
A Human Organization Analogy for Self-* Systems

John D. Strunk, Gregory R. Ganger
Carnegie Mellon University

ABSTRACT
The structure and operation of human organizations, such as corpo-
rations, offer useful insights to designers of self-� systems (a.k.a.
self-managing or autonomic). Examples include worker/supervisor
hierarchies, avoidance of micro-management, and complaint-based
tuning. This paper explores the analogy, and describes the design
of a self-� storage system that borrows from it.

1. INTRODUCTION
A popular research topic these days is the pursuit of “self-� sys-
tems:” self-organizing, self-configuring, self-tuning, self-repairing,
self-managing systems of cost-effective components (e.g., “bricks”
or “blades”). Such research is a direct response to the shift from
needing bigger, faster, stronger computer systems to the need for
less human-intensive management of the systems currently avail-
able. System complexity has reached the point where administra-
tion generally costs more than hardware and software infrastruc-
ture.

In the course of describing self-� systems, several analogies have
been offered, attempting to draw inspiration from natural systems
such as insect collectives or the autonomic nervous system. This
paper discusses another analogy source—human organizations, such
as corporations or militaries—and the insights it offers. Human or-
ganizations successfully combine the efforts of autonomous, im-
perfect, adaptable entities to achieve a broad range of goals across
a broad range of sizes. Compared to natural systems, they accom-
modate more relevant goals (e.g., customer satisfaction and legal
protection vs. survival), and they are more thoroughly understood
(e.g., see [10]). Natural systems may well be the best model, when
they are better understood, but they provide little guidance to sys-
tem designers in the meantime.

The theory and practice of human organizations offer several in-
teresting insights for self-� system designers. For example, man-
agement hierarchies guide and oversee the efforts of workers from
outside the critical path. Such management partitions the workload

among workers of varying capabilities, provides local goals and
policies, and monitors progress and work quality. As another ex-
ample, human organizations rarely start with detailed performance
specifications at any level. Instead, they move forward based on
vague expectations and then adjust as they observe the results. In-
sufficiently timely service produces a clear signal: complaints.

Such insights can be applied directly to the design of self-� sys-
tems. These systems may have a set of nodes for performing work
and a set of supervisory nodes for management tasks. Supervi-
sors could partition work and collect statistics while allowing local
optimization to occur unhampered. Human administrators can use
complaints to indicate insufficient performance, which is often how
they hear about problems, rather than specifying complex service
level objectives (SLOs). Supervisor nodes, upon receiving a com-
plaint from the administrator, would translate this abstract input to
internal performance goals for various tasks.

As a concrete example, we describe the design of a self-� storage
system and how it borrows from the analogy of human organiza-
tions. In interface and function, storage is simpler than general
computation systems. Yet, storage devices’ highly non-linear per-
formance characteristics and users’ reliability demands make it dif-
ficult to perfect. Simultaneously, storage plays a critical role in data
centers and seems to require a disproportionate amount of admin-
istrative attention (e.g., 1 administrator per 1–2 TB in 2000 [4]). It
is clearly a subject worthy of our attention.

2. HUMAN ORGANIZATIONS
As researchers have struggled to develop self-� systems, they have
looked at existing natural systems for examples with self-� prop-
erties. This search has produced several popular analogies, such
as autonomic computing [6], that evoke images of plumbing that
functions, adapts, and repairs itself without requiring attention. In-
sect collectives (e.g., bee hives and ant colonies) have been another
source of inspiration, evoking images of large numbers of expend-
able, interchangeable individuals autonomously working towards a
common good.

