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Abstract

SmartScan is a metadata crawl tool that exploits patterns in metadata changes to significantly improve the efficiency of support

for file-system-wide metadata querying, which is an important tool for administrators. In most environments, support for metadata

queries is provided by databases populated and refreshed by calling stat() on every file in the file system. For large file systems,

where such storage management tools are most needed, it can take many hours to complete each scan, even if only a small per-

centage of the files have changed. To address this issue, we identify patterns in metadata changes that can be exploited to restrict

scanning to the small subsets of directories that have recently had modified files or that have high variation in file change times.

Experiments with using SmartScan on production file systems show that exploiting metadata change patterns can reduce the time

needed to refresh the metadata database by one or two orders with minimal loss of freshness.
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1 Introduction

File-system-wide metadata querying is an important tool for administrators that manage large-scale file sys-

tems, providing information to guide space management, charge-back, and provisioning decisions. Unlike

desktop search, which is designed to assist users in locating specific files, such metadata querying is mainly

used by administrators to monitor and better understand the overall make-up of their file systems. It is used

to answer questions like “which directory subtrees consume the most space?” or “which files have gone

unused the longest?” (making them good candidates for migration to a lower tier of storage).

Most file systems provide no native support for metadata querying. So, this functionality is generally

implemented by external tools that maintain a separate database with a copy of the file system’s metadata.

The primary challenge in supporting efficient metadata querying is the extraction of the raw metadata from

the file system to populate that database, which generally requires reading the metadata (e.g., via stat() calls)

for each file, one by one—we refer the extraction process as a metadata crawl.

For the large file systems that most need such storage management tools, a single full-speed crawl can

take many hours or even days, due to disk seeks and (in the case of network file systems) communication;

in addition to the delay, this crawling activity can interfere with real applications’ use of the storage system.

Worse, keeping the database up-to-date requires regular crawling, currently involving a stat() of every file to

see if its metadata has changed. As an example, we have observed a commercial system taking more than

seven hours for a single crawl of a 1.6TB file system with 19 millions files; similar observations are also

reported by other researchers [9]. Given that truly large file systems may contain hundreds of millions, or

even billions, of files, frequent full crawling of such file systems is impractical.

This paper describes approaches to minimizing the subset of files scanned. An ideal crawl would scan

only those files whose metadata has changed since the last crawl. Doing so would significantly reduce

the work involved with crawling, since the percentage of files changed any given day is small in most

file systems [1, 4]. Unfortunately, knowing which files are modified without actually doing a full scan is

difficult, since examining values returned via stat() is the standard way of determining whether a given file

has changed. So, we focus on approaches to predicting which files need to be scanned.

As with many other aspects of computer systems, metadata changes exhibit high temporal and spatial

locality. Our analysis of change patterns in some real file systems shows that directories with files that

changed recently will likely have changed files again—directories where work has been ongoing tend to

remain active. We also observe that directories with high variation in file change times often have otherwise

difficult-to-predict changes—these directories represent locations of relatively frequent but not immediately

local-in-time intermittent activity (e.g., periodic backups or new user directory creation). Data about such

patterns from two production file systems are presented. Such patterns in how metadata changes can be

exploited to reduce the subset of all files that must be scanned to refresh the database.

An inherent danger of predicting a limited subset of files to scan during a refresh crawl is that some

changes may not be reflected in the “updated” database. Fortunately, most uses of metadata querying

for storage management can tolerate “out-of-date” information to some extent. For example, providing

a slightly misordered list of the least active subtrees or slightly imprecise values for the capacity used by

each is not unacceptable. So, as long as the predictions of which files to crawl are reasonably complete, the

resulting metadata query results will usually be sufficient. When it’s not, a full crawl is needed.

This paper describes SmartScan, a metadata crawler prototype that utilizes the new change prediction

schemes outlined above. SmartScan uses only POSIX standard file system interfaces (stat(), in particular)

to extract metadata, allowing it to be used with any POSIX-compliant file system. Experiments with using

SmartScan on two production file services show the desired benefits: (1) restricting the crawl to just the files

in directories predicted to contain changed files reduces crawling work by one to two orders of magnitude,

and (2) the lost freshness is minimal, and results for our sample metadata queries deviate only minimally

from full-scan values.
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The remainder of this paper is organized as follows. Section 2 discusses key metadata crawl issues and

related work. Section 3 identifies some metadata change properties that can be exploited. Section 4 describes

the design of SmartScan. Section 5 evaluates SmartScan’s effect on the work of metadata crawling and the

resulting freshness.

2 Background and related work

This section describes metadata crawling, associated challenges, and related work.

2.1 Metadata crawl

Metadata crawl denotes the process of extracting raw metadata from a file system and porting it into a

seperate metadata database. File system metadata includes both file system native attributes such as inode

fields (e.g. size, owner, timestamp, etc.), generated by the storage system itself, and extended attributes (e.g.,

document title, retention policy, backup dates, etc.), specified by users and applications. In this paper, we

only focus on crawling file system native attributes as they are generally considered to be more important to

storage management.

Metadata crawl is different from the traditional web crawl in many ways. First, hierarchical file systems

have more restrictions than web pages linked by links. Second, web crawl is a best-effort crawl, trying

to crawl as many web pages as possible since it is infeasible (for most) to crawl all web pages on the

Internet. Nevertheless, with metadata crawl, we are intuitively asking for all the metadata, since global

statistics are much more important in managing storage systems (e.g. global space consumption for capacity

provisioning). Third, Scaling out is more difficult in metadata search. It is easy to collect web pages by

parallelizing crawl processes. But, for metadata crawl, administrators need to make sure the crawl process

does not interfere too much with the normal file system workload. It is easy to overload the file service

by launching a bunch of processes to crawl the metadata in parallel. Besides, once the disk bottleneck is

encountered, increasing parallelism helps little.

