
Modeling the Relative Fitness of Storage

Michael P. Mesnier,∗ Matthew Wachs, Raja R. Sambasivan,
Alice X. Zheng, Gregory R. Ganger

Carnegie Mellon University
Pittsburgh, PA

ABSTRACT
Relative fitness is a new black-box approach to modeling the
performance of storage devices. In contrast with an abso-
lute model that predicts the performance of a workload on
a given storage device, a relative fitness model predicts per-
formance differences between a pair of devices. There are
two primary advantages to this approach. First, because
a relative fitness model is constructed for a device pair, the
application-device feedback of a closed workload can be cap-
tured (e.g., how the I/O arrival rate changes as the workload
moves from device A to device B). Second, a relative fitness
model allows performance and resource utilization to be used
in place of workload characteristics. This is beneficial when
workload characteristics are difficult to obtain or concisely
express (e.g., rather than describe the spatio-temporal char-
acteristics of a workload, one could use the observed cache
behavior of device A to help predict the performance of B).

This paper describes the steps necessary to build a relative
fitness model, with an approach that is general enough to be
used with any black-box modeling technique. We compare
relative fitness models and absolute models across a vari-
ety of workloads and storage devices. On average, relative
fitness models predict bandwidth and throughput within 10–
20% and can reduce prediction error by as much as a factor
of two when compared to absolute models.

Categories and Subject Descriptors: I.6.5 [Model De-
velopment]: Modeling methodologies, D.4.8 [Performance]:
Modeling and prediction, D.4.2 [Storage Management].

General Terms: Measurement, Performance.

Keywords: black-box, storage, modeling, CART.

1. INTRODUCTION

Relative fitness: the fitness of a genotype com-
pared with another in the same gene system [8].

∗ Intel and Carnegie Mellon University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006 ...$5.00.

fitness
B’s Relative

Step 1:

A’s Performance

A’s Resource utilization

A’s Workload characteristics

Fitness Test
results

Relative fitness

Device A

Device B

model

algorithm
Model learning Relative fitness

model

Model differences between devices A and B

Step 2: Use model to predict the performance of B

Figure 1: Relative fitness models predict changes
in performance between two devices; an I/O “fit-
ness test” is used to build a model of the perfor-
mance differences. For new workloads, one inputs
into the model the workload characteristics, perfor-
mance, and resource utilization of a workload on
device A to predict the relative fitness of device B.

Storage administration continues to be overly complex
and costly. One challenging aspect of administering stor-
age, particularly in large infrastructures, is deciding which
application data sets to store on which devices. Among
other things, this decision involves balancing loads, match-
ing workload characteristics to device strengths, and ensur-
ing that performance goals are satisfied. Storage adminis-
tration currently relies on experts who use rules-of-thumb
to make educated, but ad hoc, decisions. With a mechanism
for predicting the performance of any given workload, one
could begin to automate this process [1, 3, 5, 11].

Previous research on such prediction and automation fo-
cuses on per-device models that take as input workload
characteristics (e.g., request arrival rate and read/write ra-
tio) and output a performance prediction (e.g., through-
put). Many envision these device models being constructed
automatically in a black-box manner. That is, given pre-
deployment measurements on a device, one can train a model
to predict the performance of the device as a function of a
workload’s characteristics [2, 14, 27]. Such black-box mod-
els are absolute in the sense that they are trained to predict
performance from assumedly static workload characteristics.

Though it sounds simple, the above approach has proven
quite difficult to realize in practice, for several reasons. First,
workload characterization has been an open problem for
decades [9, 16, 27]; describing a complex workload in terms
of concise characteristics, without losing necessary informa-
tion, remains a challenge. Second, and more fundamentally,

an absolute model does not capture the connection between
a workload and the storage device on which it executes.
Generally speaking, application performance may depend
on storage performance. If storage performance increases or
decreases, the I/O rate of an application could also change.
If such feedback is not accounted for, a model’s applicabil-
ity will be limited to environments where workloads are open
(not affected by storage performance) or to devices that are
similar enough that a workload’s feedback will not change
significantly when moving between them.

This paper proposes a new black-box approach, called rel-
ative fitness modeling, which removes the above constraints.
In contrast with an absolute model, a relative fitness model
predicts how a workload will change if moved from one de-
vice to another by comparing the devices’ performance over
a large number of workloads. This will naturally capture the
effects of workload-device feedback. Further, since relative
fitness models are constructed for pairs of devices, rather
than one per device, they can take as input performance
and resource utilization in addition to basic workload char-
acteristics. In other words, the performance and resource
utilization of one device can be used in predicting the per-
formance of another. Often, such observations yield at least
as much information as workload characteristics, but are
much easier to obtain and describe. For example, although
one may not know how to concisely describe access locality,
a workload that experiences a high cache hit rate on one
device may experience a high hit rate on another.

Relative fitness models can be used to solve storage ad-
ministration problems in a similar way to absolute models.
One would train models before deploying a new storage de-
vice. One would measure the characteristics, including the
performance and resource utilization, of a workload on the
device to which it was originally assigned. Then, one would
use the model to predict the consequences of moving the
workload to a different device.

This paper describes the mechanics of relative fitness mod-
els and evaluates their effectiveness. In contrast with per-
device absolute models, we construct two relative fitness
models for each pair of devices—one for translating mea-
surements on the first to predictions on the second and one
for going in the other direction. Our models capture the dif-
ferences between devices and learn to predict performance
scaling factors. For example, a relative fitness model from
device j to device i might predict that device i is 30% faster
than device j for sequential workloads.

We find that, for a given workload, the performance of
one device is often the best predictor of the performance of
another. For the workloads evaluated in the paper (synthetic
I/O, Postmark, and TPC-C), prediction errors are reduced
by as much as a factor of two when compared to an absolute
model that only uses workload characteristics. For example,
the prediction error for TPC-C is reduced from 50% to 20%.
Overall, the error of our bandwidth and throughput models
is usually within 10–20%.

The remainder of this paper is organized as follows. Sec-
tion 2 describes black-box modeling in greater detail and
motivates the case for relative fitness modeling. Section 3
describes the mechanics of relative fitness modeling. Sec-
tion 4 constructs both absolute and relative fitness models
and compares their prediction accuracy across a variety of
workloads and storage devices.

2. BACKGROUND
Storage systems can be complex to manage. Manage-

ment consists, among many other tasks, of device (aka vol-
ume or LUN) sizing, selecting a RAID level for each device,
and mapping application workloads to the devices. Sadly,
the state-of-the-art in storage management requires much
of this to be done manually. Often, storage administrators
use rules-of-thumb to determine the appropriate sizes, RAID
levels, and workload-device mappings. At best, this results
in an overworked administrator. However, it can also lead
to suboptimal performance and wasted resources.

Automating management [1, 3, 11] is one way to offer the
administrator some relief and help reduce the total cost of
ownership in the data center. In particular, one could auto-
mate the mapping of workloads to storage devices. However,
doing so efficiently requires accurate predictions as to how a
workload will perform on a given storage device. Of course,
not all devices will have the same performance characteris-
tics. The challenge is predicting which workloads run best
on which devices. A model of a storage device can be used
to make these predictions.