On the surface (and for marketing purposes), these analogies look
appealing. Beyond these high-level properties, however, it is not
clear how much they contribute to self-� systems. Most biologi-
cal systems tend to be inflexible outside of a narrow range, some-
times leading to disastrous results—for example, insects continue
to be drawn to bug zapping lamps. Their responses to stimuli are
genetically pre-programmed, resulting in very gradual adaptation
to new environments with the death of collectives (and mutation

Joan Digney
 First Workshop on Algorithms and Architectures for Self-Managing Systems. In conjunction with Federated Computing Research Conference (FCRC). San Diego, CA. June 11, 2003.

of the species) as part of the process. Perhaps most importantly,
such systems generally have static, limited policies (e.g., survival).
Self-� systems, on the other hand, need to support a broad range of
policies across a broad range of environments while being upgrad-
able (e.g., patches) and robust (e.g., death of a collective is unac-
ceptable). Clearly, space remains for inspiration from additional
sources.

Humans are able to work together in groups to solve a wide variety
of problems relatively efficiently. The primary example that we ex-
plore here is that of the corporation. Corporations have a number
of properties that are desirable for self-� systems. They are able to
exist over a wide range of sizes. For example, corporations exist
that have from tens of employees to several hundreds of thousands
of employees, and both are successful.1 They are composed of het-
erogenous components—the company CEO has a far different skill
set than the janitor—and they are resilient to failure. The tasks
of employees that leave the organization are redistributed to others
with similar abilities either on a temporary basis, until a replace-
ment is hired, or on a more permanent basis. Corporations also
show a great deal of versatility. While most have the same general
goal, increasing the value of their owners’ investment, the methods
for achieving it vary widely.

2.1 Insights
Of course, we do not propose to endow system components with
human intelligence. The value of an analogy is the set of insights
into system design that it provides. Human organizations offer a
number of ideas that can guide the design of self-� systems.

Hierarchical management without micro-management: Most
human organizations have a tree-like structure in which supervi-
sors delegate tasks, along with a set of goals or deadlines, down-
ward to their subordinates. The main tasks of supervisors are parti-
tioning work among their workers, ensuring they are meeting their
assigned goals, and taking corrective action to improve efficiency.
Although supervisors delegate tasks, they do not dictate how those
tasks should be accomplished. Workers are able to perform tasks in
their own way. This division works well since each worker has dif-
ferent strengths and characteristics, implying that they themselves
are the best judge of how they will most effectively accomplish
their assigned tasks.

As we design self-� systems, this management structure provides
an architecture for how the different system components should
work together. The separation of task distribution from the imple-
mentation of those tasks permits devices to locally optimize based
on their individual characteristics. By communicating goals along
with tasks, the supervisors enable the individual workers to prior-
itize their activities such that their optimizations are aligned with
the high-level goals of the system.

Complaint-based tuning: Humans are not good at precisely spec-
ifying what they want, but they are very good at complaining when
they are not satisfied. As a result, most service organizations within
corporations do not ask users for quantitative expectations. Instead,
they create their own rough, educated guesses and refine perfor-
mance targets based on any complaints received. It is human na-
ture to be outspoken when things are “broken” (i.e., not living up
to expectations), while tasks that are being handled properly are

1The larger examples have clear inefficiencies, yet they still thrive.

generally taken for granted.

At the highest level, any self-� system will need to interact with
a human administrator to receive system goals and priorities. It is
unreasonable to expect the administrator to provide detailed, mean-
ingful SLOs—even experts pursuing workload characterization re-
search struggle with how to generate them. Instead, for perfor-
mance metrics, self-� designs should borrow from the human solu-
tion: educated guesses refined by feedback.

Risk analysis: All companies must assess and cope with issues
of failure and security. As in the real world, trial-and-error with
feedback-based refinement is not sufficient. Companies spend a
great deal of effort to create policies for managing risk. Some self-�
policies (e.g., reliability and availability) involve similar tradeoffs
that require similar analysis.

Try it and see: Making predictions about future system configura-
tions is subject to a significant margin of error. Companies counter
this by trying new ideas on a small scale before investing large
amounts of resources. Self-� systems can use this “try and see”
approach as well. Workload characterization and system models
introduce inaccuracies into system performance predictions. By
trying new configurations on a small scale first,2 predictions can be
refined and many mistakes corrected with minimal impact on the
overall system. Continued reexamination, as the new configuration
is deployed at ever larger scales, will still be needed to recover from
unanticipated non-linearities.

