
Towards self-predicting systems: What if you could ask “what-if”?

Eno Thereska
Carnegie Mellon University

enothereska@cmu.edu

Dushyanth Narayanan
Microsoft Research, UK

dnarayan@microsoft.com

Gregory R. Ganger
Carnegie Mellon University

ganger@ece.cmu.edu

Abstract

Today, management and tuning questions are ap-
proached using if...then... rules of thumb. This reactive
approach requires expertise regarding of system behavior,
making it difficult to deal with unforeseen uses of a system’s
resources and leading to system unpredictability and large
system management overheads. We propose a What...if...
approach that allows interactive exploration of the effects
of system changes, thus converting complex tuning prob-
lem into simpler search problems. Through two concrete
management problems, automating system upgrades and
deciding on service migrations, we identify system design
changes that enable a system to answer What...if... ques-
tions about itself.

1. Introduction

As distributed systems become more complex, so does
their management. There are challenging management is-
sues at every stage of a system’s life-cycle, including initial
configuration decisions, periodic hardware upgrades, and
continuous tuning for changes in workload. We focus here
on two difficult management problems: deciding when and
how to upgrade a system and when and where to migrate
system services in an environment with heterogeneous com-
ponents.

For concreteness, here are some typical questions whose
answers could help administrators or the system itself, in
making decisions:

� What would happen to the throughput/latency of tasks
from application A if the storage system is upgraded
by doubling the devices’ bandwidth?

� What would happen to system throughput if the system
shifts the workload of user B from device X to Y?

� What would happen to user-perceived response lag if
the system runs the Quake game server on a different
machine with different resource capabilities?

� What would be the response time of requests from each
of 10 virtual machines if machine 2 steals 256 MB of
memory from machine 5?

Accurate answers to such questions are important for sev-
eral reasons. First, they would allow an administrator to
evaluate different upgrade options, pick the best one, and
justify the cost to her boss. Second, they would guide inter-
nal system tuning decisions such as service placement.

In an era where there is much talk about autonomous
systems, it is surprising that systems provide no support for
answering such basic questions. Instead, most management
decisions rely on if...then... rules of thumb. Administrators,
for example, use rules of thumb to deal with the upgrade
problem. An example rule is “if the disk queues are large,
add more buffer cache memory”. System self-tuning also
currently relies on pre-programmed rules, for example “if
service X loads the CPU beyond 90%, migrate it to a ma-
chine with a faster CPU”.

Managing and tuning a large system using rules of thumb
is hard for several reasons. First, using rules of thumb re-
quires a skilled administrator with deep knowledge of the
system, which drives the total cost of ownership of a system
far beyond the initial purchase cost [9]. Furthermore, it is
hard to verify the quality of the decisions made by these ex-
pert administrators. Second, an administrator using rules of
thumb to manage a system cannot predict the effect of those
management decisions. Estimating the effect of upgrading
resources, for example, depends on the demand placed on
the system by the workload, as well as the system’s internal
decisions on how to handle the workload and how to inte-
grate the new resources. Hence, without the system’s help,
the administrator can only speculate on the outcome of a
change. Third, a system built using rules of thumb is reac-
tive and will tune itself only when certain criteria or thresh-
olds are met, thus missing opportunities for pro-active knob
tuning and exploration for better performing configurations.

The net effect of the above limitations has been system
over-provisioning. We argue that money can be better spent
and we have started experimenting with new ways of build-
ing self-predicting, self-managing systems. In this paper,
we argue that such systems should incorporate the ability to

jdigney
Text Box
3rd International Workshop on Self-adaptive and Autonomic Computing Systems. Copenhagen, Denmark, August 2005.



answer What...if... questions about their own performance.
What...if... interfaces convert complex tuning decisions into
simpler search-based approaches. With them, iterating over
a defined search space can produce a near-optimal answer.

A main contribution of our research is to identify key
system design changes that will allow a system to be self-
predicting. In this paper, we start by identifying operational
laws as building blocks towards this solution. Operational
laws require detailed monitoring of system resources and
end-to-end request tracking, but do not depend on any as-
sumptions of workload or service patterns. Using this data,
they can estimate the performance impact of workload or
device changes. Two real management problems, system
upgrades and service migration, are used to make concrete
the insights we provide on how a system should be built to
enable self-prediction.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 discusses how a
system should be designed for predictability. Section 4 dis-
cusses some preliminary experiences with predicting the ef-
fect of resource upgrades. Section 5 summarizes the paper
and discusses future directions, including planned deploy-
ment in a large scale storage service.

