have donated requests because their constituent requests are not

READS. The top left-most precursor category contains READS,

but the 1:N heuristic eliminates it.

5.4 Ranking

Ranking of mutations is necessary for two reasons.

First, the performance problem might have multiple root

causes, each of which causes its own set of mutations.

Second, even if there is only one root cause to the prob-

lem (e.g., a misconfiguration), many mutations will often

still be observed. For both cases, it is useful to identify

the mutations that most affect performance in order to fo-

cus diagnosis effort where it will yield the most benefit.

Spectroscope ranks categories that contain mutations

in descending order by their expected contribution to the

performance change. The contribution for a structural-

mutation category is calculated as the number of mu-

tations it contains, which is the difference between its

problem and non-problem period counts, multiplied by

the difference in problem period average response time

between it and its precursor categories. If more than

one candidate precursor category has been identified, a

weighted average of their average response times is used;

weights are based on structural similarity to the muta-

tion. The contribution for a response-time-mutation cat-

egory is calculated as the number of mutations it con-

tains, which is just the non-problem period count, times

the change in average response time of that category be-

5

tween the periods. If a category contains both response-

time mutations and structural mutations, it is split into

two virtual categories and each is ranked separately.

5.5 Identifying low-level differences

Identifying the differences in low-level parameters be-

tween a mutation and precursor can often help develop-

ers further localize the source of the problem. For ex-

ample, the root cause of a response-time mutation might

be further localized by identifying that it is caused by a

component that is sending more data in its RPCs than

during the non-problem period.

Spectroscope allows developers to pick a mutation

category and candidate precursor category for which to

identify low-level differences. Given these categories,

Spectroscope induces a regression tree [5] showing the

low-level parameters that best separate requests in these

categories. Each path from root to leaf represents an

independent explanation of why the mutation occurred.

Since developers may already possess some intuition

about what differences are important, the process is

meant to be interactive. If the developer does not like

the explanations, he can select a new set by removing the

root parameter from consideration and re-running the al-

gorithm.

The regression tree is induced as follows. First, a

depth-first traversal is used to extract a template describ-

ing the parts of request structures that are common be-

tween both categories, up until the first observed differ-

ence. Portions that are not common are excluded, since

low-level parameters cannot be compared for them.

Second, a table in which rows represent requests and

columns represent parameters is created by iterating

through each of the categories’ requests and extracting

parameters from the parts that fall within the template.

Each row is labeled as belonging to the problem or non-

problem period. Certain parameter values, such as the

thread ID and timestamp, must always be ignored, as

they are not expected to be similar across requests. Fi-

nally, the table is fed as input to the C4.5 algorithm [25],

which creates the regression tree. To reduce the runtime,

only parameters from a randomly sampled subset of re-

quests are extracted from the database, currently a min-

imum of 100 and a maximum of 10%. Parameters only

need to be extracted the first time the algorithm is run;

subsequent iterations can modify the table directly.

5.6 Current limitations

This section describes current limitations with our tech-

niques for comparing request flows.

Diagnosing problems caused by contention: Our

techniques assume that performance changes are caused

by changes to the system (code changes, configura-

tion changes, etc). Though they will identify mutations

caused by contention, they cannot directly attribute them

to the responsible process. In some cases our techniques

can indirectly help—for example, by showing that many

edges within a component are responsible for a response-

time mutation, they can help the developer intuit that the

problem is due to contention with an external process.

Diagnosing problems when the load differs signifi-

cantly between periods: In such cases, the load change

itself may be the root cause. Though our techniques

will identify response-time and structural changes when

the load during the problem period is much greater than

the non-problem period, the developer must determine

whether they are reasonable degradations.

6 Experimental apparatus

Most of the experiments and case studies reported in this

paper come from using Spectroscope with a distributed

storage service called Ursa Minor. Section 6.1 describes

this system. Section 6.2 describes the benchmarks used

for Ursa Minor’s nightly regression tests, the setting in

which many of the case studies were observed.

To understand issues in scaling request-flow compari-

son to larger systems, we also used Spectroscope to diag-

nose services within Google. Section 6.3 provides more

details. The implementation of Spectroscope for Ursa

Minor was written in Perl and MATLAB. It includes a

visualization layer built upon Prefuse [16]. The cost of

calculating edit distances dominates its runtime, so it is

sensitive to the value of SM THRESHOLD used. The imple-

mentation for Google was written in C++; its runtime is

much lower (on the order of seconds) and its visualiza-

tion layer uses DOT [15].

6.1 Ursa Minor

Figure 5 illustrates Ursa Minor’s architecture. Like most

modern scalable distributed storage, Ursa Minor sep-

arates metadata services from data services, such that

clients can access data on storage nodes without mov-

ing it all through metadata servers. An Ursa Minor

instance (called a “constellation”) consists of poten-

tially many NFS servers (for unmodified clients), stor-

age nodes (SNs), metadata servers (MDSs), and end-to-

end-trace servers. To access data, clients must first send

a request to a metadata server asking for the appropri-

ate permissions and locations of the data on the storage

nodes. Clients can then access the storage nodes directly.

Ursa Minor has been in active development since 2004

and comprises about 230,000 lines of code. More than 20

graduate students and staff have contributed to it over its

lifetime. More details about its implementation can be

found in Abd-El-Malek et al. [1].

