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Abstract
Major cloud providers have committed to lowering carbon emis-

sions by 2030 across their datacenters, and research has contributed
many ideas on how this may be achieved. However, a major con-
tributor to datacenter emissions has not received enough attention:
storage. Storage — everything from file storage to inter-application
messaging in datacenters — causes 33% of operational emissions
and 61% of embodied emissions in Azure’s general-purpose cloud,
based on a recent study.

This paper identifies key sources of both operational and em-
bodied emissions within distributed storage in datacenters. We also
discuss strategies to reduce storage emissions and their challenges
due to storage’s fundamentally stateful nature.

1 It’s time to talk about storage emissions
The systems research community has been working to reduce

datacenter carbon emissions. Existing work focuses primarily on
reducing emissions of general-purpose compute [25, 39, 70, 71, 123,
130, 131, 134], neglecting a large source of emissions: storage.

While storage has received some attention [70, 86, 87, 99, 128,
143], researchers and practitioners have frequently considered it a
less important source of emissions. This could not be further from
the truth. Storage comprises a sizable portion of both operational
(Scope 2) and embodied (Scope 3) carbon emissions in hyperscale
datacenters.1 Recent data from Azure suggests that storage-related
emissions — including storage racks and local storage devices —
make up 33% of operational and 61% of embodied emissions. Storage
racks alone account for 24% of operational and 45% of embodied
emissions [131].

In fact, we identify distributed storage as a dominating con-
tributor to emissions in future datacenters, even given aggressive
predictions for the datacenters’ AI expansion. It is widely believed
that GPUs will emit the most operational carbon (which will be
partly powered by renewable energy), but their embodied carbon
is not nearly as dominant. For example, we observe that a Nvidia
A100 GPU has about the same embodied emissions as a 1.6-17 TB
SSD 2 or 2 CPUs [70, 78].

As datacenters continue to target compute emissions and
deploy renewable energy, storage will dominate overall dat-
acenter emissions due to storage’s embodied emissions. Re-
cent research has heavily optimized compute emissions, but these
approaches do not generally apply to storage. Storage has funda-
mentally different constraints, such as ensuring data durability and

1We adopt the greenhouse gas protocol’s definition of emission scopes similar to prior
work [70, 71]. Scope 1 is negligible [131], we thus focus on Scopes 2 and 3.
2Public estimates for embodied emissions of SSDs have a large variance; we believe is
due to a combination of variance across suppliers, different technologies and technol-
ogy specifications, and imprecise modeling efforts.

availability. Thus, while the high-level techniques — including re-
ducing power consumption, shifting power consumption to regions
and times where renewable energy is available [7, 25, 35, 113, 123,
135], using fewer devices [44, 50, 51, 64, 121], and extending de-
vice lifetime [97, 130, 132–134] — still apply to storage, they face
different challenges and tradeoffs.

For example, extending device lifetime leads to higher device
failure rates. Whereas compute can usually just be migrated to a
new server, storage is fundamentally stateful. Higher failure rates
increase the likelihood of data loss, requiring more capacity for
erasure-coding, reducing the benefit of extending device lifetime.

This paper informs the conversation on storage emissions by:
• Identifying distributed storage racks as a first-order emissions
problem: We identify storage as a necessary target for emis-
sions reductions and break down both operational and em-
bodied emissions in Azure’s storage, showing the impact of
both SSD and HDD storage servers.

• Bridging the storage–sustainability knowledge gap: To help
researchers tackle storage emissions, we highlight the char-
acteristics of storage that are relevant for sustainability re-
search geared towards reducing carbon emissions.

• Highlight opportunities and challenges to reducing storage
emissions: We show the opportunities to reduce emissions —
including denser devices, longer lifetimes, and new storage
technology — but also identify challenges in deploying these
solutions in the datacenter.

2 Birds-eye view of cloud storage
Cloud storage is predominantly backed by distributed storage sys-
tems. Most data is permanently stored in storage servers grouped
into storage racks, separated from compute. While data may be
stored on ‘local’ devices attached to a compute server, this is typi-
cally used as a cache. In fact, many VM types do not offer locally-
attached SSDs [2, 5, 10]. Thus, our focus is distributed storage.

