
Morph: Efficient File-Lifetime Redundancy
Management for Cluster File Systems

Timothy Kim∗, Sanjith Athlur∗, Saurabh Kadekodi§, Francisco Maturana∗
Dax Delvira∗, Arif Merchant§, Gregory R. Ganger∗, K. V. Rashmi∗

∗Carnegie Mellon University §Google

Abstract
Many data services tune and change redundancy configu-
rations of files over their lifetimes to address changes in
data temperature and latency requirements. Unfortunately,
changing redundancy configs (transcode) is IO-intensive. The
Morph cluster file system introduces new transcode-efficient
redundancy schemes to minimize overheads as files progress
through lifetime phases. For newly ingested data, commonly
stored via 3-way replication, Morph introduces a hybrid re-
dundancy scheme that combines a replica with an erasure-
coded (EC) stripe, reducing both ingest IO and capacity over-
heads while enabling free transcode to EC by deleting repli-
cas. For subsequent transcodes to wider, more space-efficient
EC configs, Morph exploits Convertible Codes, which mini-
mize data read for EC transcode, and introduces new block
placement policies to maximize their effectiveness.
Analysis of data ingest and transcode activity in Google

storage clusters shows the current massive IO load and the
potential savings from Morph’s approach—transcode IO can
be reduced by over 95%, and total ingest+transcode IO can be
reduced by 50–60% while also reducing capacity overheads
for newly ingested data by 20%. Experiments evaluating a
Morph implementation in HDFS show that these benefits
can be realized in a real system without hidden increases in
complexity, tail latency, or degraded-mode latency.

1 Introduction
Distributed file systems (DFSs) spread PBs-to-EBs of data
over 10Ks-to-100Ks disks and use redundancy for fault tol-
erance [8, 17, 49]. When ingested, most data is stored via
3-way replication to minimize throughput and tail latency
concerns. After a few hours or days, most data is erasure
coded (EC) for capacity-efficient fault tolerance.

Generally speaking, 𝑘 chunks of data protected with 𝑛 −𝑘

chunks of parities (redundancy) make up a EC(𝑘 ,𝑛) stripe.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 ACM.
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695981

Figure 1. Morph reduces ingest+transcode IO on real-world cluster data.
The graphs on the left show one week of measured hourly ingest+transcode
IO (top=A) and transcode-only IO (bottom=C) for one of the largest Google
data services. The graphs on the right show the IO to provide the same data
protections and lifetime transitions using Morph. The colors categorize IO
for the different lifetime transitions: ingest, transcode from 3-way replica-
tion to a narrow EC (e.g., RS(8,12)) after a day or so, transcode from narrow
EC to medium LRC (e.g., LRC(32,38)) after a month or so, and transcode
from medium LRC to wide LRC (e.g.,LRC(64,74)) after several months.

The values of 𝑘 and 𝑛 dictate data durability, availability and
storage cost and can also affect read and write performance.
For instance, a EC(6,9) stripe of the commonly-used Reed-
Solomon code can tolerate 3 simultaneous chunk failures at
3
6=50% storage overhead. As such, different values of 𝑘 and
𝑛 are often selected for different files’ contents.

Indeed, the applications (data management services) that
create most files in large clusters now change (transcode) the
redundancy schemes of those files one or more times during
their lifetime to reduce space overhead as data cools. Since
different services have different reliability and performance
needs, the services choose the redundancy scheme and not
the DFS. In most file systems [14, 25, 43], transcode is not
directly supported as a native DFS operation. Instead, an
application transcodes a file by reading the file’s data, writing
it into a new file with the new EC, and deleting the original.
In large-scale cluster file systems, huge amounts of IO

are used for establishing and changing redundancy. As a
concrete example, Fig. 1A shows measured ingest+transcode
IO for one of the largest data services in a Google storage
cluster going through the lifetime phases presented in Fig. 2.
Fig. 1C zooms in on the transcode portion, which is 20–33%
of the 5–13PB/hour total.

https://doi.org/10.1145/3694715.3695981

Figure 2.Afile of 𝑓 bytes is ingested in 3-r. Then, at 𝑡1 the file is transcoded
to a narrow RS scheme, at 𝑡2 is transcoded to a medium-width LRC, and at 𝑡3
is transcoded to wide LRC with the least storage overhead. Each transcode
requires 2 × 𝑓 IO as the file is read, re-encoded, and written to the new
redundancy scheme. Transcode happens in reaction to the file’s cooling
data temperature over time.

We present Morph, a cluster file system that reduces IO re-
quirements for redundancy throughout file lifetimes. Morph
introduces new redundancy schemes that make both ingest
and transcode more efficient and makes transcode a native
DFS operation. For ingest, it introduces a new hybrid redun-
dancy scheme that combines one (or two) replicas with an
EC stripe. This reduces ingest IO and eliminates transcode
IO for the file’s first lifetime transition, since the replica can
simply be deleted to convert to EC. To make other transi-
tions efficient, Morph adopts and specializes for a recently
proposed theoretical code construction framework, called
Convertible Codes (CC) [37, 40, 41], that minimizes data read
when transcoding from one EC to another, often avoiding
reading any data chunks (just the parities).

The result is large reduction in ingest+transcode IO. Com-
paring Fig. 1B to Fig. 1A, we see that Morphwould reduce the
IO required by ≈40%. About half of the reduction comes from
a 20% reduction in ingest IO, because the hybrid scheme of
one replica plus an EC stripe is a 2.4× data expansion rather
than 3× for 3-way replication. The capacity consumed is also
reduced accordingly. The other half comes from a >95% re-
duction in transcode IO (compare Fig. 1D to Fig. 1C) required
for file lifetime transitions.
Realizing Morph’s promise has required overcoming a

number of correctness and efficiency challenges. First, ingest
uses 3-way replication to achieve high-write throughput and
low write and read tail latencies (since the newest data is
warmest), and to avoid in-line EC which comes with incre-
mental parity update complexity from read-modify-write. A
straightforward realization of the hybrid redundancy scheme
would jeopardize all of these requirements. Morph introduces
a write protocol that replicates (3-way) across servers, but
rapidly computes the EC parities in the background and usu-
ally deletes the then-unneeded extra replicas before they
are written to disk. Second, while recent work in the field
of coding theory has provided the theoretical foundations
for Convertible Codes, incorporating this new class of codes
requires system design changes to realize the promised bene-
fits in practice. For example, EC-to-EC file transcode requires
processing multiple EC stripes at once, such as when com-
bining each sequence of five EC(6,9) stripes in the file into

a valid EC(30,33) stripe (with all 𝑛=33 on different servers),
which can require moving some data chunks if not placed
properly. Morph introduces data placement policies to avoid
such data movement and employs parity placement policies
to maximize server-local computation.
We implement Morph in HDFS [15], enabling head-to-

head comparison to a popular open-source DFS. Experiments
on a small academic cluster show that Morph achieves a 58%
reduction in disk IO and 55% reduction in network IO, com-
pared to HDFS, for a mix of data ingest and file lifetime
transitions. Our analytical evaluations of Morph applied
to month-long traces of large-scale production data service
applications at Google similarly show 40-50% reductions in
IO for observed ingest and transcode activity. In addition,
we confirm that reads and writes with a hybrid redundancy
scheme perform almost identically to replication acrosswork-
loads and cluster conditions. We also show that a practical
implementation of Convertible Codes achieves significant IO
and computational savings, directly reflecting the theoretical
savings while not compromising encode or decode times for
data writes and reconstruction events.

Contributions. This paper makes five primary contri-
butions: (1) It introduces a new hybrid redundancy scheme
that combines replication with erasure coding to provide
replication-like performance, lower space consumption, and
near-zero transcode-to-EC overhead. (2) It describes data
and parity placement policy augmentations that minimize
both disk IO and network IO for transcode operations with
minimal impact on other placement considerations. (3) It de-
scribes how Morph makes transcode a native DFS operation
and combines Convertible Codes with (1) and (2) in a real sys-
tem. (4) It shows that Morph can be implemented efficiently,
outperforms HDFS for both ingest and each transcode step,
and offers large reductions in the overall ingest+transcode
IO based on production traces from Google. (5) It establishes
that Convertible Codes, which were so far studied only the-
oretically, can indeed be incorporated into real-world DFSs
and that they provide significant IO and computational sav-
ings for transcode operations in production traces.

2 Background and Motivation
Exascale storage clusters contain 100Ks of disks deployed on
1000s of servers managed by a distributed file system (DFS).
Each file’s contents are stored in a set of fixed-size chunks
using the redundancy scheme its creator specifies.

Data redundancy schemes.Replication and erasure cod-
ing are the main redundancy mechanisms used to ensure
data availability and durability. Generally, replication has
lower average and tail write latency (see Fig. 3) at the ex-
pense of higher storage overhead, with 3-way replication
(“3-r") being the most common replication configuration
in practice[15, 17, 43]. Since replicas are exact copies, any
replica can be read to service a read request. In fact, some

Figure 3. 3-r outperforms RS(6,9). Write la-
tency and throughput are shown for creating
8MB files. Both median and tail (p90) write la-
tency for RS(6,9) is almost 4× higher than 3-r.
Throughput is 68% lower, and read performance
suffers, especially for degraded-mode reads.

Figure 4. File transitions per hour in four Google
storage clusters. Each line shows the millions of
file transitions pending+performed per hour (includ-
ing early life to mid-life and mid-life to late-life) in
one storage cluster, each transition consuming large
amounts of cluster resources.

Figure 5. HDD sustained bandwidth per capac-
ity trend in the last decade [4]. The red empty
circle denotes the speculated bandwidth per ca-
pacity cost with the introduction of disk technolo-
gies like HAMR (heat assisted magnetic record-
ing) [1–3].

DFS clients will initiate reads of more than one replica in
parallel and use the first response in order to decrease tail
latency [9].

