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Abstract—Block-structured Adaptive Mesh Refinement
(AMR), while essential for improving efficiency in large-scale
irregular and dynamic simulations, poses unique optimization
challenges. Previous work has identified load imbalance and
synchronization overhead as key obstacles to performance, but
the deep understanding of complex runtime behavior needed to
systematically address them remains elusive.

In this paper, we integrate telemetry collection, analysis, and
intervention to bridge this understanding gap. Establishing reli-
able, actionable telemetry required systematic tuning to eliminate
cross-stack performance anomalies. Leveraging this foundation
we design CPLX, a tunable placement policy balancing compute
load and communication locality, improving runtime by up to
21.6% over optimized baselines. Our experience highlights the
empirical nature of placement optimization, requiring theoretical
models to be grounded in observed runtime behavior.

Index Terms—Code tuning, Computational modeling, Load
balancing and task assignment, Performance, Optimization

I. INTRODUCTION

Block-structured Adaptive Mesh Refinement (AMR) codes
are critical to modern scientific computing, enabling large-
scale simulations in astrophysics, cosmology, climate science,
and fluid dynamics [1, 2]. By dynamically refining the mesh
around steep gradients, AMR delivers 1–2 orders of magnitude
performance gains over uniform approaches [3]. These codes
often run for weeks on hundreds of thousands of cores [2, 4, 5],
making performance optimization essential. Load balancing
remains a major challenge [1, 6]: while octree and space-filling
curve (SFC) placements work for uniform workloads [2],
they do not account for compute kernel variability. Parallel
codes are limited by stragglers—ranks lagging significantly
behind peers—whose delay propagates due to frequent global
synchronization, and the fine-grained adaptivity of AMR
exacerbates this effect. Prior analyses of proxy application
traces [7] document significant MPI waiting time (>60% at
1000 ranks), while noting the limitations of standard trace data
for the deeper, cross-stack diagnosis required to pinpoint root
causes. The root causes, whether algorithmic or infrastructural,
remain entangled. We ask: what changes when performance
instrumentation has full visibility over a real AMR code?

To answer this, we sought to improve AMR placement using
fine-grained runtime telemetry on a research cluster providing
full-stack access. Our goal was to replace static heuristics with
telemetry-driven workload models. We adopted an integrated
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workflow that combined telemetry collection, analysis, and in-
tervention. However, initial experiments immediately revealed
a deeper challenge: observed metrics often diverged unexpect-
edly from predictors such as message volume, undermining
our ability to construct reliable workload models. Rather than
directly enabling better placement, fine-grained telemetry first
required us to diagnose and mitigate runtime artifacts to make
the data useful for placement decisions (§III).

This paper describes the end-to-end process we undertook
to develop telemetry-driven placement policies. We began
by systematically diagnosing variability across the stack and
tuning system parameters. This required extensive analysis of
large volumes of telemetry, prompting a shift from standard
tracing and profiling tools to a custom analytical pipeline over
structured data (§IV). Tuning the system stack resulted in
predictable runtime response as placement aspects such as load
balance and locality were varied. Recognizing that these two
properties represented competing optimization objectives, we
developed CPLX (§V), a hybrid placement policy balancing
these two objectives via a tunable parameter to minimize over-
all runtime. Because AMR codes refine frequently, placement
must meet strict timing constraints (< 50ms in our target
codes). CPLX meets these requirements while leveraging
existing octree and SFC infrastructure for compatibility with
current AMR frameworks.

CPLX improves runtime by up to 21.6% over optimized
baselines (§VI) through its tunable control over the load-
locality tradeoff, validating our process-driven methodology.
However, our experience suggests that performance optimiza-
tion in large-scale systems is inherently context-dependent.
While algorithmic approaches are necessary, their application
must be embedded in a broader empirical process—one that
interprets telemetry in the context of the runtime stack and
prioritizes objectives only insofar as they measurably impact
end-to-end performance. Accordingly, we focus not just on
CPLX itself, but on the end-to-end process that led to it, and
distill methodological lessons applicable to other large-scale
tuning efforts. This paper makes three key contributions:

• An empirical case study documenting the challenges of
achieving reliable, interpretable telemetry for AMR codes
using full-stack access and iterative tuning.

• A novel placement policy, CPLX, that provides tunable
control over the tradeoff between compute balance and
communication locality (§V).

• Broader lessons on telemetry-driven performance analysis



and the empirical, context-specific nature of tuning in
large-scale parallel systems.

We provide background on block-structured AMR codes
and current placement approaches (§II), then outline the
challenges of incorporating telemetry into placement decisions
(§III). We present our methodology for obtaining reliable per-
formance measurements (§IV), followed by the design of our
placement policies (§V) and their evaluation (§VI). We then
summarize the broader lessons drawn from our experiences
(§VII) before concluding with related work (§VIII).

All our policies and associated artifacts are open source [8].

II. WHY TELEMETRY-DRIVEN PLACEMENT?

Block-structured AMR simulations running on O(100K)
cores face significant performance challenges due to computa-
tional variability [1, 9, 10]. Frequent mesh refinement necessi-
tates periodic redistribution of work across compute resources.
Stragglers, if left unaddressed, are particularly expensive due
to frequent global synchronization operations—a single strag-
gler can block the entire simulation at synchronization points,
leading to poor cluster utilization [11].

Two complementary approaches exist for computational
variability—balancing work among ranks to reduce variability,
and asynchronous execution strategies to mask residual vari-
ability. While asynchronous runtimes [12–15] are commonly
used to mask variability, significant time is lost waiting within
MPI routines despite their widespread use (>60% at 1,000
ranks [7]). Addressing variability via placement is difficult—
frameworks often lack meaningful per-block cost inputs, as
predictive models are hard to create and codes often assume
uniform costs. This gap motivates leveraging runtime teleme-
try to directly measure workload behavior.

This section provides background for the rest of this pa-
per, beginning with an overview of AMR codes and current
placement techniques in §II-A, followed by computational
characteristics of AMR operations in §II-B.