2. Common approaches

Choosing the best way to upgrade a system and deter-
mining where a system service should run are two faces
of the same coin. Service migration is an internal system
activity aimed at improving the way existing resources are
used and maximizing the performance of services running
in the system. System upgrades are externally induced and
are aimed at identifying what new resources are needed to
reach desired performance levels. This section surveys the
common approaches to these two problems.

Over-provisioning: From talking to real system admins,
it is clear that the most common approach in practice is
over-provisioning. This approach has several drawbacks.
First, for multi-million dollar systems, over-provisioning
is expensive. Second, the effects of over-provisioning on
workload performance cannot be quantified. Third, over-
provisioning does not help in internal system tuning deci-
sions.

Human experts: System administrators can be consid-
ered as an external expert system paid to act on their rules
of thumb. An example of such a rule is “if the disk queues
are large, then upgrade the amount of buffer cache”. The
administrator is expensive because she needs to have deep
understanding of the system and workload, and past experi-
ences with similar cases. She gets little help from the sys-
tem itself. The state of the art in the kind of “help” that
comes from commercial database and operating systems is
the exporting of 400+ system counters to the administra-

tor [11, 13, 14], leaving her to filter out unimportant infor-
mation.

Internal expert systems: In self-tuning system designs,
the human expert is usually replaced by a computer expert,
which today uses the same if...then... approach in its de-
cision making. This approach has been used for resource
partitioning across virtual machines [16] as well as general
server resource management [15]. Such expert systems use
static or naively dynamic resource partitioning rules and do
not attempt to quantify the resulting change in performance.
For example, they might observe high paging rates in one
virtual machine and respond by giving it memory stolen
from other virtual machines. However, if the paging I/O
was largely overlapped with useful CPU work, this will not
improve application performance. Additionally, rule-driven
expert systems require the designer to come up with arbi-
trary thresholds that would trigger action. These thresholds,
and the rules themselves, may be incorrect or outdated [17].

What...if... explorations: A few previous approaches
have used successfully What...if... explorations to optimize
performance, especially in the area of capacity planning.
Ergastulum [3] computes a good initial configuration of a
storage system by iterating over the space of possible work-
load characteristics and storage device models. Indy [10]
identifies performance bottlenecks in a running system and
attempts to predict the bottleneck shifts resulting from a re-
source upgrade. Although steps in the right direction, these
approaches treat the system as a black box, hence the help
they get from the system is limited. These approaches still
require an expert who knows what kinds of workloads the
system should be able to support and who can provide re-
quired system models, all from an external view of the sys-
tem. We propose building systems with self-prediction at
their core, sidestepping the need for this external expert.

3. Designing for predictability

A fundamental assumption in system design is that
the past is a good indicator of the future. This has not
only allowed traditional optimizations such as caching and
prefetching to work well, but also implicitly underlies the
usage of simple off-the-shelf machine learning tools to pre-
dict file usage [12], isolate faulty components [5], or iden-
tify component bottlenecks [2].

We combine the assumption of stability over time with
that of predictability over variation in inputs. In other
words, we expect that at a macro level, system performance
will be some stable function of the available resources and
the workload. The goal of prediction is then to approxi-
mate this function as closely as possible. In this section, we
discuss some insights about different approaches to building
predictive models and describe new design requirements for
a self-predicting system.



3.1. What we are and are not targeting

Our predictive infrastructure will not help with the ini-
tial purchase decision. To do so is difficult because it re-
quires specifying up-front the characteristics of workloads
that may run on a new system, which is unrealistic and diffi-
cult to do [7]. However, once observations from continuous
runs of a live system are made, we want to quantitatively
determine the performance effect of upgrades, for example
replacing the disks in the RAID-5 box with ones with dou-
ble the bandwidth.