The components of Ursa Minor are usually run on sep-

arate machines within a datacenter. Though Ursa Minor

supports an arbitrary number of components, the experi-

6

M
et

ad
at

a
ac

ce
ss

Data
request

Application

NFS Server

SN

Metadata Server

Trace Server

Data access

Figure 5: Ursa Minor Architecture. Ursa Minor can be

deployed in many configurations, with an arbitrary number of

NFS servers, metadata servers, storage nodes (SNs), and trace

servers. Here, a simple five-component configuration is shown.

ments and case studies detailed in this paper use a simple

five-machine configuration: one NFS server, one meta-

data server, one trace server, and two storage nodes. One

storage node stores data, while the other stores metadata.

Not coincidentally, this is the configuration used in the

nightly regression tests that uncovered many of the prob-

lems described in the case studies.

End-to-end tracing infrastructure via Stardust:

Ursa Minor’s Stardust tracing infrastructure is much like

its peer group, discussed in Section 2. Request sampling

is used to capture trace data for a subset of entire requests

(10% by default), with a per-request decision made ran-

domly when the request enters the system. Ursa Minor

contains approximately 200 trace points, 124 manually

inserted as well as automatically generated ones for each

RPC send and receive function. In addition to simple

trace points, which indicate points reached in the code,

explicit split and join trace points are used to identify the

start and end of concurrent threads of activity. Low-level

parameters are also collected at trace points.

6.2 Benchmarks used with Ursa Minor

Experiments run on Ursa Minor use these benchmarks.

Linux-build and ursa minor-build: These bench-

marks consist of two phases: a copy phase, in which the

source tree is tarred and copied to Ursa Minor and then

untarred, and a build phase, in which the source files

are compiled. Linux-build (of 2.6.32 kernel) runs for

26 minutes. About 145,000 requests are sampled. The

average graph size and standard deviation is 12 and 40

nodes. Most graphs are small, but some are very big,

so the per-category equivalents are larger: 160 and 500

nodes. Ursa minor-build runs for 10 minutes. About

16,000 requests are sampled and the average graph size

and standard deviation is 9 and 28 nodes. The per-

category equivalents are 96 and 100 nodes.

Postmark-large: This synthetic benchmark evalu-

ates the small file performance of storage systems [19].

It utilizes 448 subdirectories, 50,000 transactions, and

200,000 files and runs for 80 minutes. The average graph

size and standard deviation is 66 and 65 nodes. The per-

category equivalents are 190 and 81 nodes.

SPEC SFS 97 V3.0 (SFS97): This synthetic bench-

mark is the industry standard for measuring NFS server

scalability and performance [30]. It applies a period-

ically increasing load of NFS operations to a storage

system’s NFS server and measures the average response

time. It was configured to generate load between 50 and

350 operations/second in increments of 50 ops/second

and runs for 90 minutes. The average graph size and

standard deviation is 30 and 51 nodes. The per-category

equivalents are 206 and 200 nodes.

IoZone: This benchmark [23] sequentially writes, re-

writes, reads, and re-reads a 5GB file in 20 minutes. The

average graph size and standard deviation is 6 nodes. The

per-category equivalents are 61 and 82 nodes.

6.3 Dapper & Google services

The Google services for which Spectroscope was ap-

plied were instrumented using Dapper, which automati-

cally embeds trace points in Google’s RPC framework.

Like Stardust, Dapper employs request sampling, but

uses a sampling rate of less than 0.1%. Spectroscope

was implemented as an extension to Dapper’s aggrega-

tion pipeline, which groups individual requests into cat-

egories and was originally written to support Dapper’s

pre-existing analysis tools. Categories created by the

aggregation pipeline only show compressed call graphs

with identical children and siblings merged together.

7 Dealing with high-variance categories

For automated diagnosis tools to be useful, it is important

that distributed systems satisfy certain properties about

variance. For Spectroscope, categories that exhibit high

variance in response times and edge latencies do not sat-

isfy the expectation that “requests that take the same path

should incur similar costs” and can affect its ability to

identify mutations accurately. Spectroscope’s ability to

identify response-time mutations is sensitive to variance,

whereas for structural mutations only the ranking is af-

fected. Though categories may exhibit high variance in-

tentionally (for example, due to a scheduling algorithm

that minimizes mean response time at the expense of

variance), many do so unintentionally, as a result of latent

performance problems. For example, in early versions

of Ursa Minor, several high-variance categories resulted

from a poorly written hash table that exhibited slowly in-

creasing lookup times because of a poor hashing scheme.

For response-time mutations, both false negatives

and false positives will increase with the number of

high-variance categories. False negatives will increase

7

because high variance will reduce the Kolmogorov-

Smirnov test’s power to differentiate true behaviour

changes from natural variance. False positives, which are

much rarer, will increase when it is valid for categories to

exhibit similar response times within a single period, but

different response times across different ones. The rest

of this section concentrates on the false negative case.

To quantify how well categories meet the same

path/similar costs expectation within a single period,

Figure 6 shows a CDF of the squared coefficient of vari-

ation in response time (C2) for large categories induced

by linux-build, postmark-large, and SFS97 in Ursa

Minor. Figure 7 shows the same C2 CDF for large cat-

egories induced by Bigtable [8] running in three Google

datacenters over a 1-day period. Each Bigtable instance

is shared among the machines in its datacenter and ser-

vices several workloads. C2 is a normalized measure of

variance and is defined as (σ

µ
)2. Distributions with C2

less than one exhibit low variance, whereas those with C2

greater than one exhibit high variance. Large categories

contain more than 10 requests; Tables 1 and 2 show that

they account for only 15–45% of all categories, but con-

tain more than 98% of all requests. Categories contain-

ing fewer requests are not included, since their smaller

sample size makes the C2 statistic unreliable for them.