2.1 Conventional modeling
Conventionally, a storage device model accepts as input

the characteristics of an application workload and outputs
an expected (predicted) performance, typically one of band-
width, throughput, or latency [20]. For example, a disk drive
model may predict an average throughput of 166 IO/sec for
workloads with random I/O access patterns.

A variety of models have been researched, including ana-
lytical models [17, 22, 24], statistical or probabilistic mod-
els [14], models based on machine learning [27], and table-
based models [2]. More generally, models are either white-
box or black-box. Whereas white-box models use knowledge
of the internals of a storage device (e.g., drives, controllers,
caches), black-box models do not. Given the challenges in
modeling modern-day (complex) storage devices [25], black-
box approaches are attractive [2, 14, 27, 19].

Perhaps the simplest of all black-box models is a numeric
average [20]. For example, the fuel efficiency of a car (av-
erage miles per gallon) and a soccer player’s performance
(average goals per game) are both black-box models. Of
course, such models can be easily extended with workload
characteristics (e.g., highway or city, home game or away),
and an average can be maintained for each type of workload.

Table 1 shows a black-box (table-based) model of a stor-
age device, and Figure 2 shows the same information mod-
eled with a regression tree. Both models are indexed using
only one workload characteristic (the request size) and must
be trained with sample workloads in order to learn the per-
formance averages for each workload type. Some form of
interpolation is required when an exact match is not found
in the model. For example, to predict the performance of
a 3 KB request size, using Table 1, one might average the
2 KB and 4 KB performance and predict 37 MB/sec.

Of course, storage researchers have explored a number of
workload characteristics in addition to request size, includ-
ing the read/write ratio, multi-programming level (queue
depth), I/O inter-arrival delay, and spatial locality. More
complex characteristics such as the burstiness [28] or spatio-
temporal correlation [26] have also been investigated.

More formally, a model of a storage device i (white-box
or black-box) can be expressed as a function Fi. During

Request size Bandwidth
1 KB 15 MB/sec
2 KB 27 MB/sec
4 KB 47 MB/sec
8 KB 66 MB/sec

Table 1: A table-based model that records the per-
formance of a disk drive for sequentially-read data.

Request size Request size
<= 4 KB <= 1 KB

yesno

<= 2 KB

MB/sec MB/sec MB/sec
66

MB/sec
47 27 15

Request size

Figure 2: A regression tree that learns the perfor-
mance of a disk drive for sequentially-read data.

training, the inputs are the workload characteristics WCi

of an application running on device i and the output is a
performance metric Pi (bandwidth, throughput, or latency):

Pi = Fi(WCi). (1)

However, in practice (during model testing), one does not
possess WCi, as this would require running the workload
on device i in order to obtain them. Because running the
workload to obtain WCi obviates the need for predicting
the performance of device i, one instead uses the character-
istics WCj obtained from some other storage device j or,
equivalently, from an I/O trace of device j.

We refer to Equation 1 as an absolute model, to signify
that the inputs into the model are absolute, and not rel-
ative to some other device. Although the model expects
WCi as input, WCj is used instead (a potential “type mis-
match”). That is, the model assumes that the characteristics
of a workload will not change across storage devices. More
precisely, the absolute model assumes that WCi = WCj .
However, as we will show in the evaluation, this is often not
a safe assumption.

2.2 The challenges with absolute models
The primary challenges in building an absolute model all

relate to workload characterization. First, one must dis-
cover the performance-affecting characteristics of a work-
load. This can be challenging given the heterogeneity of
storage devices [15]. For example, a storage array with a
large cache may be less sensitive to the spatial access pat-
tern than an array with little cache, so models of the de-
vices would likely focus on different workload characteristics
when predicting performance. Therefore, to make predic-
tions across a wide range of devices, the superset of work-
load characteristics must be maintained for each workload.
This can be challenging, especially when obtaining the char-
acteristics involves significant computation or memory.

A second challenge relates to the trade-off between ex-

pressiveness and conciseness. Because most models expect
numbers as input, it can be challenging to express complex
access patterns with just a few numbers. In effect, work-
load characterization compresses the I/O stream to just a
few distinguishing features. The challenge is to compress
the stream without losing too much information.

Finally, while the assumption WCi = WCj is safe for
open workloads, where the workload characteristics are in-
dependent of the I/O service time, it is not safe for closed
workloads. The most obvious change for a closed workload
is the I/O arrival rate: if a storage device completes the
I/O faster, then an application is likely to issue I/O faster.
Other characteristics can change too, such as the average
request size, I/O randomness, read/write ratio, and queue
depth. Such effects occur when file systems, page caches and
other middleware sit between an application and the stor-
age device. Although the application may issue the same
I/O, the characteristics of the I/O as seen by the storage
device could change due to write re-ordering, aggregation
and coalescing, caching, pre-fetching and other interactions
between an operating system and storage device. For ex-
ample, a slower device can result in a workload with larger
inter-arrival times and larger write requests (due to request
coalescing) when compared to the same workload running
on a faster device.

To illustrate how this could be problematic with an abso-
lute model, consider the case where the average request size
of a workload differs between two devices. Suppose the aver-
age request sizes for a given workload on devices j and i are
1 KB and 2 KB, respectively. If the workload characteristics
measured on device j are input into the model for device i,
the predicted performance (referring back to Table 1 or Fig-
ure 2) is 15 MB/sec instead of 27 MB/sec, which is the actual
performance for a 2 KB request on device i. This hypotheti-
cal example illustrates the risk of indexing into a model with
inaccurate workload characteristics. Given that most appli-
cations operate, at least in part, in a closed fashion [10],
accounting for such changes in workload characteristics is
essential when predicting their performance.

Collectively, these challenges motivate the work presented
in this paper. Rather than present new workload character-
istics that are expressive yet concise, and “absolute” across
storage devices, we choose to user fewer in our models. In
their place, we use performance and resource utilization.
That is, we use the performance and utilization of device
j to predict the performance of device i. Of course, doing
so requires one to abandon the notion of an absolute model,
as performance and resource utilization are device-specific.

3. RELATIVE FITNESS MODELS
The goal of relative fitness modeling is to use the per-

formance and resource utilization of one device, in addition
to workload characteristics, to predict the performance of
another. The insight behind such an approach is best ob-
tained through analogy: when predicting your performance
in a college course (a useful prediction during enrollment),
it is helpful to know the grade received by a peer and the
number of hours he worked each week to achieve that grade
(his resource utilization). Naturally, our own performance
for certain tasks is a complex function of the characteristics
of the task and our ability. However, we have learned to
make predictions relative to the experiences of others with
similar abilities, because it is easier.

Applying the analogy, two complex storage devices may
behave similarly enough to be reasonable predictors for each
other. For example, they may have similar RAID levels,
caching algorithms, or hardware platforms. As such, their
performance may be related. Even dissimilar devices may
be related in some ways (e.g., for a given workload type, one
usually performs well and the other poorly). The objective
of relative fitness modeling is to learn such relationships.

Relative fitness models learn to predict scaling factors,
or performance ratios, rather than performance itself. For
example, device i may be 30% faster than device j for ran-
dom reads (regardless of request size or other characteris-
tics), 40% faster for sequential writes, and the same for all
other workloads. Then, only three relative fitness values are
needed to describe the performance of device i relative to
device j: 1.3, 1.4, and 1.0. To predict the performance of
device i, one simply multiplies the predicted scaling factor
for device i by the performance of device j.