Erasure coding (EC) entails associating each 𝑘 equal-sized
chunks with 𝑟 parities to make up an 𝑛-chunk EC stripe.
Compared to replication, EC has lower storage overhead
(𝑟
𝑘
) at the cost of generally higher latencies and lower IO

efficiency. Also, when a data chunk is unavailable in an EC
stripe, reconstructing it requires reading multiple other data
chunks in the stripe plus a parity chunk and mathematically
decoding the missing chunk. A client read that decodes a
missing chunk is called a degraded-mode read.
Multiple classes of erasure codes exist [10, 16, 21, 26, 34,

45, 46, 54] but the two most common constructions in large-
scale storage clusters are Reed-Solomon (RS) [54] and Locally
Recoverable Codes (LRC) [21, 27]. An RS(𝑘, 𝑛) stripe (also
written as 𝑘-of-𝑛) can tolerate any arbitrary combination of
𝑛 − 𝑘 chunk failures. However, RS stripes incur the cost of
high reconstruction overheads. A recovery in EC(k,n) stripe
implies DFS has to read 𝑘 of 𝑛 blocks from the stripe. This
overhead is exacerbated with wider stripes as 𝑘 increases.
LRCs are popular due to their low reconstruction overheads.
The 𝑘 data chunks are organized into 𝑙 local groups, each
group protected with its own parity, in addition to 𝑟 global
parities. We denote this LRC with a (𝑘, 𝑙, 𝑟) scheme [27]. A
single failure in a local group can be recovered using 𝑘/𝑙
local chunks. There are numerous LRC constructions [7, 20,
23, 31, 33, 50–52]; discussing their differences is beyond the
scope of this paper. 1

Data age, temperature and redundancy. Fig. 2 illus-
trates the lifetime of a file, such as for the data service shown
in Fig. 1, in terms of the redundancy schemes used. Recently
created data is often popular in its early life. Of course, data
reuse is absorbed by large caches, but early life data often
requires higher availability and IO performance, and there-
fore is often stored using replication because directly storing
in EC has performance implications as shown in Fig. 3. It is

1Readers can refer to the tutorial [12] on erasure-coding for more details.

common for a large storage cluster to ingest 100s of PB daily,
mostly stored in 3-r (200% storage overhead).
As data ages, it tends to cool, such that IO performance

requirements are less stringent. Data in mid-life ranges from
warm to cool in terms of access frequency, and is often stored
using EC to reduce storage overhead. Narrow RS codes or
narrow LRCs, where the EC stripewidth (𝑘) is typically below
20 chunks, are popular choices for mid-life data. The narrow
width of the EC stripe keeps tail latencies from going too
high, especially during client degraded mode reads. Narrow
RS or LRCs typically have 25–50% storage overhead.
Late-life data is cold or frigid. Online archives, backups,

and years-old videos are examples of data in late-life. Client
accesses are rare but can occur, and thus, maximizing storage
efficiency is the main focus of redundancy scheme choice.
Wide LRCs are typical for late-life data, with 𝑘 as large as
80 chunks [31], or even 150 chunks per EC stripe [11], with
10–20% storage overheads.

Transcodes are frequent and IO-intensive. Modern
DFSs allowfiles to appropriately change redundancy schemes
based on their stage of life. These transcodings have be-
come a common operation performed by data services today.
Fig. 4 shows the number of file transcodes per hour for four
Google exascale storage clusters. The millions of transcodes
each hour include early to mid, mid to late, and sometimes
multiple configurations in between. In most DFSs, however,
transcode is not a native DFS operation—instead, an applica-
tion does it by reading file data and re-writing it as a new file
with the target scheme. This read–re-encode–write (RRW) op-
eration requires significant disk IO and network bandwidth
to read data, write parities, and re-write data. Several systems
such as HDFS, Ceph and most popular public cloud infras-
tructures we know of use this approach [14]. As illustrated
in Fig. 1, huge amounts of IO (2PB/hour in this example) are
used for transcoding files via RRW.

Increasing IO-per-byte-stored bottleneck. Per-HDD
capacity increases over the years at a faster rate than per-
HDD bandwidth: ≈11.8%/year vs. ≈5.1%/year. Consequently,
the available bandwidth-per-TB has been decreasing at an

alarming≈8.5%/year rate. Further, the onset of new disk tech-
nologies like HAMR is expected to exacerbate the problem,
as illustrated in Fig. 5. Thus, it is critical to design cluster file
systems to minimize IO demand.

3 Morph Overview
Morph is a cluster file system that reduces cluster IO require-
ments by addressing the large amount of IO used to establish
redundancy (during ingest) and change it over file lifetimes
(via transcode). It does so while continuing to satisfy applica-
tion constraints related to data durability, storage efficiency,
and access latency by introducing new redundancy schemes
that match those properties for existing alternatives (3-r and
RS) but reduce IO for ingest and transcode. Thus, applica-
tions can continue to optimize their redundancy choices as
before while using less IO.
Morph’s design views the lifetime of a file in two parts:

(1) Early life and transition to mid-life, when data generally
requires lower average and tail latency, and (2) transitions
from mid-life onwards, when data generally becomes pro-
gressively colder and performance increasingly shrinks in
importance relative to storage overhead.

For early-life, Morph introduces a new hybrid redundancy
scheme that simultaneously employs both replication and EC,
along with specifically designed placement and read/write
protocols. We show that applications can use this hybrid
redundancy instead of 3-way replication to achieve early life
goals (performance and durability like 3-r) but with lower
ingest (file creation) IO and near-zero-IO transcode to EC
for mid-life, via a new explicit transcode() interface.
For mid-life, Morph leverages recent advances in coding

theory and employs a new class of codes called Convertible
Codes (CC) [40, 41] in place of RS codes. CC provide the
same reliability properties and configuration flexibility, but
they enable much more IO-efficient transcode from one EC
scheme to another. Whereas applications need to explicitly
opt into choosing hybrid redundancy during file creation
(ingest), CC are a drop-in replacement for existing EC mech-
anisms. Applications can specify EC parameters as before
and expect the same performance and reliability guarantees.
If, however, the target EC configurations are well-chosen (as
explained below), Convertible Codes allow Morph to signifi-
cantly reduce IO overheads, especially in a transcode-native
DFS designed specifically to exploit the new codes.

The next two sections describe the design and challenges
overcome for each phase.

4 Early to Mid Life – Hybrid Redundancy
Data in early life is often “hot” and thus demands high perfor-
mance requirements such as fast write throughput and low
read latencies. Erasure coding cannot meet these high perfor-
mance demands (see Fig. 3), leaving replication as the defacto
option for new files. However, replication bears high storage

Figure 6. Client issuing a 40 MB spanning write in Hy(1, EC(5, 6)). The
replica is sent to 3 nodes and is acknowledged from each after reaching
memory-backed RAM. The first node persists the replica to disk while the
second node asynchronously sends data chunks with their parities to other
nodes. Both the second and third node delete their temporary replicas once
parities are persisted. In its resting state, Hy(1, EC(5, 6)) has 1 replica, 5
data chunks, and 1 parity chunk on disk.

overheads after ingest and poses challenges for transitioning
into more space-efficient storage options later on. Therefore,
we propose an alternative hybrid redundancy storage scheme.
Morph’s hybrid redundancy offers better capacity-efficiency
than replication, fulfills the necessary properties for hot data,
and enables efficient transitions as data cools.

4.1 Definition
Hybrid redundancy stores data in both replicated (replica
blocks) and erasure-coded form (EC stripe) simultaneously.
Fig. 6 shows an example of a hybrid scheme with 1 replica
block and an EC stripe with 5 data chunks and one parity
chunk. Note that the data chunks of the EC stripe contain
the same data as the replicas and act as another copy despite
being in a different format. The hybrid scheme is generally
applicable to any combination of replicated and EC formats
as it is simply a combination of the two.

AHy(𝑐, EC(𝑘, 𝑛)) scheme represents 𝑐 copies for each repli-
cated block and an EC stripe consisting of 𝑘 data chunks pro-
tected by𝑛−𝑘 parity chunks.Morph presents theHy(1, EC(𝑘, 𝑛))
scheme, that provides sufficient durability (one extra replica
over an already durable EC stripe) and lower space overhead
than 3-r (𝑛

𝑘
× versus 2×), while meeting read and write per-

formance requirements. In addition, Morph also supports
Hy(2, EC(𝑘, 𝑛)) scheme with two replicas instead of one.

While the idea of hybrid redundancy is simple, it encoun-
ters several challenges. We describe these challenges and
Morph’s solutions below.

4.2 Hybrid Writes
Hybrid redundancy writes data in both replicated and EC
form during ingest. Though beneficial for future phase tran-
sitions, writing the EC stripe when the file is first written
poses challenges with write performance and reliability.

In many DFSs, writes are often deemed durable when the
data reaches the in-memory buffer cache (battery-backed
RAM) on 3 nodes, say when writing a 3-r file. Consequently,
the ingest latency is bottlenecked by the slowest of three
nodes when receiving data. To maintain these durability and
write latency expectations, Morph handles small writes and
spanning writes (large writes spanning multiple EC chunks)
differently.
For small writes (writes spanning only one EC chunk),

Morph always sends data to 2 replicas in-memory and to the
corresponding EC chunk in the stripe. The write is acknowl-
edged after all three nodes receive the data, thereby achieving
durability and slowest-of-3 write latency requirements. The
parity computation is offloaded from the client, and delegated
to one of the servers hosting a replica. 𝑐 of the 2 replicas
and the EC chunk get persisted to disk immediately after
receipt of data. The remaining 2− 𝑐 replicas are evicted from
memory only after the parities are computed and persisted to
disks to maintain durability. Thus, while Hy(2, EC(𝑘, 𝑛)) per-
sists both the replicas to disk, Hy(1, EC(𝑘, 𝑛)) only persists
one of the two replicas and discards the other. In the event
that a replica needs to be evicted from memory or when a
file is closed before parities get persisted, both replicas are
persisted even in the case of Hy(1, EC(𝑘, 𝑛)).
For large writes spanning multiple EC chunks, the afore-

mentioned approach can lead to higher tail latencies. For
writes spanning all 𝑘 chunks, the client waits for the slowest-
of-𝑘 nodes holding the chunks of the EC stripe in addition
to the two replica nodes. To overcome this challenge, Morph
writes all data to 3 replicas (instead of 2) in-memory. The
client waits for acknowledgement from these three repli-
cas (thereby maintaining the durability and latency require-
ments) as shown in Fig. 6. One of the nodes storing a tem-
porary replica assumes the role of a striper, and writes data
to the 𝑛 data nodes in the striped form in the background
(async striping). Similar to the small writes case, while 𝑐 of
the 3 replicas are persisted to disk immediately, others are dis-
carded after persistence of parities. We meet the slowest-of-3
latency requirements at the cost of server-to-server network
IO and server memory resources.

Appendability guarantees. A popular attribute of repli-
cated files unavailable to EC files is the ability to append
without modifying parities. Morph provides this ability by
computing parities only when the EC stripe is complete. As
hybrid writes are made durable through the replicas and not
parities, parity computation can be arbitrarily delayed until
all the data chunks are present.