A. Block-based AMR: Infrastructure and Execution

Structured AMR Codes. Structured AMR implementations
organize computational grids hierarchically while maintaining
a logically Cartesian structure. Implementations typically fall
into two categories: block-based and patch-based. Block-based
AMR partitions the domain into uniform sized blocks at each
refinement level, managed using octree data structures. This
approach enables efficient parallel implementations through
simplified mesh management and communication patterns.
Examples include Parthenon [5], Enzo-E/Cello [16], and
ALPS [6]. Patch-based AMR, in contrast, refines regions using
arbitrary rectangular patches rather than fixed blocks, allowing
finer control over refinement but requires more complex load-
balancing (e.g. AMReX [17], SAMRAI [18]).

Execution Model. Block-based AMR codes operate on struc-
tured meshes that are decomposed into mesh blocks, with mul-
tiple blocks typically assigned to each simulation rank. As the
simulation tracks evolving physical phenomena, blocks may be

refined or coarsened to adapt mesh resolution, requiring peri-
odic redistribution across ranks. Computationally, operations
on each block are structured as a directed acyclic graph (DAG)
of tasks—including physics computations, mesh management
operations, and inter-block communication. Beyond these per-
block operations, AMR codes also invoke global operations
for redistribution and synchronization, whose characteristics
we detail in §II-B.

AMR codes use task-based runtimes to execute DAGs
using asynchronous execution strategies. Some frameworks
like Parthenon implement these abstractions directly, while
others use general-purpose runtimes such as Charm++ [12],
Uintah [13], HPX [14], and Legion [15]. Our work incorpo-
rating telemetry in work placement complements execution
strategies masking residual imbalance.

Placement Mechanisms. When a redistribution is invoked,
placement mechanisms compute new block-rank assignments,
and blocks are migrated accordingly. Modern block-based
AMR codes rely on octree mesh structures combined with
space-filling curves (SFCs) to enable efficient parallel mesh
management while approximately preserving communication
locality. SFC-based partitioning balances uniform block counts
effectively but does not account for computational variability
between blocks—a gap we address in this work. Octree
structures, SFC ordering, and their implications for placement
flexibility are discussed further in §V where we present our
placement policies.

B. Characteristics of Key AMR Operations

Compute Tasks. Compute tasks perform the core physical and
mesh operations of the simulation. While operations like re-
finement tagging often have predictable costs, physics kernels
are a major source of variability. For instance, regions with
steep gradients may require more solver iterations, increasing
compute cost. Importantly, this cost is not directly correlated
to spatial area, as each block contains the same number of
computational points (cells) regardless of refinement level. Ul-
timately, the execution time of these compute tasks represents
the core computational cost to advance the simulation state,
establishing the fundamental lower bound on runtime.

Communication Tasks. Communication tasks create complex
inter-block dependencies through boundary exchanges, where
each block communicates with up to 26 neighbors in 3D
(faces, edges, and vertices). Communication volume depends
primarily on the number of physical variables exchanged
and neighbor relationships instead of the refinement level of
the blocks. These exchanges typically use non-blocking MPI
operations and are latency-sensitive due to small message sizes
and the potential for blocking downstream tasks. Flux correc-
tion follows a similar small-message, peer-to-peer pattern for
ensuring consistency of conserved quantities.

Redistribution. Redistribution operations rebalance blocks
across ranks as the simulation evolves, adapting to changes
from mesh refinement or coarsening. They are triggered when
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Fig. 1: Telemetry challenges in AMR codes. (Top) Initial telemetry
shows poor correlation between work (message counts) and com-
munication time. Tuning for system-level issues improves corre-
lation and telemetry reliability. (Bottom) Fine-grained telemetry
reveals subtle performance anomalies affecting average collective
time by 3×.

blocks are tagged for refinement based on physical criteria, like
solution gradients exceeding a threshold. Each redistribution
computes new block-to-rank mappings and migrates data.
Because redistribution may be invoked frequently and must
complete within tight performance budgets, placement policies
must be fast and capable of handling complex scheduling con-
straints. The frequency depends on the underlying physics—
some problems require frequent adaptation, others are more
stable.

Synchronization. Synchronization operations can be explicit
(MPI barriers) or implicit (blocking collectives). They inher-
ently expose performance variability by forcing all ranks to
wait until the last rank reaches the synchronization point.
This waiting time often increases with scale as the likeli-
hood of encountering a straggler grows. While asynchronous
collectives are suggested as an alternative [19], synchronous
operations remain necessary for certain correctness guarantees,
like ensuring that all ranks execute the same timestep.

III. CHALLENGES OF TELEMETRY–DRIVEN PLACEMENT

In principle, fine-grained telemetry should enable placement
decisions to be grounded in observed workload behavior.
However, our early attempts revealed two fundamental dif-
ficulties. First, the telemetry itself was unreliable: metrics
such as communication time showed poor correlation with
predictors like message volume (Fig. 1a), making it impossible
to model baseline runtime. Second, the magnitude of this

variability also changed unpredictably as placement properties
were modified. For example, optimizing for communication
locality did not reliably improve end-to-end performance ini-
tially. These observations forced us to treat placement not as a
theoretical optimization problem, but as a systems engineering
task grounded in empirically observed runtime behavior. The
following challenges structure the empirical and algorithmic
contributions of this work.

Challenge 1: Cross-stack Performance Anomalies. When
initial telemetry proved inconsistent, showing poor correla-
tion between workload metrics and runtime (Fig. 1a), our
first challenge was establishing trust in the measurements.
In production environments, organizational and operational
boundaries both constrain and scope analyses. Our full-stack
access eliminated these boundaries: every deviation, across
hardware, drivers, MPI, or application layers, became our
direct responsibility to diagnose and explain. While this sig-
nificantly increased diagnostic complexity, it also provided the
crucial advantage of unrestricted access to low-level tools like
perf [20] and eBPF [21], which were necessary to establish
the measurement fidelity underlying this work.

Challenge 2: Analyzing Fine-Grained Telemetry. Diagnosing
anomalies required analyzing large volumes of per-timestep,
per-rank, and per-block telemetry. Anomalies originated on
a small subset of ranks but propagated globally through
communication, making root cause identification nontrivial
(see Fig. 1b). Tracing tools [22, 23] produced unstructured,
high-volume output in formats like OTF2 [23] unsuited for
query-driven diagnosis. Our analytics workflow evolved organ-
ically, beginning with standard tooling such as TAU [22] and
progressing towards custom query-driven workflows capable
of surfacing low-level system effects at scale.