For the benchmarks run on Ursa Minor, at least 88%

of the large categories exhibit low variance. C2 for all

the categories generated by postmark-large is small.

More than 99% of its categories exhibit low variance and

the maximum C2 value observed is 6.88. The results for

linux-build and SFS97 are slightly more heavy-tailed.

For linux-build, 96% of its categories exhibit low vari-

ance, and the maximum C2 value is 394. For SFS97,

88% exhibit C2 less than 1, and the maximum C2 value

is 50.3. Analysis of categories in the large tail of these

benchmarks show that part of the observed variance is a

result of contention for locks in the metadata server.

The traces collected for Bigtable by Dapper are rel-

atively sparse—often graphs generated for it are com-

posed of only a few nodes, with one node showing the

incoming call type (e.g., READ, MUTATE, etc.) and an-

other showing the call type of the resulting GFS [13] re-

quest. As such, many dissimilar paths cannot be disam-

biguated and have been merged together in the observed

categories. Even so, 47–69% of all categories exhibit C2

less than 1. Additional instrumentation, such as those

that show the sizes of Bigtable data requests and work

done within GFS, would serve to further disambiguate

unique paths and considerably reduce C2.

8 Ursa Minor case studies

Spectroscope is not designed to replace developers;

rather it is intended to serve as an important step in the

workflow they use to diagnose problems. Sometimes

it can help developers identify the root cause immedi-

ately, or at least localize the problem to a specific area

of the system. In other cases, it can help eliminate the

distributed system as the root cause by verifying that its

behaviour has not changed, allowing developers to focus

their efforts on external factors.

This section presents diagnoses of six performance

problems solved by using Spectroscope to compare re-

quest flows and analyzes its effectiveness in identifying

the root causes. Most of these problems were previously

unsolved and diagnosed by the authors without knowl-

edge of the root cause. One problem was observed before

Spectroscope was available, so it was re-injected to show

how effectively it could have been diagnosed. By intro-

ducing a synthetic spin loop of different delays, we also

demonstrate Spectroscope’s ability to diagnose changes

in response time.

8.1 Methodology

Three complementary metrics are provided for evaluat-

ing Spectroscope’s output.

The percentage of the 10 highest-ranked categories

that are relevant: This metric measures the quality of

the rankings of the results. It accounts for the fact that

developers will naturally investigate the highest-ranked

categories first, so it is important for them to be relevant.

The percentage of false-positive categories: This

metric evaluates the quality of the ranked list by iden-

tifying the percentage of all results that are not relevant.

Request coverage: This metric evaluates quality of

the ranked list by identifying the percentage of requests

affected by the problem that are identified in it.

Table 3 summarizes Spectroscope’s performance us-

ing these metrics. Unless otherwise noted, a default

value of 50 was used for SM THRESHOLD. We chose this

value to yield reasonable runtimes (between 15-30 min-

utes) when diagnosing problems in larger benchmarks,

such as SFS97 and postmark-large. When necessary,

it was lowered to further explore the space of possible

structural mutations.

8.2 MDS configuration change

After a particular large code check-in, performance of

postmark-large decayed significantly, from 46tps to

28tps. To diagnose this problem, we used Spectro-

scope to compare request flows between two runs of

postmark-large, one from before the check-in and one

from after. The results showed many categories that con-

tained structural mutations. Comparing them to their

most-likely precursor categories revealed that the stor-

age node utilized by the metadata server had changed.

Before the check-in, the metadata server wrote metadata

only to its dedicated storage node. After the check-in, it

issued most writes to the data storage node instead. We

8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
2
 for large categories induced by each benchmark

C
D

F

Postmark−large

Linux−build

SFS97

Figure 6: CDF of C2 for large categories induced by three

benchmarks run on Ursa Minor. At least 88% of the cate-

gories induced by each benchmark exhibit low variance (C2
<

1). The results for linux-build and SFS are more heavy-tailed

than postmark-large, partly due to extra lock contention in

the metadata server.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
2
 for large categories induced by Bigtable

C
D

F

Datacenter A

Datacenter B

Datacenter C

Figure 7: CDF of C2 for large categories induced by

Bigtable instances in three Google datacenters. Dapper’s in-

strumentation of Bigtable is sparse, so many paths cannot be

disambiguated and have been merged together in the observed

categories, resulting in a higher C2 than otherwise expected.

Even so, 47–69% of categories exhibit low variance.

Benchmark

Linux-bld Postmark SFS97

Categories 351 716 1602

Large categories (%) 25.3 29.9 14.7

Requests sampled 145,167 131,113 210,669

In large categories (%) 99.7 99.2 98.9

Table 1: Distribution of requests in the categories induced

by three benchmarks run on Ursa Minor. Though many cat-

egories are generated, most contain only a small number of re-

quests. Large categories, which contain more than 10 requests,

account for between 15–29% of all categories generated, but

contain over 99% of all requests.