4.3 Hybrid Reads
Replication offers the intrinsic advantage of having 𝑟 copies
of data, enabling read latency that reflects the best of 𝑟 . Reads
to an EC stripe (striped reads), on the other hand, can span
up to 𝑘 blocks, in which case the read samples the worst
of 𝑘 . However, striped reads can potentially utilize up to 𝑘

disks in parallel to improve read throughput compared to
a single disk in a replica read. Hybrid redundancy offers
the read latency of replication and the read throughput of
striped reads by dynamically adapting its read strategy to
client access patterns.

Latency-sensitive workloads. Reading data from a hy-
brid file can be performed in one of two ways (1) read from a
replica or (2) read from the EC stripe. We find at Google that
most client reads are small (i.e., ≤1 MB) latency-sensitive
reads. For this type of read, a hybrid scheme with 𝑐 = 2 per-
forms exactly the same as 3-r at both the median and tail. As
the read does not span across multiple EC chunks (i.e., read
from a single chunk), option (2) becomes equivalent to op-
tion (1). Even in the case when 𝑐 = 1, two copies of the data
can be requested before resorting to a degraded mode read.
We find analytically that probability of a degraded mode
read from the striped portion of a hybrid scheme is very low
(tail-of-the-tail). See Appendix B for an example.

Throughput-heavy workloads. In fact, there are client
workloads that benefit from hybrid redundancy due to the
availability of a striped read. A striped read can achieve
greater read throughput than a sequential replicated read by
concurrently reading frommultiple disks. For large file scans,
Morph automatically reads in parallel from the stripe chunks
rather than the replicas. As large reads become bottlenecked
by bandwidth rather than IOPS, striped reads outperform
replica reads.

Degraded reads. When some data chunk is unavailable,
fetching several more data chunks and decoding on the criti-
cal path induces latency on the critical path for erasure-coded
files. Morph circumvents this issue by instead reading from
a replica when a data chunk is unavailable.

4.4 Fault Tolerance and Data Recovery
In general, a Hy(𝑐, EC(𝑘, 𝑛)) scheme is capable of handling
any arbitrary 𝑐 + (𝑛−𝑘) failures. For any range of data, there
exist 𝑐 replicas, 1 set of data chunks, and 𝑛 −𝑘 parity chunks
to recover from. Hybrid redundancy provides simple and
efficient reconstruction protocols. In the case of a replica
chunk failure, the replica can be recovered by either (1) read-
ing another replica with the same contents if 𝑐 > 1 or (2)
reading from the EC stripe if (1) is not an option. In the case
of an EC data chunk failure, the data can be recovered by (1)
reading the relevant portion of a replica or (2) reading the
other data chunks and a parity chunk. The same options are
available during an EC parity chunk failure, but the entire
EC data stripe must be read either from the replica or the
data chunks to re-compute the parity.

4.5 Transitions from Hybrid to EC
Designing hybrid redundancy to be an exact combination
of the replicated and EC components is a conscious choice
meant to facilitate the future transition to EC. A transition
from replication to EC forces the file to be rewritten, which

has significant overheads (i.e., reading file, rewriting file,
writing new parities) as the data needs to be eventually writ-
ten out in a different format. Clients often know apriori which
EC scheme the data will transition to and can build that in-
formation into data ingest with hybrid redundancy. Thus, a
transition from hybrid to erasure-coded is simply a localized
metadata change and the deletion of the replicas.

5 Mid to Late Life – Convertible Codes
In mid to late life (post-replication period), a file sees multiple
transitions between EC schemes, each scheme wider and
more capacity efficient than the previous. Morph leverages
recent advances in coding theory to minimize transcode IO
in this phase of a file’s life. Specifically, Morph uses a class
of codes called Convertible Codes (CC) [40, 41] instead of RS
codes and uses a class of codes called Locally Recoverable
Convertible Codes (LRCC) [42] instead of LRCs. While the
theory behind CC and LRCC promises reduction in transcode
IO, several challenges need to be overcome to realize the
benefits in practice. We discuss the codes, challenges and
system design decisions and optimization done in Morph to
leverage these codes below.

5.1 Codes used by Morph
Convertible Codes (CC) [40, 41] are a new class of erasure
codes that are designed to significantly reduce transcode IO
overheads. The key idea is to design the initial parities to en-
able maximum information extraction from existing parities
during transcode, so that the new parities can be generated
without having to read all the data chunks. These codes are
an alternative to traditional codes (e.g., Reed-Solomon codes).
Specifically, CC have the same parameters and same fault
tolerance properties as traditional codes, and only the parity
coefficients are different. The carefully designed parity coef-
ficients help in reducing transcode IO. CC enable Morph to
support transcoding from any-to-any EC schemes.
The efficacy of transcoding under CC depends on the

initial and final EC parameters. In the best case, when inte-
gral number of stripes are merged to create a stripe and the
number of parities does not increase, new parities can be
calculated solely by reading the existing parities and none
of the data blocks. An example of this is shown in Fig. 7. If
integral number of stripes are merged but number of parities
per stripe increase, in addition to parities, reading some parts
of the data blocks will be necessary. There is still a reduction
in transcode IO, albeit smaller. An example is shown in Fig. 8.
We provide more details, including a discussion on other
transcoding scenarios, in Appendix A.
Morph builds on the ideas behind CC and presents effi-

cient transcode with LRCs as well. A possible warm-to-cool
transcode is from CC to LRCC (Fig. 2). In the best case, each
local group in LRCC is formed using an integral number
of initial stripes of the CC, and the number of final global

Figure 7. Transcode using CC to merge three stripes of CC(4,6) into one
stripe of CC(12,14). Instead of 12 data blocks, only the 6 parity blocks are
read for transcode, reducing IO by 50%.

Figure 8. Transcode using CC where number of parities increase. Two
stripes of CC(4,5) are transcoded to one stripe of CC(8,10), by reading all
the parity blocks and only half of each of the data blocks, resulting in 25%
reduction in the amount of data read for trancode.

parities is at most one less than the initial number of pari-
ties per stripe. Here, the local parity of each local group is
computed by only reading the first parity of each of the con-
stituent initial stripes. The global parities are computed by
only reading the remaining parities. Consider the scenario of
CC(6,9) to LRCC(24,4,2) (24 data blocks, 4 local groups (with
one local parity), and 2 global parities), where four initial
stripes are merged to form a single LRCC stripe. The first
parity of each initial stripe remains unchanged and is used
as the corresponding local parity in the LRCC stripe. The
other two parities of each initial stripe are then merged to
form the two global parities of the LRCC stripe.
The cool to frigid transcode uses similar mechanics (i.e.,

from LRCC(𝑘𝐼 ,𝑙 𝐼 ,𝑟 𝐼) to LRCC(𝑘𝐹 ,𝑙𝐹 ,𝑟 𝐹)) by independently
leveraging the properties of CC for computing both the local
and global parities. See Appendix A for more details.
Next, we discuss how Morph takes transcode overheads

for each of these scenarios into consideration when suggest-
ing the best parameters to use.

5.2 Choosing CC-friendly EC scheme parameters
The efficacy of transcode depends on the initial and final EC
parameters since the amount of reduction in IO achieved
by CC and LRCC depends on the code parameters. Morph
strategically suggests EC scheme parameters such that they
are "CC-friendly" in order to reap the maximum IO benefits,
without sacrificing any other aspects such as durability or
space overhead. For instance, consider an application that
transcodes its files from EC(6,9) to EC(27,30). Using a final
scheme of EC(24,27) instead, improves transcode IO overhead
by about 40%, with better durability and a trivial decline in
space efficiency. Morph provides the strategic parameters as
suggestions to applications, who make the final decision on
the choice of the parameters.

Morph uses following heuristics to identify EC parame-
ters that minimize transcode IO. When transcoding from
EC(𝑘𝐼 ,𝑛𝐼) with 𝑟 𝐼 parities, to EC(𝑘𝐹 ,𝑛𝐹) with 𝑟 𝐹 parities: first,
choose the final scheme such that the number of data chunks
in the final stripe is an integral multiple of the initial number
of data chunks. Second, keep the number of parities constant.
However, when transitioning to wide schemes, it becomes
imperative to add extra parities for maintaining minimum
reliability. In such cases, minimize 𝑘𝐹 /𝑘𝐼 ∗(𝑟 𝐼 +𝑘𝐼 ∗ 𝑟𝐹−𝑟 𝐼

𝑟𝐹
)[41].

While Morph uses CC to reduce the transcode IO and
suggests optimal parameters to use, the choice of when to
transcode and parameters to trancode into remain with the
application. To use CC across all scenarios, the application
needs to pre-determine the EC schemes to transcode into at
the time of file writing. This is indeed realistically feasible, as
most transcoding events today are driven by a programmed
schedule. For instance, over 75% of the transcode events
shown in Fig. 4 are commonly occurring, pre-determined
operations known by the service in advance.

5.3 Convertible Codes in Systems
Convertible Codes can be applied in DFSs to significantly re-
duce transcoding overheads. However, maximizing the ben-
efits of Convertible Codes requires being aware of potential
future transitions and purposefully placing data and parity
chunks onto the appropriate disks and racks. This section
describes system decisions and block placement heuristics
that facilitate transcoding with Convertible Codes.

Transcoding in DFS. Transcoding occurs at the EC file
granularity, each of which consists of a logical sequence of
data chunks from EC stripes. Morph’s design creates new EC
stripes around sequential data chunks. For example, transcod-
ing to a 6-of-9 scheme creates a set of 3 parities for data
chunks 1-6, 7-12, etc... in the file. This strategy offers several
benefits: 1) no additional metadata is required as stripe mem-
bership can be inferred based on data block ordering and
EC scheme, 2) data placement decisions are aware of which
blocks may end up merged later, 3) determining new stripes
is computationally cheap.

Data separation. EC guarantees adequate data reliability
by ensuring that no two chunks of the same stripe are placed
onto the same disk or server. Chunk placement policies en-
force this property when the data is first written. However,
when transcoding to a target scheme, the new EC stripe po-
tentially consists of chunks that were originally stored on
the same server. To provide sufficient reliability, overlapping
chunks must be moved to an unoccupied server, incurring
disk and network IO. Morph eliminates this overhead by
planning for future stripe widths when the file is originally
written. As new stripes are formed from sequential data
blocks, Morph separates sequential sets of chunks in the ini-
tial placement decision. Specifically, we determine the LCM
of all potential future stripe widths or 𝑘∗. Chunks within

each set of 𝑘∗ consecutive chunks are placed on different
servers without overlap.