Challenge 3: Effective, Low-Overhead Placement. Reliable
telemetry exposed genuine load imbalance that could be
targeted by placement, but incorporating this information
imposed strict new constraints. Placement decisions had to
be computed within tight time budgets, under 50 ms per redis-
tribution for our target codes, to avoid measurable overhead
on simulation runtime. Even simplified placement objectives,
such as minimizing makespan, are NP-hard [24], and addi-
tional objectives further complicate optimization. Placement
mechanisms had to encode relevant tradeoffs while remaining
fast and robust enough for dynamic AMR workloads.

We address these challenges sequentially: §IV describes the
tuning and analytics infrastructure used to establish reliable
telemetry, and §V presents placement policies enabled by this
exercise.

IV. DENOISING TELEMETRY FOR PLACEMENT

This section describes our methodology for establishing
reliable telemetry, addressing the first two challenges from
the previous section. We begin with mitigating variability from
fail-slow hardware (§IV-A), followed by examples from differ-
ent layers of the software stack in (§IV-B). We then describe
the evolution of our analysis workflow in (§IV-C), followed
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Fig. 2: Profiling data from early runs affected by CPU throttling.
Compute times on impacted ranks were inflated by up to 4× and
appeared in clusters of 16, leading to elevated synchronization
delays across the system. Pruning affected nodes reduced overall
runtime by 3× by lowering synchronization overhead

by a critical path model to formally analyze the impact of task
dependencies and scheduling on runtime in §IV-D. While the
specifics of our interventions are necessarily empirical and
context-dependent, they serve to illustrate recurring failure
modes across the stack and the analytical methods required
to uncover them.

Hardware. All experiments ran on a research cluster with 600
compute nodes, each node having Intel Xeon E5-2670 16-core
processors, 64GB RAM, and 40 Gbps Qlogic 7340 NICs.

Software. Codes using Parthenon [5], Phoebus [25], and
AthenaPK [5], built against MVAPICH2 [26] and the PSM
fabric library [27].

A. Eliminating Faulty and Fail-Slow Hardware

Hardware problems surfaced early in our study and had
to be resolved before any software-level conclusions were
meaningful. Initially collected profiling data showed more
than 70% of runtime being spent in global synchroniza-
tion (Fig. 2). Per-rank telemetry showed four-fold compute
slowdowns on clusters of 16 ranks—an unmistakable sign
of thermal throttling, confirmed by syslogs. Excluding those
nodes immediately cut total runtime from 10 h to 2.5 h.

While such severe throttling is less likely to persist unde-
tected in production clusters, it serves as an archetype for
hardware-related fail-slow behaviors that often manifest more
subtly. Studies report transient degradation from throttling,
memory errors, or flaky links commonly impacting production
workloads [28, 29]. Such faults can present as legitimate
stragglers, but must be identified and addressed separately to
avoid misdirected tuning efforts.

To ensure measurement integrity, our launch workflow
overprovisioned nodes and ran pre/post-job health checks
(syslog and other hardware indicators). Failing nodes were
automatically pruned from runs and blacklisted.

B. Tuning The Software Stack

We found interactions within the software stack—
application logic, MPI runtime, and network drivers—to be the
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Fig. 3: Rankwise boundary communication performance before
and after two optimizations. Prioritizing sends in the task
schedule reduced noise, revealing faint performance trends.
Subsequent queue size tuning further reduced variance, clarifying
the underlying telemetry structure.

primary source of performance variability impacting telemetry
reliability. While tools exist to check for basic configuration
errors or known MPI misuses [30], they cannot capture the
dynamic, workload-dependent performance artifacts arising
from suboptimal tuning of parameters like queue depths,
scheduling priorities, or internal thresholds. We present three
representative examples of mitigations applied across the soft-
ware stack.

Application-Level Example: MPI_Wait Spikes. In one
code, we traced occasional spikes in MPI_Wait following
MPI_Isend to fabric driver behavior: missing acknowledg-
ments (ACKs) triggered a recovery path that unnecessarily
blocked the sender. Since receivers had already acknowledged
the messages, blocking the senders on acknowledgments was
avoidable. We implemented a drain queue that transparently
allocated new MPI requests and drained the blocked requests
in the background. Fig. 1b shows the spikes and the impact
of our mitigations.

Application-Level Example: Task Reordering. In another
AMR code, MPI send tasks were scheduled after compute/wait
tasks, causing cascading delays on CPUs (masked on GPUs
where developed) Prioritizing sends (Fig. 3, middle) unblocked
dependent ranks without affecting senders, reducing wait times
and jitter.

Network-Level Example: Queue Size Tuning. Persistent vari-
ance, contributing to poor correlation between communication
time and work (Fig. 1a), was traced using perf [20] to
contention in the MPI library shared-memory path due to
an insufficient preconfigured queue size. Increasing this value
reduced MPI wait time variance and significantly improved
the correlation between measured communication time and
message volume (Fig. 3, right).

Implications. Mitigating the anomalies described above re-
quired analytical capabilities we could not replicate with
standard tools. Transient spikes would be obscured by ag-
gregation (profiling), while the sheer volume and complex-
ity of fine-grained data made manual trace inspection in-
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Fig. 4: Critical paths within a synchronization window. (Top)
Single- vs two-rank critical paths, demonstrating how delay
chains can be purely local or involve exactly two ranks with
one P2P communication round. (Bottom) A task schedule for two
blocks, demonstrating the impact of ordering. Prioritizing Send0
reduces its dispatch time without affecting Send1, minimizing its
potential to create a critical path.

feasible. Systematically identifying root causes—correlating
events across ranks, time, application phases, and system
layers—necessitated programmable low-level interfaces like
eBPF [21], complemented by flexible, query-driven analysis.
Our struggles with existing approaches directly motivated the
evolution of our analysis workflow, detailed next, towards
techniques better suited for this challenge.

C. Evolution of our Analysis Workflow

Addressing the analytical limitations described above re-
quired evolving our workflow substantially beyond standard
tools: TAU [22] provides useful coarse summaries via profil-
ing, but finer-grained telemetry is only accessible via traces,
which were impractical to analyze at scale. We wrote TAU
plugins to emit CSVs which we analyzed with pandas in
python. As we scaled up, parsing time became a bottleneck,
and we switched to custom binary formats for efficiency.