2.2 The metadata crawl problem

Metadata crawling is challenges for three primary reasons: First, disk is still the dominant storage medium

for large file systems. Yet, trends in disk technology and file systems have made and continue to make

metadata crawling a time-consuming activity: first, magnetic disk capacity grows faster than the mean file

size. For example, Kryder’s law[15] predicts that the storage capacity of a single hard disk doubles annually

(increases exponentially); yet, the mean file size grows roughly by 15% per year[1]. This means there

will be more and more files per disk as time goes by. Second, disk capacity grows faster than data access

performance. Nowadays, even expensive high end server drives can only perform hundreds of seeks per

second, having improved only minimally over the last ten years, compared to the capacity. This means

scanning even a single disk is becoming an increasingly time consuming task.

Second, the hierarchical structure and standard interface of modern file systems are inefficient for

metadata crawl. The iteration-based interface forces an individual “stat” operation on each file. Almost

all the file systems do some kind of co-location of metadata and data to improve data access performance.

Although it helps reduce expensive disk seeks greatly when reading both data and metadata together, it

scatters metadata across the disk, leading to more seeks when only doing metadata crawl.

Third, “stat” over network adds overhead and possibly another bottleneck. Large file systems are

usually server-based and may be distributed across multiple nodes. As an example, we have found that

a high-performance commercial NFS server over a 1Gbps network gives us only 1000 stats per second.
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“readdirplus” can mitigate this problem by pre-fetching inode information for the entire directory, doesn’t

help much due to the small size of most directories.

2.3 Current metadata crawl approaches

Several solutions exist for collecting metadata from file systems and synchronizing the copies, among which

the most widely adopted approach is a periodical scan (e.g. used by locate, GNU Disk Use Analyzer etc),

because: (1) It is the most straightforward solution. It is fast enough on a desktop environments, usually

taking only several minutes, and portable since it requires no operating system specific mechanism but the

standard file system interface. (2) More importantly, it is so robust that even other neat approaches may still

need a periodical scan to ensure correctness. However, the major drawback with this approach is, that it is

too slow to be efficient for a large scale storage system. It may take days or even weeks to finish a full scan

due to the huge number of files contained and all kinds of overhead in large file systems. Parallel scanning

could be employed to accelerate the scanning process, but may consume too much system resource, interfere

with normal file system operations, and thus seriously hurt performance.

Another alternative used mostly by desktop searching services is synchronizing the metadata copy

based on the file system event mechanism (e.g. “Change notification” on Windows, “inotify” in Linux[12]

etc). These mechanisms enable applications to know exactly when and which files have been changed.

Several reasons make these mechanisms not practical in large scale storage systems: First, the large run-

time overhead. For example, inotify on Linux requires all watched inodes to be kept in memory, placing

a heavy burden on the kernel memory subsystem (Considering a file server with millions of directories).

Additionally, as the number of monitored files increases, the notification efficiency decreases for traversing

too many monitor entries. That’s why inotify has a configurable limit (8192 by default) on the number of

watches. Second, this approach doesn’t work over network file system. Last but not least, updating metadata

copy on every change is inefficient because most of the metadata modifications are overwritten or canceled

by subsequent operations. For example, overwriting happens when the write operation cause the file size to

increase, or cancellation happens when newly created files are deleted.

The above limitations of periodical scan and file-system-event-based refreshing have driven some re-

search to explore metadata crawl and synchronization via non-standard interfaces. Snapshot-based meta-

data crawl is proposed in spyglass[9] to capture the modifications of file systems. Although claimed to be

much more efficient than a full scan, unfortunately, it is not portable. Its efficiency is tightly coupled to

the sequential-read of inode file, and the recursive copy-on-write mechanism, both of which are specific to

WAFL[8] and can not be used with most other file systems. Besides, even if it could capture changed inodes

efficiently, mapping an inode number to the canonical path may involve extra work that may be expensive.

Changelog, such as the one used in NTFS, is another alternative. However, reading the log without us-

ing the file system interfaces is dangerous and not portable even on different versions of the same type of file

system. Also, this approach may require hooks into critical code paths, potentially impacting performance

and stability. Even if the source code is available to modify, people are usually reluctant to do that due to

reliability and stability concerns.

Although there is no existing general solution to efficiently collecting metadata and synchronizing it

in large scale storage systems, we believe only crawling the changes is a promising approach. Also, we are

arguing, by this paper, that file systems provide enough hints on how files are changed, even by only using

information from the standard file attributes. We propose SmartScan, a novel approach to synchronize the

metadata copy in management oriented metadata search. SmartScan tries to capture the metadata changes

based on the information of standard file system metadata using standard file system interfaces.
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3 Understanding metadata changes

The key issue to crawl only the file system changes is to know how a file system changes over time. Under-

standing metadata changes in large-scale storage systems is crucial not only to efficient metadata collection,

but also to partitioning and building change-aware indices.

To better understand file system change properties, we measured metadata changes on several large file

systems in the real world, and then used the results to guide the design of SmartScan. We found several key

properties in these studies: (1) file systems change little even on large scale storage systems; (2) metadata

changes present both spatial locality and temporal locality; (3) DTSD can be used to predict file system

changes.

3.1 Data collection

To collect the statistics of file system changes we modified fsstats[5], a perl tool that runs through a file

system and creates statistics on file attributes such as size, capacity, ages, directory size and etc. We add

codes to enable fsstats to record file system changes in last day, week, and month, to calculate the change

ratio, change locality and commonality, and DTSD. See the following subsections for exact definitions of

all these metrics.