Parity placement strategy. We observe when merging
with Convertible Codes and 𝑟 𝐼 = 𝑟 𝐹 , each new parity chunk
can be computed solely using the parities they replace. There-
fore, we choose to place parity chunks from different stripes
that may be merged together on the same node. This deci-
sion enables local parity merges that do not incur network
overheads. When merging multiple stripes, the correspond-
ing parity of each stripe is read from and combined into a
new parity chunk on the same node. We argue that such
placement of parities between stripes does not compromise
the reliability of any given stripe. Any given stripe is capa-
ble of tolerating the same number of failures, independent
of failures in the other stripes it shares parity servers with.
Furthermore, the total amount of reconstruction work for a
failed server does not change as each server already contains
chunks across many different stripes, a very small fraction
of which are the parities of a single file.

6 Implementation
We implement Morph as an extension to the Hadoop Dis-
tributed File System (HDFS). This section describes its (1)
hybrid redundancy implementation and (2) robust transcod-
ing module that supports general transcoding operations.

6.1 Hybrid Redundancy in a DFS
HDFS supports replicated and EC storage natively. Morph
offers hybrid as a third class of storage with support for client
read/write and background detection and recovery of block
failures.

System block metadata. Clients can specify parameters
for a hybrid file based on the client’s replication factor (𝑐)
and the directory’s erasure-coding policy (𝑘, 𝑛). A hybrid file
consists of a list of hybrid blocks. A hybrid block is inter-
nally an EC stripe joined to a list of replica blocks. An EC
stripe consists of metadata for data and parity chunks while
a replica block consists of metadata for replicated chunks.
Maintaining a hybrid block as a single entity that has an in-
ternal nested structure serves to simplify metadata retrieval
operations for recovery/reads and facilitate the metadata
transition to future states.

Client hybrid write pipeline. HDFS writes replicas in
a pipeline where data is sent from client to Datanode and
then mirrored from Datanode to Datanode until the end of
the chain. The client considers the write as durable when the
acknowledgment propagates back up through the pipeline
to the client. Morph’s hybrid write pipeline similarly mirrors
data through replica chunks, but additionally stripes to the
EC data chunks at the end of the chain. When the pipeline is
initialized, the striper instantiates and maintains a connec-
tion in parallel to all 𝑘 Datanodes in the stripe. Fig. 9 shows
a hybrid pipeline for a write to a Hy(2,CC(4, 𝑛)) block and

Figure 9. Hybrid pipelined write in HDFS. Writes propagate down a chain
and are striped by the last node. Note that in step 3, any given packet is
mirrored to only the relevant node that stores the data chunk.

the striper forwarding the packet to the first data chunk in
the stripe, S1. After S1 is full, the striper will forward to S2.
In a hybrid pipeline, replicas and data chunks are not

necessarily finished at the same time. Therefore, we add a
new flag to packets that specifies to finalize data chunks
in addition to the replica chunks. This mechanism allows
keeping the data chunks open for appends from multiple
stripers on their local filesystem until explicitly notified,
significantly improving write performance.

Parity computation options.The client is provided three
options for EC parity computation: 1) client computes par-
ities synchronously, 2) Datanode computes parities asyn-
chronously, 3) parities are disabled.

Synchronous encoding: The clientmaintains a stripe buffer
of size 𝑘 ∗ block size MB. When the stripe buffer is full, the
client encodes the stripe’s parities and sends them to the
Datanodes to be appended to the appropriate parity chunk.
The client observes the computational latency of encoding
and sending parities for faster additional durability.
Asynchronous encoding: One Datanode is designated to

be the striper for all of the hybrid block’s write pipelines,
ensuring that all data in the stripe passes through this node.
As the striper receives data, it additionally writes the data
to an elastic buffer pool. A background thread on the Datan-
ode polls the buffer to encode and write the parities when
the stripe is full. To guarantee the best client performance,
writes to the buffer do not block and clients do not wait for
parities to be received by the Datanode. By default Morph
encodes parities asynchronously for high throughput and
fast durability.
No encoding: Parities are not persisted at rest, and thus,

data is kept durable solely by extra copies. This option pro-
vides the greatest throughput benefits as the system does
exactly the same amount of work as for 𝑐 + 1 replication but
compromises on extra durability.

Hybrid block placement policies.Morph keeps block
placement modifications to the minimum and simply ex-
cludes or includes Datanodes from the policy decisions. For
hybrid writes, Morph initially allocates EC stripe chunk lo-
cations based on the existing EC block placement policy.
Then, all locations in the EC stripe are excluded from any of
the corresponding replica block’s placement decisions. This
guarantees no overlap between replica and EC chunks.

Client read optimizations. Morph implements a modi-
fied version of a hedged read for hybrid files. A hedged read
initially requests the data from one replica chunk; if the ini-
tial read passes a certain time threshold, the client requests

from another replica chunk in parallel. If there are no more
replica chunks available, the client performs a striped read.
These steps are repeated until all copies are exhausted or
the first result is received, at which point the outstanding
requests are canceled.
Morph optimizes for large, throughput-bound read re-

quests separately. When the client requests a read that spans
the contents of an entire EC stripe, Morph automatically
performs a striped read. If a chunk in the stripe is slow or
unresponsive, the client will either request a replica chunk
if all the missing data is present on that single chunk or, if
not, a parity chunk to perform a local degraded mode read.

Failure detection and recovery.Block failure is detected
in the Namenode by observing Datanode heartbeats. When
a chunk is detected as corrupt or missing, the Namenode
identifies the block (hybrid, replicated, or EC stripe) that
the chunk is a part of based on a mask of its block ID. This
mechanism already exists in HDFS and is similarly leveraged
for hybrid blocks. When hybrid block failure is detected, the
relevant metadata (replica, data, parity chunk locations, EC
scheme) is bundled and sent to a Datanode for reconstruc-
tion. The Datanode follows the steps outlined in Sec. 4 to
reconstruct the chunk.

6.2 Transcoding as a first-class operation
Fig. 10 shows the various steps and data structures a transcod-
ing operation goes through until completion.

Transcoding interface. Morph exposes a new interface
at the Namenode defined as transcode(filename, policy). This
new service allows clients to set a file’s EC scheme and the
DFS to enact the change asynchronously.

Transcoding flow. Morph implements the transcoding
module within the Namenode, which exposes a simple in-
terface to the client library in which clients specify a target
EC policy for a file or directory. The Namenode forms new
stripes across sequential data chunks and stores the new
pending stripes in the awaiting transcoding queue (ATQ).
Upon each Datanode heartbeat to the Namenode, the Na-
menode polls the ATQ until the maximum amount of work
is allotted or the queue is empty. The event is allocated into
the work queue of the least busy target parity Datanode and
simultaneously tracked in the undergoing transcoding map
(UTM). The UTM is a concurrent map of a file ID and its
pending stripes, and another map of a stripe to its pending
parity chunks. Morph uses a bitmap to track completion
status to minimize the memory footprint of the UTM. The
transcode completion is signaled when all parity chunks of
all stripes of the file are complete.

Crash consistency during transcoding. The transcode
completion signal serves several purposes. First, it allows the
deletion of old parities to be delayed until all new parities
are transcoded. This decision guarantees that throughout
the transcoding process, normal reads, degraded reads, and
reconstruction of the stripe remain available to clients and

Figure 10. Morph transcode architecture in the context of HDFS com-
ponents. In this diagram, a file is transcoded into two new stripes, each
with 3 data chunks and 3 new parity chunks. Note that the Namenode only
handles the assigning of transcode work to Datanodes and does not actually
read or write the file data.

system pipelines. Second, it triggers the atomic switch in
metadata to the new EC scheme and block locations, which
keeps file state consistent with parity data while the file is
undergoing transcoding. Third, it is used as a reference point
for the filesystem state in the event of a Namenode failure,
avoiding the need to persist any of the metadata state.

Transcoding-aware block placement policy. Morph
preconfigures a default set of EC policies available to files
and determines the LCM of the width, or 𝑘∗, of each of those
policies. As the client writes to a file, a custom block place-
ment policy excludes the locations of the other chunks in
the set of 𝑘∗ chunks from the data chunk placement deci-
sion. Additionally, the 𝑛−𝑘 parity chunk locations originally
designated for that file are excluded from the data chunk
placements and included for the parity chunk placements.
This strategy guarantees 1) every set of 𝑘∗ data chunks are
uniquely placed, 2) data chunks and parity chunks do not
overlap, and 3) parity chunks across stripes that may be
merged are co-located.

Convertible Codes implementation. We implement
both CC [37, 39] and LRCC [42].When the number of parities
change, vector codes are employed which enable efficiently
computing new parities by reading only the parity chunks
and a fraction of each data chunk. This is possible as a portion
of each new parity chunks is pre-computed when the file is
initially written. The specific part of the new parity chunk
to pre-compute is strategically chosen such that the portion
of data blocks to read during transcode is physically con-
tiguous on disk, significantly improving IO efficiency. This
approach is based on the “hop-and-couple” optimization for
reconstruction-efficient vector codes introduced in [45]. For
example, when transcoding from CC(6,7) to CC(12,14), our
design ensures that disks retrieve a single contiguous chunk
of 4 MB, as opposed to retrieving 8 disjoint chunks of a half
MB from each of the 12 data blocks. More details about CC
vector codes are provided in Appendix A.

7 Evaluation
Morph significantly reduces disk+network IO and storage
capacity for ingest+transcode. This section shows that (1)
Morph reduces storage overhead and IO requirements for file
creation (ingest) and lifetime transitions, (2) Morph’s hybrid
redundancy does not sacrifice on client read/write perfor-
mance and latency compared to 3-r, (3) applying Convertible
Codes achieves faster, more IO-efficient transcode.

Experimental setup. Our evaluation includes both mea-
surements on a small academic cluster and benefits extrapo-
lated from production cluster traces at Google. The experi-
mental evaluations were run on a 29-node cluster of one Na-
menode, 23 Datanodes, and five client nodes. For the baseline
DFS, we use unchanged HDFS [49] v3.3.1, whereas Morph
uses the same HDFS version enhanced as described in Sec-
tions 3–6. Each machine has a Quad-Core AMDOpteron Pro-
cessor and 128 GB RAM. Each Datanode has a 1 TB Ext4 file
system atop a 7200 RPM Hitachi Ultrastar HDD. Each client
node spawns up to 8 worker threads to generate read/write
traffic. The nodes in the cluster are connected via a 40 GbE
network. We use DFS-perf [22] to introduce artificial client
load into the cluster and measure client performance, blk-
trace [6] and seekwatcher [35] to measure block device IO
and cluster throughput, and Ganglia [36] to aggregate per
node memory and compute usage.