Starting with an absolute model, there are three addi-
tional steps to creating a relative fitness model. First, one
must explicitly model the changes in workload characteris-
tics between devices i and j. Second, in addition to workload
characteristics, one trains a model of device i using the per-
formance and resource utilization of device j. Third, rather
than predict performance values, one trains a model to pre-
dict the performance ratio of device i to device j.

3.1 Deriving a relative fitness model
Relative fitness begins with an absolute model (Eq. 1).

Recall that a workload is running on device j, we want to
predict the performance of device i, and WCj can be mea-
sured on device j. The first objective of relative fitness is
to capture the changes in workload characteristics from de-
vice j to i, that is, to predict WCi given WCj . Such change
is dependent on the devices, so we define a function Gj→i

that predicts the workload characteristics of device i given j:

WCi = Gj→i(WCj).

We can now apply G in the context of an absolute model Fi:

Pi = Fi(Gj→i(WCj)).

However, rather than learn two functions, the composition
of F and G can be expressed as a single composite function
RMj→i which we call a relative model:

Pi = RMj→i(WCj). (2)

With each model now involving an origin j and target i,
we can use the performance of device j (Perfj) and its re-
source utilization (Utilj) to help predict the performance
of device i. Perfj is a vector of performance metrics such
as bandwidth, throughput and latency. Utilj is a vector of
values such as the device’s cache utilization, the hit/miss
ratio, its network bandwidth, and its CPU utilization:

Pi = RMj→i(WCj ,Perfj ,Utilj). (3)

In other words, one can now describe a workload’s behav-
ior relative to some other device. Note that in conventional
modeling, only one absolute model is trained for each device,
thereby precluding the use of performance and resource uti-
lization information, which are of course device-specific.

Next, rather than predict raw performance values, one can
predict performance ratios. The expectation is that ratios

are better predictors for new workloads, as they can natu-
rally interpolate between known training samples. We call
such a model a relative fitness model:

Pi

Pj

= RFj→i(WCj ,Perfj ,Utilj). (4)

To use the relative fitness model, one solves for Pi:

Pi = RFj→i(WCj ,Perfj , Utilj) × Pj .

Models based on Equations 1 through 4 are evaluated in
Section 4. The relative model that only uses workload char-
acteristics (Eq. 2) is included to separate the benefits of
modeling changes in the workload characteristics from that
of using performance to make predictions (Eqs. 3 and 4).

Discussion
In summary, whereas conventional black-box modeling con-
structs one absolute model per device and assumes that the
workload characteristics are unchanging across devices, the
relative approaches construct two models for each pair of
devices (A to B and B to A) and implicitly model the
changing workloads. In addition, the relative approaches use
performance and resource utilization when making predic-
tions, thereby relaxing the dependency on expressive work-
load characteristics. Of course, the cost of the relative ap-
proach is the additional model construction (O(n2) versus
O(n), where n is the number of storage devices). However,
in our evaluation, model construction takes at most a few
seconds. Moreover, models can be built and maintained by
each storage device. That is, each device can construct O(n)
models that predict its fitness relative to all other devices.
As such, the computational resources for maintaining the
models can be made to scale with the number of devices.
Also, in large-scale environments, certain collections of de-
vices will be identical and can share models.

3.2 Training a relative fitness model
To train a model of a storage device, one needs training

data, or samples that show how the performance of a stor-
age device varies with workload characteristics. Samples can
be obtained from applications, benchmarks, synthetic work-
load generators, or replayed I/O traces. The challenge, of
course, is achieving adequate coverage. One must obtain
samples that are representative of the workloads one ex-
pects to make predictions for, but determining this a priori
can be difficult. Our approach is to use an I/O fitness test.
A fitness test comprises multiple workload samples from a
synthetic workload generator. The hope is that by explor-
ing a wide range of workloads, one can train models that
are general enough to make predictions for new workloads.
More specifically, each workload sample created by the fit-
ness test is described with three vectors: workload charac-
teristics (WCi), performance (Perfi), and resource utiliza-
tion (Utili). In the case of an absolute model, the goal is
to learn relationships between WCi and Pi (for some Pi in
Perfi). Table 2(a) shows the training data for an absolute
model. All but the last column are predictor variables. The
last column is the predicted variable.

Relative models and relative fitness models, however, re-
quire workload samples from two devices. The goal is to
learn relationships between the predictor variables (WCj ,
Perfj , and Utilj) and the predicted variable Pi. Tables 2(b)

Sample Predictor variables Predicted var.
1 WCi,1 Pi,1

2 WCi,2 Pi,2

n WCi,n Pi,n

(a) Absolute model

Sample Predictor variables Predicted var.
1 WCj,1 Perf j,1 Utilj,1 Pi,1

2 WCj,2 Perf j,2 Utilj,2 Pi,2

n WCj,n Perf j,n Utilj,n Pi,n

(b) Relative model

Sample Predictor variables Predicted var.
1 WCj,1 Perf j,1 Utilj,1 Pi,1/Pj,1

2 WCj,2 Perf j,2 Utilj,2 Pi,2/Pj,2

n WCj,n Perf j,n Utilj,n Pi,n/Pj,n

(c) Relative fitness model

Table 2: Training data formats for the various mod-
els. The last column in each table is the variable
that we train a model to predict. All other columns
are predictor variables.

Request size Queue depth RFj→i

1 KB 1 .51
2 KB 2 .52
4 KB 1 .75
8 KB 2 .76

Table 3: An example of training samples that might
be used to train a CART model.

and 2(c) show the format of the training data for the relative
models and relative fitness models, respectively.

Given training data, one can construct a black-box model
using a number of learning algorithms. The problem falls
under the general scope of supervised learning, where one has
access to a set of predictor variables, as well as the desired
response (the predicted variable) [12]. It is as though an
oracle (or supervisor), in this case the fitness test, gives us
the true output value for each sample, and the algorithm
needs only learn the mapping between input and output.

The domain of supervised learning problems can be fur-
ther sub-divided into classification and regression. Classi-
fication deals with discrete-valued response variables. Re-
gression deals with real-valued response variables (e.g., the
performance or relative fitness values we train to predict).
There are many regression models in the literature [12]. We
focus on classification and regression tree (CART) models [6]
for their simplicity, flexibility, and interpretability.

3.3 Reviewing CART
CART models predict a desired value based on predictor

variables. In our case, the predictors are workload char-
acteristics, performance, and resource utilization; and the
predicted variable is a relative fitness value.

0.51
0.75

no yes

Queue depth
<= 1

0.76
0.52

(a)

0.75 0.52

Request size
<= 2 KB

0.76 0.51

(b)

Queue depth Queue depth

0.510.76 0.75 0.52

<= 2 KB

<= 1 <= 1

Request size

(c)

Figure 3: An example of the steps taken by CART
in building a regression tree from the samples in
Table 3. CART determines which split is “best” by
inspecting the similarity of the samples in the leaf
nodes. In this example, option b (request size) is a
better first split than option a (queue depth). For
the next split, CART then selects the queue depth.

