
End-to-end Tracing in HDFS

William Wang
July 2011

CMU-CS-11-120

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Greg Ganger, chair

David R. O’Hallaron

Submitted in partial fulfillment of the requirements
for the Degree of Master of Science

Keywords: computer science, HDFS, end-to-end tracing, Hadoop, performance diagnosis

Abstract

Debugging performance problems in distributed systems is difficult. Thus many debugging tools
are being developed to aid diagnosis. Many of the most interesting new tools require information
from end-to-end tracing in order to perform their analysis. This paper describes the development
of an end-to-end tracing framework for the Hadoop Distributed File System. The approach to in-
strumentation in this implementation differs from previous ones as it focuses on detailed low-level
instrumentation. Such instrumentation encounters the problems of large request flow graphs and
a large number of different kinds of graphs, impeding the effectiveness of the diagnosis tools that
use them. This report describes how to instrument at a fine granularity and explain techniques to
handle the resulting challenges. The current implementation is evaluated in terms of performance,
scalability, the data the instrumentation generates, and its ability to be used to solve performance
problems.

1 Introduction
Diagnosing performance problems in distributed systems is hard. Such problems often have multi-
ple sources, could be contained in any number of components within in the system, and even could
be the result of the interactions between components. For this reason, there is ongoing development
of debugging tools for guiding perfomance problem diagnosis.

In particular, many build upon end-to-end tracing frameworks. In end-to-end tracing, one
captures information about the flows (paths and timings) that individual requests take to be serviced
in the distributed system. In this way, end-to-end tracing is able to capture the behavior of each
of the system’s components and also the interactions between them. As one example of its utility,
tools can use this information to characterize the normal behavior of the system and detect the
changes in behavior during periods of poor performance [12]. One can look at these changes to
narrow down and find the root causes of the decreased performance.

Apache Hadoop [10] is an open source implementation of Google’s MapReduce. It is com-
posed of two main components. One component is the MapReduce software framework for the
distributed processing of large data sets on compute clusters. The other is the Hadoop Distributed
File System (HDFS), a distributed file system that provides high throughput access and is com-
monly used by the MapReduce component as its underlying file system for retrieving input and
outputting results. As with any other distributed system, performance problem diagnosis is dif-
ficult in Hadoop. Due to the utility of end-to-end tracing, this thesis project explored how to
implement it in HDFS. In specific, the contributions of this project are:

1. Design and implementation of end-to-end tracing framework for HDFS

2. Identification of places where instrumentation should be added for effective end-to-end trac-
ing in HDFS

3. Design of a robust and reliable collection backend

4. Evaluation of the scalability and performance of the framework.

5. Graphs of the behavior of HDFS’s filesystem calls. These are useful in helping developers
build intuition about HDFS’s internal structure.

6. Preliminary work showing how end-to-end traces collected from HDFS can be used in ex-
isting debugging tools

7. Preliminary design of a querying API for accessing raw trace records.

This report is structured as follows. Section 2 provides a definition of end-to-end tracing and
presents several tools that use it. Section 3 gives a background on Hadoop and HDFS, including
previous approaches of tracing in this framework. Section 4 presents the goals of the end-to-end
tracing framework and resulting challenges. Section 5 shows the approach to implementing the
framework. Section 6 presents the design of the collection and storage services in the framework
as well the as API for accessing debugging information. Section 7 discusses the implmentation of

1

the instrumentation in HDFS. Section 8 evaluates various characteristics of the framework, such
as its scalablility, the size of the data generated by the framework, and its ability to be used by
diagnosis tools to diagnosis problems. Some future work related to the framework is discussed in
section 9, and we conclude in section 10.

2 End-to-end Tracing
End-to-end tracing captures the flow of requests. This is achieved by capturing activity records at
the various instrumentation points placed in the distributed system components. Each record con-
tains information such as instrumentation point name, a timestamp, and optionally other contexual
information. In general, records are associated with individual requests and thus also propagate
a request identifier. These records can then be stitched together to form a request flow graph that
shows the control flow (see Figure 1). In such a graph, nodes are labeled by the instrumenta-
tion point name and edges are labeled with the latency that the request experienced between one
instrumentation point and the next. As noted previously, end-to-end tracing can simplify the pro-
cess of performance problem diagnosis with the rich information it provides. Such tracing can
be implemented with low overhead as seen by the multiple independent implementations, such as
Dapper [13], Magpie [2], Stardust [14], or X-Trace [7]. This section discusses several end-to-end
tracing frameworks and diagnosis tools.

2.1 End-to-end Tracing Frameworks
There are several end-to-end tracing frameworks that have been implemented and have some dif-
ferent characteristics. Dapper [13] is Google’s end-to-end tracing framework. Unlike other frame-
works, Dapper instruments RPCs as single units, and thus provides a much higher level view. It
also does not explicitly capture sequential and parallel activity. Magpie [2] does not propagate
request identifiers and requires the developer to input a schema that defines the structure of the
request flow graph. Stardust and X-Trace are two other frameworks which are very similar. Both
propagate request identifiers and both explicity capture sequential and parallel activity.

2.2 Spectroscope
The purpose of adding end-to-end tracing support to HDFS is to enable use of tools which analyze
request flow graphs. One such tool is Spectroscope [12]. Spectroscope is a tool for comparing
request flows across periods in order to find the root causes of behaviorial differences between
them. For performance diagnosis, it would be used to compare the request flows of a non-problem
period, a period in which performance of the system is within expectations, and a problem period,
a period in which performance is worse than expected. It does this by first organizing the graphs
from both periods into categories of identical structure. For example, all the mkdir requests from
the same client would be part of the same category in HDFS. Then, it compares the graphs between
the two periods in order to find mutations or changes in the graph.

2

����������	
�����	��������

�������������

��������������

�������
���
���	��������

��������������

�������
���
���	���
��

���������������

����������
��

��������������

����������	
�����	���
��

��������������

Figure 1: Example request flow graph of a mkdirs RPC in HDFS. A client made a request to
create a new directory and optional subdirectories in the HDFS instance. As a result of the call,
an RPC was issued and sent to the namenode, the master node in HDFS. The namenode did the
required processing and returned control to the client.

Spectroscope looks at two types of mutations. The first type is the response-time mutation. In
this kind of mutation, the latencies on edges in a graph category in one period are significantly
different from the same category of graphs in the other period. These kinds of mutations are found
by performing a statistical hypothesis test. In the test, the null hypothesis is that the samples from
the two periods are from the same distribution. If the null hypothesis is rejected, then a response-
time mutation was detected. One may see this kind of mutation in cases such as a bad network link.
The communication latency would increase between components, which would manifest itself in
the graph as a edge with an increased latency.

The other kind of mutation is the structural mutation. This kind of mutation is the result of a
request taking a different path than was expected. This results in the associated request flow graph
taking on a different structure. Spectroscope finds these kinds of mutations by comparing across
categories and attempting to find the graph category that the mutated graph originated from. This
kind of mutation can be seen in requests that access caches.