Cloud data storage today has two media options: hard-disk drives
(HDD), for storing large amounts of data, and solid-state drives,
for low-latency data access. SSDs are about 2-4x more expensive
per bit than HDDs [1, 4]. For carbon, the difference is even more
pronounced — SSDs require 3-10x more embodied emissions per
bit [70, 128] and more power per bit (Sec. 3.1).

This section discusses storage from a user’s perspective (Sec. 2.1)
and the storage server configurations that enable it (Sec. 2.2).

2.1 Storage in the cloud
Cloud users rely on distributed storage to guarantee scalabilty,
durability, and high availability. As we consider options to reduce
storage emissions, we need to carefully consider their impact on
these guarantees.
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Fig. 1: Project Olympus JBOD (“Just a bunch of disks”) blade [74]. Each
JBOD blade contains up to 88 HDDs and can store 1.2 PB.

Fig. 2: Project Olympus flash expansion blade [119].

Size Blades/Rack Count Capacity (‘17) Capacity (‘24)

SSD [119] 1U 8 16 128 TB 246 TB [22]
HDD [74] 4U 36 88 1.2 PB 2.6 PB [31]

Table 1: Comparison of Project Olympus’ storage servers including
the blade size, blades per rack, storage device count, and the capac-
ity of the entire blade from both the original Project Olympus 2017
specifications and updating the storage devices to 2024 capacities.

Scalability. Cloud providers ensure there is enough storage ca-
pacity so that cloud applications can scale to store their portion
of the zettabytes of data generated annually [118]. To provide this
guarantee, cloud providers need to pre-provision storage for the
expected data growth, ensuring there is enough extra capacity for
additional data.

Durability and high availability. The maxim of storage is that a
storage system should not lose data, i.e., the data should be durable.
Unfortunately, servers fail. At scale, server failures are common [49].
An advantage of distributed storage is data redundancy through
replication or erasure-coding [32, 58, 67, 76, 106, 115, 142]. When a
storage server fails, the data is recoverable as other storage servers
are able to reconstruct the data. Redundant data provides both
durability and high availability because the data is still generally
accessible (i.e., available) through failure. Durability and availability
requirements constrain the options to reduce emissions (Sec. 4).

2.2 Storage under the hood
To provide storage products, datacenters have large distributed stor-
age systems [40, 65, 66, 76, 105] that need to be scalable, durable,
and highly available. Due to their scale, these storage systems man-
age large clusters of servers, with hundreds of thousands of storage
devices [49, 105]. In this subsection, we dive into the makeup of

these storage servers since they are the backbone of distributed
storage and the primary source of storage’s emissions.

We broadly divide storage servers into two categories — HDD
servers (Fig. 1) and SSD servers (Fig. 2) — based on the type of
the storage device that provides the bulk of the capacity. As seen
in Table 1, HDD servers have more capacity due to their large
number of high-capacity devices, but also take up more rack space.
SSD servers take up less rack space, but have lower capacities
both due to having fewer drives and lower-capacity drives. To
reduce emissions in both types of these servers without impacting
performance, we need to understand more about the underlying
device characteristics.

Hard-disk drives (HDDs). An HDD server’s purpose is to store
lots of data cheaply. To accomplish this, each server holds many
disks (e.g., 88 in Project Olympus, Table 1), referred to as "Just a
bunch of disks" or JBODs. These servers store an order-of-magnitude
more data per server than SSD servers and about 2.6x more data per
rack space. This higher density also helps with emissions (Sec. 4.2).

HDDs contain multiple circular platters that store data magneti-
cally. To write or read data to a platter, the platter’s head has to seek
to the correct track and wait for the disk to spin to the correct sector.
Thus, a key factor in request latency is the speed that the HDD
is spinning, i.e., its rotations-per-minute (RPM). RPM affects both
wait time and device bandwidth, since the HDD can only transfer
data that passes under its active head. Unfortunately, even after
significant optimization effort, RPM has not improved much for the
past decade [1, 105].