Observe, diagnose, repair loop: Biological systems act via pre-
programmed responses to stimuli, and most do not diagnose prob-
lems via investigation and reasoning the way humans do. Humans
develop and learn from shared repositories of knowledge. They ap-
ply the resulting expertise to deduce the sources of problems, often
by testing hypotheses with experimentation, and then take correc-
tive action. Such problem solving will be needed in self-� systems,
particularly when physical repairs must be explained and justified
to the human administrator.

Shifts, sick days, vacations, and sabbaticals: Human organiza-
tions plan for and schedule worker downtime. Doing so makes the
workers more effective, allowing them to refresh themselves and
to step back from their work to gain perspective. To support such
downtime, managers must have sufficient workers and properly co-
ordinate their schedules. Self-� infrastructures must plan for sim-
ilar kinds of individual worker downtime. For example, upgrades
require taking individual workers offline. Additionally, occasional
worker reboots provide real operational benefits by resetting soft-
ware state [5].

Negotiation: Parties with independent interests use negotiation to
coordinate on common objectives and to exchange resources to-
wards mutual benefit. Negotiation mechanisms will be useful when
self-� systems in different administrative domains must interact [7].
Such negotiation may also be useful for avoiding decision-making
bottlenecks in the management hierarchy—some dynamic and short-
term decisions could be negotiated locally by workers in different
branches of the hierarchy.

2Small-scale tests can also be done with traces applied to either
extra resources or simulators.

Fire drills and audits: When correctness and safety are focal points,
human organizations use practice and verification. Fire drills con-
sist of simulated or safely recoverable faults being injected into
an operational environment, allowing workers to practice response
actions. Audits and other self-checking mechanisms examine inter-
mediate and final results, from real operation or fire drills, to iden-
tify errors and problems. These concepts will be needed in self-�
systems to proactively identify problems, exercise recovery mech-
anisms, and identify corner cases that should be avoided. They will
also be needed to keep administrators engaged and up-to-date so
that they are prepared if serious problems arise. Experiences with
high-reliability computing systems and automation systems (e.g.,
auto-pilot and anti-lock brakes) confirm the importance of this lat-
ter aspect [11].

Training and experience: People’s abilities improve as they learn,
creating patterns and identifying shortcuts for particular tasks. Be-
cause of this, as well as personal comfort, people do not like to
have their tasks changed frequently. At the same time, supervisors
must reassess worker capabilities over time to utilize their evolv-
ing capabilities more fully. To avoid problems in the early stages
of the development process, many organizations put new workers
through a training program, either offline or online with close over-
sight, before putting them into the field. Self-� components that
adapt to offered loads will likely suffer during rapid reassignment
and improve with training and experience. In fact, one measure of
quality for self-� components will be how effectively and quickly
they can tune themselves to the characteristics of the workload and
environment.

Entrance exams: Many human organizations use entrance exams
to characterize a new person’s skill set. Such testing is valuable
for setting initial expectations and verifying that his abilities are
above a minimum threshold. In self-� systems, this can act as a
form of on-line benchmarking, giving automated task assignment
engines information to guide decisions. Like in the real world, the
amount of pre-deployment benchmarking will depend in part on
how critically help is needed.

Expecting inefficiencies: Human organizations are often mocked
for their inefficiencies—perhaps there is a lesson here for self-� de-
signers. Scalable systems only work when complexity is managed,
and large human organizations manage complexity in part by toler-
ating inefficiency and not attempting to fully utilize every resource.

3. SELF-* STORAGE
We are exploiting insights from the corporate analogy in the design
of self-� storage, a self-tuning, self-managing storage system. This
section describes our system architecture and discusses the key in-
terfaces and components, identifying the insights we exploit.