7.1 Morph makes lifetime transitions seamless
This section quantifies the end-to-end savings in IO and
storage overhead. We show both microbenchmarks and mac-
robenchmarks evaluated in our cluster followed by an anal-
ysis of potential savings for workload traces captured in
production at Google.

Morph lifetime savings. First, we use a microbench-
mark to quantify the capacity and disk/network IO over-
heads of ingest+transcode for a single 8 GB file following a
similar transition path as the data illustrated in Fig. 2.
Fig. 11a shows the capacity (left Y-axis), disk IO (blue)

and network IO (red) overheads in baseline HDFS where
data is ingested as 3-r, resulting in 24 GB of disk usage. Ten
minutes after ingest, the data is transcoded from 3-r to RS(6,9)
by reading and then writing the data in EC form with its
new parities. The data is subsequently transcoded 15 minutes
later to RS(12,15) in the same RRW process. Across the entire
lifetime of the file (ingest+transcode), we measure the total
network+disk IO to be 124 GB, an IO amplification of 15.5×.

Fig. 11b shows the same lifetime transitions but in Morph
where the data is instead ingested in Hy(1,CC(6, 9)). During
ingest, Morph incurs a storage overhead of 150% compared
to baseline’s 200%—a 25% reduction. The first transcode from
Hy(1,CC(6, 9)) to CC(6,9) is free as it only consists of delet-
ing the replica, thus resulting in zero disk or network IO. In
the subsequent transcode to CC(12,15), Morph uses Convert-
ible Codes to merge parities of stripes locally on Datanodes

Figure 11. Micro and macrobenchmarks evaluated in a cluster with 29 nodes comparing capacity, IO throughput, and compute/memory in baseline HDFS
(3-r ingest + RRW transcoding) against Morph (hybrid ingest + CC transcodings). Figures (a) and (b) are microbenchmarks showing 8 GB ingest transcoded to
EC(6,9) and then EC(12,15). Morph with Hy(1,CC(6, 9)) ingest (b) is best with 25% storage overhead reduction and 55% network and 58% disk IO reduction.
Figures (c) and (d) are macrobenchmarks showing continuous ingest+transcode of files going through 3 transitions in their lifetime. For the same amount of
work, Morph finishes 17% faster, requires 19% lower disk IO throughput, and uses 25% lower capacity compared to baseline. Figures (e) and (f) compare
macrobenchmark compute and memory usage respectively. Morph reduces resource usage in both dimensions via more efficient transitions.

without incurring network IO, as described in Sec. 5.3. Across
the entire file lifetime, we measure the total network+disk
IO to be 54 GB, an IO amplification of 6.75×. In comparison
to baseline, Morph achieves a 58% and 55% reduction in disk
and network IO bandwidths respectively.

Savings in a steady-state ingest+transcodeworkload.
We evaluateMorph’s benefits and performance by simulating
continuous ingest+transcode traffic in an academic cluster.
After ingestion, each file is transcoded first to EC(5,8), then
to EC(10,13), and finally to EC(20,23). For the baseline, we
configure the cluster to ingest at a rate of ∼1100 MB/s (∼45%
cluster load) and transcode at a rate of ∼300 MB/s (∼12% clus-
ter load). Recent studies indicate that ∼56% cluster utilization
is generally representative of average datacenter load [44],
and we choose the same relative transcode to ingest rate
based on Google’s production cluster as shown in Fig. 1. In
Morph, we ingest and transcode the same number of files as
the baseline to compare the two systems executing the exact
same work.
Fig. 11c and Fig. 11d show disk IO and capacity for base-

line and Morph respectively. Since no files are deleted, we
observe capacity rising for the duration of the experiment in
both systems. However, Morph achieves lower capacity over-
heads due to ingesting data as Hy(1,CC(5, 8)) as opposed to
3-r, resulting in a total storage overhead reduction of 25%.
Furthermore, Morph achieves better write and transcode
latencies (plots omitted due to space) than the baseline. The
p50 and p90 transcode latency is 7× higher in the baseline,
and Morph demonstrates a (∼15–20%) reduction in write la-
tency. We attribute this improvement to the overall decrease
in background activity from transcoding traffic. In particular,
transcoding from Hy(1,CC(5, 8)) to CC(5,8) is free, CC(5,8)
to CC(10,13) requires 50% less IO, and CC(10,13) to CC(20,23)
requires 72% less IO than baseline. Moreover, the average
disk IO bandwidth needed for Morph for the duration of the
workload is 19% lower. Finally, without any compromise in
reliability or performance, Morph executes the macrobench-
mark 17% faster than the baseline.

Fig. 11e and Fig. 11f show average CPU and memory usage
broken down across Namenode, Datanode, and client node
for the steady-state ingest+transcode workload. First, we
observe the client averages less total compute resources in
Morph as the client handles transcode via RRW in baseline,
while Morph uses the explicit transcode interface exposed
by the Namenode. Despite the system handling transcode in
Morph, we still observe a slight decrease in compute in both
the Namenode and Datanodes attesting to the efficiency and
simplicity of the transition process. In our experiment, the
Datanode processes for both baseline and Morph were allo-
cated 512 MB of battery-backed buffer cache to enable fast
acknowledgements back to the client. Despite Morph using
the buffer cache to achieve fast hybrid writes as described in
Sec. 4.2, we find that Morph achieves all its benefits without
allocating additional memory.

Savings in production workloads. We analytically cal-
culate the benefits of Morph using traces from large-scale
production storage clusters at Google. Fig. 12 shows a month-
long trace at hour-granularity of ingest+transcode IO traffic
from two services, each with PB-scale IO footprints. Note
that Service A is the same application as shown in Fig. 1. Data
in both services is ingested as 3-r, as it is hot and latency-
sensitive to both reads and writes (subplot A of Services A,
B). As data cools, Service A transcodes either into a narrow
RS code (approximately 15-wide) or a medium-width LRC
(approximately 40-wide), depending on the type of file and its
desired performance / storage-overhead tradeoffs2. Once the
data written in narrow RS cools down further, it is transcoded
into medium LRC. Finally, data that is frigid is transcoded
from medium LRC to wide LRC (approximately 60-wide).
Just the transcoding operations zoomed in are shown in
subplots C of Services A, B. Each transition is performed
via RRW. Service B only transcodes once after ingest, as it
goes directly from 3-r to a very wide LRC (approximately
80-wide), shown in the A and C subplots of Service B.

2Note that which files are to be transcoded into narrow RS versus medium
LRC is chosen by the application and not in the purview of Morph.

Figure 12. Lifetime transitions for a month-long trace from each of two large services in production exascale storage clusters at Google.

Subplots B and D of Fig. 12 (Services A, B) show the in-
gest+transcode IO that would be incurred in Morph using
aggregate calculations across stripes. During ingest, depend-
ing on whether the first transcoding step is to the narrow
RS or medium LRC, Morph accordingly can write data in
Hy(1,narrow CC) or Hy(1,medium CC) in the case of Service
A, and Hy(1,wide LRCC) in the case of service B. As shown
above, Morph would incur a lower ingest storage overhead,
which in this case would be 20% for Service A and 28% for
Service B. Since the first transcoding step incurs no IO in
case of Morph, transcoding to narrow, or medium CC for
Service A, and wide LRCC for Service B would be free. As
there are no more transitions for Service B, the transcoding
IO incurred by Morph would be zero (shown in subplot D of
Service B). CC aids transitions from narrow-to-medium and
medium-to-wide CC in Service A would incur an IO cost, but
as shown in subplot D of Service A, the disk IO throughput
is 95% lower compared to today’s DFS. Overall, Service A
would reduce its disk IO throughput for all transitions for a
month by 43% on average, whereas Service B would reduce
disk IO throughput by 51%, implying huge efficiency gains
for petascale and exascale storage clusters.

7.2 Hybrid redundancy matches or outperforms 3-r
We now compare client write and read performance across
various hybrid schemes to 3-r and RS in an experimental
setup. We vary the number of client threads, 𝑡 , across our ex-
periments to determine performance at low (t=12), medium
(t=25), and high load (t=40). We find that hybrid redundancy
achieves effectively the same (or at times better) performance,
attesting to its ability to replace 3-r for early-life hot data.

Measuring hybrid write performance. Early-life data
is often appended and requires low write latency, as de-
scribed in Sec. 4.2. Fig. 13a shows write latency across four
ingest options for 8 MB files. Notably, both types of hybrid
ingest perform almost identically to 3-r with less than a 2%
slowdown at the median, whereas direct writes to RS(6,9)
are significantly slower (6× slowdown). For a small write
(≤8 MB) workload, the client must wait for RS(6,9) to com-
pute and write out three additional parities on its critical

Figure 13. Write latency (a) for small writes (8 MB), throughput (b) for
large streaming writes (120 MB) across various ingest methods, and time
to persist parities (c) asynchronously in hybrid writes. In all cases, both
forms of hybrid achieve the same ingest performance as 3-r while RS sees a
significant decline in performance.

path. Meanwhile hybrid writes, similar to 3-r, can quickly
return back to the client after the three copies are propagated
and handle any EC asynchronously.
We also compare write throughput across the ingest op-

tions for large file (>100 MB) writes in Fig. 13b. We observe
both hybrid writes (1-copy and 2-copy) perform as well as 3-r
with less than a 2% decrease in write throughput at medium
load (25 threads) and a 1% decrease at low load (12 threads).
Both hybrid schemes also see a 6% increase in throughput
compared to RS(6,9). We attribute this moderate increase to
the durability guarantees provided by HDFS EC. EC writes
puts parities on the critical path but does not compute them
until the end of the stripe, thereby leaving data in an incom-
plete stripe unprotected. Hybrid redundancy does not face
any durability issues with incomplete stripes as it leverages
redundant replicas.

Parity computation and persistence can play a crucial role
in affecting hybrid write latency. Specifically, parities must
be persisted quickly enough to delete the temporary replica
before it gets flushed to disk. Fig. 13c shows the distribution
of time taken to persist parities in a write-only load. We
measure 95% of parities are written within 500ms of the first
write to the stripe, confirming that the additional replicas
are not necessarily kept in buffer-cache for a long time.

Figure 14. Read latency for small reads (8 MB) across varying loads (a-c) and with nodes in the cluster down (d). And (e) read throughput for large
stripe-spanning reads (48 MB). Hybrid and 3-r read latencies are similar in all conditions while RS performs worse in degraded mode. Read throughput for
large reads improves as a result of better stripe parallelism.