After finding mutations, Spectroscope then ranks the mutations by their expected contribution
to the performance change. In this way, developers know where to focus their diagnosis effort.

3

Spectroscope has been shown to be useful in diagnosing performance problems in systems such as
Ursa Minor [1] and certain Google services. It is likely that HDFS would benefit from enabling
the use of Spectroscope.

2.3 Other Tools
There also exist other tools that attempt to detect anomalous behavior within a single period as
opposed to comparing behaviors between two periods like Spectroscope, such as Magpie [2] and
Pinpoint [4]. Magpie using behaviorial clustering in order to sort requests into clusters. By creating
clusters, Magpie performs anomaly detection by noting the requests that are outliers and do not fit
into any cluster. Pinpoint uses statistical machine learning algorithms to attempt to model normal
path behavior by calculating the likelihood of a path occurring based on training data. Paths that
are unlikely to occur are anomalous and can be used to pinpoint the root cause of the problem. In
this report, we focus on Spectroscope.

3 Hadoop Distributed File System
HDFS is the open source implementation of the Google File System [8] (GFS). It is a distributed
file system created with the purpose of storing large data for large scale data intensive applications.
Like GFS, the architecture of HDFS consists of a single master, called the namenode, and multiple
storage servers, called datanodes. Files are divided into fixed size blocks which are distributed
among the datanodes and stored on the datanodes’ local disks. Often, blocks are replicated across
multiple datanodes for the purpose of reliability. The namenode stores all file system metadata
information and file-to-block mappings and controls system-wide activities such as lease manage-
ment, garbage collection, and block migrations between datanodes.

As with most file systems, two common operations in HDFS are reading and writing files. To
read a file, a client requests the locations of the blocks of the file on the datanodes from the namen-
ode. After receiving the block locations, the client then requests block transfers from datanodes
that have the blocks in order to read the file.

To write a file, a client requests datanodes from the namenode that it should send blocks to. If
replication is activated in the HDFS instance, a set of datanodes is given to a client for each block.
In HDFS, blocks are generally 64MB in size by default and are transferred between components
in 64KB checksumed packets1, leading to over one thousand HDFS packet transfers for a single
block. To improve the performance and decrease the latency of replicated writes, the client and
datanodes are formed into a pipeline. The pipeline is usually constructed such that the “distance”
between successive nodes is minimized to avoid network bottlenecks and high-latency links as
much possible. However, the namenode is allowed to break this requirement and arbitrarily choose
the datanodes and their ordering to satisfy other constraints. The client only sends packets to the
first datanode in the pipeline. While doing so, it puts the packet into a queue that asynchronously
waits for acknowledgements. When a datanode receives a packet, it sends the packet to the next

1Packet refers to an HDFS packet, which is made of multiple IP packets

4

datanode in the pipeline unless it is the last datanode in the pipeline in which case it will send an
acknowledgement to the previous datanode. When a datanode receives an acknowledgement from
the next datanode, it will also send an acknowledgement to the previous datanode or client. When
the client receives the acknowledgement from the first datanode, it knows that all the datanodes
in the pipeline have successfully received the packet and thus the packet can be removed from the
queue.

HDFS is often used with MapReduce applications to store input and output. In many kinds of
MapReduce jobs, a significant amout of time is spent reading the input data and writing the output
data. Thus, the performance of HDFS can directly affect the performance of jobs. For this reason,
it is valuable to look into ways to diagnosis performance problems in HDFS.

4 Goals and Resulting Challenges
This section describes the goals for the HDFS end-to-end tracing framework. We encountered
several challenges as a result of the chosen goals, which will also be discussed in this section.

4.1 Goals
4.1.1 Low overhead

Ideally, an end-to-end tracing framework should always be running, even in a production system.
This is so that, if a performance problem were to be detected, one can immediately look at the
resulting traces as they have already been collected, which then speeds up the diagnosis process.
Otherwise, the process will be much slower as it would require tracing to be enabled, traces to be
collected, and then tracing to be disabled. In doing so, one may have to wait until the problem
appears again, which could happen again in some arbitrary time in the future. However, always-
on tracing is only achievable if the framework incurs a low performance overhead since few are
willing sacrifice performance in their systems.

4.1.2 Detailed Low-level Instrumentation

One of goals is to instrument at a fine granularity. For example, we have instrumented at the HDFS
packet level for the writes described in section 3. The reason for this is to expose as much detail as
possible to the developer. Also, in this way, tools such as Spectroscope can be even more precise
about the locations of the mutations in a request category, possibly helping to pinpoint the root
cause faster and more precisely. Another benefit of low-level instrumentation is its ability for its
traces to be aggregated to create a higher-level view if necessary. Essentially, by instrumenting at
the lowest level, we can expose information at any level above it. Thus, such a framework can be
used to capture problems both at the micro and macro level.

5

4.2 Challenges
4.2.1 Large Graphs

As a result of the detailed instrumentation, some graphs are very large. This occurs in HDFS
when capturing the behavior during the execution of a HDFS block write request. Figure 2 shows
a example of such a request flow graph. This graph is the result of capturing every packet send
iteration, each of which asynchronously waits for an acknowledgement. Depending on how many
iterations the operation must perform to complete the task, the graph can grow very large very
quickly. In the case of HDFS, it is dependent on the replication factor. However in all cases, the
number of nodes in a full block write is on the order of thousands. This is a problem for diagnosis
tools as they are generally not written to efficiently handle graphs of that size. Some tools will
run out of memory attempting to interpret the graph. GraphViz [9], a graph visualizer, is one such
tool. Spectroscope spends hours analyzing small workloads that generate small numbers of large
graphs. This implies that the effect of large graphs is very significant. Also, large graphs make it
difficult to achieve the goal of low overhead as large numbers of activity records will be captured
even in small workloads, thus likely affecting the performance of the instrumented system due to
the extra network traffic and processing.

4.2.2 Category Count Explosion

As a result of replication and the fact that the namenode is allowed to choose any set and any order-
ing of datanodes, there can be a very large number of categories for writes. Given n cluster nodes
and a replication factor of r, there can be nPr ∈ Θ(nr)2 unique sets of datanodes and orderings.
Also, there also are different graph structures based on amount of data written. In general, these
graphs must be in separate categories as the request physically took different paths. The effective-
ness of a tool such as Spectroscope is weakened as a result of a large number of categories because
the number of samples per category will be small, reducing power of the statistical comparison.

5 Approach
The general approach that was taken to implement the end-to-end tracing framework for HDFS was
to use existing building blocks as a foundation and modify as needed. The X-Trace [7] framework
was chosen as the primary foundation. This section describes the X-Trace framework, the reasons
for using it, and the challeges which emerged as the result of this choice.