To measure the file system changes,we use mtime and ctime. We choose to ignore atime, because: (1)

Talking with some storage administrators shows us that atime is not considered as important as mtime and

ctime in real storage management tasks. Some file systems don’t even keep track of atime. (2) Even for

those file systems that do support atime, many people choose to turn off atime tracking by setting noatime

option when mounting them to trade for considerable performance boosting. Tracking atime according to

POSIX semantic forces an inode update for each read which will be a huge overhead. (3) Atime is also too

volatile to be useful. Many applications have side effects which will change atime, e.g. some old backup

tools, anti-virus software, etc. We prefer ctime than atime because ctime tends to give more reliable results

for lack of standard interfaces to change it.

We collect data from a storage server (ServerA) used by more than 100 university researchers for code

development, paper writing and serving data for various simulations and data analysis; and a file server

(ServerB) used by more than 3000 student at a different university for personal data backup and online

sharing. Detailed information about both file systems is provided in Section 5.1.

For clarity of description, we define the following terms:

• changed directory A directory at least one of whose children (including both files and its sub direc-

tories) is changed during the specified period (e.g. last day).

• changed file A regular file whose metadata is changed during the specified period.

• changed directory file A directory whose metadata is changed.

• changed entry Both changed file and changed directory file are considered as changed entries.

• directory timestamp standard deviation (DTSD) A directory’s DTSD is the standard deviation of

its children’s timestamps.

3.2 Categorization of file system changes

It seems almost certain that file systems never change arbitrarily due to its inherent nature by design. From

different perspectives, we can categorize the changes using different approaches.
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Based on how often files are modified by users or applications, two common access patterns exist: (1)

frequent change, that is, files are changed by the users or applications frequently. For example, a developer

may compile his project every few minutes, a student may modify his paper every day, or an application

may write its operation logs every minute. (2) occasional change, that is, files are changed by users or

applications occasionally and can sit untouched for a long time. For example, a user may install a software

package, archive a document, download some music, etc.

Based on how a file system is changed, two common change patterns exist: (1) batch changes, that

is, the entire directory or subtree may be changed within a short moment. For example, importing photos

from a camera, compiling a project, installing a software package, and inflating a compression package. (2)

individual change, that is, only one or several files in a directory or subtree may be changed individually.

For example, editing a file, downloading a file, or archiving some files.

Intuitively, it is easier to predict the frequent changes, but much harder to capture the occasional

changes. However, capturing occasional changes can be very important in some circumstances even if

they are individual changes, because most of the occasional batch changes are usually clustered in a subtree

whose root is individual changes (e.g. installing software package, archiving by copy to backup directory).

As a result, missing such occasional individual changes may hurt freshness.

3.3 File systems change little

As expected, the amount of files changed every day,week and month, even in large files systems, is a small

portion. To describe how much of a file system is changed, we use “change ratio” which is defined as the

number of changed entries over the number of total entries in a file system. Table1 lists the mean change

ratio measured by both ctime and mtime for the file systems we studied.

FS Last day Last weekly Last monthly

A ctime 0.07%(0.0003) 0.34%(0.003) 1.33%(0.004)

A mtime 0.07%(0.0003) 0.33%(0.002) 1.08%(0.004)

B ctime 0.04%(0.0008) 0.44%(0.002) 3.12%(0.041)

B mtime 0.04%(0.0008) 0.44%(0.002) 3.11%(0.041)

Table 1: The average change ratios of ServerA and ServerB, with the standard deviations shown in paren-

theses.

According to table 1, the change ratios of both file systems we studied are less than 1% per week. This

is because both file systems contain lots of files that would almost never be changed after creation. For

example, software distributions, photos, musics and videos, archives, etc. Similar results are also reported

by other studies via file age statistics [1, 4]. This is a very promising result, which implies that scanning

only the file system changes will possibly be much faster.

3.4 Spacial locality of metadata changes

Metadata changes exhibit apparent spacial locality, which means that changes are clustered in the namespace

(i.e. occurring in relatively few directories, not scatted evenly across the namespace). Spacial locality comes

from the way users and applications organize their files in file systems. For example, users tend to group files

related to a particular task into a single directory; some applications (such as photo manager) are designed

to use specific directories or subtrees to store their data. Files in the same group tend to change together,

e.g. compiling a project, importing a bunch of photos into album or installing a software package, leading

to the changes aggregated within a small number of directories or subtrees.

Figure 1 illustrates the worst cases (considering spacial locality) of the distribution for entries that

changed in last day and week accumulated by subtree for the ServerA and ServerB. The changes is measured
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by ctime during the measured period, but mtime has almost the same distribution. We consider a directory

and its parent in the same changed subtree if and only if (1) both the directory and its parent are changed

directories and (2) the age of the directory is less than the measured period. This definition allows to capture

all the changes under a subtree by checking only its root.
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Figure 1: Distribution of changes measured by ctime. A rank of 1 represents the subtree with the highest

number of changes. A 0.2 of x value means the top 20% of most frequently changed subtrees.

From figure 1 we can clearly see how different types of change patterns contribute to the overall file

system changes. The fact that more than 90% of changes concentrate in less than 20% subtrees demonstrates

that file system changes are dominated by batch changes localized within a small part of the namespace.

However, a long tail indicates the number of changed directories is mainly contributed by individual changes.

Again, Capturing individual changes is important since most of the occasional batch changes are usually

clustered in some subtrees whose roots are individual changes. Utilizing spacial locality can help us prune

the crawling space by identifying only the parts of the namespace where changes happen.

3.5 Temporal locality of metadata changes

Temporal locality means that entries changed at one point of time are likely to be changed again sometime

in the near future. Temporal locality comes from how users use file systems every day. Usually, a user

works on a few specific projects during a relative long period before switching to others, leading to some

hot working sets that change frequently.