HDDs are growing denser, maintaining their capacity-cost ad-
vantage over SSDs. HDDs have grown from one to 20 terabytes over
the last decade without changing their form factor [85] through
density improvements such as shingled-magnetic recording (SMR)
drives that overlap the write tracks to increase bits stored per disk
area [27, 137]. The next frontier of HDD density is heat-assisted
magnetic recording (HAMR), which allows denser packing of bits
by heating disks during writes [24]. HAMR promises to increase
device capacities to 50 TB and beyond [120].

Solid State Drives (SSD). SSD servers are smaller and lower ca-
pacity than HDDs, but are more performant both due to their lower
latency and higher bandwidth [105]. They are offered to cloud users
as high-performance storage options [23].

SSDs are built from NAND flash memory. Flash memory has
two main limitations: it wears out with writes and does not allow
small-granularity overwrites. SSDs have limited write endurance —
after too many writes, their flash cells can no longer store data [73].
If applications write too much, flash’s lifetime can be extremely
short, leading to higher embodied emissions. In addition, SSDs
have to accommodate flash’s lack of overwrites. Flash media in
SSDs is organized into large blocks, often gigabytes in size [37,
100]. To overwrite data in a block, the SSD first has to erase the
entire block, copying any live data in that block elsewhere (a.k.a.,
garbage collection). These extra writes exacerbate limited flash’s
write endurance [38, 55, 73, 89, 91, 93, 127].

Like HDDs, SSDs have been getting denser. SSD density has
increased through two main mechanisms: increasing the number
of layers and increasing cell density. SSDs have been 3D-stacking
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Operational Emissions CPU DRAM SSD HDD Other

Compute Rack 42% 18% 19% 0% 21%
SSD Rack 32% 8% 38% 1% 21%

HDD Rack 26% 5% 7% 41% 21%

Table 2: Operational emission breakdown for Azure rack types.

layers of cells, growing flash storage “vertically.” Today, flash de-
vices can have over 200 layers, and the number of layers is quickly
increasing [9, 13]. 3D stacking increases device density but also
increases embodied emissions. Flash is also becoming denser by
packing bits into cells. Most datacenter SSDs today use tri-level
cells (TLC), which store 3 bits per cell. Flash SSDs will soon use
quad-level cells (QLC) (4 bits/cell) and penta-level cells (PLC) (5
bits/cell) [110]. Unfortunately, increasing cell density causes lower
write endurance, causing quickly diminishing returns. Both of these
methods to increase density can improve emissions if they can be
successfully deployed (Sec. 4.2).

3 Where do storage emissions come from?
Distributed storage is a large emitter [131]. Unfortunately, there
is no standard break down of storage emission sources, which is
necessary to understand and reduce storage emissions. Therefore,
in this section, we show how each component of storage servers in
a datacenter rack contributes to emissions at Azure.

We divide emissions into three components — direct emissions
(Scope 1), operational emissions (Scope 2), and embodied emis-
sions (Scope 3) — based on the Greenhouse Gas Protocol’s defini-
tions [70, 71, 131]. We do not present Scope 1 emissions since they
are negligible [131]. Sec. 3.1 discusses operational emissions, e.g.,
from power generation, and Sec. 3.2 discusses embodied emissions,
e.g., from semiconductor fabs.

We present the emissions from both a SSD storage rack and an
HDD storage rack, focusing on the key components (CPU, DRAM,
SSD, and HDD). We use the “Other” category to group rack over-
heads, such as fans, network switches, power supplies, and power
delivery units. For embodied carbon, the “Other” category also
includes passive material like sheet metal and plastics.

3.1 Operational emissions
Table 2 shows the relative operational emissions of each Azure
rack type. To determine energy consumption and therefore op-
erational emissions of different components, we take component
energy draws measured under a representative load. Notably, an
SSD storage rack has approximately 4× the operational emissions
per TB of an HDD storage rack.

Storage devices (SSDs and HDDs) are the largest single contribu-
tor of operational emissions. For SSD racks, storage devices account
for 39% of emissions, whereas for HDD racks they account for 48%
of emissions. These numbers contradict the conventional wisdom
that processing units dominate energy consumption [70, 131]: stor-
age servers carry so many storage devices that they become the
dominant energy consumers. Thus, the best way to reduce opera-
tional emissions in a storage server is to reduce the storage devices’
energy (Sec. 4).