Google datacenter

A B C

Categories 29 24 17

Large categories (%) 32.6 45.2 26.9

Requests sampled 7,088 5,556 2,079

In large categories (%) 97.7 98.8 93.1

Table 2: Distribution of requests in the categories induced

by three instances of Bigtable over a 1-day period. Fewer

categories and requests are observed than for Ursa Minor, be-

cause Dapper samples less than 0.1% of all requests. The distri-

bution of requests within categories is similar to Ursa Minor—a

small number of categories contain most requests.

also used Spectroscope to identify the low-level param-

eter differences between a few structural-mutation cate-

gories and their corresponding precursor categories. The

regression tree found differences in elements of the data

distribution scheme (e.g., type of fault tolerance used).

We presented this information to the developer of the

metadata server, who told us the root cause was a change

in an infrequently-modified configuration file. Along

with the check-in, he had mistakenly removed a few

lines that pre-allocated the file used to store metadata and

specify the data distribution. Without this, Ursa Minor

used its default distribution scheme and sent all writes to

the data storage node. The developer was surprised to

learn that the default distribution scheme differed from

the one he had chosen in the configuration file.

Summary: For this real problem, comparing re-

quest flows helped developers diagnose a performance

change caused by modifications to the system configura-

tion. Many distributed systems contain large configura-

tion files with esoteric parameters (e.g., hadoop-site.xml)

that, if modified, can result in perplexing performance

changes. Spectroscope can provide guidance in such

cases by showing how various configuration options af-

fect system behaviour.

Quantitative analysis: For the evaluation in Table 3,

results in the ranked list were deemed relevant if they

included metadata accesses to the data storage node with

a most-likely precursor category that included metadata

accesses to the metadata storage node.

8.3 Read-modify-writes

This problem was observed and diagnosed before devel-

opment on Spectroscope began; it was re-injected in Ursa

Minor to show how Spectroscope could have helped de-

velopers easily diagnose it.

A few years ago, performance of IoZone declined

from 22MB/s to 9MB/s after upgrading the Linux ker-

nel from 2.4.22 to 2.6.16.11. To debug this problem,

one of the authors of this paper spent several days manu-

ally mining Stardust traces and eventually discovered the

9

Quality of results

/ Type Name Manifestation Root cause # of Top 10 FPs (%) Cov. (%)

results rel. (%)

8.2 / Real MDS config. Structural Config. change 128 100 2 70

8.3 / Real RMWs Structural Env. change 3 100 0 100

8.4 / Real MDS prefetch. 50 Structural Internal change 7 29 71 93

8.4 / Real MDS prefetch. 10 16 70 56 96

8.5 / Real Create behaviour Structural Design problem 11 40 64 N/A

8.6 / Synthetic 100µs delay Response time Internal change 17 0 100 0

8.6 / Synthetic 500µs delay 166 100 6 92

8.6 / Synthetic 1ms delay 178 100 7 93

8.7 / Real Periodic spikes No change Env. change N/A N/A N/A N/A

Table 3: Overview of the Ursa Minor case studies. This table shows information about each of six problems diagnosed using

Spectroscope. For most of the case studies, quantitative metrics that evaluate the quality of Spectroscope’s results are included.

root cause: the new kernel’s NFS client was no longer

honouring the NFS server’s preferred READ and WRITE

I/O sizes, which were set to 16KB. The smaller I/O sizes

used by the new kernel forced the NFS server to per-

form many read-modify-writes (RMWs), which severely

affected performance. To remedy this issue, support for

smaller I/O sizes was added to the NFS server and coun-

ters were added to track the frequency of RMWs.

To show how comparing request flows and identifying

low-level parameter differences could have helped devel-

opers quickly identify the root cause, Spectroscope was

used to compare request flows between a run of IoZone

in which the Linux client’s I/O size was set to 16KB

and another during which the Linux client’s I/O size was

set to 4KB. All of the results in the ranked list were

structural-mutation categories that contained RMWs.

We next used Spectroscope to identify the low-level

parameter differences between the highest-ranked result

and its most-likely precursor category. The output per-

fectly separated the constituent requests by the count pa-

rameter, which specifies the amount of data to be read or

written by the request. Specifically, requests with count

parameter values less than or equal to 4KB were classi-

fied as belonging to the problem period.

Summary: Diagnosis of this problem demonstrates

how comparing request flows can help developers iden-

tify performance problems that arise due to a workload

change. It also showcases the utility of highlighting rel-

evant low-level parameter differences.

Quantitative analysis: For Table 3, results in the

ranked list were deemed relevant if they contained

RMWs and their most-likely precursor category did not.

8.4 MDS prefetching

A few years ago, several developers, including one of

the authors of this paper, tried to add server-driven meta-

data prefetching to Ursa Minor [17]. This feature was in-

tended to improve performance by prefetching metadata

to clients on every mandatory metadata server access, in

hopes of minimizing the total number of accesses neces-

sary. However, when implemented, this feature provided

no improvement. The developers spent a few weeks (off

and on) trying to understand the reason for this unex-

pected result but eventually moved on to other projects

without an answer.

To diagnose this problem, we compared two runs of

linux-build, one with prefetching disabled and another

with it enabled. linux-build was chosen because it

is more likely to see performance improvements due to

prefetching than the other workloads.

When we ran Spectroscope with SM THRESHOLD set

to 50, several categories were identified as contain-

ing mutations. The two highest-ranked results imme-

diately piqued our interest, as they contained WRITEs

that exhibited an abnormally large number of lock ac-

quire/release accesses within the metadata server. All

of the remaining results contained response-time muta-

tions from regressions in the metadata prefetching code

path, which had not been properly maintained. To further

explore the space of structural mutations, we decreased

SM THRESHOLD to 10 and re-ran Spectroscope. This time,

many more results were identified; most of the highest-

ranked ones now exhibited an abnormally high number

of lock accesses and differed only in the exact number.