Measuring hybrid read performance. We now com-
pare the latency of client reads between 3-r, Hy(1,CC(6, 9)),
Hy(2,CC(6, 9)), and RS(6,9). Reads are “hedged” such that a
second parallel request to a replica is made at p95 latency,
which is a standard read optimization tactic. In the case of
Hy(1,CC(6, 9)), the read is directed to the CC stripe if the
replica does not respond in time. Fig. 14a-d compares 8 MB
read latency for different redundancy options in varying
scenarios. Specifically, Fig. 14a, Fig. 14b, Fig. 14c show per-
formance at 30%, 55%, and 80% cluster load respectively. We
observe no significant difference in performance across all
benchmarks between any of the redundancy options. We
note, however, that the tail of RS extends much further as a
result of only having a single chunk to read from. The other
schemes are capable of hedge-reading from an alternate copy
while RS is forced to either wait or do a degraded mode read.

For Fig. 14d, we measure read latency when 10% of the
nodes in the cluster are down to observe performance in an
extreme scenario with several degraded mode reads. Both
Hy(1,CC(6, 9)) and Hy(2,CC(6, 9)) perform the same as 3-
r at the median and only see a 2% and 4% increase in p90
latency respectively, despite Hy(1,CC(6, 9)) performing a
striped read 10% of the time and a degraded mode read for
5% of the striped reads. RS(6,9), however, observes a palpable
decrease in performance towards the tail (52% increase in
latency) as a result of read-amplification and EC compute
during degraded mode reads.
For throughput, hybrid reads can perform parallel reads

from the stripe, rather than the replica(s), especially in the
case of streaming large reads as described in Sec. 4.3 and
Sec. 6. In Fig. 14e, we show the throughput benefits of Morph
automatically prioritizing striped reads instead of replica
reads for large stripe spanning reads (48MB).With 12 threads,
the read throughput increases by 71% compared to 3-r, and
with 25 threads the increase is 46%, as the increase is bottle-
necked by disk bandwidth.

7.3 Convertible Codes minimize transcode IO
This section evaluates a practical implementation of Convert-
ible Codes [37–39] and the latency and bandwidth benefits
from applying these codes to mid-to-late life transitions. We

draw several comparisons between CC and RS codes; recall
that the latter must read all data chunks to compute new
parities.
Fig. 15 compares RS and CC across two key metrics: la-

tency to compute new parities (Fig. 15a) and latency to read
the corresponding data necessary for transcoding (Fig. 15b).
We choose three different scenarios: (1) when the number of
parities stay constant (e.g., EC(6,9) to EC(12,15)), (2) when
the number of parities increase (e.g., EC(6,7) to EC(12,14))
and (3) for a non-LRC to LRC transcoding (e.g., EC(6,9) to
LRC(12,2,2)). We measure transcode latencies when twenty
96 MB files are transcoded in parallel.

First, when transcoding from EC(6,9) to EC(12,15), the me-
dian computational latency reduces by 50% when compared
to RS, which can be attributed to halving the computation
matrix (12-wide in RS compared to 6-wide in CC). We also
observe a 40% reduction in read latency. Transcoding with
CC requires much fewer concurrent disk reads and network
transfers (6 parities in CC as opposed to 12 data chunks in
RS). Second, when transcoding from EC(6,7) to EC(12,14),
CC waits for data from 14 disks and network transfers (as
opposed to 12 in RS), but reads 33% less data overall. This is
reflected in a 17% drop in read latency, albeit at the expense
of longer compute latency. The compute latency increases be-
cause the process involves separating out the pre-computed
fraction of parities from existing parities. This is an accept-
able trade-off since disk bandwidth is increasingly becoming
a more contested resource, as shown in Fig. 5.

Third, we show transcoding fromEC(6,9) to an LRCEC(12,16)
with 2 local groups. Two initial stripes are combined to form
a final stripe. The first parity of the two stripes become the
local parities after transcoding, while the remaining two par-
ities get converted to global parities. Similar to the first case,
CC achieves 30% improvement in read latency, and about 50%
improvement in compute latency. Further, we confirm that
encode(write)/decode(reconstruction) compute latencies stay
the same as RS when parities per stripe don’t change. When
parities change in the second case, CC encoding is 80% slower
and decode is 150% slower, since it involves pre-computing
a fraction of parity block during encode and separating it
out during decode. However, note that compute latencies are

(a) Compute latency (b) Read latency

Figure 15. Comparison of compute and read latencies for transcode using
CC and RS for three cases: when (A) parities stay same, (B) parity increases
by 1, (C) EC to LRC. In A and C, we observe 30–40% reduction in read latency
and compute latency cut by ≈ 50%. In B, separating the pre-computed
fraction of parities delays computation of parities, but reduces read latency
by ≈ 17% and read bandwidth by ≈ 25%.

negligible, when compared to read/write operations to/from
Datanodes, and have minimal effect on overall performance.

The above examples show the common case of transcoding
wheremultiple stripesmerge to form a single stripe. However,
note that CC offers significant advantages when transcoding
to any general scheme. For instance, we evaluate transcoding
EC(6,9) stripes to 𝑘-wide stripes for all cases where 6 < 𝑘 <=

30. CC achieves 45% IO reduction on average (33% in the
worst case) when parities per stripe stay the same, and 20%
IO savings on average (12.5% in the worst case) when we
add an extra parity. A full exploration of these benefits is
provided in Appendix A.

8 Related Work
Large-scale cluster file systems have long relied on redun-
dancy for fault tolerance, starting with replication being the
primary means of redundancy [8, 18]. Subsequently, aca-
demic research [5, 19, 24] and industry [13, 25, 27, 48, 53, 57]
cluster file systems have integrated erasure codes into the
storage system to achieve space-efficient redundancy. These
are the common options in modern cluster storage.

A hybrid storage scheme using a combination of erasure-
coding and replication has been proposed for a distributed
database system called ER-Store [32], as one of three storage
options used for tablets depending on their data temperature.
Morph and its hybrid redundancy scheme differs from ER-
store in several important ways: (1) ER-Store’s hybrid scheme
is used for “warm” storage, with 3-way replication used
for “hot” data, so ER-Store does not provide a protocol for
fully durable, low-latency ingest directly into it; ingesting
into hybrid redundancy requires a protocol like Morph’s
and is the source of significant benefit in DFSs; (2) ER-Store
transitions between storage options by re-writing tablets,
like is done in traditional DFSs, as opposed to the IO-efficient
approaches enabled and used inMorph; (3) ER-Store provides
no support for changing EC scheme parameters, which is
common throughout a file’s lifetime.

The idea of transitioning between codes in a cluster has
been considered in previous works. The paper [55] consid-
ers transitioning between two specific codes, and thus not
general (any-to-any). A recent line of work has studied how
disk failure rates vary over time and proposed changing EC
parameters accordingly [30]. In this context, multiple sys-
tems have been proposed to reduce the IO spikes of such
transitions [28, 29]. However, the total IO consumed in those
systems is still high due to the need to read all the data
chunks. The DFS-native transcode service in Morph uses CC
and LRCC to avoid having to read all the data chunks and
help in reducing the total IO load in these systems.

StripeMerge [56] supports merging two narrow stripes of
a carefully designed 𝑘-of-𝑛 code to generate one wider stripe
of a 2𝑘-of-𝑛′ code, while keeping the number of parities fixed.
Morph differs from StripeMerge in three important ways:
(1) Morph is a DFS that supports transcoding of individ-
ual files while maintaining the usual practice of restricting
EC stripes to data within file, for security and complexity
reasons. StripeMerge assumes that any two stripes in the
system could be merged, and so searches throughout the
cluster for ones with data on separate disks, whereas Morph
explicitly places file data and parity to achieve this within
files. (2) StripeMerge supports only the one merge scenario
(described above), whereas Morph supports efficient general
transcoding (any to any). (3) Morph is implemented in and
compared with HDFS, handling all the metadata, sequencing,
and crash consistency issues.

9 Conclusion
Morph introduces new redundancy and placement schemes
to reduce file ingest and transcode overheads inDFSs.Morph’s
newhybrid redundancy reduces ingest and early-life transcode
IO, andConvertible Codes reduce subsequent EC-to-EC transcode
IO. For large Google data services, Morph’s techniques would
reduce transcode IO by over 95% and total ingest+transcode
IO by 40–50%, while also reducing capacity required for
newly ingested data by about 20%—without compromising
on performance or data reliability.

10 Acknowledgements
We thank our shepherd Kang Chen and the anonymous re-
viewers for their invaluable feedback. We extend special
thanks to Larry Greenfield, Mustafa Uysal, and numerous
other researchers and engineers at Google. This research is
generously supported in part by NSF grants CNS1956271,
CNS1901410, and CAREER 1943409, by a Sloan Foundation
Fellowship, and by a VMware Systems Research Award. We
also thank the members and companies of the PDL consor-
tium (Amazon, Google, Hitachi, Honda, HPE, IBM, Intel, Jane
Street, Meta, Microsoft, NetApp, Oracle, Pure Storage, Sales-
force, Samsung, Seagate, Two Sigma, Western Digital) and
VMware for their interests, insights, feedback, and support.

References
[1] How Lasers Could Unlock Hard Drives With 10 Times More Data Stor-

age. https://www.popularmechanics.com/technology/a20078/heating-
magnets-lasers-could-be-the-key-magnetic-recording/.

[2] Seagate: HAMR is nailing it – no looming 20TB to 30TB capacity
problem. https://blocksandfiles.com/2021/09/24/seagate-hamr-on-
course-no-looming-20-to-30tb-capacity-problem/.

[3] Seagate Reveals HAMR HDD Roadmap: 32TB First, 40TB Fol-
lows. https://www.tomshardware.com/news/seagate-reveals-hamr-
roadmap-32-tb-comes-first.

[4] HDD User Benchmarks. http://hdd.userbenchmark.com/, (accessed
July 5, 2023).

[5] Thomas E Anderson, Michael D Dahlin, Jeanna M Neefe, David A Pat-
terson, Drew S Roselli, and Randolph Y Wang. Serverless network file
systems. In Proceedings of the fifteenth ACM symposium on Operating
systems principles, pages 109–126, 1995.

[6] AlanDBrunelle. Block I/O layer tracing: blktrace. HP, Gelato-Cupertino,
CA, USA, 57, 2006.

[7] HanCai, YingMiao,Moshe Schwartz, and Xiaohu Tang. A construction
of maximally recoverable codes with order-optimal field size. IEEE
Transactions on Information Theory, 68(1):204–212, 2021.

[8] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, et al. Windows Azure storage: a highly available
cloud storage service with strong consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, pages
143–157, 2011.