We are not targeting accurate predictions in the face of
drastic unseen-before changes in workload patterns. In that
case, the past history no longer helps in predicting. For ex-
ample, if last month the workload from application X was
I/O-intensive the predictive module will most likely sug-
gest and quantify the change in the workload’s throughput
from buying faster disks. However, if the workload from
that application all of a sudden becomes CPU-bound for the
next month, then the suggested upgrade won’t be useful.
We believe that identifying permanent qualitative workload
changes and re-evaluating the system when that happens is
the way to go. Machine learning techniques could prove
useful in detecting such changes, however this topic is be-
yond the target of this paper. Part of our experience, how-
ever, will be understanding if and when workloads change.

Our goal is prediction across variation in system re-
sources and configuration. We also target predicting of the
effects of simple quantitative workload changes, for exam-
ple speed-up factors. In addition, we also want to predict
the effects of existing workload or service migration across
devices with different resources.

3.2. Operational laws to black-box models

All the questions mentioned in Section 1 can be an-
swered at some level of accuracy by using operational
laws [6]. One example of a commonly used operational law
is Amdahl’s law, which bounds the potential performance
improvement from speeding up any part of the system.

In general, operational laws mean measurement laws.
They depend on detailed live system measurements and
their power comes from their predictive capability without
the need for assumptions about workload or service pat-
terns. Using them, the system can continuously track the
bottleneck resources and provide estimates on what would
happen to performance metrics of a service if those re-
sources were to be upgraded (or equivalently if services
were to move to new machines with different resources).
From those estimates, What...if... modification question can
be answered.

There are system components that are not possible to an-
alyze using operational laws. For example, buffer cache hit

rates depend on the eviction algorithm, which is not easily
captured by operational laws. In those cases, our predictive
framework uses simple simulation modules that we advo-
cate should be part of these components. For example, to
predict the effect the buffer cache size on request latency,
together with operational laws that monitor the storage sys-
tem and CPU utilization, a simulation module is needed to
predict the miss rates with the new memory. We expand on
this example in Section 4.

For components that are built using legacy software,
and that do not allow source modification, operational laws
can only treat them as black-box, identify bottlenecks at a
coarser-grained level and make aggregate predictions [2].

Hence, there is a spectrum of methods to be used for
making a system self-predictive. Operational laws should
be used when a new system is built, together with simu-
lation of internal algorithms. Black-box machine learning
should be used for legacy systems as a last resort because of
its coarseness in prediction.

3.3. System design requirements

This section identifies some essential design principles
for systems to answer What...if... questions.

System load characterization: We move away from at-
tempts at characterizing workloads towards characterizing
the load workloads place on systems. Workload characteri-
zation is an area that has attempted, for a long time, to iden-
tify key parameters of workloads that are representative and
use them in place of the real requests the system saw. This
area has been largely unsuccessful [7]. To predict the effect
of resource changes on workloads, the system traces the full
activity generated by a workload on the system resources.
This enables realistic predictions, by allowing separation of
the demand process, which depends on the workload, and
the service process, which depends on system resources and
configuration.

End-to-end activity tracking: We move away from ag-
gregate statistics towards end-to-end tracking, like in Mag-
pie [4], because aggregate statistics cannot answer two
kinds of important questions. The first relates to fine-
grained predictions. For example, out of a workload with
many users the administrator might only be interested in
the performance of one “premium” user with a service-level
agreement. End-to-end tracking allows these fine grained
predictions by monitoring the behavior of individual re-
quests. The second kind of question that aggregate statis-
tics cannot answer relates to finding the true bottlenecks in
the system. The classic question of “the disk queues appear
large, should I buy more memory or faster disks?” can-
not be answered using aggregate statistics, which are sim-
ply observations that the disk queue size is large. End-to-
end tracking allow proper accounting of resource utilization



and concurrency in the system. For example, if most I/O re-
quests are overlapped with useful CPU work, increasing the
amount of memory or buying faster disks does not affect
throughput (although it will affect request latency).

We advice aggressive instrumentation of all potential
resource usage points: in our experience, disabling exist-
ing instrumentation at runtime is far easier than retrofitting
missing instrumentation to a deployed system.

Co-operation with system components: Our goal is to
integrate a predictive framework in the core of every sys-
tem. As mentioned in Section 3.2, components that cannot
incorporate operational laws naturally, need to use simple
simulation methods to integrate with the rest of the pre-
dictive system. Such components include software algo-
rithms, for example the buffer cache manager’s eviction de-
cisions, that may change the internal workload depending
on the resources used, for example if more memory was
available. Such components should be built with these sim-
ulation methods in them.