3.1 System architecture
The high-level system architecture, shown in Figure 1, consists
of three types of components: supervisors, workers, and routers.
These three components work together to configure and tune the
storage system based on administrator-provided goals.

Supervisors: The supervisors form a management hierarchy. The
top of the hierarchy receives high-level goals for data items from
the system administrator. These directives are partitioned at each
level of the tree structure according to the capabilities of workers

hierarchy
Management

I/O request
routing

complaints
Goal specification &

Performance
information &
delegation

I/O requests &
replies

Administrator

Supervisor

Worker

Router

Clients

Figure 1: Architecture of self-� storage – This figure shows the
high-level architecture of self-� storage. The top of the diagram
is the management hierarchy, concerned with the distribution
of goals and the delegation of storage responsibilities from the
system administrator down to the individual worker devices.
The bottom of the figure depicts the path of I/O requests in the
system from clients, through routing nodes, to the workers for
service. Note that the management infrastructure is logically
independent of the I/O request path.

in that branch. Each supervisor knows the goals and data that were
assigned to it as well as how it has partitioned this work to its sub-
ordinates (workers or lower-level supervisors).

Workers: The workers, typically small storage arrays, are respon-
sible for storing data and servicing I/O requests for clients. The
data that a worker stores and its goals are assigned by that worker’s
direct supervisor. However, the supervisor does not dictate any con-
figuration parameters for worker devices. Each worker internally
refines cache, scheduling, and layout policies based on its charac-
teristics, capabilities, and observed workload.

Routers: Routers are logical entities whose functionality may be
implemented in client systems, smart network switches, or worker
front ends. They ensure that I/O requests are delivered to the appro-
priate worker nodes for service. Since the core job of the routers is
transmitting requests and replies between workers and clients, they
implement distribution decisions. While worker nodes have a level
of autonomy from the supervisors, routers do not—supervisors dic-
tate the routing policy to routers. This is necessary since the super-
visors determine inter-worker data and workload distribution, and
the choice of routing policy greatly affects the workload that is pre-
sented to a given worker.

3.2 Administrative interface
Critical to self-� storage being able to self-manage is having an ex-
ternal entity (the system administrator) specify the high-level goals
for the system. There seems to be some consensus that system con-
figuration, from the administrator’s perspective, is better handled
by specifying goals rather than mechanisms [1]. While moving
from specifying mechanisms to goals is a step in the right direc-
tion, it is unclear whether administrators are properly equipped to
specify detailed goals. There is some hope that availability and re-
liability goals can be derived from various business and insurance
costs (related to risk management), but the proper way to set per-
formance targets is a different problem. Workload characterization
can provide a first estimate of performance requirements (when re-
placing an existing system) and can even be used to guide storage
system design [2, 3], but further tuning by the administrator will be
necessary. Providing an easy to use interface for this refinement is
a necessity. We believe that using a system of complaints from the
administrator can provide just such an interface.

Complaint-based tuning will use complaints about the performance
of specific data items as feedback to revise performance targets
and priorities between data items. This allows the administrator
to revise the system’s goals using a very intuitive interface. Hu-
mans are very good at voicing displeasure when something fails to
meet their expectations even if they cannot enumerate those expec-
tations. In particular, an administrator (or even a normal user) can
usually identify when the system is not performing well enough.

When an administrator voices a complaint about the current service
level of the storage system, he provides two key pieces of informa-
tion. First, the complaint is a statement that current service levels
are not sufficient. Second, the data identified in the complaint is
the “most noticeable” offender. These two items can be used by the
system to guide performance tuning.

The first case to consider for tuning is one in which the system is
able to meet its current performance targets (i.e., there are sufficient
resources for the demand currently placed on the system). When a
complaint is received, we know that the current performance level
is inadequate, and since it is already meeting its target, that target
is incorrect and should be modified. Complaints could also have a
qualitative “strength” to guide the magnitudes of the adjustments,
but it may be possible to infer this information from the pattern
of complaints. By iteratively receiving complaints and adjusting
performance goals, the system can “zero in” on the proper settings.