Since CPUs still cause the next largest portion of the emissions,
improving the energy efficiency of CPUs in storage servers may

Embodied Emissions CPU DRAM SSD HDD Other

Compute Rack 4% 40% 30% 0% 26%
SSD Rack 1% 9% 80% 1% 9%

HDD Rack 2% 11% 14% 41% 33%

Table 3: Embodied emission breakdown for Azure racks.

still provide benefits. However, one has to be careful with en-
ergy efficiency improvements that increase embodied carbon emis-
sions [128, 131]. For example, advanced semiconductor fabrication
nodes reduce operational emissions but increase manufacturing
emissions and electricity use [34, 54, 125]. This consideration is par-
ticularly important in storage, which is already embodied emission
heavy.

3.2 Embodied emissions
We show the relative embodied emissions of each Azure rack type
in Table 3. To estimate embodied emissions, we use raw mate-
rial numbers from vendors, the device’s silicon area, and leverage
IMEC [8] and Makersite [11] to determine average emissions for
manufacturing processes. We ensure that manufacturing and ship-
ping emissions are only counted once and are amortized across
components, so that our embodied emissions results are comparable
to our operational emissions results.

SSD racks emit approximately 10× the embodied emissions per
TB as that of HDD storage racks. The storage devices themselves
dominate embodied emissions, accounting for 81% and 55% of emis-
sions in SSD and HDD racks, respectively. While DRAM is the
largest embodied emissions contributor in compute servers, this
is not true for storage servers due to the many storage devices in
these servers. Across both operational and embodied emissions in
distributed storage clusters, there is a clear need to reduce emissions
from the storage devices themselves.

4 Emission reduction in storage
Solutions that effectively reduce carbon in compute servers are not
generally effective in storage servers. We now consider the impor-
tant opportunities and challenges in reducing storage emissions.
To structure the discussion, we model emissions by breaking apart
operational and amortized embodied emissions:

Annual Carbon Emissions
= Operational Emissions + Embodied Emissions

=
∑

Devices

(
Watt-Hours

Device
× Carbon
Watt-Hour

+ Carbon
Device

× 1
Lifetime

)
This simple model tells us that emissions can be reduced in five
ways: using fewer devices, lowering power, reducing carbon inten-
sity of power, reducing per-device embodied emissions, or increas-
ing server and device lifetime.

Prior work uses three main methods to achieve these reduc-
tions in compute servers: (1) reducing and shifting power by in-
creasing utilization [45, 60–62, 79, 94, 95, 101, 111, 124, 141] and
moving computation to times/locations with more renewable en-
ergy [7, 25, 35, 113, 123, 135]; (2) using fewer, more efficient compute
devices and reducing emissions per device [44, 50, 51, 64, 121]; and
(3) increasing lifetimes by identifying places where older device
performance is adequate [97, 130, 132–134].
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Fig. 3: Power and IOPs over 7 days. Both power and IOPs are normal-
ized to their average value over 30 days.

In storage, these reductions are harder to accomplish because: (1)
lowering and shifting power consumption relies on power varying
with usage, which is not true in storage (Sec. 4.1); (2) reducing
devices implies denser storage devices, which have performance
and endurance limitations (Sec. 4.2); (3) increasing lifetime increases
the failure rates, threatening durability (Sec. 4.3). There are potential
solutions to address or mitigate all of these challenges, but we need
further research to enable storage emission reductions.

4.1 Lowering and shifting power
Operational emissions can be reduced by shifting work to reduce
peak power consumption and aligning power use with the avail-
ability of renewable energy. Unfortunately, it is difficult to shift
power consumption in storage, and, more importantly, operational
emissions are a small fraction of overall emissions in storage. Also,
since storage is a relatively small fraction of operational emissions,
any operational emissions gains need to not come at the expense
of embodied emissions.

Storage power usage is basically flat. Power usage does not
vary much in storage clusters, despite high variation in IOPS. To
quantify this effect, we plot the power usage of both an HDD cluster
and SSD cluster at Azure along with the IOPS in each cluster (Fig. 3).
These measurements were collected over 7 days. Each point for
power is the average power consumption over a 5-minute window,
normalized to the average power. Each point for IOPS is the average
IOPS in a 30-minute window, normalized to the average IOPS. We
also plot a 4-hour moving average for both IOPS and power.