5.1 X-Trace
X-Trace is a complete end-to-end tracing framework that can be installed into any system to enable
end-to-end tracing. In X-Trace’s instrumentation API, the activity record unit is called a report. It
has the form as shown below

2
nPr is bounded above and below by polynomials in n of degree r. nPr is the number of permutations of r

elements that can be made from n elements

6

����������	
����
������

����������	
�����������������

�����������

�������������

��������������

��������
���
���������������

�������������

��������
���
����������
��

��������������

����������
��

��������������

����������	
������������
��

���!����������

����������	
�������	�
��������
"#
��

���!�����������

������������
�����	�
��������
�
	$

��������������

������������
��
������
�
	$
�������

�����������

������������
��
������
�
	$
��
��

����������%���

������������
�����	�
��������
"#
��

�������������

���!��������
�����	�
��������
�
	$

����������!���

���!��������
��
������
�
	$
�������

�������������

���!��������
��
������
�
	$
��
��

����������%���

���!��������
�����	�
��������
��

�����������

������������
�����	�
��������#��
��

����������!���

������������
�����	�
��������
��

��������������

����������	
�������	�
��������#��
��

��������������

����������	
����
�������
���

���%����������

����������	
����
�������
���

����������%����

������������
��
�
	$
�����
���

����������%����

����������	
����
�������
���

�������������

������������
��
�
	$
�����
���

���%�����!����

����������	
����
�������
��%

��������������

������������
��
�
	$
�����
���

����������!���

����������	
����
�������
��!

���%%����������

������������
��
�
	$
�����
��%

����������!���

������������
��
�
	$
�����
��!

�������������

������������
����
�������
��!

��������������

������������
��
�������
��!

�����������

���!��������
��
�
	$
�����
��!

�������������

���!��������
����
�������
��!

��������������

���!��������
��
�������!

��������������

������������
��
�
	$
�����!

��������������

������������
����
�������!

�������������

������������
��
�������!

��������������

����������	
����
�
	$
�����!

��������������

����������	
������
�������!

�������������

����������	
���
��������

�����������

������������
����
�������
��%

�����������

���%�����������

������������
��
�������
��%

��������������

����������!!���

���!��������
��
�
	$
�����
��%

��������������

���!��������
����
�������
��%

�������������

�����������%���

���!��������
��
�������%

���!����������

����%����������

������������
��
�
	$
�����%

���!����������

������������
����
�������%

��������������

�����������!���

������������
��
�������%

�����������

����%����������

����������	
����
�
	$
�����%

����������!���

����������	
������
�������%

��������������

����!����������

������������
����
�������
���

�����������

��������������

������������
��
�������
���

�������������

����������%���

���!��������
��
�
	$
�����
���

��������������

���!��������
����
�������
���

�������������

����������%���

���!��������
��
��������

���������!����

�������������

������������
��
�
	$
������

���!�����%����

������������
����
��������

�����������

���%����������

������������
��
��������

�������������

����������%���

����������	
����
�
	$
������

��������������

����������	
������
��������

�������������

��������������

������������
����
�������
���

�����������

����������%���

������������
��
�������
���

��������������

��������������

���!��������
��
�
	$
�����
���

���!!���������

���!��������
����
�������
���

�����������

���%����������

���!��������
��
��������

���������%����

�������������

������������
��
�
	$
������

���%!���������

������������
����
��������

�������������

����������%���

������������
��
��������

�������������

����������%���

����������	
����
�
	$
������

���������%����

����������	
������
��������

�����������

��������������

������������
����
�������
���

�������������

���%����������

������������
��
�������
���

��������������

���%����������

���!��������
��
�
	$
�����
���

���%����������

���!��������
����
�������
���

�������������

���%�����!����

���!��������
��
��������

��������������

����������%���

������������
��
�
	$
������

���%����������

������������
����
��������

�����������

���%�����!����

������������
��
��������

�������������

���%�����!����

����������	
����
�
	$
������

���������������

����������	
������
��������

�����������

��������������

Figure 2: A request flow graph for a the write of a partial block with a replication factor 2 and 5
packet sends. As an HDFS packet is being sent through the pipeline, another packet can be sent
without waiting for the acknowledgement for the previous packet. This leads to a fork in the graph
for each packet send and the diamond shape seen in the graph, where each column represents a
single packet being sent through the pipeline.

X-Trace Report ver 1.0
X-Trace: 194C79295549A3866ECCC315DD47301EA7
Host: ww2-laptop
Agent: Namenode
Label: WW2-LAPTOP_NAMENODE_MKDIRS_START
Edge: E7EB8787515DA35E
Timestamp: 181854865781004

Essentially, it is a collection of key-value pairs of the form key : value. There are several required
keys, one of which is X-Trace, the unique identifier of the report. Its value is composed of three
parts. The first byte describes the length of the next two components of the metadata using X-

7

Trace’s defined bit representation. 19 means that they are both 8 bytes in length. The task ID is
the next component and is follwed by the event ID. These two components are called the report’s
metadata. The task ID is a random number assigned to a request and is constant across all reports
associated with the same request. The event ID is a unique number used to differentiate reports of
the same request. Reports are stitched together to form a request flow graph using the Edge key.
The value of an Edge is the event ID of a parent report. For instrumentation points to recognize
a parent, the metadata of the last report must be known. Within a component, this is done by
saving the metadata either as a thread local variable in a thread-based system or as part of a data
structure in case of a event-based system. In the first case, we use the setThreadContext()
method to set the thread local variable. In the second case, we save the value retrieved from
getThreadContext() in the data structure used in callbacks. Between components, this is
achieved by augmenting communication protocols of the system to send X-Trace metadata between
instrumented components. Here is an example of adding the metadata to a protocol:

...
byte[] buf =

XTraceContext.getThreadContext().pack();
out.writeInt(buf.length);
out.write(buf);
...
out.flush()

Simiarly, on the other side, we insert some code to retrieve the metadata:

...
int len = in.readInt();
byte[] bf = new byte[len];
in.readFully(bf);
XTraceMetadata meta =
XTraceMetadata.createFromBytes(bf, 0, len);
XTraceContext.setThreadContext(meta);
...

There were several reasons we chose X-Trace. The metadata that is required by X-Trace is
small and constant size, which allows X-Trace to achieve a low instrumentation overhead. There
had been previous work in instrumenting Hadoop and HDFS using X-Trace [15]. According to the
homepage, Hadoop and HDFS had been completely instrumented, and they could produce useful
graphs that could be used to aid in diagnosis. This project is a proof of concept that X-Trace could
successfully be used to instrument Hadoop and produce useful results.

5.1.1 Architecture

Figure 3 shows the architecture of the X-Trace framework. The instrumented software components
send their records to a local port. In HDFS, the instrumented components would be the clients,

8

namenode, and datanodes. An X-Trace proxy daemon runs on the same node as the instrumented
component, reads from that local port and forwards the records to the collection server. The col-
lection server then stores the records in a local database, which sorts them by task ID. Using a web
interface, one could query the database for specific request flow graphs.

Figure 3: X-Trace architecture: This figure shows how X-Trace would be integrated in an HDFS
cluster. Every node runs a proxy, which would collect X-Trace reports locally and then forward
them to a central server.