Analysis revealed that the additional lock/unlock calls

reflected extra work performed by requests that accessed

the metadata server to prefetch metadata to clients. To

verify this as the root cause, we added instrumentation

around the prefetching function to see whether it caused

the database accesses. Altogether, this information pro-

vided us with the intuition necessary to determine why

server-driven metadata prefetching did not improve per-

formance: the extra time spent in the DB calls by meta-

data server accesses outweighed the time savings gener-

10

ated by the increase in client cache hits.

Summary: This problem demonstrates how compar-

ing request flows can help developers account for un-

expected performance loss when adding new features.

In this case, the problem was due to unanticipated con-

tention several layers of abstraction below the feature ad-

dition. Note that diagnosis with Spectroscope is interac-

tive, in this case involving developers iteratively modify-

ing SM THRESHOLD to gain additional insight.

Quantitative analysis: For Table 3, results in the

ranked list were deemed relevant if they contained at

least 30 LOCK ACQUIRE → LOCK RELEASE edges. Re-

sults for the output when SM THRESHOLD was set to 10

and 50 are reported. In both cases, response-time muta-

tions caused by decay of the prefetching code path are

conservatively considered false positives, since these re-

gressions were not the focus of this diagnosis effort.

8.5 Create behaviour

During development of Ursa Minor, we noticed that

the distribution of request response times for CREATEs

in postmark-large increased significantly during the

course of the benchmark. To diagnose this performance

degradation, we used Spectroscope to compare request

flows between the first 1,000 CREATEs issued and the

last 1,000. Due to the small number of requests com-

pared, SM THRESHOLD was set to 10.

Spectroscope’s results showed categories that con-

tained both structural and response-time mutations, with

the highest-ranked one containing the former. The

response-time mutations were the expected result of data

structures in the NFS server and metadata server whose

performance decreased linearly with load. Analysis of

the structural mutations, however, revealed two architec-

tural issues, which accounted for the degradation.

First, to serve a CREATE, the metadata server executed

a tight inter-component loop with a storage node. Each

iteration of the loop required a few milliseconds, greatly

affecting response times. Second, categories containing

structural mutations executed this loop more times than

their precursor categories. This inter-component loop

can be seen easily if the categories are zoomed out to

show only component traversals and plotted in a train

schedule, as in Figure 8.

Conversations with the metadata server’s developer

led us to the root cause: recursive B-Tree page splits

needed to insert the new item’s metadata. To ameliorate

this problem, the developer increased the page size and

changed the scheme used to pick the created item’s key.

Summary: This problem demonstrates how request-

flow comparison can be used to diagnose performance

degradations, in this case due to a long-lived design

problem. Though simple counters could have shown

that CREATEs were very expensive, they would not

have shown that the root cause was excessive metadata

server/storage node interaction.

Quantitative analysis: For Table 3, results in the

ranked list were deemed relevant if they contained struc-

tural mutations and showed more interactions between

the NFS server and metadata server than their most-

likely precursor category. Response-time mutations that

showed expected performance differences due to load are

considered false positives. Coverage is not reported as it

is not clear how to define problematic CREATEs.

8.6 Slowdown due to code changes

This synthetic problem was injected into Ursa Minor to

show how request-flow comparison can be used to diag-

nose slowdowns due to feature additions or regressions

and to assess Spectroscope’s sensitivity to changes in re-

sponse time.

Spectroscope was used to compare request flows be-

tween two runs of SFS97. Problem period runs included

a spin loop injected into the storage nodes’ WRITE code

path. Any WRITE request that accessed a storage node in-

curred this extra delay, which manifested in edges of the

form ⋆ → STORAGE NODE RPC REPLY. Normally, these

edges exhibit a latency of 100µs.

Table 3 shows results from injecting 100µs, 500µs, and

1ms spin loops. Results were deemed relevant if they

contained response-time mutations and correctly identi-

fied the affected edges as those responsible. For the latter

two cases, Spectroscope was able to identify the result-

ing response-time mutations and localize them to the af-

fected edges. Of the categories identified, only 6–7% are

false positives and 100% of the 10 highest-ranked ones

are relevant. The coverage is 92% and 93%.

Variance in response times and the edge latencies in

which the delay manifests prevent Spectroscope from

properly identifying the affected categories for the 100µs

case. It identifies 11 categories that contain requests that

traverse the affected edges multiple times as containing

A

B

C

D

Time Time0ms 4ms 0ms 13ms

: Metadata insertion

Figure 8: Visualization of create behaviour. Two train-

schedule visualizations are shown, the first one a fast early cre-

ate during postmark-large and the other a slower create is-

sued later in the benchmark. Messages are exchanged between

the NFS Server (A), Metadata Server (B), Metadata Storage

Node (C), and Data Storage Node (D). The first phase of the

create procedure is metadata insertion, which is shown to be

responsible for the majority of the delay.

11

response-time mutations, but is unable to assign those

edges as the ones responsible for the slowdown.