What...if... interfaces: Existing systems do not have
the administrator interfaces we need to enable exploration.
With the development of the systems we are proposing,
there will be a need for new, simple interfaces that allow
administrators to ask What...if...questions. For self-tuning,
the system itself will need to have these interfaces inter-
nally; for upgrades, these interfaces will be visible to the
administrator, with the system taking an active part in mak-
ing pro-active suggestions as well.

Resources for monitoring and analysis: Spare CPU
and storage resources will be needed to collect and analyze
end-to-end traces. Preliminary evaluations show that at least
for collecting the data the CPU overhead is small [4]. How-
ever, managing the amount of traces generated becomes a
challenge. Research on how to manage traces without los-
ing vital information will be necessary.

4. Preliminary evaluation

We are building a large self-managing system which will
be the testbed for the ideas presented in this paper (see Sec-
tion 5). However, we are still at the early stages with that
system, and are not yet in a position to deploy or measure its
performance. As a proof-of-concept for the ideas presented
here, we built a prediction infrastructure for a commercial
database manager (DBMS) running on a single machine.
The DBMS uses a sophisticated set of algorithms to man-
age the same set of resources (CPU, memory, and storage)
as a larger system would, albeit on a smaller scale.

The What...if... question that drove this evaluation is an
upgrade question: “What happens to the overall throughput,
and the latency of each transaction type, if the amount of
memory available to the buffer cache manager is varied?”
We answer this question with a simple operational model

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

Buffer pool size (MB)

La
te

n
cy

 (s
ec

o
n

d
s)

ACTUAL PREDICTION

Figure 1. Predicting response time of “new
order” transactions.

of system performance. We predict the mean response time
for transaction type � using the following equation, which
is derived from well-known operational laws:

�� � �
�

����� � ������
�

��

�� �
�

��

�� � �

��
���

� �

��

Here the parameters derived from end-to-end tracking of the
live system are ������� (the mean critical-path computation
time for type �), ��

�� (the overall mean blocking time per
blocking I/O), � �

�� (the I/O subsystem utilization), and � �

��

(the overall number of I/Os issued per transaction). To pre-
dict ����� (the predicted number of blocking I/Os per trans-
action of type �) and ��� (the predicted overall number of
I/Os per transaction), we modeled the DBMS’s buffer cache
manager using a simple eviction simulator that predicts the
hits and misses for a given reference trace as a function of
available buffer cache size.

This simple combination of operational analysis and
simulation was effective at answering What...if... questions.
Figure 1 shows the accuracy of predicting response time
for the main transaction type (“new order”) of the TPC-C
benchmark [1], as the available buffer cache memory is var-
ied. Although the prediction accuracy is not perfect, the
error is small compared to the change in the quantity pre-
dicted: across the full range of memory sizes measured, re-
sponse time changes by more than an order of magnitude.

The model presented above required a small amount of
additional instrumentation in the DBMS source: 189 lines
of code in 6 source files. These lines generated 17 different
event types of interest, marking transaction stop/start, CPU
scheduling events, buffer cache activity, and disk I/O re-
quests and completions. The What...if... predictor consists
of 1150 lines of code, of which around 350 are glue code



interfacing to the instrumentation/event system. Our results
show that even a legacy system can be made self-predicting
with a small amount of carefully chosen instrumentation
and simple models based on knowledge of internal system
algorithms. We believe this approach will scale to larger
systems designed from the beginning for predictability.

5. Summary and continuing work

Systems that can answer What...if... questions convert
complex tuning problems into simpler search-based prob-
lems, thus simplifying considerably both internal system
optimizations and administrator management.

To fully explore the What...if... approach we are build-
ing support for it into a large-scale distributed storage sys-
tem, which is being built with self-management in mind [8].
The system will be deployed at Carnegie Mellon University
(with approximately 1 PB of storage) and we will use the
What...if... support both for internal optimization and hard-
ware acquisition decisions.

We are designing our system using the guidelines men-
tioned in Section 3.3. An activity tracking library is part
of every system component and it tracks tasks as they go
through the system and monitors the resources they utilize.
Activity will be stored in databases for ease of online query-
ing by the internal tuning components.