The second case of interest occurs when the system is unable to
meet the current performance targets and a complaint is received.
In this case, we know that the current resources are insufficient for
the observed workload, and a message to that effect can be sent to
the administrator. The real insight in this situation is that the ad-
ministrator chose to complain about this particular data item when
there are likely many that are not meeting their targets. The way to
interpret this is that it is more important for the specified data item
to meet its target than for other data items to meet theirs, so the
system should adjust not the performance targets, but the relative
importance of meeting them.

3.3 Supervisor interface
For the system as a whole to meet the externally supplied goals,
supervisors must communicate with their subordinates to ensure

all of the sub-parts are performing satisfactorily. Supervisor-to-
subordinate communication serves two functions. First, it dissemi-
nates the “tasks” and goals to lower-level nodes, either to workers
or other supervisors. Second, it allows a supervisor to assess the
performance of its subordinates to ensure they are meeting their
goals.

Along the downward path, the supervisor assigns data and specifies
associated goals (e.g., as SLOs in Rome [13]); it does not specify
mechanisms. This use of goals allows the higher level supervisor
to ignore the details of lower-level mechanisms. Additionally, it
allows intent to be passed as part of the assignment. By commu-
nicating intent down the tree, lower nodes gain the ability to as-
sess their performance relative to goals as they internally optimize.
In addition to communicating assignments, supervisors may also
transmit potential future assignments. This could be used to eval-
uate “what if. . . ” scenarios, allowing supervisors to tune based on
performance predictions from its workers.

There are three types of information that we desire from the up-
ward communication path. First, lower-level nodes need to provide
workload information to their supervisor. This information encap-
sulates not only workload characteristics, but also how they (possi-
bly a subtree of nodes) are performing relative to the desired goals.
Second, some information regarding the capabilities of the subtree
should be provided. Due to the workload-dependent nature of such
a specification, this is likely only an approximation, but may be
helpful to the supervisor node as it attempts to tune. Third, it is de-
sirable for lower-level nodes to be able to provide predictions about
potential configurations. If supervisors are able to ask, “How well
would you meet your goals if I added workload X?”, optimization
can likely be sped up considerably. In addition to speeding up the
process, poor decisions can be pruned without inflicting a perfor-
mance penalty on the system via trial-and-error.

3.4 Supervisor internals
The hierarchy of supervisor nodes controls how data is partitioned
onto each worker and how the incoming workload is distributed. A
supervisor’s main objective is to correctly partition data and goals
onto its subordinate nodes, such that if its children meet their as-
signed goals, the goals for the entire subtree managed by the super-
visor will be met. Creating this partitioning without wasting many
resources is not easy. Prior to partitioning the workload, the super-
visor needs to gain some understanding of the capabilities of each
of its workers. Much like this interaction in human organizations,
the information will be imperfect. For instance, the workers may
provide best-case performance numbers to the supervisor. This is
of some use, but far from ideal.

One of the major obstacles for the supervisor to overcome is find-
ing a way to evaluate a sufficient portion of the possible configu-
rations. To handle this, the supervisor is likely to use a combina-
tion of coarse statistics, simulation, and trial-and-error. The coarse
statistics for workload characteristics and worker capabilities may
allow large numbers of possibilities to be evaluated quickly, but
with a significant margin of error. Prospective partitionings could
be further refined by asking workers to simulate them given the
workload goals and historical traces collected by workers. Finally,
the promising ones from this stage can be implemented, first on a
small scale, then applied to larger sets of devices and data.

Over the course of tuning, supervisors will develop profiles of each
of its workers. These profiles will contain not only coarse per-
formance metrics, but also information about a worker’s ability to
internally optimize and accurately predict its performance. Having
an accurate profile of the worker nodes will greatly assist tuning.
For example, workers that are better able to optimize should be as-
signed the workloads that have the most potential for optimization,
while workers that are ineffective at internally optimizing can be
given workloads that appear purely random.