8.7 Periodic spikes

Ursa minor-build, which is run as part of the nightly

test suite, periodically shows a spike in the time required

for its copy phase to complete. For example, from one

particular night to another, copy time increased from 111

seconds to 150 seconds, an increase of 35%. We initially

suspected that the problem was due to an external pro-

cess that periodically ran on the same machines as Ursa

Minor’s components. To verify this assumption, we com-

pared request flows between a run in which the spike was

observed and another in which it was not.

Surprisingly, Spectroscope’s output contained only

one result: GETATTRs, which were issued more fre-

quently during the problem period, but which had not

increased in average response time. We ruled this result

out as the cause of the problem, as NFS’s cache coher-

ence policy suggests that an increase in the frequency

of GETATTRs is the result of a performance change,

not its cause. We probed the issue further by reducing

SM THRESHOLD to see if the problem was due to requests

that had changed only a small amount in frequency, but

greatly in response time, but did not find any such cases.

Finally, to rule out the improbable case that the prob-

lem was caused by an increase in variance of response

times that did not affect the mean, we compared distribu-

tions of intra-category variance between two periods us-

ing the Kolmogorov-Smirnov test; the resulting p-value

was 0.72, so the null hypothesis was not rejected. These

observations convinced us the problem was not due to

Ursa Minor or processes running on its machines.

We next suspected the client machine as the cause of

the problem and verified this to be the case by plotting a

timeline of request arrivals and response times as seen by

the NFS server (Figure 9). The visualization shows that

during the problem period, response times stay constant

but the arrival rate of requests decreases. We currently

suspect the problem to be backup activity initiated from

the facilities department (i.e., outside of our system).

Summary: This problem demonstrates how compar-

ing request flows can help diagnose problems that are not

caused by internal changes. Informing developers that

nothing within the distributed system has changed frees

them to focus their efforts on external factors.

9 Experiences at Google

This section describes preliminary experiences using

request-flow comparison, as implemented in Spectro-

scope, to diagnose performance problems within select

Google services. Sections 9.1 and 9.2 describe two such

experiences. Section 9.3 discusses ongoing challenges in

adapting request-flow comparison to large datacenters.

Time0s 5s

...

...

A:

B:

Figure 9: Timeline of inter-arrival times of requests at the

NFS Server. A 5s sample of requests, where each rectangle

represents the process time of a request, reveals long periods of

inactivity due to lack of requests from the client during spiked

copy times (B) compared to periods of normal activity (A).

9.1 Inter-cluster performance

A team responsible for an internal service at Google ob-

served that load tests run on their software in two dif-

ferent clusters exhibited significantly different perfor-

mance, though they expected performance to be similar.

We used Spectroscope to compare request flows be-

tween the two load test instances. The results showed

many categories that contained response-time mutations;

many were caused by latency changes not only within

the service itself, but also within RPCs and within sev-

eral dependencies, such as the shared Bigtable instance

running in the lower-performing cluster. This led us to

hypothesize that the primary cause of the slowdown was

a problem in the cluster in which the slower load test

was run. Later, we found out that the Bigtable instance

running in the slower cluster was not working properly,

confirming our hypothesis. This experience is a further

example of how comparing request flows can help de-

velopers rule out the distributed system (in this case, a

specific Google service) as the cause of the problem.

9.2 Performance change in a large service

To help identify performance problems, Google keeps

per-day records of average request latencies for major

services. Spectroscope was used to compare two day-

long periods for one such service, which exhibited a sig-

nificant performance deviation, but only a small differ-

ence in load, between the periods compared. Though

many interesting mutations were identified, we were un-

able to identify the root cause due to our limited knowl-

edge of the service, highlighting the importance of do-

main knowledge in interpreting Spectroscope’s results.

9.3 Ongoing challenges with scale

Challenges remain in scaling request-flow comparison

techniques to large distributed services, such as those

within Google. For example, categories generated for

well-instrumented large-scale distributed services will be

much larger than those observed for the 5-instance ver-

sion of Ursa Minor. Additionally, they may yield many

categories, each populated with too few requests for sta-

12

tistical rigor. Robust methods are needed to merge cat-

egories and visualize them without losing important in-

formation about structure, which occurs with Dapper be-

cause of its graph compression methods. These meth-

ods affected the quality of Spectroscope’s results by in-

creasing variance, losing important structural differences

between requests, and increasing effort needed to under-

stand individual categories. Our experiences with unsu-

pervised learning algorithms, such as clustering [4, 29],

for merging categories indicate they are inadequate. A

promising alternative is to use semi-supervised methods,

which would allow the grouping algorithm to learn de-

velopers’ mental models of which categories should be

merged. Also, efficient visualization may be possible by

only showing the portion of a mutation’s structure that

differs between it and its precursors.

More generally, request-flow graphs from large ser-

vices are difficult to understand because such services

contain many dependencies, most of which are foreign

to their developers. To help, tools such as Spectroscope

must strive to identify the semantic meaning of individ-

ual categories. For example, they could ask developers to

name graph substructures about which they are knowl-

edgeable and combine them into a meaningful meta-

name when presenting categories.

10 Related work

A number of techniques have been developed for di-

agnosing performance problems in distributed systems.

Whereas many rely on end-to-end tracing, others attempt

to infer request flows from existing data sources, such as

message send/receive events [27] or logs [38]. These lat-

ter techniques trade accuracy of re-constructed request

flows for ease of using existing monitoring mechanisms.

Other techniques rely on black-box metrics and are lim-

ited to localizing problems to individual machines.