5.2 Poor scalability of X-Trace
There were two issues we encountered when attempting to use the unmodified X-Trace framework:

• X-Trace was not robust to activity record drops. As described in section 2, the stitching
mechanism in X-Trace relies on an Edge key inserted in the report that would contain the
value of the parent’s event ID. However, this means that if any record were dropped, some
node’s parent will not exist and the graph will not be connected. We lose the total ordering
of the records, and the graph is no longer meaningful. As the scale of the cluster increases,
the likelihood of record drops also increase, which implies an increase in request flow graphs
that cannot be constructed, which will decrease the utility of diagnosis tools as they have less
information to use.

• X-Trace’s central server is not scalable. The server dumps all records into a shared bounded
buffer that a separate thread asynchronously empties and inserts into the database. Because
of our detailed instrumentation, we generate activity records at a rate much faster than the
buffer empties and, thus, the buffer overflows. This, in combination with the above problem,
leads to a high probability that a request flow graph be unable to be stitched together. This
problem is only exacerbated as the number of nodes in the cluster increases.

The two charts in figure 4 show two different measurements of scalability. The first shows the
percentage of malformed graphs formed during a sort job as cluster size increases. A malformed
graph is any graph that is detected to be missing some activity record in the process of being con-
structed. Thus, we can view the number of malformed graphs as a measurement of activity records

9

that were dropped end-to-end. For these sets of experiments, the malformed graph detection algo-
rithm was not strict, so the percentage may be an underestimate of the true value. The checks that
were made were as follows:

• The root node’s label matched the last node’s label. E.g., if the root had label FUNCTION START,
the last node must have label FUNCTION END.

• The graph is connected.

• There is exactly one node with indegree 0, i.e. there is only one node that can be designated
as root.

• There is exactly one node with outdegree 0, i.e. there is only one node that marks the end of
the request.

Regardless, we can see approximately 10% of graphs being malformed, implying that the absolute
number of malformed graph increases linearly as cluster size increases.

The second chart shows the percentage of activity records dropped according to the server,
because of buffer overflow. The reason we also present this chart is because the ”‘percentage of
malformed graphs measurement”’ is an indirect measurement of record drops, which is often not a
1-to-1 relationship. A graph is considered malformed if it is missing at least one record. The graphs
generated by these workloads vary greatly in size. Some have over 15000 nodes while others only
have 6. Therefore, if activity records are dropped uniformly at random, it is quite likely that many
of them were part of the same graph. Regardless of the number of nodes dropped from a single
graph, it counts only as one malformed graph, which underrepresents the number of record drops.
Another issue is that if all the activity records for a request flow graph were dropped, this graph is
not reported at all in the malformed or total graph count. If we look figure 4(b), we can see that
percentage more than tripled between 10 and 20 nodes, meaning that X-Trace does not scale at all
passed 20 nodes.

6 Design
This section describes the various aspects of the current design of the framework. The original
X-Trace framework did not scale well and thus we modified the architecture. The modifications
are discussed in this section. Also, we will describe the preliminary API for accessing activity
records, and we present approaches for dealing with the graph challenges.

6.1 New Architecture
There already exist stable implementations for each of components that are required for a scalable
end-to-end tracing framework. The code of these open source software components have been
tested and continually revised and improved and likely to be robust to failure. Thus, we constructed
the end-to-end tracing framework by combining such components. In this way, we were able to
quickly create a robust system where the only code that required extensive testing was the glue

10

code that makes each of the components compatible with each other. This allows us to focus on
improving the system’s ability to gather information for performance diagnosis.

Figure 5 shows the new architecture. We replaced the X-Trace collection and storage compo-
nents with Flume [5] and HBase [11] respectively, which we believe are more scalable than the
original components.

6.1.1 Flume

Flume [5] is a distributed collection service developed by Cloudera. An instance of Flume contains
a master and agent nodes. The master keeps track of the state of the instance. Each agent can be
assigned a source, a location from which to receive log data, and a sink, a location to which to
send log data, by the master. In the new architecture, we replaced the X-Trace proxy daemon
with a Flume agent. We configure the master to assign the source to be the same local port as in
the previous architecture. Instead of the X-Trace collection server, the sink is assigned to be the
specific HBase table that will store the activity records.

6.1.2 HBase

HBase [11] is the open source implementation of BigTable [3]. Like BigTable, it is a distributed
structured data storage system meant to scale to large sizes. It is essentially a multidimensional
sorted map3. The map is indexed by row key, column key, and timestamp. The values stored in the
map are uninterpreted arrays of bytes. Row keys are arbitrary strings and are used to lexigraphically
sort the data. Columns are of the form family:qualifier. This is because column keys are grouped

3A data structure composed of a collection of unique keys and a collection of values where each key is associated
with one value.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

of Nodes

%
 M

a
lf
o
rm

e
d

(a)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

of Nodes

%
 D

ro
p
p
e
d

(b)

Figure 4: These charts measure the scalability of the X-Trace architecture. The first chart shows
the percentage of requests whose graphs are malformed. The second chart shows the percentage
of activity records dropped by the server because of buffer overflow.

11

Figure 5: New X-Trace Architecture: The major changes to the architecture include replacing the
proxy daemons with Flume nodes and replacing the central server with an HBase instance.

in sets called column families. Usually, data stored in a column family is of the same type (since all
data in the same column family is compressed). Column families must be created before storing
data under any column key of that family. After a family is created, any column key can be
used within that family. We chose HBase as the storage backend for activity records in our new
architecture, because it has been shown that the BigTable data model scales very well.

Schema Since the map is lexigraphically sorted based on row key, we chose a schema for naming
rows and columns such that activity records that are closely related to each other will appear near
each other in the map. The schema for the current implementation is relatively simple and is
shown in Table1 with some example rows. The jTId is normally the ID of the map or reduce
task in a mapreduce job. In the case that the request was not from a MapReduce job, the jTId is
a random number. If a request is system initiated, the jTId is the string system concatenated
with a random number. The taskID and eventID are the two parts of the X-Trace metadata.
The pID is for stitching records together and represents the Edge key in an X-Trace report. Each
row contains 1 column, which is the instrumentation point name and is part of the column family,
inst pt name. The value in the column is any arbitrary value as it is unused. This is a simple
schema that groups reports of the same job together. Then, they are further grouped by request. In
this way, a scan of the map can efficiently get all the rows associated with a job or job and request,
which will likely be the most common queries to this table.

6.1.3 API

We use a single base method for requesting traces from the table:

12

Row Key Column Key
inst pt name:FOO START

<jTId> | <taskId> | <[pId,...]eventID> | <timestamp> 1
1|12|17|13245 1

attempt 201107062337 0015 m 001435 0|7|1|123 1
system12|19|123|1444 1

Table 1: Example rows in table: This table shows the format of the row key and column as well
as some example entries of these three kinds (standalone, MapReduce, and system) of requests in
HDFS.

getActivityRecords(jobId, taskId, start, end) This method will return all the activity records
whose job ID matches jobId and whose task ID matches taskId between the times start
and end in X-Trace report format. jobId and taskId can both be wildcard strings. Each
of these parameter have default values and would cause the method to return all traces, (i.e.
jobId=‘‘*’’, taskId=‘‘*’’, start=0, and end=MAX VALUE, where MAX VALUE is
the maximum value of a long) such that, in general, not all of them have to be specified. The
method is also defined such that it is independent of schema. The API was also designed such that
it would be simple to get all the records of a particular workload (e.g., using jobId), and comparing
them to a different workload. Also, limiting the times allows one to compare traces received during
a non-problem period to traces in a problem period.