For HDD clusters, we see that IOPS varies, though not in a
diurnal pattern, but power does not. Between late in day 2 to the
start of day 3, the IOPS increases by 61%, but the power remains
constant. Over the 7 days, power varies little, having a standard
deviation of 3%. The lack of power variation is due to HDDs using
most of their power to continue spinning, which needs to occur
regardless of IO accesses [68, 102, 103].

Power also varies little in SSD clusters. Over 7 days, we observe
a standard deviation of 3%. However, SSDs show a more consistent
diurnal pattern during weekdays (the trace starts on a Thursday)
that we can see mirrored slightly in power. For instance the IO drop
on the zeroth day of 28%, results in only a power drop of 0.04%.

Due to the relatively consistent power usage of both SSD and
HDD clusters, shifting IO to reduce peaks or to when/where there
is more renewable energy will not significantly reduce operational
emissions. Conversely, increasing IO has little impact on operational
emissions.

Prior work aims to reduce hard drives’ energy, but does not
consider embodied emissions. The observation that HDDs re-
quire consistent power is not new; prior work has tried to reduce
HDD energy since the early 2000s. This work fits into two cate-
gories: (i) caching to create idle IO periods and (ii) distributing data
to enable power proportionality.

HDDs use far less power when in idle or sleep modes [16].
However, HDDs have little IO variation currently in Azure’s dat-
acenters, so idle periods would need to be intentionally created.
Prior work has different strategies, such as using a relatively low-
power disk to store most hot data [41], separating hot and cold
data [77, 87, 92, 107], or employing better prefetching and caching
policies [112, 122]. These policies often do not work for common
maintenance tasks that stream through large amounts of data se-
quentially, such as scrubbing [33, 117], and are hard to change in
cloud environments where much of the work is not under the cloud
provider’s control. As shown in Pelican [33], datacenter power provi-
sioning would also have to change to accommodate variable power,
since typically power is provisioned for storage server’s peak —
when all disks are running.

Alternatively, some work has suggested leveraging data replica-
tion to turn off storage servers when either IO is low enough [28, 33,
46, 129] or there is not enough available green energy [86]. Turning
off the entire server allows for energy savings from all compo-
nents, not just disks [63]. Unfortunately, most prior work assumes
data replication, where the storage system stores multiple copies of
data, whereas today’s datacenters use more space-efficient erasure
codes [81, 84]. One prior paper did consider leveraging redundancy
in erasure-code-based distributed storage systems [108], but much
more work can be done especially factoring in embodied emissions
and the constraints of modern datacenters.

Opportunities to reduce operational emissions. Although stor-
age operational emissions is a smaller part of datacenter emissions,
there is still potential to reduce it. SSDs are more power propor-
tional than HDDs [22], meaning some prior HDD work may be
more impactful in SSDs. For HDDs, running at lower rotational
speeds instead of fully off could reduce power without affecting
durability [41, 72], since HDDs lifetime decreases with frequent
power cycles [68]. Lower rotational speeds also allow an increase
in areal density [69] — synergizing well to also decrease embodied
emissions-per-bit, at the expense of latency and bandwidth. The
downside is a drop in IO, some of which may be recoverable from
deploy dual-actuator HDDs [19, 42, 88, 106].
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4.2 Fewer, denser drives
The most direct way to reduce storage emissions is to use fewer,
denser storage devices. Denser storage devices could lower power
consumption as well as the number of servers and racks required
to store the same data, reducing both operational and embodied
emissions. This subsection discusses three main ways to increase
density: moving from SSDs to HDDs, using denser SSDs and HDDs,
and deploying new storage media.

Unfortunately, increasing storage density is not straightforward.
Denser devices typically do not have proportionally higher IO,
reducing the IO per bit and introducing new performance con-
straints. Overcoming these constraints requires more research, as
does holistically and accurately estimating emission gains from
denser storage.