[9] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications
of the ACM, 56(2):74–80, 2013.

[10] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and Kannan
Ramchandran. Network coding for distributed storage systems. IEEE
Transactions on Information Theory, 56(9):4539–4551, 2010.

[11] Facebook. VAST Erasure Coding. https://vastdata.com/blog/
introducing-rack-scale-resilience, 2020.

[12] FAST. Ec tutorial. https://web.eecs.utk.edu/~jplank/plank/papers/2013-
02-11-FAST-Tutorial.pdf, 2013.

[13] Daniel Ford, François Labelle, Florentina I Popovici, Murray Stokely,
Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan.
Availability in Globally Distributed Storage Systems. In USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), 2010.

[14] Apache Software Foundation. Hdfs erasure coding. URL
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/HDFSErasureCoding.html, 2023.

[15] Apache Software Foundation. Hdfs architecture. https:
//hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html, 2024.

[16] Robert Gallager. Low-density parity-check codes. IRE Transactions on
information theory, 8(1):21–28, 1962.

[17] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google File System.
In ACM SIGOPS Operating Systems Review, volume 37, pages 29–43.
ACM, 2003.

[18] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In Proceedings of the nineteenth ACM symposium on Oper-
ating systems principles, pages 29–43, 2003.

[19] Garth A Gibson, David F Nagle, Khalil Amiri, Jeff Butler, Fay W Chang,
Howard Gobioff, Charles Hardin, Erik Riedel, David Rochberg, and
Jim Zelenka. A cost-effective, high-bandwidth storage architecture.
ACM SIGOPS operating systems review, 32(5):92–103, 1998.

[20] Parikshit Gopalan, Cheng Huang, Bob Jenkins, and Sergey Yekhanin.
Explicit maximally recoverable codes with locality. IEEE Transactions
on Information Theory, 60(9):5245–5256, 2014.

[21] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey
Yekhanin. On the locality of codeword symbols. IEEE Transactions on
Information theory, 58(11):6925–6934, 2012.

[22] Rong Gu, Qianhao Dong, Haoyuan Li, Joseph Gonzalez, Zhao Zhang,
Shuai Wang, Yihua Huang, Scott Shenker, Ion Stoica, and Patrick PC
Lee. DFS-PERF: A scalable and unified benchmarking framework for
distributed file systems. EECS Dept., Univ. California, Berkeley, Berkeley,
CA, USA, Tech. Rep. UCB/EECS-2016-133, 2016.

[23] Venkatesan Guruswami, Lingfei Jin, and Chaoping Xing. Construc-
tions of maximally recoverable local reconstruction codes via function
fields. IEEE Transactions on Information Theory, 66(10):6133–6143,
2020.

[24] John H Hartman and John K Ousterhout. The Zebra striped network
file system. ACM Transactions on Computer Systems (TOCS), 13(3):274–
310, 1995.

[25] Dean Hildebrand and Denis Serenyi. Colossus under
the hood: a peek into Google’s scalable storage system.
https://cloud.google.com/blog/products/storage-data-transfer/a-
peek-behind-colossus-googles-file-system, 2021.

[26] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: Flexible
schemes to trade space for access efficiency in reliable data storage
systems. ACM Transactions on Storage (TOS), 2013.

[27] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, Sergey Yekhanin, et al. Erasure Coding
in Windows Azure Storage. In USENIX Annual Technical Conference
(ATC), 2012.

[28] Saurabh Kadekodi, Francisco Maturana, Sanjith Athlur, Arif Merchant,
KV Rashmi, and Gregory R Ganger. Tiger: Disk-Adaptive redundancy
without placement restrictions. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22), pages 413–429,
2022.

[29] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya,
Juncheng Yang, KV Rashmi, andGregory Ganger. Pacemaker: Avoiding
heart attacks in storage clusters with disk-adaptive redundancy. In
Proceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation, 2020.

[30] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger. Cluster storage
systems gotta have HeART: improving storage efficiency by exploiting
disk-reliability heterogeneity. In USENIX File and Storage Technologies
(FAST), 2019.

[31] Saurabh Kadekodi, Shashwat Silas, David Clausen, and Arif Merchant.
Practical Design Considerations for Wide Locally Recoverable Codes
(LRCs). In 21st USENIX Conference on File and Storage Technologies
(FAST 23), pages 1–16, 2023.

[32] Zijian Li and Chuqiao Xiao. Er-store: A hybrid storage mechanism
with erasure coding and replication in distributed database systems.
Scientific Programming, 2021:1–13, 09 2021.

[33] Gaojun Luo and Xiwang Cao. Constructions of optimal binary locally
recoverable codes via a general construction of linear codes. IEEE
Transactions on Communications, 2021.

[34] David JC MacKay. Fountain codes. IEE Proceedings-Communications,
152(6):1062–1068, 2005.

[35] Chris Mason. Seekwatcher. URL http://oss. oracle. com/˜ ma-
son/seekwatcher, 2008.

[36] Matt Massie, Bernard Li, Brad Nicholes, Vladimir Vuksan, Robert
Alexander, Jeff Buchbinder, Frederiko Costa, Alex Dean, Dave Joseph-
sen, Peter Phaal, et al. Monitoring with Ganglia: tracking dynamic host
and application metrics at scale. " O’Reilly Media, Inc.", 2012.

[37] Francisco Maturana, VS Chaitanya Mukka, and KV Rashmi. Access-
optimal linear mds convertible codes for all parameters. In 2020 IEEE
International Symposium on Information Theory (ISIT), pages 577–582.
IEEE, 2020.

[38] Francisco Maturana and KV Rashmi. Convertible codes: new class
of codes for efficient conversion of coded data in distributed storage.
In 11th Innovations in Theoretical Computer Science Conference (ITCS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

https://www.popularmechanics.com/technology/a20078/heating-magnets-lasers-could-be-the-key-magnetic-recording/
https://www.popularmechanics.com/technology/a20078/heating-magnets-lasers-could-be-the-key-magnetic-recording/
https://blocksandfiles.com/2021/09/24/seagate-hamr-on-course-no-looming-20-to-30tb-capacity-problem/
https://blocksandfiles.com/2021/09/24/seagate-hamr-on-course-no-looming-20-to-30tb-capacity-problem/
https://www.tomshardware.com/news/seagate-reveals-hamr-roadmap-32-tb-comes-first
https://www.tomshardware.com/news/seagate-reveals-hamr-roadmap-32-tb-comes-first
http://hdd.userbenchmark.com/
https://vastdata.com/blog/introducing-rack-scale-resilience
https://vastdata.com/blog/introducing-rack-scale-resilience
https://web.eecs.utk.edu/~jplank/plank/papers/2013-02-11-FAST-Tutorial.pdf
https://web.eecs.utk.edu/~jplank/plank/papers/2013-02-11-FAST-Tutorial.pdf
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

[39] Francisco Maturana and KV Rashmi. Bandwidth cost of code conver-
sions in the split regime. In 2022 IEEE International Symposium on
Information Theory (ISIT), pages 3262–3267. IEEE, 2022.

[40] Francisco Maturana and KV Rashmi. Convertible codes: Enabling effi-
cient conversion of coded data in distributed storage. IEEE Transactions
on Information Theory, 68(7):4392–4407, 2022.

[41] Francisco Maturana and KV Rashmi. Bandwidth cost of code conver-
sions in distributed storage: Fundamental limits and optimal construc-
tions. IEEE Transactions on Information Theory, 2023.

[42] Francisco Maturana and KV Rashmi. Locally repairable convertible
codes: Erasure codes for efficient repair and conversion. In 2023 IEEE
International Symposium on Information Theory (ISIT), pages 2033–
2038. IEEE, 2023.

[43] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel
Zakharov, Abhinav Sharma, Mike Shuey, Richard Wareing, Monika
Gangapuram, Guanglei Cao, et al. Facebook’s tectonic filesystem:
Efficiency from exascale. In 19th USENIX Conference on File and Storage
Technologies (FAST 21), pages 217–231, 2021.

[44] Phitchaya Mangpo Phothilimthana, Saurabh Kadekodi, Soroush Gho-
drati, Selene Moon, and Martin Maas. Thesios: Synthesizing accurate
counterfactual i/o traces from i/o samples. In Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 3, ASPLOS ’24, page
1016–1032, New York, NY, USA, 2024. Association for Computing
Machinery.

[45] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba
Borthakur, and Kannan Ramchandran. A hitchhiker’s guide to fast
and efficient data reconstruction in erasure-coded data centers. ACM
Special Interest Group on Data Communication (SIGCOMM), 2014.

[46] Korlakai Vinayak Rashmi, Nihar B Shah, and P Vijay Kumar. Opti-
mal exact-regenerating codes for distributed storage at the msr and
mbr points via a product-matrix construction. IEEE Transactions on
Information Theory, 57(8):5227–5239, 2011.

[47] KV Rashmi, Nihar B Shah, and Kannan Ramchandran. A piggybacking
design framework for read-and download-efficient distributed storage
codes. IEEE Transactions on Information Theory, 63(9):5802–5820, 2017.

[48] Philip Schwan et al. Lustre: Building a file system for 1000-node
clusters. In Proceedings of the 2003 Linux symposium, volume 2003,
pages 380–386, 2003.

[49] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler,
et al. The Hadoop distributed file system. In IEEE/NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST), 2010.

[50] Natalia Silberstein, Ankit Singh Rawat, O Ozan Koyluoglu, and Sriram
Vishwanath. Optimal locally repairable codes via rank-metric codes.
In 2013 IEEE International Symposium on Information Theory, pages
1819–1823. IEEE, 2013.

[51] Itzhak Tamo and Alexander Barg. A family of optimal locally recover-
able codes. IEEE Transactions on Information Theory, 60(8):4661–4676,
2014.

[52] Itzhak Tamo, Dimitris S Papailiopoulos, and Alexandros G Dimakis.
Optimal locally repairable codes and connections to matroid theory.
IEEE Transactions on Information Theory, 62(12):6661–6671, 2016.

[53] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian
Mueller, Jason Small, Jim Zelenka, and Bin Zhou. Scalable performance
of the Panasas parallel file system. In FAST, volume 8, pages 1–17,
2008.

[54] Stephen BWicker and Vijay K Bhargava. Reed-Solomon codes and their
applications. John Wiley & Sons, 1999.

[55] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease. A
tale of two erasure codes in HDFS. In 13th USENIX Conference on File
and Storage Technologies (FAST 15), pages 213–226, Santa Clara, CA,
February 2015. USENIX Association.