6.2 Graph Compression
To address very large graphs, we use compression of the graph structure. We attempt to reduce the
number of nodes and edges that a graph contains while retaining the extra information in a different,
simpler format. In many cases, large graphs are the result of large numbers of repeated subgraphs,
which we see in HDFS block writes. Each HDFS packet that travels through the pipeline touches
the same set of instrumentation points in the same order. Therefore, we can compress the graph
by replacing the repeated copies of the subgraph with a single representative subgraph. In order to
achieve this, treat the instrumentation points as states in a state machine. Moving from a instru-
mentation point to instrumentation point is a transition between states. Then, we can create a new
graph where the nodes are the unique instrumentation points and edges are possible transitions be-
tween states. A subgraph in the original graph is isomorphic to a set of transitions that were made
in the state machine. Then in the new graph, we allow edges to be labeled with a set of latencies,
instead of only a single latency. For each edge in the subgraph, we find the corresponding transi-
tion in the new graph and add the latency of that edge to that transition’s latency set. In this way,
we have compressed the graph’s structure while retaining the information in the original graph.
Figure 6 shows an example of a write graph after it has been compressed.

The described compression algorithm can also slightly reduce the number of categories. This
is because we would compress a full block write and partial block into the same kind of graph as
the difference between them is the number of repeated subgraphs. However, this does not affect
the number of possible permutations, which is still a problem. Thus, we also want compress the

13

����������	
����
������

����������	
�����������������

�����������

�������������

��������������

��������
���
���������������

�������������

��������
���
����������
��

��������������

����������
��

��������������

����������	
������������
��

���!����������

����������	
�������	�
��������
"#
��

���!�����������

������������
�����	�
��������
�
	$

��������������

������������
��
������
�
	$
�������

�����������

������������
��
������
�
	$
��
��

����������%���

������������
�����	�
��������
"#
��

�������������

���!��������
�����	�
��������
�
	$

����������!���

���!��������
��
������
�
	$
�������

�������������

���!��������
��
������
�
	$
��
��

����������%���

���!��������
�����	�
��������
��

�����������

������������
�����	�
��������#��
��

����������!���

������������
�����	�
��������
��

��������������

����������	
�������	�
��������#��
��

��������������

����������	
����
�������
���

���%����������

����������	
����
�������
���

����������%����

������������
��
�
	$
�����
���

����������%����

����������	
����
�������
���

�������������

������������
��
�
	$
�����
���

���%�����!����

����������	
����
�������
��%

��������������

������������
��
�
	$
�����
���

����������!���

����������	
����
�������
��!

���%%����������

������������
��
�
	$
�����
��%

����������!���

������������
��
�
	$
�����
��!

�������������

������������
����
�������
��!

��������������

������������
��
�������
��!

�����������

���!��������
��
�
	$
�����
��!

�������������

���!��������
����
�������
��!

��������������

���!��������
��
�������!

��������������

������������
��
�
	$
�����!

��������������

������������
����
�������!

�������������

������������
��
�������!

��������������

����������	
����
�
	$
�����!

��������������

����������	
������
�������!

�������������

����������	
���
��������

�����������

������������
����
�������
��%

�����������

���%�����������

������������
��
�������
��%

��������������

����������!!���

���!��������
��
�
	$
�����
��%

��������������

���!��������
����
�������
��%

�������������

�����������%���

���!��������
��
�������%

���!����������

����%����������

������������
��
�
	$
�����%

���!����������

������������
����
�������%

��������������

�����������!���

������������
��
�������%

�����������

����%����������

����������	
����
�
	$
�����%

����������!���

����������	
������
�������%

��������������

����!����������

������������
����
�������
���

�����������

��������������

������������
��
�������
���

�������������

����������%���

���!��������
��
�
	$
�����
���

��������������

���!��������
����
�������
���

�������������

����������%���

���!��������
��
��������

���������!����

�������������

������������
��
�
	$
������

���!�����%����

������������
����
��������

�����������

���%����������

������������
��
��������

�������������

����������%���

����������	
����
�
	$
������

��������������

����������	
������
��������

�������������

��������������

������������
����
�������
���

�����������

����������%���

������������
��
�������
���

��������������

��������������

���!��������
��
�
	$
�����
���

���!!���������

���!��������
����
�������
���

�����������

���%����������

���!��������
��
��������

���������%����

�������������

������������
��
�
	$
������

���%!���������

������������
����
��������

�������������

����������%���

������������
��
��������

�������������

����������%���

����������	
����
�
	$
������

���������%����

����������	
������
��������

�����������

��������������

������������
����
�������
���

�������������

���%����������

������������
��
�������
���

��������������

���%����������

���!��������
��
�
	$
�����
���

���%����������

���!��������
����
�������
���

�������������

���%�����!����

���!��������
��
��������

��������������

����������%���

������������
��
�
	$
������

���%����������

������������
����
��������

�����������

���%�����!����

������������
��
��������

�������������

���%�����!����

����������	
����
�
	$
������

���������������

����������	
������
��������

�����������

��������������

(a)

����������	
����
������

����������	
�����������������

�����������

�������������

�������������

��������
���
���������������

�����������������

��������
���
����������
��

��������������

����������
���

�����������������

����������	
������������
��

��������� ����

����������	
�������	�
��������
!"
��

�����������#���

������������
�����	�
��������
�
	$

���������% ����

������������
��
������
�
	$
�������

�������������

������������
��
������
�
	$
��
��

���������%% ���

������������
�����	�
��������
!"
��

�������������

������������
�����	�
��������
�
	$

���%�#���������

������������
��
������
�
	$
�������

�������������

������������
��
������
�
	$
��
��

���%������������

������������
�����	�
��������
���

�������������

������������
�����	�
��������"��
��

���%�#���������

������������
�����	�
��������
���

�������������

����������	
�������	�
��������"��
��

�������������

����������	
����
�������
�

��� ����������

���%��&'(

������������
��
�
	$
�����
�

�����&'(

������������
����
�������
�

���%�&'(

�����&'(

������������
��
�������
�

�����&'(

���%��&'(

������������
��
�
	$
�����
�

�����&'(

������������
����
�������
�

���#�&'(

���% �&'(

������������
��
������

��� �&'(

���%#�&'(

������������
��
�
	$
����

�����&'(

������������
����
������

�����&'(

�����&'(

������������
��
������

���%��&'(

���%��&'(

����������	
����
�
	$
����

���%%�&'(

����������	
������
������

���%��&'(

���%��&'(

����������	
���
��������

�����������

(b)