Move from SSDs to HDDs. As shown in Sec. 3, SSD servers emit
more than HDD servers, both per-rack and per-bit. To reduce emis-
sions, all applications that can tolerate HDD performance should
be moved to HDDs. Unfortunately, clouds today are sometimes
locked into cloud users’ choices between the two tiers of storage.
For instance, Azure and AWS VM-attached disks default to SSD
storage [3, 23]. This default increases emissions if cloud applica-
tions do not need the additional performance, but it is hard to avoid
because the customer has paid to get SSD performance. Moving to
HDDs without changing this user-performance agreement would
essentially force the provider to still keep the entire working set
in a more performant media such as DRAM or SSDs, increasing
emissions.

Alternatively, cloud providers could encourage users to choose
lower performance, more sustainable storage. One way to encour-
age movement to more sustainable storage is to increase awareness
of the difference in emissions between storage options — whether
through pricing or explicit calculations of emissions when allo-
cating storage space. Performing these calculations accurately per
workload requires additional research.

Deploying denser SSDs and HDDs. HDD and SSD density is
already increasing. Generally, denser drives reduce embodied emis-
sions per bit because they require about the same materials while
storing more data [99, 143]. However, generational advances some-
times require more resources and manufacturing emissions.

For HDDs, the next density jump comes from HAMR (Sec. 2.2).
HAMR adds both operational and embodied emissions due to the
addition of lasers on each write head. These drives also have to
use different materials to increase magnetic stability of the bits at
room temperature [24], changing the embodied emissions of the
hard drive platters, though we expect the density increases to still
lower overall embodied emissions. For SSDs, adding layers adds to
the manufacturing emissions, increases manufacturing complexity,
and lowers reliability [140].

These considerations will add embodied emissions at the device
level, but still likely result in a better embodied emissions-per-bit
due to the additional density. In order to understand the emissions
benefits with denser storage, we need to study the emission impact
of the denser technology.

IO prevents full adoption of denser HDDs and SSDs. The ad-
ditional carbon emissions from denser HDDs and SSDs are not the

only challenges for deploying these drives to reduce emissions—
denser drives also can perform less IO per TB of capacity.

IO bottlenecks are already becoming a challenge in datacenters
for HDDs, primarily because higher-capacity HDDs do not increase
their bandwidth. For instance, Seagate has LCA analysis for its Exos
HDDs show that its 18 TB HDD has 59.6% fewer kg 𝐶𝑂2𝑒 per TB-
year compared to its 10 TB drive [20, 21]. However, the 18 TBHDD’s
bandwidth only increases 8.4% and has no increase in random 4KB
IOPS [17, 18]. In order to use the 18 TB drives instead of 10 TB
drives, we would need to reduce IO per GB stored. But there is little
headroom available — many storage applications already saturate
today’s HDD bandwidth.

Additionally, both SSDs andHAMRHDDs sufferwrite-endurance
problems. SSDs’ limited write endurance is a well-known prob-
lem [26, 30, 143]. Write endurance gets worse with higher cell
density. PLC is projected to have 16% of the write endurance of to-
day’s TLC drives [15]. HAMR drives add a laser on each read-write
head, leading to another potential source of wear-out. These lasers
are rated for 6,000 hours of use, or 3.2PB of continuous data trans-
ferred per head. This is 20× higher than the workload specification
that drives be able to transfer 17 MB/s on average for 5 years [6].

To deploy these denser drives, we need to reduce IO, but this
is difficult. Storage systems already deploy large caches to take
advantage of most locality in the storage accesses [36, 98, 136, 139].
Additional caching capacity also needs to be weighed against the
cache’s emissions. Caching also does not help with low-locality
workloads, like LSM compaction [12, 43, 47, 48, 53, 90, 114]. Thus,
we need to develop new solutions to reduce IO so we can deploy
fewer, denser drives and reduce emissions.

Archival storage media. If we push using fewer, denser devices
to the extreme, we need to consider media typically meant for
archival storage: tape [117], glass [29], and DNA [52, 104]. All of
these media have much longer access times, so we would need
workloads that can tolerate these longer access times. The potential
benefit is lower emissions. Tape has the potential to lower emissions
by 87% per bit [80]. Unfortunately, this estimate does not include
the robots and climate control needed to deploy tape, which signifi-
cantly offsets its emissions reduction. Both glass and DNA are much
denser than tape, so they have the potential to reduce emissions,
but we cannot determine their emissions potential until more data
is available on their lifecycle embodied and operational emissions,
particularly when factoring in their achievable IO.