Trees are built top-down, recursively, beginning with a
root node. At each step in the recursion, the CART model-
building algorithm determines which predictor variable in
the training data best splits the current node into leaf nodes.
The “best” split is that which minimizes the difference (e.g.,
root mean squared error, or RMS) among the samples in the
leaf nodes, where the error for each sample is the difference
between it and the average of all samples in the leaf node.
In other words, a good split produces leaf nodes with sam-
ples that contain similar values. For example, consider the
four training samples in Table 3. There are two predictor
variables (request size and queue depth) and one predicted
variable (the relative fitness value for device i when com-
pared to device j). Splitting on the queue depth results in
the tree shown in Figure 3(a). However, splitting on the
request size, as shown in Figure 3(b), yields lower RMS er-
ror in the leaf nodes (i.e., the values in each leaf are more
homogeneous). Therefore, the request size is the best first
split. The CART algorithm then continues recursively on
each subset. The same predictor variable may appear at
different levels in the tree, as it may be best to split multi-
ple times on that variable. In this case, the queue depth is
the next best split, resulting in the tree shown in Figure 3(c).

Intuitively, the CART algorithm determines which of the
predictor variables have the most “information” with re-
spect to the predicted variable. The most relevant questions
(splits) are asked first, and subsequent splits are used to re-
fine the search. Trees are grown until no further splits are
possible, thereby creating a maximal tree. A maximal tree is
then pruned to eliminate over-fitting, and multiple pruning
depths are explored. The optimal pruning depth for each
branch is determined through cross-validation [18], in which
a small amount of training data is reserved and used to test
the accuracy of the pruned trees.

Finally, to make a prediction, one drops a new sample
down a pruned tree (the CART model), following a path
from the root node to a leaf node. As each node is visited,
either the left or right branch is taken, depending on the
splitting criterion and the values of the predictor variables
for the sample. Leaf nodes contain the predicted variable
that will be returned (the average of all samples in the leaf).

4. EVALUATION
Four model types are trained and tested: absolute models

(Eq. 1), relative models (Eq. 2), relative models with per-
formance (Eq. 3), and relative fitness models (Eq. 4). These
models help support each of our research hypotheses:

Hypothesis 1 Workload characteristics can change across
storage devices (WCi 6= WCj) and reduce the accu-
racy of an absolute model.

Hypothesis 2 A relative model (Eq. 2) can reduce inaccu-
racies that result from changing characteristics.

Hypothesis 3 Performance and resource utilization can im-
prove prediction accuracy (Eq. 3).

Hypothesis 4 Performance ratios (Eq. 4) can provide bet-
ter accuracy than raw performance values (Eq. 3).

This evaluation is organized as follows. Section 4.1 de-
scribes the experimental setup, 4.2 summarizes the charac-
teristics of the I/O fitness test used to train the models, 4.3
describes how to interpret the models and use them to make
predictions, and 4.4 evaluates the accuracy of each model.

4.1 Setup
Experiments are run on an IBM x345 server (dual 2.66

GHz Xeon, 1.5 GB RAM, GbE, Linux 2.6.12) attached to
three Internet SCSI (iSCSI) [21] storage arrays. The arrays
have different hardware platforms, software stacks, and are
configured with different RAID levels.1 More specifically,

VendorA is a 14-disk RAID-50 array with 1 GB of cache.
(400GB 7200 RPM Hitachi Deskstar SATA)

VendorB is a 6-disk RAID-0 array with 512 MB of cache.
(250GB 7200 RPM Seagate Barracuda SATA)

VendorC is an 8-disk RAID-10 array with 512 MB of cache.
(250GB 7200 RPM Seagate Barracuda SATA)

The server attaches to each array using an iSCSI device
driver [13] that contains counters (below the file system
and page cache) for characterizing workloads and measuring
their performance. Three workloads are used: a synthetic
workload generator [13], TPC-C [23], and Postmark [4]. The
workload generator serves as the fitness test used to both
train and test the models. The remaining workloads are
only used to test the models. All workloads run in an 8 GB
Linux ext2 file system created on each array.

Obtaining training data
The fitness test compares the performance of the storage ar-
rays across a wide range of workloads (samples created by
the workload generator). For each sample, a file (approxi-
mately 8 GB in size) is created in an 8 GB partition of each
array. I/O is then performed against this file with values
chosen for the following parameters: read/write ratio, read
request size, write request size, number of outstanding re-
quests, read randomness, and write randomness. More pre-
cisely, the read and write request sizes take on a value from
1 KB to 256 KB (powers of two), the outstanding requests

1RAID level 0 is striping, 1 is mirroring, 5 is striping with
parity, 10 is striping over mirrored pairs (4 in this case), and
50 is striping over RAID-5 parity arrays (2 in this case).

a value from 1 to 64 (powers of two), and the write percent
and randomness one of 0%, 25%, 50%, 75% and 100%. For
randomness, a value of x% means that x% of the I/Os are
uniformly random, the rest sequential. Therefore, there are
over 70,000 possible workloads (9 × 9 × 7 × 5 × 5 × 5).

A total of 3,000 samples are generated against each array.
Values for each of the above parameters are randomly se-
lected, and the random number generator is seeded in order
to create the same set of samples across the arrays. I/O is
performed until all caches have been warmed, after which
workload characteristics and performance are obtained.

The measured workload characteristics of each sample
(WC) are similar to the parameters of the workload gen-
erator. They include the write percent, the write and read
request sizes, the write and read randomness (average seek
distance, in blocks, per I/O), and the queue depth (average
number of outstanding I/Os). The performance of each sam-
ple (Perf) is the average bandwidth (MB/sec), throughput
(IO/sec), and latency (msec). Resource utilization (Util)
is not used in this evaluation, as this requires modifying
storage device software to which we did not have access.

Training the models
One absolute model is trained for each array and perfor-
mance metric, resulting in 9 absolute models. That is, one
model is trained to predict the bandwidth of Vendor A, one
is trained for throughput, and one is trained for latency;
similarly for B and C. These models establish a baseline
for measuring the improvements of the relative models and
relative fitness models.

Two relative models that only use workload characteris-
tics (Eq. 2) are trained for each pair of arrays (Vendor A to
Vendor B, A to C, B to A, B to C, C to A, and C to B)
for each performance metric, resulting in 18 relative models.
That is, one model is trained to predict the bandwidth of
Vendor A given the characteristics of a workload on Vendor
B, one for throughput, and so on. Similarly, 18 relative mod-
els (Eq. 3) and 18 relative fitness models (Eq. 4) are trained
with performance in addition to workload characteristics.

All models are trained using 4-fold cross validation [18]:
the fitness data is divided into 4 folds (each containing 25%
of the data, or 750 samples). Three of the folds are used to
train a model (2,250 samples) and one is used for testing.
Four such models are created, each one using a different fold
for testing, and the prediction error for each fold is averaged
to produce an overall error for the model. The error metric
is discussed in Section 4.4 (Modeling accuracy).

4.2 Fitness test results
For all 3,000 samples, Figure 4 plots the cumulative dis-

tribution function (CDF) for bandwidth, throughput and
latency. Vendor A is the fastest array with an average band-
width of 25 MB/sec, an average throughput of 624 IO/sec
and an average latency of 37 msec. Vendor B is the second
fastest (17 MB/sec, 349 IO/sec, and 45 msec). Vendor C is
third (14 MB/sec, 341 IO/sec, and 84 msec).