As our needs evolved, we wanted programmable telemetry
triggers based on reconstructed application state. We imple-
mented our own telemetry collection using the MPI [31]
and Kokkos [32] profiling interfaces. Eventually, we out-
grew pandas’ analytical bandwidth and found our telemetry
queries naturally mapped to SQL over data ingested into
ClickHouse [33], a columnar analytics database.

In hindsight, our pipeline mirrored modern observability
stacks: structured schemas, binary formats, and relational
queries. Though still ad hoc, it provided the low-latency,
queryable insight needed to support targeted diagnosis and
hypothesis-driven exploration, essential for tuning and place-
ment at scale. We explore the broader implications of this
model in §VII.

D. A Critical Path Model of Execution

Before turning to placement, we introduce a critical path
analysis framework to identify optimal task ordering strategies
under a fixed placement. This not only grounds the reordering
optimization described in §IV-B, but also helps formally iden-
tify other avenues for optimization. We define the critical path
as the chain of dependent tasks that determines the runtime of
the straggler at the next synchronization point. Reduction in
critical path length is then modeled as minimizing MPI_Wait
time on that path, as it is the only flexible-duration component
in the execution path. Compute kernels have fixed runtimes,
and other communication operations such as MPI_Isend and
MPI_Irecv are similarly fixed, as they simply post buffers
to the fabric. We now establish a key principle:

Given a single round of concurrent P2P communication
between two synchronization points, at most two ranks can
be implicated in the critical path, regardless of scale.

This follows from Lamport’s happened-before [34] relation
— only dependent operations can create causal relationships. If
the critical path is local to a rank, it reflects compute imbalance
and involves minimal MPI_Wait time. More interesting are
two-rank paths, where one rank is stalled waiting on a message
from another. These cases are illustrated in Fig. 4a. This model
reveals two strategies to shorten such paths:
Operation ordering to reduce wait stalls. The most direct
way to shorten the path is to ensure the remote message
is sent as early as possible. This is precisely what our task
reordering optimization accomplished: by prioritizing sends,
we minimized the dispatch delay for messages that were on
the critical path.
Overlapping computation to hide wait stalls. Asynchronous
runtimes discussed in §II-A aim to hide MPI_Wait stalls
by overlapping them with independent work. However, this
requires both a non-zero wait time and the availability of
independent tasks. Within a single mesh block, tasks are often
data-dependent. While multiple blocks on the same rank can
provide independent work, this creates a counterintuitive ten-
sion: a strict locality-preserving placement may be detrimental,
as all blocks on a rank could end up waiting for the same
remote straggler, limiting opportunities for independent work.

This analysis demonstrates the complexity of reasoning
about fine-grained execution in partially asynchronous codes,
where runtime behavior emerges from a large number of
complex and subtle interactions. It also highlights the multiple,
sometimes conflicting, dynamics introduced by the locality-
reducing placements we discuss next.

V. DESIGNING A PLACEMENT POLICY

With the reliable and interpretable telemetry foundation
established in §IV, we turned to the final challenge: using
this runtime information to design effective placement poli-
cies. Validated measurements confirmed that MPI collective
synchronization dominated runtime, accounting for 35%–50%
of total time and increasing with scale (512–4096 ranks), while
direct communication and redistribution overhead remained



below 10%. This cost was clearly a downstream effect of com-
pute time variability between blocks. Mitigating the impact
of this measured variability became the primary placement
objective.

Guided by our codes—which, in the worst case, trigger
refinement every five 250 ms timesteps—we set a 50 ms place-
ment computation budget to cap overhead at 5% of the total
runtime. This constraint ruled out complex optimization ob-
jectives such as maximizing communication-compute overlap
or encoding network topology, due to limited expected payoff
and high constraint complexity. Instead, we focused on two
key optimization dimensions:

Compute Load Balance. Directly minimizing the variance in
per-rank compute load on the basis of measured block costs
was the obvious objective to reduce straggler delays. This
problem—formally known as makespan minization—is NP-
hard [24], necessitating efficient heuristics.

Communication Locality. Baseline SFC-based placements
(§V-A) preserve spatial locality but hinder load balance flex-
ibility. The actual runtime benefit of this locality had to
be evaluated empirically, motivating exploring locality-aware
strategies.

We now describe the baseline infrastructure used and aug-
mented by our policies in §V-A, followed by load-centric and
locality-preserving policies in §V-B and §V-C. We conclude
with CPLX (§V-D), a hybrid policy that enables tunable
control over the tradeoff between locality and load balance.
All policies were implemented in the Parthenon AMR frame-
work [5] and are directly available in Parthenon-based codes
such as Phoebus [25] and AthenaPK [5].

A. Existing Placement Infrastructure

Modern block-based AMR codes use octrees and space-
filling curves (SFCs) as foundational data structures for mesh
management. This section describes these building blocks and
the baseline placement policy, as understanding their strengths
and limitations is crucial for developing better policies.

1) Octrees and Space-Filling Curves: Octrees provide an
efficient hierarchical representation of the mesh structure.
When a block needs to be refined, it is split into 8 (23) child
blocks (in 3D). Only leaf blocks of the octree participate
in the simulation. Octrees serve multiple functions in AMR
codes—from mesh management to neighbor tracking to block
placement—with the latter enabled through easy construction
of Z-order space-filling curves via a depth-first traversal of the
tree, as shown in Fig. 5. Blocks are assigned sequential block
IDs in order of this traversal. This ordering approximately
preserves spatial locality, as blocks with nearby IDs are more
likely to be spatial neighbors. Some locality, however, is
inevitably lost as dimensionality reduction is inherently lossy.

2) Baseline Placement Policy: Placement computation is
a component of the redistribution process, invoked if the
mesh structure changes because of (de)refinement operations.
Redistribution proceeds in three steps: blocks are first assigned
block IDs using Z-order SFCs, the placement policy computes
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Fig. 5: Example of an adaptively refined mesh, octrees, and
Z-order Space-Filling Curves (SFCs) in two dimensions. Mesh
blocks correspond to octree nodes with refinement creating child
nodes. Sequential block IDs are assigned to leaf blocks using a
depth-first traversal, equivalent to a Z-Order SFC. Contiguous
block ID ranges are then assigned to simulation ranks to balance
block counts while preserving locality.

new block-rank mappings for all blocks, and finally blocks are
migrated to their new ranks using MPI P2P operations.