4.3 Extending lifetime
The last method to reducing storage emissions is extending device
lifetime, which amortizes embodied emissions. Expected lifetime
in servers has already increased from the traditional estimate of 3
years to 5-7 years, depending on the datacenter [25, 75, 96, 97].

Extending storage lifetime comes with drawbacks, some of which
are shared with compute. Newer devices tend to be more energy-
efficient, so in environments with significant operational emissions
(e.g., with few renewables), extending lifetime can be detrimental
to overall emissions. Embodied emissions are far more dominant
in storage than in compute [70, 128], making this less of a concern.
However, extending lifetime also has diminishing benefits. Going
from 3 to 6 years halves embodied emissions, but halving again
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requires going to 12 years. Meanwhile, failure rates increase with
device age. It is thus not profitable to extend lifetime indefinitely.

Extending lifetime causes extra failures. Extending lifetimes
in storage has the additional challenge of ensuring durability. As
devices have longer lifetimes, their failure rate will increase. Al-
though component failure is the expectation in datacenters, storage
systems tune redundancy based on the likelihood of component
failure. Additional failures require additional redundancy.

The benefit of extending lifetimes depends on how quickly fail-
ures increase for different device types. For HDDs, this is hard to
predict — mostly because datacenters decomission HDDs before
failure [83]. Reported annual failure rates can double going from
three to six year lifetimes [83] as HDDs enter end of life [56, 57, 138].
Another challenge with hard disk drive lifetime is that we do not
know the reasons for device failures. HDDs are assumed to fail
from both wear-and-tear over the years and from IO utilization, but
we do not have long-term studies of IO utilization to understand
the significance of both of these factors.

For SSDs, extending lifetimes exacerbates flash’s write endurance
problem. Running the same workload on an SSD for double the life-
time doubles the writes. For workloads such as caching that already
use most of the device’s write endurance, this will likely cause the
device to fail [99]. Together, extending lifetime and using denser
flash to reduce emissions will require significant IO reduction.

Mitigating extra failures. Adaptive redundancy and enabling
partial failures can mitigate these extra failures.

Adaptive redundancy was developed to enable lower capacity
erasure-coding schemes during the useful life phase of HDD deploy-
ment [81–83]. For extending device lifetime, a similar idea could
ensure durability at older ages — without requiring additional ca-
pacity overhead during the traditional lifetime. This reduction from
embodied emissions will have to be balanced with transitioning the
erasure codes with age, which causes additional IO that stresses
bandwidth particularly for denser drives (Sec. 4.2).

Another way to mitigate the increased failure rates is to embrace
partial failures. Although storage devices present a fixed capacity,
this is not the reality. SSD cells wear out at different rates. HAMR
HDDs can have some lasers fail. Sectors on HDDs can grow de-
fects. While devices today can handle a limited number of defect
failures, the device must fail if it no longer has the advertised fixed
capacity. Thus, these partial failures are total failures today, causing
us to lose usable capacity that we have already paid the embodied
emissions for. We need to reconsider total failure and enable partial
failure by changing the storage stack and how clouds deploy and
replace drives. For HDDs particularly, while we generally know
that annual failure rates increase with age [109, 116], we do not
have the telemetry to know why exactly the device failed, limiting
our ability to determine the emission benefits of partial failure. For
instance, a HAMR drive with one laser failing results in a partial
failure whereas the drive’s only actuator no longer being reliable
results in a complete drive failure since no part of the device is
readable.

Second life and recycling. Another way to reduce embodied
emissions is to increase hardware’s lifetime through giving it a
second life [70, 126] or recycling components [14]. Although giving

storage drives a second life is more carbon-efficient [59], we would
need to thoroughly address security concerns, especially if drives
leave the datacenter [14, 59]. Second-life devices in the datacenter
would need to be used for more failure-tolerant applications, such
as caching.

5 A Call to Action
We identify three broad directions to reduce storage emissions,

which each require significant further research. Much of the re-
quired research is interdisciplinary, requiring collaboration across
the hardware/software boundary, across the entire software stack,
as well as inputs from material scientists and sustainability ana-
lysts.
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