Although Vendor A is the fastest, on average, it is not
necessarily the fastest for all sample workloads in the fitness
test. To illustrate, Figure 5 contains probability distribution
functions (PDF) of the relative fitness values (for through-
put) for all samples. Recall that the relative fitness value is
a performance ratio (scaling factor) between two devices for
a given sample. As can be seen in the PDF, not all samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 70 60 50 40 30 20 10

Vendor A
Vendor B
Vendor C

(a) Bandwidth (MB/sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1400 1000 600 200

Vendor A
Vendor B
Vendor C

(b) Throughput (IO/sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 250 200 150 100 50

Vendor A
Vendor B
Vendor C

(c) Latency (msec)

Figure 4: Performance CDFs for bandwidth, throughput and latency. For the bandwidth and throughput
CDFs, “further to the right” is faster. For latency, “further to the left” is faster.

0 0.5 1 1.5 2
0

20
40
60
80

100

PSfrag replacements

%
o
f
w

o
rk

lo
a
d
s

Relative fitness

Device A → A

Device A → B
Device A → C
Device B → A
Device B → B
Device B → C
Device C → A
Device C → B
Device C → C 0 0.5 1 1.5 2

0

10

20

30

PSfrag replacements

% of workloads
Relative fitness

Device A → A

Device A → B
Device A → C
Device B → A
Device B → B
Device B → C
Device C → A
Device C → B
Device C → C 0 0.5 1 1.5 2

0

10

20

30

PSfrag replacements

% of workloads
Relative fitness

Device A → A
Device A → B

Device A → C
Device B → A
Device B → B
Device B → C
Device C → A
Device C → B
Device C → C

0 1 2 3 4
0

10

20

30

40

PSfrag replacements

%
o
f
w

o
rk

lo
a
d
s

Relative fitness
Device A → A
Device A → B
Device A → C

Device B → A

Device B → B
Device B → C
Device C → A
Device C → B
Device C → C 0 1 2 3 4

0
20
40
60
80

100

PSfrag replacements

% of workloads
Relative fitness

Device A → A
Device A → B
Device A → C
Device B → A Device B → B

Device B → C
Device C → A
Device C → B
Device C → C 0 1 2 3 4

0

10

20

30

40

PSfrag replacements

% of workloads
Relative fitness

Device A → A
Device A → B
Device A → C
Device B → A
Device B → B

Device B → C

Device C → A
Device C → B
Device C → C

0 1 2 3 4 5
0

10

20

PSfrag replacements

%
o
f
w

o
rk

lo
a
d
s

Relative fitness

Device A → A
Device A → B
Device A → C
Device B → A
Device B → B
Device B → C

Device C → A

Device C → B
Device C → C

0 1 2 3 4 5
0

10

20

PSfrag replacements

% of workloads

Relative fitness

Device A → A
Device A → B
Device A → C
Device B → A
Device B → B
Device B → C
Device C → A

Device C → B

Device C → C
0 1 2 3 4 5

0
20
40
60
80

100

PSfrag replacements

% of workloads

Relative fitness

Device A → A
Device A → B
Device A → C
Device B → A
Device B → B
Device B → C
Device C → A
Device C → B

Device C → C

Figure 5: Probability distribution functions of the relative fitness values (throughput) for all device pairs.

share the same relative fitness value. For example, Figure 5
(see “Device A → B”) shows that for some of the samples
Vendor B’s throughput is approximately that of Vendor A.
However, there are samples where Vendor B does better than
A (relative fitness values greater than 1) and cases where it
does worse (values less than 1). In short, the relative fitness
of a device can vary with the workload characteristics.

As another example, Figure 6 illustrates how the sequen-
tial write bandwidth for each array varies for different re-
quest sizes and queue depths. From the 3,000 samples,
we show only those with 100% writes and 0% randomness.
There are 120 such samples, sorted by the performance of
Vendor A. The graph illustrates the similar performance of
the arrays. In particular, the prominent discontinuity in the
graph is shared by all arrays (a drop in performance when
there are only one or two outstanding requests). Also note
how Vendor B is faster than Vendor C to the left of the dis-
continuity, but slower to the right. Such piecewise functions
are ideally suited for algorithms such as CART.

Table 4 contains averages for the workload characteristics
of each sample. Note the variance across devices (WCi 6=
WCj), most notably the average write randomness which
varies by as much as 38%. In particular, Vendor A expe-
riences the most randomness (an average seek distance of
321 MB per write), Vendor B the second most (250 MB)
and Vendor C third (233 MB). Although masked by the av-
erages in Table 4, the request sizes and queue depths also
vary across storage devices for some of the sample workloads.
The extent to which such variance affects the performance
predictions is explored further on in this evaluation.

In summary, the fitness test supports many of our hy-
potheses. In particular, we see that the relative fitness of one
device to another will depend on the characteristics of the
workload, that devices with different hardware and software
configurations can still exhibit similar performance behav-
ior, and that the characteristics of a workload can change as
it moves across devices.

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

PSfrag replacements

Workload sample

B
a
n
d
w

id
th

in
M

B
/
s

Vendor A

Vendor B

Vendor C

Figure 6: Device similarity. The performance of
each array changes similarly, indicating that the per-
formance of one array is a good predictor of another.

Vendor Maximum
WC A B C Difference

Write percent 40 39 38 5.2%
Write size (KB) 61 61 61 0%
Read size (KB) 40 41 41 2.5%
Write seek (MB) 321 250 233 38%
Read seek (MB) 710 711 711 0%

Queue depth 23 22 21 9.5%

Table 4: Fitness test workload characteristics.

4.3 Interpreting the models
Figure 7 illustrates four of the bandwidth models, one of

each modeling type. The models are trained to predict the
bandwidth of Vendor C using the workload characteristics
of Vendor A (Eq. 1), the bandwidth of Vendor C using the
workload characteristics of Vendor A (Eq. 2), and the band-
width of Vendor C using the workload characteristics and
performance of Vendor A (Eqs. 3 and 4). For readability,
each tree is pruned to a depth of 4, resulting in at most 8
leaves (prediction rules).

The CART models are human readable and very easy to
interpret. In effect, they represent a summary of the fitness
test results. Recall that CART builds trees top-down, so
nodes near the top of the tree have more information with
respect to the predicted variable when compared to those
near the bottom.

A couple of observations can be made from the structure
of the trees. First, the absolute model Fi (Figure 7a) and
relative model RMj,i (7b) are very similar; both find the av-
erage read seek distance to have the strongest relationship
with the bandwidth of Vendor C and use the request size
and write percent to further refine the search. The slight
differences in the trees are due to differences in the fitness
test workload characteristics between Vendors A and C (sup-
porting hypothesis 1). Recall that even though the fitness
test samples used to create the models are identical, the
measured workload characteristics for each sample can vary

across devices. These differences can result in different splits
in the trees during model training. The second observation
is that the relative model trained with performance (7c) and
the relative fitness model (7d) both place performance at the
top of the tree (supporting hypothesis 2). Namely, CART
discovers that the bandwidth of Vendor A is the best pre-
dictor of the bandwidth of Vendor C.