However, quantifying the commonality between each day’s changes is not trivial. Intuitively, we can

use the average percentage of common changes against the total changes as a metric. Practically, sometimes

stuffing a large directory tree into a file system can screw the measurement significantly. Rather than letting

one number represent all, we visualize changes between each day using two metrics: commonality ratio and

coverage ratio. Commonality ratio is defined as the common changes between two consecutive days as the

percentage of the total changes in the first day. It shows how many changed entries would possibly change

again during one day. Coverage ratio is defined as the number of common changes over the total changes in

the next day. It indicates that the number of changes in one day can be inferred by crawling only the changes
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in the previous day. For commonality ratio we measure changes in terms of both directories and subtrees,

whereas for coverage ratio, we only measure subtree changes in order to avoid the impact of stuffing large

directory tree. Figure 2 shows the commonality ratio and coverage ratio respectively for ServerA based on

ctime (again mtime represents very similar result).
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Figure 2: Commonality ratio and coverage ratio

Most of the time, commonality ratio by directory is greater than 70%, meaning that more than two

thirds of directories changed one day are going to change again the next day. Although unusual, we do

observe a commonality ratio less than 20%, which is caused by an user importing a big directory into the

file system. By contrast, commonality ratio by subtree is even higher, indicating that although differences

between each days changes exist, they tend to reside in the same changed subtree. The commonality ratio by

subtree changes more smoothly, meaning that the pike are caused by changes localized to a few subtrees.In

most cases, coverage ratio is greater than 90% means that even only scanning the directories changed in last

day could capture more than 90% of the changes for most of the time. Interestingly, although we have a

really low commonality ratio for date Aug. 26th, we still have a very high coverage ratio because the roots

of those changed subtrees causing the spike are captured by last day’s changes.

This figure demonstrates that temporal locality provides sufficient hints for changes in home directory

workload. However, we don’t show the commonality ratio for ServerB because the server is much more

fluctuant, since the changes to ServerB are mostly adding new files by different users, in which case temporal

locality may not be suitable for change predication of backup workload.

3.6 DTSD sheds light on individual changes

Temporal locality is useful to predict frequent changes, but helps little with occasional changes. Capturing

occasional changes is important in some circumstances even if they are individual, because most of the

occasional batch changes are usually clustered in subtrees whose roots are individual changes. To better

capture occasional changes, we explore another hint from file systems — Directory Timestamp Standard

Deviation (DTSD).

Since only part of the directory content is changed when occasional individual changes occur, it is

reasonable to expect the changed directory have a higher DTSD. Figure 3 shows the accumulated changes
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in terms of both changed entries and changed directories as a function of change percentage and DTSD

measured in ctime.
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Figure 3: The distribution of file system changes in terms of directories and entries as a function of change

percentage and DTSD measured in ctime.

The two big peaks with DTSD less than 1024 seconds and change percentage greater than 80% are

caused by batch changes. Obviously, this kind of changes account for most of file system changes. Another

peak exists in the corner with DTSD between 222 and 224 seconds and change percentage less than 55%,

which means most individual changes happen in those directories that have large DTSD. Interestingly, even

if there are big peaks in terms of changed directory with changed percentage between 40% and 55%, the

surface of changes in terms of changed entries is comparatively flat, implying the changed directories form-

ing these peaks are dominated by small individual changes. These two figures together indicate that DTSD

can shed light on the detection of individual changes.

4 The SmartScan System

4.1 Design overview

The basic idea behind SmartScan is borrowed from backup system[2]. Rather than scanning the entire file

system every time, SmartScan uses baseline scan and incremental crawl. Baseline scan is a full scan that

happens between a relatively long period of time (e.g. every two weeks or one month). Incremental crawl

is a partial scan that crawls only the file system changes based on the hints from standard file attributes, and

happens much more frequently (e.g. every several hours or one day).

Crawling only file system changes is attractive due to the potential considerable performance improve-

ment. However, to make it viable, the system or administrators must decide which and when directories

should be crawled. The core question here is what are the respective roles of the system and the admin-

istrators in making this decision. On one hand, it is unrealistic and unwieldy to require administrators to

proactively specify what and when directories should be crawled. Intuitively, this work should be done auto-

matically by management oriented metadata search system designed to relax administrators from the storage

management burden. On the other hand, no one knows a file system better than its administrators. Increasing

administrators’ control tends to yield more accurate crawl space while minimizing resource contention with

normal file system workload.

Solving this dilemma requires separating the responsibilities of identifying which directories to crawl

from determining when and how to do so. In our approach, SmartScan automatically classifies directo-
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Figure 4: Architecture of SmartScan. SmartScan uses only the standard file system interface to gather

required information, and thus doesn’t require any modification to the file system itself.

ries into crawl groups. The classification process is advisory. Administrators can modify the groups by

specifying include and exclude rules explicitly. SmartScan crawls a file system based on the crawl policy.

Administrators’ role is to schedule when a crawl should be performed by setting properties for each policy.

Since the number of policies is typically small, maintenance of them should be easy enough.

4.2 Architecture

As illustrated in figure 4, SmartScan’s architecture is similar to that of most web crawlers. From admin-

istrators’ perspective, SmartScan mainly consists of three components: a set of crawl groups that define

which directories should be crawled, a set of crawl policies that specify when and how to crawl, and the

SmartScan program that performs the crawl task. Both crawl groups and policies can be defined or modified

by administrators according to their needs. Internally, the SmartScan program has two core components:

a multi-threaded crawler and a shared crawl stack. The shared stack rather than a queue is used to max-

imize the locality impact. Whenever a crawl instance is launched according to a specific policy, it loads

the crawl groups specified in the policy, merges them into the crawl stack, and processes them one by one.

The merging is required to avoid duplicate entries from different crawl groups. During the crawl, it stores

the metadata of each visited entry into an external storage (such as a database or a flat file), updates the

crawl groups according to their definitions and adjusts the crawl stack (e.g. when detecting new created

directories). Details about crawl groups and policies are provided in Section 4.3 and 4.4.