Magpie [4], Pinpoint [9], WAP5 [27], and Xu [38],

all identify anomalous requests by finding rare ones that

differ greatly from others. In contrast, request-flow com-

parison identifies the changes in distribution between two

periods that most affect performance. Pinpoint also de-

scribes other ways to use end-to-end traces, including for

statistical regression testing, but does not describe how to

use them to compare request flows.

Google has developed several analysis tools for use

with Dapper [31]. Most relevant is the Service Inspector,

which shows graphs of the unique call paths observed to

a chosen function or component, along with the resulting

call tree below it, allowing developers to understand the

contexts in which the chosen item is used. Because the

item must be chosen beforehand, the Service Inspector is

not a good fit for problem localization tasks.

Pip [26] compares developer-provided, component-

based expectations of structural and timing behaviour to

actual behaviour observed in end-to-end traces. Theoret-

ically, Pip can be used to diagnose any type of problem:

anomalies, correctness problems, etc. But, it relies on de-

velopers to specify expectations, which is a daunting and

error-prone task—the developer is faced with balancing

effort and generality against the specificity needed to ex-

pose particular problems. In addition, Pip’s component-

centric expectations, as opposed to request-centric ones,

complicate problem localization tasks [10]. Nonetheless,

in many ways, comparing request flows between execu-

tions is akin to Pip, with developer-provided expectations

being replaced with the observed non-problem period be-

haviour. Many of our algorithms, such as for ranking

mutations and highlighting the differences, could be used

with Pip-style expectations as well.

The Stardust tracing infrastructure on which our im-

plementation builds was originally designed to enable

performance models to be induced from observed sys-

tem performance [32, 34]. Building on that initial work,

IRONmodel [33] developed approaches to detecting (and

correcting) violations of such models, which can indi-

cate performance problems. In describing IRONmodel,

Thereska et al. also proposed that the specific nature of

how observed behaviour diverges from the model could

guide diagnoses, but they did not develop techniques for

doing so or explore the approach in depth.

A number of black-box diagnosis techniques have

been devised for systems that do not have the detailed

end-to-end tracing on which our approach to comparing

request flows relies. For example, Project 5 [2] infers

bottlenecks by observing messages passed between com-

ponents. Comparison of performance metrics exhibited

by systems that should be doing the same work can also

identify misbehaving nodes [18, 24]. Such techniques

can be useful parts of a suite, but are orthogonal to the

contributions of this paper.

There are also many single-process diagnosis tools

that inform creation of techniques for distributed sys-

tems. For example, Delta analysis [36] compares mul-

tiple failing and non-failing runs to identify the most sig-

nificant differences. OptiScope [22] compares the code

transformations made by different compilers to help de-

velopers identify important differences that affect perfor-

mance. DARC [35] automatically profiles system calls to

identify the greatest sources of latency. Our work builds

on some concepts from such single-process techniques.

11 Conclusion

Comparing request flows, as captured by end-to-end

traces, is a powerful new technique for diagnosing per-

formance changes between two time periods or system

versions. Spectroscope’s algorithms for this compari-

son allow it to accurately identify and rank mutations

and identify their precursors, focusing attention on the

13

most important differences. Experiences with Spectro-

scope confirm its usefulness and efficacy.

Acknowledgements

We thank our shepherd (Lakshminarayanan Subramanian), the NSDI

reviewers, Brian McBarron, Michelle Mazurek, Matthew Wachs, and

Ariela Krevat for their insight and feedback. We thank the members

and companies of the PDL Consortium (including APC, EMC, Face-

book, Google, Hewlett-Packard Labs, Hitachi, IBM, Intel, LSI, Mi-

crosoft Research, NEC Laboratories, NetApp, Oracle, Riverbed, Sam-

sung, Seagate, STEC, Symantec, VMWare, and Yahoo! Labs) for their

interest, insights, feedback, and support. This research was sponsored

in part by a Google research award, NSF grants #CNS-0326453 and

#CCF-0621508, by DoE award DE-FC02-06ER25767, and by CyLab

under ARO grants DAAD19-02-1-0389 and W911NF-09-1-0273.

References

[1] M. Abd-El-Malek, et al. Ursa Minor: versatile cluster-based stor-

age. Conference on File and Storage Technologies. USENIX

Association, 2005. 2, 6

[2] M. K. Aguilera, et al. Performance debugging for distributed

systems of black boxes. ACM Symposium on Operating System

Principles. ACM, 2003. 13

[3] Anonymous. Personal communication with Google Software En-

gineers, December 2010. 1

[4] P. Barham, et al. Using Magpie for request extraction and work-

load modelling. Symposium on Operating Systems Design and

Implementation. USENIX Association, 2004. 1, 2, 3, 13

[5] C. M. Bishop. Pattern recognition and machine learning, first

edition. Springer Science + Business Media, LLC, 2006. 6

[6] B. M. Cantrill, et al. Dynamic instrumentation of production sys-

tems. USENIX Annual Technical Conference. USENIX Associ-

ation, 2004. 1

[7] A. Chanda, et al. Whodunit: Transactional profiling for multi-tier

applications. EuroSys. ACM, 2007. 1, 2

[8] F. Chang, et al. Bigtable: a distributed storage system for struc-

tured data. Symposium on Operating Systems Design and Imple-

mentation. USENIX Association, 2006. 8

[9] M. Y. Chen, et al. Path-based failure and evolution management.

Symposium on Networked Systems Design and Implementation.