[56] Qiaori Yao, Yuchong Hu, Liangfeng Cheng, Patrick PC Lee, Dan Feng,
Weichun Wang, and Wei Chen. Stripemerge: Efficient wide-stripe

generation for large-scale erasure-coded storage. In 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS),
pages 483–493. IEEE, 2021.

[57] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno Thereska, and
Dushyanth Narayanan. Does erasure coding have a role to play in my
data center. Microsoft research MSR-TR-2010, 52, 2010.

Supplemental material for Morph
The appendix is not peer-reviewed.

A Convertible Codes
The theoretical framework of Convertible Codes (CC) [37,
40, 41] provides broad constructs for transcoding regimes.
(1)Merge: where multiple EC stripes are combined to create
a single EC stripe of a target scheme, i.e, from 𝑘-of-𝑛𝐼 to a
𝜆𝑘-of-𝑛𝐹 scheme. This is the most optimal regime, where
none of the the data blocks need to be read in the best case.
This is particularly effective since most transcoding events
are to wider schemes in cluster storage systems to increase
space efficiency. Fig. 7 shows an example of this case of
transcoding. (2) Split: where a single EC stripe is divided
into multiple EC stripes of a target scheme, i.e., from a 𝜆𝑘-
of-𝑛𝐼 scheme to a 𝑘-of-𝑛𝐹 scheme. This regime offers less
impressive transcoding IO savings when compared to merge
regime, as most of the data chunks still need to be read from.
However, we encounter this regime less often in practice. (3)
General: where any general set of parameters is supported
by using merge and split regimes as building blocks.

Convertible codes can be categorized into two sub-classes
based on the number of parities in a stripe in the initial (𝑟 𝐼)
and final (𝑟 𝐹) EC scheme: (1) when they stay the same ie.
𝑟 𝐼 = 𝑟 𝐹 , where optimal transcode overheads can be achieved
with scalar codes, and (2) when 𝑟 𝐼 ≠ 𝑟 𝐹 , which require the
use of vector codes. While scalar codes are easier to imple-
ment and have lower computational complexity, construc-
tion of vector codes is more involved, and come with higher
computational complexity. We provide background on both
sub-classes below.

Case 1 - 𝑟 𝐼 = 𝑟 𝐹 : When number of parities per stripe re-
main same, we employAccess-Optimal Convertible Codes[37].
The most dramatic savings are observed in the merge regime
where data is transcoded from a 𝑘-of-𝑛𝐼 scheme to a 𝜆𝑘-of-𝑛𝐹
scheme. We portrayed this in the example in Fig. 7. No data
blocks have to be read during transcoding.
In the split regime, where data is transcoded from a 𝜆𝑘-

of-𝑛𝐼 scheme to a 𝑘-of-𝑛𝐹 scheme, CC is able to transcode
by reading the 𝑟 𝐼 parity blocks and only the first (𝜆 − 1)𝑘
blocks of the initial 𝜆𝑘 data blocks, as shown in Fig. 16. On
transcoding from EC(12,14) to EC(4,6), each of the four data
blocks that would make up the first two final stripes are read
to compute the corresponding parities, similar to transcoding
with RS-encoding. For computing the parities for the third
stripe, instead of reading all of the remaining four data blocks,
we read the two initial parities, and the eight data blocks that
were already read. As a result, we read a total of 10 blocks
instead of 12.

A combination of the above two regimes is used to transcode
stripes in the general regime. For example, to transcode from
EC(6,9) to EC(15,18), 5 EC(6,9) initial stripes are combined to
form 2 EC(15,18) final stripes. While only parities are read for

Figure 16. Access-optimal split: Splitting one stripe of EC(12,14) into
three stripes of EC(4,6)

Figure 17. Disk IO/bandwidth overhead for transcoding 1 GB files for
different initial and target EC schemes across merge(left) and split(right)
regimes and the two sub-classes 𝑟 𝐼 = 𝑟𝐹 and 𝑟 𝐼 ≠ 𝑟𝐹 . The best gains come
in the merge regime when number of parities stay constant.

four of the initial stripes, all the data blocks of the third stripe
need to be read. As a consequence, CC achieves transcoding
with 40% less IO overhead.

Case 2a - 𝑟 𝐼 < 𝑟 𝐹 : When the number of parities per stripe
increases during transcoding, the inherent advantages of
the Convertible Codes’ construction discussed above vanish.
This is because, the information for (𝑟 𝐹 − 𝑟 𝐼) new parities
do not exist in any of the initial parities. In these scenarios,
we employ another class of Convertible Codes, Bandwidth-
Optimal Convertible Codes (BWO-CC) [41], which extend
the capabilities of Convertible Codes described in case 1, to
minimize the total volume of data read.
An example is illustrated in Fig. 8. Although a higher

number of blocks are read from (higher “access cost”), the
total data downloaded is minimized (lower “bandwidth cost”).
Contrary to scalar codes such as Reed-Solomon, BWO-CC
operate as a vector code. Here, each EC symbol is represented
as a vector or an array of data chunks. This design allows
embedding additional information within segments of the
parity vectors - called piggybacking [47], which can be later
decoded for efficient transcoding.

Each data block is (logically) divided into 𝑟 𝐹 chunks result-
ing in 𝑟 𝐹 substripes. During the encoding process, despite
requiring only 𝑟 𝐼 parities initially, all 𝑟 𝐹 parities are com-
puted for the first 𝑟 𝐼 substripes. The parities are derived
using the Access-Optimal CC construction described in case
1. These are then added to each of the 𝑟 𝐼 parities of the re-
maining 𝑟 𝐹 − 𝑟 𝐼 substripes. Upon eventual transcoding of
the file, only the data from the last 𝑟 𝐹 − 𝑟 𝐼 substripes is read
along with the parities. The efficiency arises because the new
parity data for the initial 𝑟 𝐼 sub-stripes can be decoded using

Figure 18. Disk IO overheads normalized to the baseline RS, when
transcoding from 6-of-9 to schemes on 𝑘-of-𝑛 schemes on X-axis. Pari-
ties stay constant in the left plot, while they increase by 1 on the right. The
transcode IO savings with CC vary, but significant when compared to RS
and Stripe Merge across any general target scheme. In contrast, StripeMerge
only helps in one scenario 6-of-9 to 12-of-15.

the rest of the retrieved data. This process is shown in the
example in Fig. 8 (in the main paper).

Case 2b - 𝑟 𝐼 > 𝑟 𝐹 : When the number of parities per stripe
decreases during transcoding, Access-Optimal CC is suffi-
cient to provide optimal transcode IO reductions for the
merge regime. However, for the split regime[39], i.e. when
the initial stripe is broken into integral number of smaller
stripes, use of vector codes as discussed in case 2a is needed
to reduce the IO overheads. Since the split regime construc-
tion serves as a building block for the general regime, in this
case, the general regime also benefits from Piggybacking.

Analysis and Comparison. Fig. 17 shows the disk and
network bandwidth used for transcoding in themerge regime
(left) and split regime (right). In the merge regime, we calcu-
late the read bandwidth to transcode from 8-of-12 (𝑟 𝐼 = 4) to
various schemes with 16 ≥ 𝑘𝐹 ≥ 32 and 3 ≥ 𝑟 𝐹 ≥ 5.

The best gains are observed in the merge regime when
𝑟 𝐼 = 𝑟 𝐹 , with > 50% IO reduction when compared to RS in
the examples provided. These benefits scale with the initial
stripe width. For instance, merging two stripes of EC(17,20)
to form a stripe of EC(34,37) saves > 80% of bandwidth
overhead when compared to RS. The gains are lower for the
cases when 𝑟 𝐼 < 𝑟 𝐹 . Transcoding from 16-of-19 to 8-of-12,
Convertible Codes utilizes 40% lower bandwidth than RS.
A similar pattern emerges with a 26% bandwidth reduction
when transcoding from 8-of-12 to 32-of-37.

Fig. 18 illustrates howCC fares against RS and StripeMerge
in the general regime, while transcoding from EC(6,9) to
EC with 𝑘-wide stripes, where 6 < 𝑘 <= 30. CC achieves
45% IO reduction on average (33% in the worst case) when
parities per stripe stay the same (left), and 20% IO savings
on average (12.5% in the worst case) when we add an extra
parity in the final stripe (right). In contrast, StripeMerge
saves IO in only one instance, on transcoding to EC(12,15).
CC therefore opens up a rich trade-off space for application
developers to carefully balance transcode IO, durability and
space efficiency.

Transcoding in late life: LRCC Here, the properties
of CC are leveraged independently for computing both the
local as well as the global parities. The best case occurs when
multiple stripes of LRCCs are merged to create a single stripe.
Here, each post-transcoding local group is created using an
integral number of initial local groups using the efficient
transcode operation of CC. The global parities of the stripe
are computed using the global parities of the constituent
initial stripes.

B Analytical estimation of degraded stripe
read probability from a Hy(1,CC(𝑘, 𝑛))

We can analytically estimate the likelihood of a degraded
mode read from a Hy(1,CC(𝑘, 𝑛)) scheme. Let us assume that
the probability of a chunk missing is 𝑓 . So, when 𝑐 = 1, i.e.,
one replica and a CC(k,n) stripe, the probability of degraded
mode read is 𝑓 ×∑𝑛−𝑘

𝑖=1 𝑓 𝑖 × (1 − 𝑓)𝑛−𝑖 , where the first term
corresponds to the replicated chunk being unavailable and
the second term corresponds to the data chunk from CC(k,n)
being unavailable. To estimate an upper bound, suppose 1%
of all chunks are simultaneously unavailable; 𝑓 = 0.01,then
say for a Hy(1,CC(6, 9)) scheme, probability of degraded
mode reads is 0.00009, a very rare scenario (tail-of-the-tail).

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Morph Overview
	4 Early to Mid Life – Hybrid Redundancy
	4.1 Definition
	4.2 Hybrid Writes
	4.3 Hybrid Reads
	4.4 Fault Tolerance and Data Recovery
	4.5 Transitions from Hybrid to EC

	5 Mid to Late Life – Convertible Codes
	5.1 Codes used by Morph
	5.2 Choosing CC-friendly EC scheme parameters
	5.3 Convertible Codes in Systems

	6 Implementation
	6.1 Hybrid Redundancy in a DFS
	6.2 Transcoding as a first-class operation

	7 Evaluation
	7.1 Morph makes lifetime transitions seamless
	7.2 Hybrid redundancy matches or outperforms 3-r
	7.3 Convertible Codes minimize transcode IO

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Convertible Codes
	B Analytical estimation of degraded stripe read probability from a Hy(1, CC(k,n))