4.3 Crawl group

File systems themselves provide enough hints on how they change. SmartScan classifies directories into

crawl groups based on three file system hints — file age, Directory Timestamp Standard Deviation (DTSD)

and subtree size. Groups are adjusted during each crawl to reflect current state of the file system as close as

possible. Three specific classification algorithms are used by SmartScan, namely change locality window,

DTSD filter, and subtree filter.

Change locality window: The change locality window maintains a list of changed files within the last

N seconds. Conceptually, this captures frequent changes happened within a period of time during which a

user focuses on a particular task. When the window sees a file whose age (the difference between current

time and its ctime or mtime) is less than a specified threshold, namely window size (WS), it considers the

file as a change, and creates an entry in the list using the path and timestamp of the file. If such an entry
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already exists, its timestamp is updated. The directories to be crawled are implicitly defined by the parents

of files in the window.

To generate the directories to be crawled, SmartScan removes those files with age greater than window

size first, and then extracts the parent directory for each file left in the window before each crawl. To

achieve the best inode cache performance, directories are sorted in nearly lexicographical order, except

that a directory and its sub-directories are always sorted together. Smartscan doesn’t sort based on strict

lexicographical order because, to get better cache performance, directories like /a, /a.b and /a/b should be

ordered like /a,/a/b,/a.b rather than /a,/a.b,/a/b. The change locality window is updated during both baseline

scan and incremental crawl.

DTSD filter: DTSD filter specifies which directories should be considered as crwal candidates where

individual changes are likely to happen. The DTSD of each directory encountered in a crawl is calculated.

If satisfying the predication of the filter, the directory is added to the group. The DTSD information for each

directory in the group is also kept so that it is possible to shrink the group by restricting DTSD value within

a smaller range. However, a baseline scan is needed to expand the range. Like groups defined by change

locality window, this kind of group is also updated during both baseline scan and incremental crawl.

Subtree filter: The subtree filter splits the entire file system namespace into a set of subtrees with

file count above a specified threshold. Each subtree is identified by the path of subtree root and has two

attributes: the number of entries under the subtree and the last scan time. Last scan time is necessary when

baseline scan is done in stagger mode. This kind of group is only updated during baseline scan. Counting

files under a subtree in a multi-threaded program requires more extra work than simply post-order traversing

in a single-threaded program. A hash table and reference counters can be used to solve this problem. A

reference counter (denoting how many directories it depends on) is kept for each directory encountered in

the hash table. Whenever a directory with reference counter 0 is detected, we decrease its parent’s reference

counter and add its entry number to its parent’s. Whenever a directory is detected with file count greater

than the specified threshold and reference count equal to 0, it is added to the subtree group.

4.4 Crawl policy

policy time mode groups

hourly – seq –

daily 3:00 a.m., weekday seq WS<7 days

weekly 3:00 a.m., Sun seq WS<7 days, 16 days<DTSD<256 days

monthly 3:00 a.m., 1st seq whole file system

Table 2: Default policies of the SmartScan.

To avoid crawl system overloading file systems or interfering too much with normal file system op-

erations, SmartScan uses policy-based crawl scheduling. Policy is a set of rules defining when and which

directory groups should be crawled.

A policy is described by three parameters: crawl time, crawl mode and crawl groups. Crawl time

specifies when a crawl should be launched, either once or repetitively. Crawl mode indicates which kind of

crawl should be performed. Currently, two crawl modes are supported: sequential mode, which crawls each

directory in the group sequentially, and stagger mode, which crawls the directories or subtrees not crawled

by the last crawl. Last scan time of the subtree is updated after crawling. Crawl groups specify which

groups should be crawled. Multiple groups can be specified simultaneously. SmartScan merges directories

and subtrees chosen from each group before performing a crawl.

Four kinds of policies are provided by default: crawl hourly, crawl daily, crawl weekly, and crawl

monthly. Table 2 summarizes these policies. Administrators can add new policies or modify the existing
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File system description # of files # of dirs capacity

ServerA Home directories, development, paper writing 16.3 million 1.4 million 1.70 TB

ServerB Personal data backup and online sharing 3.4 million 0.3 million 15.1 TB

Table 3: File systems used to evaluate SmartScan.

policies according to specific needs.

4.5 Implementation

The SmartScan prototype is implemented in Perl on Linux platform. To minimize foreground impact, no

daemon process is required to run on the system continuously. Cron[14] is used to schedule when a crawl

should be launched. The crawl stack is kept in memory, which works well for our test environment. How-

ever, it should not be hard to extend Smartscan to use some external storage such as databases for larger

file systems. Each crawl group is kept in a directory with individual files storing directory lists generated

and maintained by SmartScan automatically, and rules of inclusion and exclusion defined by administrators.

Policies are specified in a configuration file and automatically installed as cron jobs. The POSIX file system

interfaces used by the prototype include opendir(), readdir(), closedir() and lstat(). To avoid overloading

the file system, SmartScan allows administrators to specify the number of threads to be launched and the

maximum number of stat()s per second for each thread. Although SmartScan tries to minimize the modifi-

cation to file systems, the atime of directories may change, depending on specific implementation of atime

tracking or the options used when mounting the file systems.

5 Evaluation

Our evaluation of SmartScan consists of three parts. First, we evaluate how many changes we could capture

by crawling only those directories that are likely to change. We found out temporal locality is sufficient to

capture more than 90% changes, and we could capture almost all the changes with DTSD hints. Second,

we evaluate the deviation between query results and real results for ten typical storage management queries.

It turns out that the results are satisfactory for most of the queries. Third, we compare the performance of

SmartScan with a full scan using both a single thread and multi-threads; as hoped, crawling only file system

changes makes SmartScan much more efficient.