Figure 6: This figure shows the before and after compression of a write graph. For parts of the
graph that do not repeat, the edges are labeled with a single latency. Otherwise, if the transition
occurs multiple times, the latencies are stored in a separate file and the edge is label with the file’s
name.

number of categories by combining them. The major problem is actually the fact that there are
too few samples in each category for a valid statistical analysis. Therefore, if we can combine
categories that are “similar”, we increase the number of samples per category, allowing for a better
statistical analysis. For example, if we look at HDFS writes again, we see that there are large
number of potential categories because of all the permutations of the datanodes for the pipeline.
However, it’s likely all permutations of the same r datanodes produce very similar graphs. It may
even be that any permutation of r datanodes in the same rack produce very similar graphs. Also,
combining categories does not complicate diagnosis. If, after combining categories, we find a
mutation in a combined category, we can perform anomaly detection in the category to find the
individual category that contributed most to the mutation. Thus, it makes sense to combine graphs.
Unfortunately we have not yet designed an algorithm to find combinable categories, and so we
cannot yet evalute its effectiveness.

7 Implementation
This section describes the modifications made to the X-Trace instrumentation API, describes the
modifications made to HDFS protocols in order to support X-Trace instrumentation and explains
some of the HDFS behavior that has been instrumented.

14

7.1 X-Trace Modification
The base X-Trace instrumentation API was improved upon for this framework. One of the major
changes is changing the method to uniquely identify reports, allowing for a robust method of
stitching reports together to create request flow graphs. As mentioned before, the original method
was to generate a new event Id for each new report. Then, one would add an Edge key to link back
to the parent. The new method is slightly different and is based on a similar idea as implemented
by Stardust [14]. New event IDs are only generated when necessary. Instead, we rely on timestamp
to uniquely identify and order the reports. Given that timestamps are at the nanosecond time scale,
it is not possible for two reports to be timestamped with the same value when on the same machine.
There are still times in which the original method must be used. Since we do not assume that the
clocks are synchronized in the cluster, we must change event IDs whenever a request moves to a
different machine because the invariant is no longer true. Other cases include forks. Both branches
of a fork must have a different event ID from the parent or one cannot capture the parallel activity.
Regardless, now there exist cases where even some reports are lost, a portion of the graph can still
be constructed.

Another important change is the addition of the job ID. Adding the job ID is necessary to iden-
tify HDFS request as being part of a MapReduce job and necessary to support the API described
in the Design section. Finally, an important addition is request-level sampling [6], i.e. probabilitis-
tically choosing whether or not to report a request. By sampling requests instead of reporting all of
them, we can keep the overhead of the framework low in both processing time and network traffic.
In general, even though not all requests are reported, if we choose a good value for the sample
rate, statistical performance diagnosis still can be done effectively as shown by Spectroscope when
working with sampled request flow graphs generated by Stardust.

7.2 Protocol Modification
There are two main communication protocols in HDFS. On is Hadoop RPC, which is mainly used
by client applications and datanodes to communicate with the namenodei in HDFS. Then there
is the DataTransferProtocol, the protocol used for operations related to data blocks such as read,
writes, and checksums.

7.2.1 Hadoop RPC

Hadoop has a RPC library used by all components that use RPC to communicate. This library
uses Java’s reflection capabilities to implement an RPC system. First an interface containing all
the functions to be exposed by the server is written. The server implements this interface while
the client creates a proxy object that acts on behalf of the interface. Whenever a function of the
interface is invoked by the client, the proxy object captures the call and issues the RPC. The server
receives the RPC and executes the function. The server sends the results to the proxy, and the
proxy returns the results to the client. To add X-Trace support to this path, the X-Trace metadata
needed to be added to each issued RPC and to each RPC reply. This was done essentially by
concatenating the length of the metadata and the metadata itself to the end of the packet (similarly

15

with job ID). Instrumentation points are generated automatically for any function using the RPC
library. The only requirement is that an interface must declare to X-Trace that its functions should
be instrumented.

7.2.2 DataTransferProtocol

DataTransferProtocol is the protocol used by HDFS to initiate block operations. To start a block
operation, one sends a message that starts with the operation type (e.g. OP READ BLOCK) fol-
lowed by any parameters required by the operation. Also part of the protocol is the specification
for the packet used for block transfer. It has a fixed size header that is then followed by chunks
of the block and their checksums. To add support for X-Trace instrumentation, the metadata (and
job ID) were concatenated to the end the block operation messages, and the packet header was
augmented to contain the metadata. Since the header was fixed size, the metadata size had to be
a fixed size as well. In the current implementation, the task ID and event ID are both 8 bytes in
length in all cases.

7.3 Instrumented Behavior
Currently, only requests made by client applications to HDFS are instrumented. The communica-
tion paths can be catagorized into two types: communication between clients and the namenode,
and communication between clients and datanodes.

7.3.1 Client-Namenode

Communication of this type uses the RPC library. Because of the automatic instrumentation point
generation, the only code required for these requests to be captured is the declaration as mentioned
in Section 7.2.1.

7.3.2 Client-Datanode

Communication of this type uses the DataTransferProtocol. Only two types of block operations
are instrumented at the moment, which are the block reads and writes as described in Section 3.
This section describse the operations in greater detail.

Read Reads are initiated using open(). In open(), the client gets a list of the locations of
the first few blocks from the namenode and caches them and then returns a DFSInputStream
object. The client uses the read() method of the DFSInputStream to read the file. Com-
munication with the datanode does not happen until a call to read() is made. When read()
is called and it is not in the middle of reading a block, it calls blockSeekTo, which looks
in the block location cache to find the location of the best datanode to read from for the next
block. In the case of a cache miss, the client first communicates with the namenode to get the next
few block locations. It then initiates a connection using the OP READ BLOCK command in the
DataTransferProtocol. If the command is successful, a socket is set up such that the client

16

can read from the block. Subsequent read()s read from the socket until the end of the block and
either the process repeats itself or end of file was reached. Instrumentation points were added to
the start and end of the above mentioned functions to capture the behavior. Figure 7 shows the start
of a new block read.

����������	
��������

���������

����������	
�������
���������
��
��

��������������

������������
�����
���������
�
	�

����� ��������

������������
��
!�����
��
�������

���"�"���"���

������������
��
!�����
��
��
��

��������� ���

������������
�����
���������
��#

����� �� ���

����������	
�������
������������
��

����"���������

����������	
��������

����
��

���������$"���

Figure 7: Starting a block read: The client sends a OP READ BLOCK message to the datanode.
The datanode creates a new block sender, which is the object that sends the block to the client.