As a hypothetical example of how to use the trees to
make a prediction, suppose we have a workload running on
the Vendor A array and want to predict its performance on
Vendor C. Also suppose that the workload, as measured by
Vendor A, has an average read seek distance of 2048 blocks
(1 MB), a read and write size of 64 KB, a write percent-
age < .5%, a bandwidth of 83 MB/sec, and a throughput of
1328 IO/sec. Based on these values, the absolute model for
Vendor C will predict 75.0 MB/sec (see the highlighted path
in Figure 7a). The relative model from Vendor A to C (Fig-
ure 7b) also predicts about 75 MB/sec. The relative model
trained with performance (Figure 7c), however, predicts 65.0
MB/sec. Finally, the relative fitness model (Figure 7d) pre-
dicts a relative fitness value of 0.63; the predicted bandwidth
of Vendor C is therefore 63% of Vendor A, or 51 MB/sec.
This hypothetical example illustrates that the models can
make different predictions, even with the same input.

4.4 Modeling accuracy
The models are tested using three workloads: the fitness

test, TPC-C, and Postmark. The error for each model is the
average relative error of its predictions, expressed as a per-
centage. For example, if the actual performance of Vendor
C, using the previous example, is 45 MB/sec and the predic-

tion is 51 MB/sec, then the relative error is |45−51|
45

×100, or
13.3%. Previous modeling approaches have reported predic-
tion errors in the range of 15% to 30% [2, 27]. The goal of
this evaluation is to first train an absolute model that pre-
dicts in the 15% to 30% range when the workload is charac-
terized on the same device for which the prediction is being
made (i.e., WCi = WCj). That is, we want a fair rep-
resentative of an absolute model. Then, we will show that
by characterizing the workload on another storage device
(WCi 6= WCj), prediction error increases due to changing
workload characteristics. Next, we will show that adding
performance information to the training data improves per-
formance. Finally, we will show that predicting performance
ratios can be more accurate than raw performance values.

Fitness test predictions
The fitness test prediction error is that from cross-validation.
With 4-fold cross-validation, four different trees are built,
each holding out and testing against a different fold that
contains 25% of the training samples. That is, each tree
is built with 75% of the fitness samples and tested against
25% of the samples. The error is the average prediction error
across all folds (i.e., an average over 3,000 predictions).

As a baseline, Table 5 contains the average relative er-
ror of the bandwidth, throughput, and latency predictions
for the absolute model. The table is organized pairwise.
Workloads characteristics (WCj) are obtained from one ar-
ray and predictions (Pi) are made for another. For example,
the average relative error of the bandwidth predictions when
characterizing on Vendor A and predicting for Vendor C is
22% (the top right cell in Table 5).

The first observation is that the most accurate predictions

read seek
< 339934

write%
< .5

write size
< 94 KB

read seek
< 131116

write size
< 41 KB

read size
< 73 KB

write%
< 74

75.0 32.7 12.0 21.4 15.2 23.515.24.5

yes no

(a) Absolute

read seek

read seek write size read size
< 73 KB

< 414965

< 85209 < 20 KB

74.6

< 5 KB
write size write size

< 101 KB

29.8 7.5 20.7 14.8 15.3 23.7

< 76
write%

4.6

(b) Relative

15.0 23.6 65.0 89.0 64.9 36.9

< 79
bandwidth

bandwidth
< 19

read size
< 127 KB

< 86< 37< 8

7.12.3

bandwidth bandwidth queue depth
< 7

bandwidth

(c) Relative with perf.

bandwidth

0.620.730.761.2 0.63 0.45

< 9.1

< 0.9 < 183 < 8.2

throughput
< 288

throughput bandwidth read seek
< 2867

1.4

latency

bandwidth
< 2.5

2.5

(d) Relative fitness

Figure 7: CART models trained to predict the bandwidth of Vendor C for a workload running on Vendor A.
The absolute and relative model only use workload characteristics as measured by Vendor A. The relative
model (with perf.) and the relative fitness model also use performance information (shaded). Note, the leaf
nodes in all but the relative fitness model represent bandwidth predictions. For the relative fitness model,
the leaf nodes represent bandwidth scaling factors relative to Vendor A.

WCj Pi (Bandwidth)
Vendor A Vendor B Vendor C

Vendor A 23% 25% 22%
Vendor B 29% 19% 21%
Vendor C 30% 25% 17%

WCj Pi (Throughput)
Vendor A Vendor B Vendor C

Vendor A 20% 23% 22%
Vendor B 28% 15% 21%
Vendor C 26% 21% 14%

WCj Pi (Latency)
Vendor A Vendor B Vendor C

Vendor A 20% 39% 59%
Vendor B 31% 21% 52%
Vendor C 26% 30% 21%

Table 5: Fitness test prediction error for the ab-
solute model (Eq. 1). The workloads characteristics
(WCj) are obtained from array j and the predictions
(Pi) are made for device i.

occur when the workload is characterized on the same device
for which the prediction is being made (WCj = WCi), as
indicated by the diagonals in bold. The prediction errors
are all in the 15–30% range and are consistent with previous
black-box modeling approaches.

Of course, if one runs a workload on device i to obtain the
workload characteristics WCi, there is no need to make a
prediction. These predictions are only included to illustrate
how changing workload characteristics (WCj 6= WCi) can
affect the prediction accuracy. As examples, the bandwidth
prediction error for Vendor A increases from 23% to 29%
and 30% when the workload is characterized on Vendors B
and C, respectively; throughput predictions for Vendor B
increase from 15% to 23% and 21%; and latency predictions
for Vendor C increase from 21% to 59% and 52%. Overall,
Table 5 confirms hypothesis 1: changing workload charac-
teristics can affect the accuracy of an absolute model.

Table 6, in comparison, shows the fitness test prediction
errors for the relative model (Eq. 3) and relative fitness
model (Eq. 4), both of which use performance information
to make a prediction. Note that because the models use the
performance of device j to predict that of device i, the error

WCj Pi (Bandwidth)
Vendor A Vendor B Vendor C

Vendor A <1% 15%,14% 18%,16%
Vendor B 18%,18% <1% 17%,16%
Vendor C 22%,21% 19%,16% <1%

WCj Pi (Throughput)
Vendor A Vendor B Vendor C

Vendor A <1% 16%,15% 19%,19%
Vendor B 22%,20% <1% 17%,18%
Vendor C 25%,24% 19%,18% <1%

WCj Pi (Latency)
Vendor A Vendor B Vendor C

Vendor A <1% 28%,27% 39%,38%
Vendor B 20%,18% <1% 42%,44%
Vendor C 21%,21% 29%,27% <1%

Table 6: Fitness test prediction errors for the rela-
tive model (Eq. 3, shown first) and the relative fit-
ness model (Eq. 4), both trained with performance.
Workload characteristics and performance are mea-
sured on one array, predictions made for another.

along the diagonal (i = j) represents the slight modeling
error when using the performance of device i to predict the
performance of device i. Again, in practice one would not
need to make such predictions. The values off of the diago-
nal, however, can be directly compared to those in Table 5.
Overall, the relative fitness models reduce the maximum
bandwidth prediction error from 30% to 21%, throughput
from 28% to 24%, and latency from 59% to 44%. Moreover,
in most cases, the relative fitness model is slightly more ac-
curate than the relative model. These results confirm that
models trained with performance can be more accurate (hy-
potheses 2 and 3) and that predicting performance ratios
can further improve prediction accuracy (hypothesis 4).