The baseline policy simply orders blocks by block ID
and assigns contiguous ranges of ⌈n/r⌉ or ⌊n/r⌋ blocks to
consecutive ranks, where n is the total number of blocks
and r is the number of ranks. While better assignments are
theoretically possible, this approach provides a reasonable
balance between compute load and communication locality by
balancing block counts across ranks while co-locating spatial
neighbors.

3) Augmenting Existing Infrastructure: Octrees and space-
filling curves are fundamental, well-studied components of
modern AMR codes. Rather than replace these proven building
blocks, we augment them with mechanisms to handle variable
block costs and flexible allocation patterns. While frame-
works like Parthenon provide hooks for specifying per-block
costs, these are typically initialized to 1 in practice—treating
all blocks as computationally equal. This simplified model
persists partly because domain scientists rarely provide cost
estimation models for their simulations, and partly because
the baseline policy’s strict contiguous allocation constraint
limits its ability to accommodate variable costs. Our changes
to the infrastructure are minimal but enable significantly more
flexible placement policies:

1) We populate the existing cost specification hooks with
actual computation costs measured via telemetry

2) We modify the block management infrastructure to sup-
port arbitrary (non-contiguous) block-to-rank mappings

The second change required minor modifications to data
structures but has no correctness implications, as logical
dependencies between blocks remain intact. This allows for
non-contiguous placements, but communication costs increase
only if policies choose to break locality.



B. LPT: Prioritizing Load Balance

We first investigated whether pure load balancing, ignoring
communication locality entirely, could provide meaningful
runtime improvements. The Longest-Processing-Time First
(LPT) algorithm offers a simple but powerful approach—sort
blocks by compute cost and assign each to the least loaded
rank. LPT is a classical greedy algorithm for makespan mini-
mization with strong theoretical guarantees—the makespan of
an LPT solution is provably at most 4/3 times the optimal
makespan [35]. In practice, LPT performs remarkably well;
we could not obtain better solutions from a commercial ILP
solver [36] despite letting it run for 200 s.

LPT demonstrated surprisingly strong performance despite
completely ignoring communication locality. While it did incur
higher communication costs than the baseline approach, the
improvements in load balance more than compensated for this
overhead. This suggested that the value of locality preservation
might be lower than initially assumed, motivating us to explore
this tradeoff further.
C. CDP: Preserving Locality

After observing LPT perform well despite its locality
costs, we wanted to explore the potential of a locality-
maximizing load-balanced placement. To this end, we de-
veloped Contiguous-DP (CDP), which uses dynamic pro-
gramming to select contiguous block ranges to improve load
balance while preserving the locality patterns of the baseline.

Consider a simulation with 10 blocks and 4 ranks. With
an average of 2.5 blocks per rank, CDP explores allocations
like [2,2,3,3] or [2,3,2,3], finding one that minimizes
makespan while maintaining contiguous allocations. As a
result, CDP has identical locality-preserving properties as
baseline.

Formal Description. CDP solves the contiguous partition-
ing problem: given block costs w1, . . . , wn (in SFC order),
partition them into r contiguous segments to minimize the
maximum segment sum (makespan). Let W [i] =

∑i
j=1 wj .

The minimum makespan DP[i][k] for partitioning i blocks
among k ranks follows (DP[0][0] = 0):

DP[i][k] = min
0≤j<i

max (DP[j][k − 1],W [i]−W [j])

The algorithm has complexity O(n2r) in general, where
n is the number of blocks and r is the number of ranks.
However, we optimize it to O(nr) by considering only two
contiguous chunk sizes: ⌈n/r⌉ and ⌊n/r⌋. This optimization
maintains solution quality while making CDP practical for
AMR timescales. This DP formulation guarantees an optimal
makespan-minimizing placement within the explored chunk
sizes.

In our experiments, CDP improved upon baseline but only
reached parity with LPT. While CDP showed lower commu-
nication times, its higher synchronization times suggested that
perfect locality preservation might be unnecessarily restrictive,
motivating our development of our hybrid policy called CPLX,
described next.

Scaling CDP With Chunking. The overhead of comput-
ing placements with CDP became noticeable at 4096 ranks,
prompting us to develop a parallel implementation using
hierarchical chunking. This approach divides blocks into c
contiguous chunks of approximately equal cost, then applies
CDP independently to each chunk using a subset of ranks.
At 4096 ranks with chunk size 512, this creates 8 parallel-
processed chunks.

While chunking may not find the globally optimal CDP
solution, this approximation has minimal impact since CDP’s
output serves only as an intermediate step for CPLX. The
approach reduces placement overhead while retaining CDP’s
solution quality.

D. CPLX: Combining the Best of Both

Our experiments with LPT and CDP revealed a clear
tradeoff—LPT achieved better load balance but higher com-
munication costs, while CDP preserved locality at the ex-
pense of some load imbalance. Neither policy consistently
outperformed the other in end-to-end runtime, suggesting the
potential for a hybrid approach that could combine their
strengths.

Developing such a hybrid proved challenging. Our initial
attempts to blend the policies produced unpredictable results—
small sacrifices in load balance did not translate to proportional
gains in locality, and vice versa. We eventually realized that
it was easier to selectively break locality in a contiguous
placement than to restore locality in an arbitrary one. This
insight led to the CPLX design principle: start with a locality-
preserving solution from CDP and strategically apply LPT to
address the most significant imbalances.

CPLX begins by computing an initial CDP placement that
reuses the chunking mechanism for scalability. It then assesses
the work allocated to different ranks by sorting them in
descending order of load. The policy selects X% of ranks
from either end of this sorted list—the most overloaded
and underloaded ranks—for rebalancing via LPT. Including
both ends is crucial as rebalancing needs both source and
destination ranks to effectively redistribute work.