Write Writes are initiated using create() or append(). In both functions, DataStreamer
and ResponseProcessor threads are created and then DFSOutputStream object is re-
turned. The client uses the write() method of the DFSOutputStream to write to the file.
When write() is called, it writes data to a packet to be sent by the DataStreamer. When
the packet is full, it is placed on the DataStreamer’s send queue to be sent asynchronously.
For each block, the DataStreamer makes a call to the namenode to get a set of datanodes to
replicate the block on. It then initiates a connection with the first node in the pipeline with the
OP WRITE BLOCK command. Then, it sends packets to the first datanode in the pipeline and
places those packets on to the ResponseProcessor acknowledgement queue. For each datan-
ode, if there is a next datanode, it first sends the packets to the next datanode and then writes
the packet to disk and puts the packets on its own acknowledgement queue to wait for acknowl-

17

edgments downstream. The last datanode sends acknowledgements for each packet it receives
upstream. Acknowledgements eventually propagated back to the ResponseProcessor after
each datanode verifies each acknowledgement along the way.

As mention in Section 4, block writes are the largest cause of both the large graphs and large
number of categories problems. This is because of the large number of HDFS packets which have
to be sent to complete a block write, since a block is 64MB and each packet is 64KB. This means
at least 1024 packets need to be sent to complete the write. On the send of a packet to a datanode, 5
instrumentation points are touched. Hence, with a replication factor of 3, 15 reports are generated
per packet leading to over 15,000 nodes in the graph for a single block write. Replication allows
for Θ(nr) paths for satisfying a block write request. Given that the namenode attempts to load
balance data blocks across the datanodes, it is definitely possible every ordering of every set of
nodes to be chosen for the pipeline causing a large number of categories to be formed.

8 Evaluation
This section discusses the perfomance of the system, and compares the scalability of the original
X-Trace collection backend compared to the new one that uses Flume with HBase. We show the
average graph sizes and average number of categories for several MapReduce workloads, before
and after graph compression. We also show that the instrumentation is correct and potentially
useful by showing a small example of problem diagnosis using Spectroscope. All experiments,
including the ones mentioned in Section 5, were run on a cluster of 20 machines each with 2
Intel Xeon 3.00GHz processors, 2GB of RAM, and 1Gbit Ethernet. On these machines, the UDP
receive buffer was increased to 393,213 bytes, which is triple the original buffer size, in order to
counter the effects of socket buffer overflow. The replication factor of the HDFS instance was 3.
For these experiments, the X-Trace server’s bounded buffer had a size 64 times the original, which
allowed it to handle loads much larger than it normally would have. Both architectures used the
modified stitching method mentioned in section 7.

8.1 Performance
Using a 100 GB sort workload over 10 nodes, we tested the overhead of instrumentation. The
comparison was made been a cluster with no instrumentation and a cluster that samples requests
at a rate of 10% (which is also the sample rate used for all experiments). It was found that, on
average, the instrumentation induced an overhead of 2.5% with respect to job completion time,
which matches the low overhead numbers of other end-to-end tracing implementations[13, 2, 14].

8.2 Scalability
We performed the same scalability experiments as described in Section 5 on the new architecture
as we did on the original. The below graphs shows the values for both the original and new
architectures. One can see that the new architecture behaves better than the original. In terms
of malformed graphs, the number is actually constant across all cluster sizes, which is why the

18

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

of Nodes

%
 M

a
lf
o
rm

e
d

Old

New

(a) Comparing % of malformed graphs

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

%
 D

ro
p
p
e
d

of Nodes

Old

New

(b) Comparing % of dropped records

Figure 8: Scalability graphs of both architectures

percentage decreases overall. There are no reported packet drops at all in the new system. The
malformed graphs are primarily due to incomplete graphs collected at experiement end. From
these results we can conclude that there was major benefit from switching to the new architecture.

8.3 Graphs
As noted in Section 4, there exist problems in both the graph size and number of categories. Tables
2 and 3 show the values we see from a 10-node cluster running several benchmark workloads on
100GB of input data.

Workload Avg. Size Avg. Write Size Standard Deviation
sort 1625.153 15443.641 4740.376

wordcount 98.502 13309.571 1186.343
grep 7.354 41 1.408

Table 2: The average sizes of graphs generated by the workloads. Size refers to the number of
nodes in the graphs

Workload # of categories Avg. Category Size
sort 289 5.249

wordcount 125 8.168
grep 117 8.932

Table 3: The average size number and size (i.e. number of graphs) of graph categories

19

8.4 Reduction
As we can see from the previous tables, the average graph size can be very large. Also, the number
of categories can be large with few samples in each category. Using the algorithm described in
Section 6, we were able to compress the graphs and achieve the values as shown in Tables 4 and 5.

Workload Avg. Graph Size Avg. Write Size Standard Deviation
sort 10.769 41 10.389

wordcount 7.532 41 2.940
grep 7.354 41 1.408

Table 4: The average sizes of graphs after compression

Workload # of categories Avg. Category Size
sort 275 5.516

wordcount 124 8.234
grep 117 8.932

Table 5: The average number and size of graph categories after compression

By compressing the graphs, we have significantly lowered the average graph size of writes,
essentially solving the problem of large graphs, though diagnosis tools may need to make modi-
fications in order to be compatible with the changed format. However, we see that the number of
categories was barely reduced. We believe that our approach to graph category compression will
exhibit similar benefits for graph category number and size, but do not yet have an implementation
with which we can experiment.

8.5 Problem Diagnosis
In order to show that Spectroscope can be used, we ran two executions of the same 100GB Sort
workload on 10 nodes. One execution was a normal execution, which represented the non-problem
period. The other execution had an induced delay in the RPC library and represented a problem
period. The experiment was done with both a 50ms delay and a 500ms delay. For both values of
delay, Spectroscope was able to detect response-time mutations in the affected categories and saw
no mutations in any of the others. The p-value calculated by Spectroscope was less than 0.001
for both delay amounts for each of the categories. This means that Spectroscope was confident in
rejecting the null hypothesis for those categories.

We also modified Spectroscope to be able to accept compressed graphs. Using compressed
graphs, Spectroscopes total processing time was reduced from several hours to several minutes.
We also discovered an unexpected result. We ran a similar Sort experiment where instead, we
induced a delay in a node’s HDFS packet sends so that the latencies in write graphs would be
affected. Spectroscope was unable to detect this delay using uncompressed write graphs because

20

it believed that there were too few samples for each edge to detect response-time mutations. How-
ever, when the graphs were compressed, Spectroscope detected this behavior change with very
high confidence (p-value < 0.0000001). This seems to be the result of labeling edges with a set of
latencies. Spectroscope considered each of the latencies a separate sample. As a result, there were
over 1000 samples for many of the edges, which is significantly greater than what is necesary for a
meaningful hypothesis test and why Spectroscope had such high confidence. Thus, it would seem
that graph compression can aid in problem diagnosis by reducing graph size as well as increasing
the number of samples for sparse categories.

9 Future Work
There are several main areas in which we see valuable additional work. This section lists and
explains the areas which we wish to expand into. Most of the future work will be focused on
improving the framework in various ways. However, there will also be work looking into solving
the graph problems encountered during development.