The results in Tables 5 and 6 are obtained from trees
pruned to a depth of 12. However, large trees can poten-
tially over-fit the training data, resulting in trees that are
specific to the behavior of the fitness test. Therefore, shorter
trees should be used whenever possible, as they are more
general. Note, a tree pruned to a depth of one corresponds
to a single-node tree. In the case of absolute and relative
models, it corresponds to the average performance of a de-

1 2 4 6 8 10 12
0

100

200

300

Bandwidth

Tree depth

A
vg

. r
el

at
iv

e
er

ro
r

(%
)

Abs. model
Rel. model
Rel. model + perf.
Rel. fitness

1 2 4 6 8 10 12
0

100

200

300

Throughput

Tree depth
1 2 4 6 8 10 12

0

100

200

300

Latency

Tree depth

Figure 8: Accuracy varies with tree depth. At all tree depths, the relative fitness models are the most
accurate, suggesting that relative fitness is a more efficient/general approach to modeling performance.

 0

 50

 100

 150

 200

 2500 1500 500

A
vg

. r
el

at
iv

e
er

ro
r

(%
)

Training samples

(a) Bandwidth

 0

 50

 100

 150

 200

 2500 1500 500

Training samples

Absolute
Relative

Relative + perf
Relative fitness

(b) Throughput

 0

 50

 100

 150

 200

 2500 1500 500

Training samples

(c) Latency

Figure 9: Accuracy versus number of training samples. The top line represents the absolute model, the next
line is a relative model that captures changes in the workload characteristics. The third line is a relative
model trained with performance. The fourth line (least error) is relative fitness. As the number of training
samples increases, the relative fitness models are the most stable and also the most accurate.

vice for the fitness test. For relative fitness, it is the average
scaling factor for a specific device pair. Figure 8 shows the
prediction error for various tree depths. At every depth, rel-
ative fitness is more accurate than an absolute model. For
example, at a depth of 6 (at most 32 leaf nodes), the rela-
tive fitness model achieves an average bandwidth prediction
error of 21%, compared to 49% for the absolute model. This
result suggests that relative fitness models are more easily
pruned, hence more efficient (general) learners.

The last result from the fitness test compares the predic-
tion error as the number of training samples is increased. For
each sample size, 4-fold cross validation is used to evaluate
the accuracy of the models. In this test, the relative model
that only uses workload characteristics (Eq. 2) is used to
illustrate 1) how the changing workload characteristics can
affect prediction accuracy of an absolute model and 2) the
improvement in accuracy when performance information is
used in the prediction (Eq. 3). Figure 9 shows how the pre-
diction error varies with the number of training samples (all
trees are pruned to a depth of 4). The topmost line (most
error) represents the error of the absolute model, the next
line represents the improvement from modeling workload
changes (hypothesis 2), the third line from the top shows
the large reduction in error by adding performance informa-
tion (hypothesis 3), and the last line (least error) is that of
relative fitness (hypothesis 4).

In summary, the fitness test results supports all four hy-
potheses. Namely, workload characteristics can change across
devices and the change is enough to impact the accuracy of
an absolute model; a relative model can reduce the inaccu-
racy due to changing workloads; performance can be used
to predict performance; and relative fitness values can be
better predictors than raw performance values.

TPC-C & Postmark predictions
TPC Benchmark C [23] is an OLTP benchmark, including
order entry, payment, order status, and monitoring inven-
tory. We run TPC-C on the Shore storage manager [7],
configured with 8 KB pages, 10 warehouses, and 10 clients;
the footprint is 5 GB. We characterize the workload and
performance of TPC-C on each of the arrays and use this
information to predict the throughput on the other two ar-
rays. Similarly, Postmark performs transactions against a
pool of files, including create, delete, read, or write. We
configure Postmark with 100k files, 100k transactions, and
100 subdirectories. File size ranges from 1K to 16K. Work-
load characteristics and performance are measured after the
files are created and transactions have begun. TPC-C and
Postmark are run until the device caches have been warmed
and throughput reaches a steady state. We then characterize
the workload and measure the performance. The models are
used to predict the steady-state throughput of each array.

TPC-C Postmark
WC A B C A B C

Write percent 24 13 24 71 55 62
Write size (KB) 8 9 8 11 8 8
Read size (KB) 8 8 8 7 7 7
Write seek (GB) .2 .1 .2 .4 .4 .3
Read seek (GB) .3 .3 .3 5.3 5.2 5.4

Queue depth 2 1 1 44 17 22

TPC-C Postmark
Perf A B C A B C

Bandwidth (MB/s) 1.7 2.4 2.5 3.8 1.4 1.4
Throughput (IO/s) 271 127 173 398 186 186

Latency (ms) 2 11 7 7 50 54

Table 7: Workload characteristics and performance
averages for TPC-C and Postmark (by Vendor).

Table 7 contains the workload characteristics and perfor-
mance averages for each array. The variation in workload
characteristics is much more pronounced than with the fit-
ness test. In particular, the write percent of TPC-C varies
by up to 85%, and write size by 13%. Similarly, the write
percent of Postmark varies by as much as 29%, write size
by 38%, write randomness by 31% (Vendor A has a 429 MB
average seek per write, Vendor B 385 MB, and Vendor C
328 MB), and queue depth by over a factor of 2. These
averages are obtained from at least three runs, again high-
lighting that WCi = WCj is not a safe assumption.

Three models are evaluated: an absolute model, a relative
model, and a relative fitness model. The first of the four
trees created from the fitness test during cross-validation is
chosen (arbitrarily) to make these predictions. The relative
and relative fitness models used to predict TPC-C are only
trained with performance, as predictions actually improve
by omitting workload characteristics entirely. That is, for
TPC-C, the bandwidth, throughput and latency of device j
are the best predictors of the throughput of device i.

Figure 10 graphs the average prediction error for each
model across a variety of tree depths. Each bar represents
an average over the 6 predictions (i.e., characterize on A and
predict for B and C, characterize on B and predict for A and
C, and so on). At nearly all depths the relative and relative
fitness models predict more accurately than the absolute
model. For TPC-C, the lowest error for the absolute model
is 50% at a tree depth of 4, compared to 20% for a relative
model (depth 6), and 26% for relative fitness (depth 6). For
Postmark, the lowest error for the absolute model is 27%
(depth 10), compared to 30% for a relative model (depth 10)
and 20% for a relative fitness model (depth 8). Although the
absolute model is more accurate than the relative model for
this particular tree depth, on average, the relative model is
still more accurate.

As these tests show, changing workload characteristics can
have a significant impact on prediction accuracy (hypothe-
sis 1), so significant that removing them entirely (in the case
of TPC-C) actually reduces prediction error. In their place
performance information can be used (hypothesis 3), result-
ing in significant reductions in error. As for hypothesis 2,
TPC-C suggests that even a relative model has difficulty
modeling the change in workload characteristics; fortunately
(for the relative and relative fitness models), performance in-
formation can be used in place of workload characteristics.

1 2 4 6 8 10 12
0

20
40
60
80

100
120
140

TPC−C

A
vg

. r
el

at
iv

e
er

ro
r

(%
)

Absolute model
Relative model
Relative fitness

1 2 4 6 8 10 12
0

20
40
60
80

100
120
140

A
vg

. r
el

at
iv

e
er

ro
r

(%
)

Tree depth

Postmark

PSfrag replacements

Tree depth
Avg. relative error (%)

Figure 10: Average throughput prediction errors for
TPC-C and Postmark across various tree depths.