The parameter X, ranging from 0 to 100%, provides precise
control over this locality disruption. At X=0 (CPL0), no ranks
participate in rebalancing, preserving the locality characteris-
tics of CDP. At X=100 (CPL100), all ranks undergo LPT
rebalancing, effectively becoming pure LPT. Intermediate val-
ues create hybrid behaviors, only disrupting locality within the
X% most imbalanced ranks while preserving it elsewhere. This
enables CPLX to systematically explore the complete locality-
balance tradeoff space while maintaining the performance
requirements of AMR codes.

VI. EVALUATION OF PLACEMENT POLICIES

In this section, we evaluate CPLX under real AMR work-
loads and synthetic microbenchmarks. While CPL100 (pure
LPT) and the baseline policy represent known quantities,
our key question is whether intermediate values of X can
provide meaningful control over the locality-balance tradeoff.
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Fig. 6: Runtime statistics comparing different load-balancing policies across multiple scales (512–4096 ranks).
(Top) Total runtime, classified into phases. CPL50 performs best, with up to 21.6% runtime reduction over baseline. (Bottom, left)
Clear tradeoff emerges between communication time (increasing with X) and synchronization time (decreasing with X), demonstrating
how CPLX enables controlled balance between these competing factors. (Bottom, right) Message patterns show that increasing X
reduces local in favor of remote communication, providing evidence for the locality-performance tradeoff.

RANKS MESH SIZE ttotal tlb ninitial nfinal

512 1283 30,590 1,213 512 2,080
1024 1282 × 256 43,088 4,576 1,024 3,824
2048 128× 2562 43,042 4,699 2,048 4,848
4096 2563 53,459 9,392 4,096 8,968

ttotal: total timesteps, tlb: timesteps invoking load-balancing
ninit: initial block count, nfinal: final block count

TABLE I: Problem configurations for Sedov Blast Wave 3D
experiments. All configurations use 163 block size, initializing
with one block per rank to ensure meaningful placement impact
at all scales. The number of blocks increases through refinement
as the shock wave propagates, with final block counts shown in
the rightmost column.

For CPLX to be successful, it must achieve three goals:
intermediate values should demonstrate measurable control
over both communication patterns and runtime performance,
achieve minimum runtime if the tradeoff is worth balancing,
and maintain low runtime overhead even in setups with rapid
refinement. We evaluate these aspects by comparing different
values of X against CPL100 as our reference point.

We primarily evaluate CPLX using the Sedov Blast Wave
3D problem in Phoebus [25], a hydrodynamics code built on
top of the Parthenon [5] framework. While we also studied
placement in other codes, such as a galaxy cooling setup in
AthenaPK [5], results were directionally similar: codes with
high compute variability benefit more from better placement,
and vice-versa. We describe our hardware setup in §VI-A,
present Sedov results in §VI-B, and use microbenchmarks to
evaluate CPLX’s load balance and locality properties under
different synthetic regimes in §VI-C.

A. Experimental Setup

We evaluate four configurations of the Sedov Blast Wave
problem, as detailed in Table 1. Each run begins with one

block per rank, increasing as refinement proceeds, and finally
settling at ∼two blocks per rank. The table reports initial and
final block counts, total steps, and load-balancing invocations.

All experiments ran on the tuned Emulab-backed cluster
described in §IV, with 16 ranks per node, at scales from 512–
4096 ranks. Telemetry was collected using the custom profiling
stack described in §III. We compare the tuned baseline against
CPLX with X ∈ {0, 25, 50, 75, 100}, and only report runtime
gains from placement. Runtime gains from tuning are omitted
because of variable impact across different codes and scales.

Hardware Checks. To ensure experimental integrity, all
reserved nodes were scanned for hardware issues—thermal
throttling, memory errors etc.—before every individual run
in each parameter suite using the process described in §IV.
All reported results are from runs where no participating node
showed issues either before or after execution.

Software Stack. All experiments used MVAPICH2 v2.3.7 [26],
compiled against a tuned version of PSM [27], the userspace
library for our QLogic fabric.

B. Sedov Blast Wave Results
We evaluate five placement policies on the Sedov Blast

Wave problem across four scales (512–4096 ranks), com-
paring baseline performance against CPLX, as X is varied
from 0–100. The analysis focuses on overall runtime behav-
ior (Fig. 6a), the synchronization—communication tradeoff
(Fig. 6b), and P2P communication patterns (Fig. 6c).
Finding 1: Baseline: synchronization reaches 50% of total
runtime at scale.

Figure 6a shows total runtime across all policies, decom-
posed into computation, communication, synchronization, and
rebalancing phases. With baseline placement, computation and
synchronization dominate the profile, jointly accounting for
over 90% of execution time at all scales. Communication and



rebalancing remain minor components, contributing approx-
imately 7% and 3% respectively. Synchronization overhead
grows sharply with scale—from 35% at 512 ranks to 50%
at 4096 ranks, despite the tuned environment. These results
demonstrate the challenge of managing dynamic behavior
in bulk-synchronous parallel applications. Unless mitigated,
runtime is dictated by stragglers, the likelihood of which only
goes up with scale.

Finding 2: CPLX achieves up to 21.6% overall runtime
reduction, with impact increasing with scale.

Figure 6a also shows that all CPLX configurations out-
perform the baseline, with runtime improvements that grow
more pronounced at larger scales. At 4096 ranks, the best-
performing variant (CPL100) reduces total runtime by up
to 21.6% relative to baseline. Even at 512 ranks, CPLX
achieves a 15.3% reduction, and all values of X tested yield
improvements above 12%.

Runtime follows a clear U-shaped curve as a function of
X: starting from CPL0 (locality-preserving), decreasing to a
minimum with intermediate values, and rising again toward
CPL100 (pure LPT). This shape reflects the ability of CPLX
to control the load-locality tradeoff in a manner that yields
meaningful overall runtime gains.

Crucially, compute time remains flat across all policies,
confirming that the total amount of work is invariant to
placement. The observed improvements arise entirely from
reductions in synchronization overhead, which dominate non-
compute runtime in the baseline configuration. Measured as
reduction in non-compute time, the impact of CPLX becomes
even more pronounced—up to 36% reduction at 4096 ranks.

Finding 3: CPLX enables consistent control over the load-
locality tradeoff, and tradeoff impact increases with scale.