USENIX Association, 2004. 1, 2, 13

[10] R. Fonseca, et al. Experiences with tracing causality in networked

services. Internet Network Management Conference on Research

on Enterprise Networking. USENIX Association, 2010. 2, 13

[11] R. Fonseca, et al. X-Trace: a pervasive network tracing frame-

work. Symposium on Networked Systems Design and Implemen-

tation. USENIX Association, 2007. 1, 2

[12] GDB. http://www.gnu.org/software/gdb/. 1

[13] S. Ghemawat, et al. The Google file system. ACM Symposium

on Operating System Principles. ACM, 2003. 8

[14] S. L. Graham, et al. gprof: a call graph execution profiler. ACM

SIGPLAN Symposium on Compiler Construction. Published as

SIGPLAN Notices, 17(6):120–126, June 1982. 1

[15] Graphviz. http://www.graphviz.org. 6

[16] J. Heer, et al. Prefuse: a toolkit for interactive information visu-

alization. Conference on Human Factors in Computing Systems.

ACM, 2005. 6

[17] J. Hendricks, et al. Improving small file performance in object-

based storage. Technical report CMU-PDL-06-104. Parallel Data

Laboratory, Carnegie Mellon University, Pittsburgh, PA, May

2006. 10

[18] M. P. Kasick, et al. Black-box problem diagnosis in parallel file

systems. Conference on File and Storage Technologies. USENIX

Association, 2010. 13

[19] J. Katcher. PostMark: a new file system benchmark. Technical

report TR3022. Network Appliance, October 1997. 7

[20] F. J. Massey, Jr. The Kolmogorov-Smirnov test for goodness of

fit. Journal of the American Statistical Association, 46(253):66–

78, 1951. 4

[21] J. C. Mogul. Emergent (Mis)behavior vs. Complex Software Sys-

tems. EuroSys. ACM, 2006. 1

[22] T. Moseley, et al. OptiScope: performance accountability for

optimizing compilers. International Symposium on Code Gener-

ation and Optimization. IEEE/ACM, 2009. 13

[23] W. Norcott and D. Capps. IoZone filesystem benchmark program,

2002. http://www.iozone.org. 7

[24] X. Pan, et al. Ganesha: black-box fault diagnosis for MapReduce

systems. Hot Metrics. ACM, 2009. 13

[25] J. R. Quinlan. Bagging, boosting and C4.5. 13th National Con-

ference on Artificial Intelligence. AAAI Press, 1996. 6

[26] P. Reynolds, et al. Pip: Detecting the unexpected in distributed

systems. Symposium on Networked Systems Design and Imple-

mentation. USENIX Association, 2006. 1, 13

[27] P. Reynolds, et al. WAP5: Black-box Performance Debugging for

Wide-Area Systems. International World Wide Web Conference.

ACM Press, 2006. 13

[28] R. R. Sambasivan, et al. Diagnosing performance problems by

visualizing and comparing system behaviours. Technical report

10–103. Carnegie Mellon University, February 2010. 2

[29] R. R. Sambasivan, et al. Categorizing and differencing system be-

haviours. Workshop on hot topics in autonomic computing (Ho-

tAC). USENIX Association, 2007. 3, 13

[30] SPEC SFS97 (2.0). http://www.spec.org/sfs97. 2, 7

[31] B. H. Sigelman, et al. Dapper, a large-scale distributed systems

tracing infrastructure. Technical report dapper-2010-1. Google,

April 2010. 1, 2, 13

[32] E. Thereska, et al. Informed data distribution selection in a self-

predicting storage system. International conference on autonomic

computing. IEEE, 2006. 13

[33] E. Thereska and G. R. Ganger. IRONModel: robust performance

models in the wild. ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems. ACM, 2008. 1,

13

[34] E. Thereska, et al. Stardust: Tracking activity in a distributed

storage system. ACM SIGMETRICS Conference on Measure-

ment and Modeling of Computer Systems. ACM, 2006. 1, 2,

13

[35] A. Traeger, et al. DARC: Dynamic analysis of root causes of

latency distributions. ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems. ACM, 2008. 13

[36] J. Tucek, et al. Triage: diagnosing production run failures at the

user’s site. ACM Symposium on Operating System Principles,

2007. 13

[37] E. R. Tufte. The visual display of quantitative information.

Graphics Press, Cheshire, Connecticut, 1983. 3

[38] W. Xu, et al. Detecting large-scale system problems by mining

console logs. ACM Symposium on Operating System Principles.

ACM, 2009. 13

14

http://www.gnu.org/software/gdb/
http://www.graphviz.org
http://www.iozone.org
http://www.spec.org/sfs97

	Introduction
	End-to-end request-flow tracing
	Behavioural changes vs. anomalies
	Spectroscope
	Categorizing request flows
	Comparing request flows

	Algorithms for comparing request flows
	Identifying response-time mutations
	Identifying structural mutations
	Mapping mutations to precursors
	Ranking
	Identifying low-level differences
	Current limitations

	Experimental apparatus
	Ursa Minor
	Benchmarks used with Ursa Minor
	Dapper & Google services

	Dealing with high-variance categories
	Ursa Minor case studies
	Methodology
	MDS configuration change
	Read-modify-writes
	MDS prefetching
	Create behaviour
	Slowdown due to code changes
	Periodic spikes

	Experiences at Google
	Inter-cluster performance
	Performance change in a large service
	Ongoing challenges with scale

	Related work
	Conclusion