3.5 Worker internals
Workers store and service requests for assigned data in whatever
manner they deem most effective. By allowing the workers to
independently optimize, they can internally reorganize data lay-
outs [12], adapting caching policies [8, 9], and scheduling requests
based on both priorities and device characteristics.

Clearly, if workers are given a level of autonomy, there are certain
minimum requirements for these devices (beyond mere persistent
storage). First, the worker must be able to handle block allocation
internally. The mechanism for handling this can be simple, but it
is necessary since the supervisor does not dictate intra-device data
placement strategies. Second, the worker must provide a way for
the supervisor to assess its performance. The most straightforward
method for this is for workers to record a trace of all requests and
their service times. Given these traces, or proper statistics, the su-
pervisor can evaluate the effectiveness of its workers.

An additional ability that would be helpful, although not strictly
necessary, is for the worker to be able to provide predictions about
how well it could achieve its goals given a potential configuration.
In this scenario, the supervisor could provide a potential config-
uration and an associated workload for the worker to analyze via
analytic models or internal simulation. While the idea of embed-
ding a simulator in a storage device may sound overly optimistic,
one must remember that many already have internal timing models
that are used for scheduling.

4. OPEN QUESTIONS
This section discusses some issues that we believe are critical to the
success of this architecture for self-� storage.

Supervisor’s ability to optimize: The ability of supervisors to suc-
cessfully coordinate many sub-devices, each of which internally
optimize, is critical to the success of this architecture. One of the
main properties that make this supervisor/worker organization at-
tractive is that the supervisors abstract away the internals of their
workers. However, hiding the details makes optimization more dif-
ficult. Worse, workers can adapt to their workload, making their
behavior more difficult to predict.

To ensure that supervisors make timely progress, we plan to use a
two-phase approach. First, it is important for the system to quickly
move away from configurations that are “abnormally bad”, and into
a state that is “reasonable.” In this first phase, we want to ensure
that the system is able to get itself out of performance holes, but
we are not concerned with optimality. In the second phase, it is
not necessary to quickly converge upon an optimal configuration,
only that the system continually attempts to improve. We believe
that the number of configurations (in practice) that exhibit accept-
able performance is likely to be large relative to those that exhibit

either abnormally good or bad characteristics. By combining both
coarse metrics and simulation (in the first and second phases, re-
spectively), the system should be able to make timely progress.

Goal tradeoffs: While it seems clear that the system should be able
to make tradeoffs among high-level goals, it is not obvious how to
implement them nor how they should be controlled by the admin-
istrator. For instance, the system may have goals for reliability,
availability, performance, and power consumption. One approach
is to create a strict ordering: reliability, availability, performance,
then power down anything that remains. This leads to unsatisfying
scenarios. For instance, performance could possibly be greatly im-
proved by accepting a small reduction in availability. In order to
recognize and properly handle this, the system must have a contin-
uous model for its goals, not just a black-and-white threshold.

The introduction of interactions between goals complicates the ad-
ministrator’s job because he must understand those interactions as
the workload and system characteristics change. Finding a method
to simply communicate this information to the administrator is a
necessity. Using the system’s ability to make predictions may prove
helpful. For example, the system can provide evaluations of “what
if” scenarios to help the administrator understand how the config-
uration would change as the workload increases, devices are up-
graded, or components fail. Additionally, the use of “safety stops”
may be useful in the event the administrator makes a serious tuning
mistake. For example, minimum thresholds for the various parame-
ters could serve as hard limits that the system would not cross while
it makes internal tradeoffs.

Configuration complexity: Even in the architecture we propose,
there are a number of tunable parameters (e.g., per data set goals
and their relative importance). Finding a method for the adminis-
trator to easily set each of them is a challenging task. While the
complaint-based tuning provides a simple interface, it will be te-
dious to use outside of the occasional performance “tweak.”