Figure 6b isolates the core tradeoff by showing P2P com-
munication and synchronization times, normalized against the
baseline, for all policy configurations at 512 and 4096 ranks.
Intermediate scales are omitted for compactness, but we find
them to demonstrate similar trends. Increasing X reduces
synchronization time, as expected from better load balance,
while increasing communication time due to loss of locality.

We find that modest values of X (25–50) capture almost all
of LPT load-balancing benefits, without incurring the com-
mensurate locality cost. While LPT incurs a relative increase
of 55% in locality cost, its impact on the overall runtime
remains modest as even at 4096 ranks, communication is only
13% of the overall runtime. The increasing spread between
intermediate X values and LPT with scale suggests that the
runtime impact of balancing the two increases with scale.
Given the strong performance of LPT vs commercial ILP
solvers (§V-B), this is likely close to the practically achievable
optimum under our model of AMR placement.

At 512 ranks, some CPLX configurations even reduce
communication time relative to baseline—this is explained by
the compounding effects captured by boundary communication
time. High variance in the preceding compute kernels results in
more time spent in MPI_Wait by some ranks, and improving

load-balance has a positive downstream impact that overrides
the locality cost. This is an illustration of higher-order place-
ment effects that we discard for computational tractability.

Finding 4: P2P message volume statistics confirm locality
degradation with increasing X .

Fig. 6c shows the breakdown of local (intra-node shared
memory) and remote (inter-node MPI) P2P messages, normal-
ized to the total baseline message volume, for CPLX variants
at 512 and 4096 ranks. As X increases, remote message counts
rise while local messages fall, reflecting the fact that CPLX
progressively expands LPT coverage at the expense of locality.
This tradeoff is enacted mechanically by CPLX, independent
of the underlying application or mesh—only the runtime
impact of this shift depends on workload characteristics. We
explore workload variations further in §VI-C using synthetic
microbenchmarks.

A subtler effect visible in Fig. 6c is the growth in total
MPI-visible message volume with increasing X . This oc-
curs because intra-rank communication—handled via memcpy
when blocks are co-located—is replaced by MPI messages
when placement breaks locality. This shift explains part of the
communication time increase observed in Fig. 6b.

Finally, even the baseline placement routes a majority of
messages across nodes: at 4096 ranks, 64% of messages are
already remote. This is an intrinsic property of space-filling
curves—dimensionality reduction to 1-D preserves only partial
spatial locality. CPLX does not introduce a new communica-
tion cost class, but extends an existing placement pattern and
exposes it as a tunable parameter.

C. Microbenchmarks

To complement the application-level Sedov results (§VI-B)
and enable controlled evaluation across a broader range of
conditions, we developed two microbenchmarks. commbench
isolates P2P communication under varying placements, while
scalebench evaluates the effectiveness and computational
cost of placement policies under synthetic compute imbalance.

Commbench: Simulating Boundary Communication Patterns.
commbench is a synthetic microbenchmark that isolates

boundary communication and evaluates how placement local-
ity affects end-to-end round latency. It constructs octree-based
AMR meshes with realistic refinement, deriving P2P patterns
from geometric neighbor relationships (face, edge, vertex)
across refinement levels. While inspired by the Halo3D-26
fixed-grid benchmark [37], commbench simulates a full AMR
placement pipeline and accepts custom placement policies as
drop-in modules.

Each communication round emulates a boundary exchange,
with blocks exchanging messages based on neighbor type.
Message sizes are realistic: face-neighbor exchanges are pro-
portionally larger than edge or vertex ones. Meshes are refined
to yield 1–2 blocks per rank, and each round includes all
neighbor types. Timing is captured using MPI barriers before
and after each round. Results are averaged over 100 rounds
and 10 random meshes per policy. We discard cold-start rounds
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Fig. 7: (Top) Boundary communication round latency vs. locality
at different scales, measured using commbench. Locality mod-
estly affects round latency (±0.5ms). At larger scales, strict lo-
cality preservation surprisingly becomes counterproductive, as it
results in communication hotspots relative to hybrid placements.
(Middle) Average makespans from CPLX placements with three
synthetic distributions. While LPT performs best across all
distributions, the bulk of the benefits are realized with X = 25.
(Bottom) Compute time for CPLX as a function of scale, averaged
across three synthetic distributions. Compute time stays below
10ms until 16K ranks, and can be reduced beyond that scale
using smaller parallel instances.

and those with latency above 10 ms, which we found to reflect
fabric-level recovery behavior unrelated to placement.

Figure 7a shows average round latency across placement
policies as locality decreases from CPL0 to CPL100. While
higher locality yields lower latency at small scales (512 ranks
and below), a surprising U-shaped trend emerges at larger
scales: intermediate values of X outperform both extremes.
This inversion is driven by face-neighbor communication,
which increases as meshes get denser. Locality-preserving
policies cluster high-traffic neighbors unevenly, increasing per-
rank load. Intermediate CPLX settings diffuse this cluster-
ing without fully randomizing placement, leading to more
uniform traffic patterns. Though the latency differences are
modest (±0.5 ms), the reversal of expected trends underscores
how observed system behavior can defy theoretical intuitions.
commbench provides a practical mechanism for empirically

selecting X in different environments.

Scalebench: Evaluating Imbalance and Placement Overhead.
scalebench evaluates different policies at scales from 512
to 128K ranks, with 1–2 blocks per rank to enable flexible
load-balancing. Block costs are drawn from three represen-
tative distributions—exponential, Gaussian, and power-law—
with variability bounds chosen to create meaningful balancing
opportunities while remaining within realistic AMR ranges.

Figure 7b plots the normalized makespan across place-
ment policies (lower is better). We see that CPL100 (LPT)
achieves the lowest makespan across distributions, but CPL0
and CPL25 capture the bulk of the benefits with much higher
locality retention. Figure 7c reports placement computation
overhead as a function of scale. Compute costs increase
with scale, but remain tractable (∼10 ms) up to 16K ranks,
rising to 100 ms at 128K ranks. At the largest scales, zonal
placement architectures can be adopted to mitigate placement
overhead—dividing ranks into k zones to compute placement
independently and in parallel [38].

VII. LESSONS FROM OUR PLACEMENT EXERCISE

We distill our takeaways from this exercise into the follow-
ing five lessons.