5.1 Experimental setup

We evaluate our prototype with two production file systems: a storage appliance (ServerA) used by more

than 100 university researchers for code development, paper writing, and data analysis; a file server (ServerB)

used by more than 3000 students at a different university for personal data backup and online sharing. The

backend store of ServerA is a NetApp filer using WAFL[8] file system with dual parity RAID LUNs cre-

ated out of 14 SATA disks. The backend store of ServerB is a LVM volume using the XFS file system

with RAID5 created out of 10 SATA disks. Although ServerB has more than 3000 users, most of them are

inactive. Table 3 summaries both file systems. The performance experiments of ServerB is performed on

the file server itself, which is a quad-core Intel Xeon@2GHz machine with 16 GB of main memory running

Ubuntu Linux 8.10. For ServerA, because it can only be accessed via NFS, we use another machine with

dual-core Intel Xeon@3.00GHz and 2GB of main memory running Debian Linux 5.0.2, to run our prototype

and access ServerA.
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5.2 Freshness of metadata database

The notion of freshness appears in many contexts, such as database and web indexing. To understand how

“up-to-date” a metadata copy is, we borrow the idea of freshness ratio, the most frequently used metric in

web crawl, from other work[3]. The freshness ratio, as defined by Cho, indicates how accurate the metadata

copy is.

To comprehend the effects of the different hints on capturing metadata changes, we modified our pro-

totype to record not only the captured changes but also the crawl groups to which they belong. We ran the

modified prototype on both ServerA and ServerB at 3:00 a.m. during the period from Aug. 23th, 2010 to

Aug. 31st, 2010.

Configration ServerA ServerB

Unchanged 0.99879 (0.00117) 0.99959 (0.00067)

Daily 0.99994 (0.00010) 0.99983 (0.00023)

Weekly 0.99999 (0.00002) 0.99989 (0.00013)

Daily+DTSD 0.99997 (0.00007) 0.99995 (0.00012)

Weekly+DTSD 0.99999 (< 0.00001) 0.99998 (0.00005)

Table 4: Freshness ratio of experimental file systems. Unchanged indicates how outdated the copy may

get if no crawl is performed; Daily and Weekly mean crawling only the directories changed in the last day

and the last week; DTSD means also crawling those directories whose DTSDs are in the specific range ([16,

256] days in the experiments).

As shown by table 4, the freshness ratios for both file systems, even without performing a crawl,

are very good. This result, together with the fact that storage management metadata queries can tolerate

outdated data to some extent, implies that very frequent metadata crawl may be unnecessary. With that said,

SmartScan does help improve the freshness. The degree of improvement varies when different hints are

used.

To show the difference clearly, we redefine the coverage ratio of Section 3.5 in the context of a crawl.

Suppose a crawl is finished at time t based on the state of t0, the coverage ratio is then defined as the number

of changes captured by the crawl over the actual number of changes that occurred during this period. The

coverage ratio of a crawl tells how many changes that occurred after t0 could be captured by a crawl finished

at t. One thing to note is that, if a changed directory file is detected, the directory is also crawled. Figure 5

shows the coverage ratio in terms of ctime for both file systems.

Obviously, temporal-locality-based crawl works really well for ServerA, meaning this approach should

be very efficient for home directory workload. Most of the time it is able to capture more than 96% of the

changes by only scanning the directories changed last day. Even in the worst case it still captures more than

86% of changes. Nevertheless, it exhibits more diversity with ServerB. It captures almost nothing in some

cases, but more than 90% in other cases. This is because ServerB is used as backup storage by many inactive

users. The common usage pattern of these users is to put some files into the server every few days. Crawling

only the directories changed in last day, or even the last week, is thus not sufficient. However, crawling

directories with large DTSD can, as expected, significantly improve the coverage ratio. This is because in

such backup workload, users usually classify their files into several categories by putting them into different

directories such as documents, music, movies, software, etc., and most of these changes happen in the root

of those categories.

5.3 Deviation in metadata query results

Another important metric for out-of-date-ness of a metadata database is the deviation between the query

result and the real result, which highly depends on the specific query itself. Unfortunately, there are no
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Figure 5: The coverage ratio indicates how many changes that occurred can be captured by a crawl. “local-

ity” means crawling only the directories changed in the last day or week. x< DTSD< y means the number

of changes, among those not covered by locality, that will be captured if we also crawl directories with

DTSD between x and y.

standard query sets for metadata search. To evaluate the deviation introduced by selective scanning, we

choose ten types of queries considered to be important for storage management. These queries are either

derived from our survey of several large storage system administrators and users, or borrowed from other

literature [9]. Table 5 summarizes these query sets.

We measure the two most important categories of queries in managing storage systems: aggregation

queries and file queries. The result of an aggregation query is a summary value of some specified attributes.

We define the deviation of such result set as the absolute difference between query value and the real value

over the real value. The result of a file query is a list of files (paths) whose attributes meet the query’s pred-

ication. The deviation of a file query is defined as the differnece in the number of unique files respectively

in the query result set and the real result set over the total number of files in the real result set.

To measure the deviation of each query listed in Table 5, we collect metadata images for ServerA and

ServerB by fully scanning the file system during the period from Sep 1st, 2010 to Sep 15th, 2010. We

then generate the metadata copies for each day by running a modified version of our prototype against the

metadata images using two typical configurations: default configuration for ServerA and weekly locality +

16< DTSD< 256 for ServerB. A full scan of the file system takes about 1 hour for ServerA and 5 minutes

for ServerB respectively, during which changes may occur. To minimize the impact of such changes, we

choose 4:30 a.m., the most inactive period of both file systems, to perform the scan. We consider a change

as missing if a less-than-an-hour-future timestamp is detected, even if there is a greater chance that it can be

captured by SmartScan. Hence, our result should be considered as an overestimate of deviation.

Different from the previous experiment, new metadata copy is generated by SmartScan based on the

last metadata copy rather than the file system image of the previous day, which means a failed detection

of a newly created directory will cause all the changes under that directory to be lost—we refer to this as

accumulation effect.