For managing this complexity, there are two aspects that work in
our favor. First, it is likely that most data will fit a generic (though
site-specific) template, and only the exceptions would need to be
hand-configured. Second, tuning the system can be a gradual pro-
cess. When first installed, it is likely that the system will be over-
provisioned, allowing the system to perform well even if the goals
not properly tuned. Only when the workload increases, causing the
system to become resource constrained, will the actual performance
thresholds become important. When the frequency of performance
tweaks reaches an unacceptable level, more resources should be
added. This highlights another tradeoff. Additional resources can
be used to reduce goal specification effort. By adding more re-
sources, the system can be moved back toward the over-provisioned
state, and, due to the self-� properties of the system, administrative
effort to configure the new resources is not necessary. Thus, there
is a tradeoff between money spent for new resources and money
spent on administrative (tuning) effort.

5. SUMMARY
Human organizations offer useful insights for the design of self-�
systems. This paper describes the architecture of a self-� storage
system that borrows from this analogy. For example, it uses a su-
pervisor/worker hierarchy to distribute work and manage complex-
ity while freeing components to independently optimize based on

their individual characteristics and workloads. It also uses complaint-
based tuning for performance goal specification.

Acknowledgments
These ideas have benefited from discussions with many people.
In particular, we thank the members and companies of the PDL
Consortium (including EMC, Hewlett-Packard, Hitachi, IBM, In-
tel, Microsoft, Network Appliance, Oracle, Panasas, Seagate, Sun,
and Veritas) for their interest, insights, feedback, and support.

6. REFERENCES
[1] G. Alvarez, K. Keeton, A. Merchant, E. Riedel, and

J. Wilkes. Storage systems management. Tutorial
presentation at International Conference on Measurement
and Modeling of Computer Systems (Santa Clara, CA, June
2000). Hewlett-Packard Labs, June 2000.

[2] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. Becker-Szendy, R. Golding, A. Merchant, M. Spasojevic,
A. Veitch, and J. Wilkes. Minerva: An automated resource
provisioning tool for large-scale storage systems. ACM
Transactions on Computer Systems, 19(4):483–518. ACM
Press, November 2001.

[3] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and
Q. Wang. Ergastulum: an approach to solving the workload
and device configuration problem. Technical report
HPL–SSP–2001–05. HP Labs, 2001.

[4] Gartner Group. Total cost of storage ownership — a
user-oriented approach, February, 2000. Research note,
Gartner Group.

[5] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: analysis, module and applications.
International Symposium on Fault-Tolerant Compter Systems
(Pasadena, CA, 27–30 June 1995), pages 381–390. IEEE
Computer Society Press, 1995.

[6] IBM Corp. Autonomic computing: IBM’s perspective on the
state of information technology, October 2001.
http://www.research.ibm.com/autonomic/
manifesto/.

[7] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50. IEEE, January
2003.

[8] T. M. Madhyastha and D. A. Reed. Input/output access
pattern classification using hidden Markov models.
Workshop on Input/Output in Parallel and Distributed
Systems (San Jose, CA), pages 57–67. ACM Press,
December 1997.

[9] N. Megiddo and D. S. Modha. ARC: A self-tuning, low
overhead replacement cache. Conference on File and Storage
Technologies (San Francisco, CA, 31 March–2 April 2003).
USENIX Association, 2003.

[10] New England Complex Systems Institute.
http://www.necsi.org/.

[11] I. Peterson. Fatal defect: chasing killer computer bugs.
Vintage Books, Inc., 1996.

[12] B. Salmon, E. Thereska, C. A. N. Soules, and G. R. Ganger.
A two-tiered software architecture for automated tuning of
disk layouts. Workshop on Algorithms and Architectures for
Self-Managing Systems (San Diego, CA, 11 June 2003).
ACM, 2003.

[13] J. Wilkes. Traveling to Rome: QoS specifications for
automated storage system management. International
Workshop on Quality of Service (Berlin, Germany, 6–8 June
2001). Published as Lecture Notes in Computer Science,
2092:75–91. Springer-Verlag, 2001.