9.1 Instrumentation
Further instrumentation should be added HDFS to capture the namenode-datanode and some other
parts of the datanode-only communication path. HDFS does perform system tasks in the back-
ground, which could affect performance of jobs. Another place for instrumentation are locks in
HDFS, since locks are places of contention and are often the causes of performance problems.

9.2 Case Studies
Case studies should be done to validate the usefulness of the end-to-end tracing framework. There
are plans to introduce the framework into a production cluster. Feedback from users of the cluster
should be able help improve the effectiveness of the framework. Also, we would like to test the
capabilities of the framework to capture previously seen performance problems in HDFS and/or
Hadoop and be used to determine the root cause.

9.3 Using MapReduce to convert traces into graphs
There are plans to add a periodically running MapReduce job to the framework. What this MapRe-
duce job would do is read from the record table and automatically construct the request flow graphs
and insert them into a separate table as rows. Then, the query API would be augmented to allow
users to query for complete graphs instead of just activity records. There are several challenges
here. One is a question about knowing when all the reports for some request have been received.
When the reducer constructs the graph and realizes that it is malformed, it does not know if it is
malformed because not all reports have been received yet or because some report was dropped.
And, in some instances, it is possible to construct a non-malformed graph even when not all the
reports have been received. A simple solution is to run the job on all the rows in the record table

21

every time and then update the graph table when changes are found. However, this will lead to poor
performance as the record table will continually increase in size. It makes sense to only require
construction of graphs of new requests in order to improve performance. Another challenge is de-
ciding on a practical schema to store the graphs. It is not entirely clear how one would efficiently
store a graph as a single row in a table. As we have seen, graphs can get very large and thus a single
row may have to store a lot of information. At the moment, we have map and reduce functions that
can take activity records and convert them into in-memory representations of graphs. Most of the
challenges still require futher work.

9.4 Graph Challenges
The graph compression algorithm used to gather the results in the evaluation section attempts to
reduce request flow graphs into a state-machine representation to reduce graph size. It is not clear
that this is the best method for compressing graphs. There may exist other methods that may work
better. One possibility is to predefine an expected final graph structure instead of trying create
one automatically, like the state machine method, and attempt to make the large graph fit into the
graph structure using some heuristics. Such a method might allow for better compression, but it
requires a deep understanding of the instrumented system. Therefore, we must weigh the benefits
and drawbacks of each method to determine the best method for compression.

At present, we have not yet designed an algorithm for finding similar catagories and combining
them. In general, such an algorithm will rank the similarity of two categories by some measure. It
is not clear what the correct measure is. As mentioned before, the change in variance by combining
categories might be a good measure. However, there might be other measures which are better or
could be used in tandem to improve the algorithm. More research is necessary to develop the
algorithm.

10 Conclusion
In this report, we introduce the design and implementation of an end-to-end tracing framework
and its integration into HDFS. Our approach to implementation differs from previous approaches
mainly in the desire to have detailed low-level instrumentation. We have noted several challenges
that were encountered during development. Some of these challenges involve the request flow
graphs themselves and their sizes and categories. These challenges may appear in other systems
and therefore are important to continue researching. As our evaluation has shown, the current
implementation uses Flume with HBase and scales well up to 20 nodes, losing essentially no
records. We have also shown promising results on the compression of large graphs and a case
where the instrumentation could be used to diagnose a simple performance problem. There are still
many things that can be improved upon, but, the preliminary evaluations show there is potential
for this end-to-end tracing infrastructure to be effective and useful.

22

References
[1] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R. Ganger, James

Hendricks, Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Brandon Salmon,
Raja R. Sambasivan, Shafeeq Sinnamohideen, John D. Strunk, Eno Thereska, Matthew
Wachs, and Jay J. Wylie. Ursa minor: versatile cluster-based storage. In Conference on
File and Storage Technologies, pages 59–72. USENIX Association, 2005.

[2] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using magpie for
request extraction and workload modelling. In Symposium on Operating Systems Design and
Implementation, pages 259–272. USENIX Association, 2004.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed
storage system for structured data. In Symposium on Operating Systems Design and Imple-
mentation, pages 205–218. USENIX Association, 2006.

[4] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Dave Patterson, Armando Fox, and Eric
Brewer. Path-based failure and evolution management. In Symposium on Networked Systems
Design and Implementation, pages 309–322. USENIX Association, 2004.

[5] Flume. http://www.cloudera.com/blog/category/flume/.

[6] Rodrigo Fonseca, Michael J. Freedman, and George Porter. Experiences with tracing causal-
ity in networked services. In Internet Network Management Workshop / Workshop on Re-
search on Enterprise Networking. USENIX Association, 2010.

[7] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. X-trace:
a pervasive network tracing framework. In Symposium on Networked Systems Design and
Implementation. USENIX Association, 2007.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In ACM
Symposium on Operating System Principles, pages 29–43. ACM, 2003.

[9] Graphviz. http://www.graphviz.org/.

[10] Hadoop. http://hadoop.apache.org/.

[11] Hbase. http://hbase.apache.org/.

[12] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat, Spencer Whitman,
Michael Stroucken, William Wang, Lianghong Xu, and Gregory R. Ganger. Diagnosing
performance changes by comparing request flows. In Symposium on Networked Systems
Design and Implementation, pages 43–56. USENIX Association, 2011.

23

[13] Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal,
Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a large-scale distributed sys-
tems tracing infrastructure. Technical report, Google, 2010.

[14] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio
Lopez, and Gregory R. Ganger. Stardust: Tracking activity in a distributed storage system. In
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages
3–14. ACM, 2006.

[15] Matei Zaharia and Andy Konwinski. Monitoring hadoop through tracing, 2008.
http://radlab.cs.berkeley.edu/wiki/Projects/X-Trace on Hadoop.

24

	1 Introduction
	2 End-to-end Tracing
	2.1 End-to-end Tracing Frameworks
	2.2 Spectroscope
	2.3 Other Tools

	3 Hadoop Distributed File System
	4 Goals and Resulting Challenges
	4.1 Goals
	4.1.1 Low overhead
	4.1.2 Detailed Low-level Instrumentation

	4.2 Challenges
	4.2.1 Large Graphs
	4.2.2 Category Count Explosion

	5 Approach
	5.1 X-Trace
	5.1.1 Architecture

	5.2 Poor scalability of X-Trace

	6 Design
	6.1 New Architecture
	6.1.1 Flume
	6.1.2 HBase
	6.1.3 API

	6.2 Graph Compression

	7 Implementation
	7.1 X-Trace Modification
	7.2 Protocol Modification
	7.2.1 Hadoop RPC
	7.2.2 DataTransferProtocol

	7.3 Instrumented Behavior
	7.3.1 Client-Namenode
	7.3.2 Client-Datanode

	8 Evaluation
	8.1 Performance
	8.2 Scalability
	8.3 Graphs
	8.4 Reduction
	8.5 Problem Diagnosis

	9 Future Work
	9.1 Instrumentation
	9.2 Case Studies
	9.3 Using MapReduce to convert traces into graphs
	9.4 Graph Challenges

	10 Conclusion