The initial modules we are instrumenting are the storage
manager and the metadata service. The instrumentation of
the storage manager will allow insight on whether upgrades
of storage devices or memory hierarchy are beneficial for
different applications. The instrumentation of the metadata
service will allow initial experience with migrating services
to the most appropriate physical resources. Through this ex-
perience, we hope to learn the types of What...if... questions
that are useful to administrators or for internal tuning.

6. Acknowledgements

We thank the members and companies of the PDL Con-
sortium (including EMC, Engenio, Equallogic, Hewlett-
Packard, HGST, Hitachi, IBM, Intel, Microsoft, Network
Appliance, Oracle, Panasas, Seagate, Sun, and Veritas) for
their interest, insights, feedback, and support. This mate-
rial is based on research sponsored in part by the National
Science Foundation, via grant #CNS-0326453.

References

[1] TPC Benchmark C Specification.
http://www.tpc.org/tpcc/.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed systems

of black boxes. ACM Symposium on Operating System Principles,
pages 74–89. ACM Press, 2003.

[3] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and
Q. Wang. Ergastulum: an approach to solving the workload and
device configuration problem. Technical report HPL–SSP–2001–05.
HP Labs, 2001.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie
for request extraction and workload modelling. Symposium on Op-
erating Systems Design and Implementation, 2004.

[5] M. Y. Chen, E. Kiciman, and E. Brewer. Pinpoint: Problem Deter-
mination in Large, Dynamic Internet Services. International Confer-
ence on Dependable Systems and Networks (DSN’02), pages 595–
604, 2002.

[6] P. J. Denning and J. P. Buzen. The operational analysis of queueing
network models. ACM Computing Surveys, 10(3), September 1978.

[7] G. R. Ganger. Generating representative synthetic workloads: an un-
solved problem. International Conference on Management and Per-
formance Evaluation of Computer Systems, pages 1263–1269, 1995.

[8] G. R. Ganger, J. D. Strunk, and A. J. Klosterman. Self-* Storage:
Brick-based storage with automated administration. Technical Re-
port CMU–CS–03–178. Carnegie Mellon University, August 2003.

[9] Gartner Group. Total Cost of Storage Ownership — A User-oriented
Approach, February, 2000. Research note, Gartner Group.

[10] J. Hardwick, E. Papaefstathiou, and D. Guimbellot. Modeling the
Performance of E-Commerce Sites. 27th International Conference
of the Computer Measurement Group. Published as Journal of Com-
puter Resource Management, 105:3(12), 2001.

[11] IBM. DB2 Performance Expert, 2004.
http://www-306.ibm.com/software/data/
db2imstools/db2tools/db2pe/.

[12] M. Mesnier, E. Thereska, D. Ellard, G. Ganger, and M. Seltzer. File
classification in self-* storage systems. IEEE First International Con-
ference on Autonomic Computing (ICAC-04). IEEE, 2004.

[13] Microsoft. Performance Counters Ref-
erence for Windows Server 2003, 2005.
http://www.microsoft.com/windowsserver2003
/techinfo/reskit/deploykit.mspx.

[14] Oracle. Oracle Database Manageability, 2004.
http://www.oracle.com/technology/products/
manageability/.

[15] D. Sullivan and M. Seltzer. A Resource Management Framework
for Central Servers. USENIX Annual Technical Conference, pages
337–350, 2000.

[16] C. A. Waldspurger. Memory resource management in VMWare ESX
server. Symposium on Operating Systems Design and Implementa-
tion, 2002.

[17] J. Williams. When expert systems are wrong. ACM SIGBDP Con-
ference on trends and directions in expert systems, pages 661–669,
1990.

http://www.tpc.org/tpcc/
http://www-306.ibm.com/software/data/
db2imstools/db2tools/db2pe/
http://www.microsoft.com/windowsserver2003
/techinfo/reskit/deploykit.mspx
http://www.oracle.com/technology/products/
manageability/

	. Introduction
	. Common approaches
	. Designing for predictability
	. What we are and are not targeting
	. Operational laws to black-box models
	. System design requirements

	. Preliminary evaluation
	. Summary and continuing work
	. Acknowledgements