For each type of query in table 5, we generate 100 query instances every day. The query parameters

is randomly chosen from specific sets that are carefully designed to reflect the real-life storage management

queries. We run the query instances on both the metadata images generated by the full scan and the metadata

copies maintained by SmartScan. Table 6 summarizes the results.

The average deviations for all ten types of queries are less than 1% (0.01), with standard deviations less
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No. File Management Question CG Query Example

1 Which user consumes the most space? 1 Sum size for files using owner

2 Which application files consume the most space? 1 Sum size for files using extension

3 How much space does this part of the file system consume? 1 Sum size using subtree

4 How many files/inodes does each user have/consume? 1 Count files by owner

5 How many files are there under this subtree? 1 Count files under a subtree

6 Which files are consuming the most space? 2 size > size v (e.g. 2G)

7 Which are the biggest files for a specified user? 2 ower=uid and size > size v

8 Which files are largest under a specified directory? 2 size > size v and path starts with path v

9 Where are recently modified files by a user? 2 owner=uid and mtime < mtime v (e.g. 2 days)

10 Which files can be migrated to second tier storage? 2 size > size v and atime > atime v (e.g. 6 months)

Table 5: Query Sets. A summary of the searches used to evaluate the deviation of SmartScan. CG 1 denotes

aggregation queries. CG 2 denotes file queries. Extension is chosen from top 200 frequent extensions of the

metadata; subtree and path v are chosen from those directories who’s depth is less than 4; size v is randomly

chosen from file size value great than 1MB in the metadata image; mtime v is chosen from one month; and

atime v is chosen from 60 days to the max file age.

No.
ServerA ServerB

Accurate Acceptable AVG (SD) Max Accurate Acceptable AVG (SD) Max

1 98.7% 99.7% 5.3×10−4 ( 0.01) 0.38 99.8% 99.9% 5.7×10−4 ( 0.02) 1.00

2 91.5% 97.8% 3.2×10−3 ( 0.04) 1.30 97.4% 99.9% 5.0×10−5 (< 0.01) 0.05

3 99.8% 100% 7.3×10−8 (< 0.01) < 0.01 99.9% 100% 5.0×10−4 ( 0.02) 1.00

4 98.1% 99.7% 1.4×10−3 ( 0.04) 1.05 99.9% 100% 7.0×10−5 ( 0.01) 1.00

5 99.8% 99.9% 4.2×10−4 ( 0.01) 0.50 99.9% 100% 4.7×10−4 ( 0.02) 0.95

6 88.5% 100% 5.1×10−4 (< 0.01) 0.01 83.7% 100% 1.5×10−4 (< 0.01) < 0.01

7 99.8% 99.8% 2.8×10−4 ( 0.01) 0.17 99.9% 99.9% 4.1×10−4 ( 0.02) 1.00

8 100% 100% 0.0 ( 0.00) 0.00 99.9% 100% 1.7×10−4 ( 0.01) 1.00

9 97.9% 99.0% 4.4×10−3 ( 0.06) 1.00 99.8% 99.8% 1.5×10−3 ( 0.04) 1.00

10 86.5% 93.6% 1.5×10−3 (< 0.01) 0.03 96.5% 100% 1.0×10−5 (< 0.01) 0.00

Table 6: Deviation (DV) of ten typical storage management queries. Accurate denotes “DV = 0”, meaning

SmartScan’s copy can give the same result as the fully-scan copy does. Acceptable denotes “’DV < 1%”,

indicating that the result is acceptable for storage management purposes. AVG and SD stand for the average

value and standard deviation of the deviations of each query type. Max shows the maximum value of the

deviations.

than 7%. 7/10 for ServerA and 8/10 for ServerB types of queries have more than 95% accurate instances

, indicating there is a probability higher than 95% that the metadata copy maintained by SmartScan can

give the exact answer as a full scan does. If a 1% deviation is acceptable for storage management purpose,

SmartScan is able to give a reasonable result for all but the type 2 and type 10 queries for ServerA with

a probability higher than 99%. Large deviations (nearly 1.00) do exist for some specific query instances

as shown by column Max, implying there is still a chance, although tiny, that SmartScan’s copy may give

totally wrong result.

The mean deviations are high as compared to the proportion of outdated entries in the metadata copies.

This is mainly because the queries we chose for storage management purposes tend to involve many files,

which increases the probability of encountering a missing change. Besides, the accumulation effect of

missing changes helps to some extent. Queries on ServerA copy tend to have high deviations than ServerB,

since individual changes are more likely to be missed when only temporal locality information is used. The

much lower percentage of acceptable results of type 2 queries for ServerA comes from a failed detection of

the deletion a subtree containing more than 562k files from a user’s project directory, which would have been

captured if DTSD information was used. Since using DTSD information may increase the crawl duration as
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directories are also crawled whose DTSD in terms of ctime is between 16 and 256 days.

shown in Section 5.4, it’s up to the administrators to decide which policy should be used.

The type 10 queries are somehow interesting because the metadata copy is maintained based on ctime,

whereas the queries use atime, an attribute whose change will not effect ctime. Surprisingly, 93.6% for

ServerA and 100% for ServerB of results are acceptable, meaning it is still useful for administrators to

obtain a high-level idea about which files should be archived. Again, these results should be considered as

an overestimate of the deviation.