Lesson 1: AMR Performance Is Straggler Mitigation.
High synchronization costs in AMR codes are often at-

tributed to load imbalance. Our experience suggests that this
attribution may be premature: stragglers can also arise from
tuning artifacts, execution strategy interactions, or hardware-
level variability. Placement strategies cannot compensate for
unstable system behavior—such instability must be identified
and resolved independently before placement can be meaning-
fully evaluated.

Lesson 2: Effective Tuning is Empirical and Idiosyncratic.
Performance tuning is not about correctness, but about

aligning system behavior with the workload. Default configu-
rations reflect common-case assumptions that may vary across
codes. Tuning, therefore, is both empirical and workload-
specific [39–41]. It improves performance directly, while also
making application behavior more predictable under placement
changes. In our experience, progressive tuning clarified the
telemetry structure, reduced confounding noise, and exposed
deeper residual issues that would otherwise be misattributed.

Lesson 3: P2P Communication Is A Key Variability Source.
Our tuning efforts primarily focused on point-to-point (P2P)

communication patterns used in ghost cell and halo exchanges.
Unlike collectives, which are structured and easy to bench-
mark in isolation, P2P exchanges are fine-grained, latency-
sensitive, and highly variable. They involve dynamic neighbor
counts, varying message sizes, and inconsistent communica-
tion paths—each of which can activate different code paths
in the network stack. We found these interactions to be the
dominant source of variability, and they required targeted
attention during tuning.

Lesson 4: Diagnosis Needs Structured, Queryable Telemetry.



Understanding why performance deviated required analytics
over fine-grained telemetry to surface anomalous low-level
behavior. While tracing tools capture such detail, they rely on
unstructured formats like JSON [42] or OTF2 [43], which are
poorly suited to multi-dimensional analysis across rank, time,
and task. We converged on SQL-based analytics over telemetry
grouped by timestep and sorted by rank, enabling views of
application behavior aligned with synchronization intervals.

While tools like Caliper [44] do support structured teleme-
try, they—like our ad hoc pipeline—rely on parsing and
postprocessing of plaintext data, which we found to slow
down our iterative tuning workflows. Binary columnar formats
like Arrow [45] and Parquet [46], when paired with in-
situ collection, offer a promising foundation for low-latency
BSP telemetry by enabling low-overhead parsing and efficient
querying via embedded statistics over partitioned data.
Lesson 5: Placement Optimization is Systems Engineering.

AMR placement policy design is a systems engineering
problem, guided primarily by empirical constraints rather than
solely by theoretical optimality. Tradeoffs between compute
balance, communication locality, and placement overhead
must be evaluated based on observed performance impact, not
static preferences. Placement strategies need to be empirically
calibrated to each specific deployment context. Their compu-
tation must also respect strict time budgets—in our case, under
50 ms per redistribution—which constrains the complexity of
the algorithms and necessitates focus on dominant effects.

VIII. RELATED WORK

Variability and Runtime Analysis. Performance variability in
HPC environments is well documented [9, 11, 47–49], with
root causes ranging from tuning to contention. Separately, fail-
slow hardware has been reported as a source of performance
degradation [28, 29]. Similar variability challenges have been
identified in the context of collective performance in hyper-
scale ML clusters [50]. Varbench [51] is a framework to
characterize computational variability using a suite of compute
kernels. Klenk et al. [7] analyze proxy MPI traces and report
significant MPI overheads (60% at 1024 ranks) and attribute
them to load imbalance, while also noting limitations of
trace analyses. While prior work documents separate causes
of stragglers, an end-to-end treatment combining tuning and
placement optimization has been missing—a gap addressed by
our work.

Performance Telemetry and Tooling. Established performance
tools such as TAU [22] and Score-P [23] collect profiles and
traces (e.g., OTF2), but lack the queryability required for
scalable analytics, a limitation previously noted by Klenk et
al. [7]. Caliper [44] supports structured telemetry and pro-
grammable aggregation, but relies on plaintext data formats.
Parquet [46] provides a compact, binary columnar format with
embedded statistics for efficient analytics, but is not widely
adopted in performance tools. Hatchet [52] builds a structured
in-memory representation from external telemetry sources but
assumes prior parsing. Metric frameworks like LDMS [53]

offer low-overhead system-level metrics, but often lack ap-
plication context needed for bottleneck attribution. Yang et
al. [54] describe a general critical path analysis framework,
while our framework in §IV-D is tailored for AMR codes.

AMR and Communication Models. Modern AMR codes
either use MPI or asynchronous runtimes like Charm++ [12]
and Legion [15]. Neighborhood collectives [47, 55, 56] for
boundary communication have been proposed as an alternative
to point-to-point messaging, but are currently not used in the
AMR codes we evaluated.

Placement and Load Balancing. Graph-based partitioners
such as parMETIS [57] and Zoltan [58] handle complex
meshes but incur high overhead. Sasidharan et al. [59] propose
a SFC-based partitioner with lower overhead than METIS. All
graph-based approaches model communication as edge cuts,
which we find poorly correlated with runtime communication
overhead. Meta-Balancer [60] focuses on rebalancing triggers,
while Zheng et al. [38] propose hierarchical schemes to scale
load balancing. Solver-based approaches are used to optimize
placement in cloud datacenters [61], but are computationally
expensive (multi-hour) and impractical for AMR.

IX. CONCLUSIONS

Two decades ago, Petrini et al. [11] traced missing per-
formance in flagship supercomputers to noise and variability
across the system stack. Our analysis of contemporary AMR
codes shows this diagnostic challenge remains deeply relevant.
Modern system complexity, driven by adaptive behaviors tuned
for common cases, means performance is highly variable and
context-dependent. As a result, simple attributions to load
imbalance are often incomplete, obscuring deeper sources
of variability. Systematically identifying and mitigating these
issues across hardware and software layers was crucial for
effective optimization. Only after establishing reliable, inter-
pretable telemetry could our CPLX placement policy demon-
strate tunable control over the load-locality tradeoff, achiev-
ing up to 21.6% runtime improvement over tuned baselines.
Our experience suggests that low-latency analytics built on
relational telemetry models may offer a viable foundation for
resolving the persistent opacity of performance root causes.
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