Further, the TPC-C result suggests that a relative fitness
model is not strictly better than a relative model. Although
both do well, the relative model did slightly better than the
relative fitness model for the TPC-C prediction.

5. CONCLUSION
Relative fitness is a promising new approach to modeling

the performance of storage devices. In contrast with an ab-
solute model, a relative fitness model predicts performance
differences between device pairs. As such, application-device
feedback can be modeled, and performance and resource uti-
lization can be used when making predictions.

This paper describes the steps necessary to build a relative
fitness model, with an approach that is general enough to be
used with any black-box modeling technique. We compare
relative fitness models and absolute models across a variety
of workloads and storage devices. On average, the relative
fitness models predict bandwidth and throughput within 10–
20% and reduce the prediction error by as much as a factor
of two when compared to an absolute model.

Acknowledgements
We thank Michael Stroucken (CMU) for his support and
a flawlessly run machine room, and Eno Thereska (CMU)
for providing the TPC-C infrastructure. We thank Chris-
tos Faloutsos (CMU), Arif Merchant (HP), and Mic Bow-
man (Intel) for their valuable feedback. We thank the mem-
bers and companies of the PDL Consortium (APC, Cisco,
EMC, Google, Hewlett-Packard, Hitachi, IBM, Intel, Net-
work Appliance, Oracle, Panasas, Seagate, and Symantec)
for their interest, insight, feedback, and support. We also
thank EqualLogic, Intel, IBM, LeftHand Networks, Network
Appliance, Open-E, Seagate, and Sun for hardware and soft-
ware donations that enabled this work. This research is

sponsored in part by the National Science Foundation, via
grants #CNS-0326453, #CCF-0621499, and 0431008; and
by the Army Research Office, under agreement DAAD19–
02–1–0389. Matthew Wachs is supported in part by an ND-
SEG Fellowship from the Department of Defense.

6. REFERENCES

[1] G. A. Alvarez, J. Wilkes, E. Borowsky, S. Go, T. H.
Romer, R. Becker-Szendy, R. Golding, A. Merchant,
M. Spasojevic, and A. Veitch. Minerva: an automated
resource provisioning tool for large-scale storage
systems. ACM Transactions on Computer Systems,
19(4):483–518. ACM, November 2001.

[2] E. Anderson. Simple table-based modeling of storage
devices. SSP Technical Report HPL–SSP–2001–4. HP
Laboratories, July 2001.

[3] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: running circles
around storage administration. Conference on File and
Storage Technologies (Monterey, CA, 28–30 January
2002), pages 175–188. USENIX Association, 2002.

[4] N. Appliance. PostMark: A New File System
Benchmark. http://www.netapp.com.

[5] E. Borowsky, R. Golding, A. Merchant, L. Schreier,
E. Shriver, M. Spasojevic, and J. Wilkes. Using
attribute-managed storage to achieve QoS.
International Workshop on Quality of Service
(Pittsburgh, PA, 21–23 March 1997). IFIP, 1997.

[6] L. Breiman, J. H.Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Wadsworth.

[7] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring up persistent applications.
ACM SIGMOD International Conference on
Management of Data (Minneapolis, MN, 24–27 May
1994). Published as SIGMOD Record, 23(2):383–394.
ACM Press, 1994.

[8] D. J. Futuyma. Evolutionary Biology. Third edition.
SUNY, Stony Brook. Sinauer. December 1998.

[9] G. R. Ganger. Generating representative synthetic
workloads: an unsolved problem. International
Conference on Management and Performance
Evaluation of Computer Systems (Nashville, TN),
pages 1263–1269, 1995.

[10] G. R. Ganger and Y. N. Patt. Using system-level
models to evaluate I/O subsystem designs. IEEE
Transactions on Computers, 47(6):667–678, June
1998.

[11] G. R. Ganger, J. D. Strunk, and A. J. Klosterman.
Self-* Storage: brick-based storage with automated
administration. Technical Report CMU–CS–03–178.
Carnegie Mellon University, August 2003.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer–Verlag.
2001.

[13] Intel. iSCSI. www.sourceforge.net/projects/intel-iscsi.

[14] T. Kelly, I. Cohen, M. Goldszmidt, and K. Keeton.
Inducing models of black-box storage arrays. Technical
report HPL-2004-108. HP, June 2004.

[15] Z. Kurmas and K. Keeton. Using the distiller to direct
the development of self-configuration software.
International Conference on Autonomic Computing
(New York, NY, 17–18 May 2004), pages 172–179.
IEEE, 2004.

[16] Z. Kurmas, K. Keeton, and K. Mackenzie.
Synthesizing representative I/O workloads using
iterative distillation. International Workshop on
Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (Orlando, FL, 12–15
October 2003). IEEE/ACM, 2003.

[17] A. Merchant and P. S. Yu. Analytic modeling of
clustered RAID with mapping based on nearly
random permutation. IEEE Transactions on
Computers, 45(3):367–373, March 1996.

[18] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[19] F. I. Popovici, A. C. A. Dusseau, and R. H. A.
Dusseau. Robust, portable I/O scheduling with the
disk mimic. USENIX Annual Technical Conference
(San Antonio, TX, 09–14 June 2003), pages 297–310.
IEEE, 2003.

[20] C. Ruemmler and J. Wilkes. An introduction to disk
drive modeling. IEEE Computer, 27(3):17–28, March
1994.

[21] J. Satran. iSCSI. http://www.ietf.org/rfc/rfc3720.txt.

[22] E. Shriver, A. Merchant, and J. Wilkes. An analytic
behavior model for disk drives with readahead caches
and request reordering. ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems (Madison, WI, 22–26 June 1999).
Published as ACM SIGMETRICS Performance
Evaluation Review, 26(1):182–191. ACM Press, 1990.

[23] Transaction Processing Performance Council. TPC
Benchmark C. http://www.tpc.org/tpcc.

[24] M. Uysal, G. A. Alvarez, and A. Merchant. A
modular, analytical throughput model for modern
disk arrays. International Workshop on Modeling,
Analysis, and Simulation of Computer and
Telecommunications Systems (Cincinnati, OH, 15–18
August 2001), pages 183–192. IEEE, 2001.

[25] E. Varki, A. Merchant, J. Xu, and X. Qiu. Issues and
challenges in the performance analysis of real disk
arrays. Transactions on Parallel and Distributed
Systems, 15(6):559–574. IEEE, June 2004.

[26] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing
the spatio-temporal behavior of real traffic data. IFIP
WG 7.3 Symposium on Computer Performance
(Rome, Italy, 23–27 September 2002). Published as
Performance Evaluation, 49(1–4):147–163, 2002.

[27] M. Wang, K. Au, A. Ailamaki, A. Brockwell,
C. Faloutsos, and G. R. Ganger. Storage device
performance prediction with CART models.
International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunications
Systems (Volendam, The Netherlands, 05–07 October
2004), pages 588–595. IEEE/ACM, 2004.

[28] M. Wang, T. Madhyastha, N. H. Chan,
S. Papadimitriou, and C. Faloutsos. Data mining
meets performance evaluation: fast algorithms for
modeling bursty traffic. International Conference on
Data Engineering (San Jose, CA, 26–01 March 2002),
pages 507–516. IEEE, 2002.