5.4 Performance

We evaluate SmartScan’s performance by running it with four typical configurations during the period from

Aug. 24th, 2010 to Aug. 31th, 2010. We perform the experiments at 4:30 a.m., the most inactive period,

to minimize the impact of file system changes. Dentry cache and inode cache have a big impact on the

results. Thus, We choose to use a cold cache at the beginning of each experiment so that the results are

comparable to each other. In real life environment, SmartScan has a good chance of cache hit, since recently

changed directories are likely to be in the cache, so the results here should be considered as an underestimate

of the benefits of SmartScan. Two different approaches are used to clear file system caches: we ask the

administrator to run “echo 3 >/proc/sys/vm/drop caches” as root on ServerB; while for ServerA, as there is

no interface for us to clear the filer’s cache, we try to overwrite the cache by performing a 15-minute partial

scan on unrelated subtrees. Both ways prove to be effective according to our observation.

Figure 6 shows the average time needed to crawl both file systems using four typical configurations.

All Smartscan’s crawls are performed using a single thread. As a comparison, full scans using both one and

ten threads are also shown. Depending on the number of changes in the file system, SmartScan can be up

to 1-2 orders of magnitude faster than the full scans when using the last day or last week information for

change prediction. Even with a crawl exploiting both temporal locality and DTSD hints, SmartScan is still

5× faster than a parallel scan using 10 threads and almost 20× faster than a single-threaded full scan.

Table 7 shows the number of directories to be crawled for the four typical configurations as well as the
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Configuration ServerA ServerB

Daily 9774.6 (7785.3) 311.0 (299.7)

Weekly 19966.3 ( 255.7 ) 992.4 (311.9)

Daily + DTSD 43082.0 (7633.2) 2813.0 (358.1)

Weekly+ DTSD 53003.5 ( 239.9 ) 3416.3 (210.9)

Full Scan 1428412.0 (6636.3) 267946.8 (348.7)

Table 7: The number of directories to be crawled for four typical configurations. The number of

directories for a full scan is also listed as a comparison. References figure 6 for the means of “Daily”,

“Weekly”, and “DTSD”. The value listed is mean value of eight days, with the standard deviation shown in

parenthesis.

full scans. SmartScan is much more efficient in terms of the number of scanned directories, nearly two orders

of magnitude less than a full scan even in the worst case. In contrast, the less improvement in crawl time is

mainly caused by the degradation of cache performance when performing selective scan. Further, using cold

cache also aggravates the situation to some extent. ServerA is notably slower in terms of stat() per second

due to overhead introduced by NFS, showing the impact of network communication on metadata crawl.

Using DTSD information on ServerB causes about 3 times increase of the number of scanned directories,

but more than 6 times increase of crawl time, because directories added by DTSD hints tend to exhibit poor

locality and thus degrade the cache performance. In comparison, the performance overhead of adding DTSD

hints on ServerA is not apparent. This is because, on one hand, the network overhead for ServerA alleviates

the cache effect; on the other hand, we found, by examining the content of changed directories, that a large

directory changed every day exists in ServerA, reducing the impact of DTSD further. As “Daily” in table 7

denotes the number of directories changed every day, all the other policies improve the freshness to some

extent at the cost of crawling more useless directories. It’s up to administrators to make the tradeoff.

6 Conclusions

Patterns in metadata changes can be exploited to reduce the work involved in refreshing a metadata database

used for storage management queries. Further, such selective crawling has minimal impact on freshness and

on the results of example metadata queries. Effective predictors of which directories need to be scanned are

recent changes in that directory and high variation in constituent file change times. These conclusions are

confirmed by measurements of two production file services and by crawling them via SmartScan, a metadata

crawl prototype that implements selective scanning.

References

[1] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A five-year study of file-

system metadata. Trans. Storage, 3(3):9. ACM.

[2] Ann Chervenak, Vivekanand Vellanki, and Zachary Kurmas. Protecting File Systems: A Survey of

Backup Techniques.

[3] Junghoo Cho and Hector Garcia-Molina. Synchronizing a database to improve freshness. SIGMOD

Rec., 29(2):117–128. ACM.

[4] Shobhit Dayal. Characterizing HEC Storage System at Rest. Technical report.

16



[5] Shobhit Dayal, Marc Unangst, and Garth Gibson. Static Survey of File System Statistics. Petascale

data storage institute.

[6] John R. Douceur and William J. Bolosky. A large-scale study of file-system contents. Pages 59–70.

ACM.

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. SIGOPS Oper.

Syst. Rev., 37(5):29–43. ACM.

[8] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS file server appliance.

Pages 19–19. USENIX Association.

[9] Andrew W. Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and Ethan L. Miller. Spy-

glass: fast, scalable metadata search for large-scale storage systems. Pages 153–166. USENIX Asso-

ciation.

[10] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A comparison of file system workloads.

Pages 4–4. USENIX Association.

[11] M. Satyanarayanan. A study of file sizes and functional lifetimes. Pages 96–108. ACM.

[12] Martin Streicher. Monitor Linux file system events with inotify. IBM Linux Test and Integration

Center.

[13] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. File size distribution on UNIX systems:

then and now. SIGOPS Oper. Syst. Rev., 40(1):100–104. ACM.

[14] The Open Group. The Single UNIX Specification: The Authorized Guide to Version 3. The Open

Group. Open Group Document Number G906.

[15] Chip Walter. Kryder’s Law. Scientific American Magazine.

[16] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A. Gibson, Brian Mueller, Jason Small, Jim Ze-

lenka, and Bin Zhou. Scalable Performance of the Panasas Parallel File System. Pages 17–33, Mary

Baker and Erik Riedel, editors. USENIX.

17


	Introduction
	Background and related work
	Metadata crawl
	The metadata crawl problem
	Current metadata crawl approaches

	Understanding metadata changes
	Data collection
	Categorization of file system changes
	File systems change little
	Spacial locality of metadata changes
	Temporal locality of metadata changes
	DTSD sheds light on individual changes

	The SmartScan System
	Design overview
	Architecture
	Crawl group
	Crawl policy
	Implementation

	Evaluation
	Experimental setup
	Freshness of metadata database
	Deviation in metadata query results
	Performance

	Conclusions

