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Abstract
Drive-Managed SMR (Shingled Magnetic Recording) disks
offer a plug-compatible higher-capacity replacement for
conventional disks. For non-sequential workloads, these
disks show bimodal behavior: After a short period of high
throughput they enter a continuous period of low throughput.

We introduce ext4-lazy1, a small change to the Linux
ext4 file system that significantly improves the throughput
in both modes. We present benchmarks on four different
drive-managed SMR disks from two vendors, showing that
ext4-lazy achieves 1.7-5.4× improvement over ext4 on a
metadata-light file server benchmark. On metadata-heavy
benchmarks it achieves 2-13× improvement over ext4 on
drive-managed SMR disks as well as on conventional disks.

1 Introduction
Over 90% of all data in the world has been generated over the
last two years [14]. To cope with the exponential growth of
data, as well as to stay competitive with NAND flash-based
solid state drives (SSDs), hard disk vendors are researching
capacity-increasing technologies like Shingled Magnetic
Recording (SMR) [20,60], Heat Assisted Magnetic Record-
ing (HAMR) [29], and Bit-Patterned Magnetic Recording
(BPMR) [2, 13]. While HAMR and BPMR are still in the
research stage, SMR allows disk manufacturers to increase
areal density with existing fabrication methods. Unfortu-
nately, this increase in density comes at the cost of increased
complexity, resulting in a disk that has different behavior
than Conventional Magnetic Recording (CMR) disks. Fur-
thermore, since SMR can complement HAMR and BPMR
to provide even higher growth in areal density, it is likely that
all high-capacity disks in the near future will use SMR [42].

The industry has tried to address SMR adoption by
introducing two kinds of SMR disks: Drive-Managed
(DM-SMR) and Host-Managed (HM-SMR). DM-SMR
disks are a drop-in replacement for conventional disks that
offer higher capacity with the traditional block interface,
but can suffer performance degradation when subjected to
non-sequential write traffic. Unlike CMR disks that have
a low but consistent throughput under random writes, DM-
SMR disks offer high throughput for a short period followed
by a precipitous drop, as shown in Figure 1. HM-SMR
disks, on the other hand, offer a backward-incompatible
interface that requires major changes to the I/O stacks to
allow SMR-aware software to optimize their access pattern.

A new HM-SMR disk interface presents an interesting
problem to storage researchers who have already proposed
new file system designs based on it [10, 24, 32]. It also

1The suffix -lazy is short for Lazy Writeback Journaling.
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Figure 1: Throughput of CMR and DM-SMR disks from Table 1 under
4 KiB random write traffic. CMR disk has a stable but low throughput under
random writes. DM-SMR disks, on the other hand, have a short period of
high throughput followed by a continuous period of ultra-low throughput.

Type Vendor Model Capacity Form Factor

DM-SMR Seagate ST8000AS0002 8 TB 3.5 inch
DM-SMR Seagate ST5000AS0011 5 TB 3.5 inch
DM-SMR Seagate ST4000LM016 4 TB 2.5 inch
DM-SMR Western Digital WD40NMZW 4 TB 2.5 inch

CMR Western Digital WD5000YS 500 GB 3.5 inch

Table 1: CMR and DM-SMR disks from two vendors used for evaluation.

presents a challenge to the developers of existing file
systems [12,15,16] who have been optimizing their code for
CMR disks for years. There have been attempts to revamp
mature Linux file systems like ext4 and XFS [11,41,42] to
use the new interface, but these attempts have stalled due to
the large amount of redesign required. The Log-Structured
File System (LFS) [47], on the other hand, has an archi-
tecture that can be most easily adapted to an HM-SMR
disk. However, although LFS has been influential, disk file
systems based on it [28, 49] have not reached production
quality in practice [34,40,48] .

We take an alternative approach to SMR adoption. Instead
of redesigning for the HM-SMR disk interface, we make
an incremental change to a mature, high performance file
system, to optimize its performance on a DM-SMR disk. The
systems community is no stranger to taking a revolutionary
approach when faced with a new technology [5], only to
discover that the existing system can be evolved to take the
advantage of the new technology with a little effort [6]. Fol-
lowing a similar evolutionary approach, we take the first step
to optimize ext4 file system for DM-SMR disks, observing
that random writes are even more expensive on these disks,
and that metadata writeback is a key generator of it.

We introduce ext4-lazy, a small change to ext4 that elimi-
nates most metadata writeback. Like other journaling file sys-
tems [45], ext4 writes metadata twice; as Figure 2 (a) shows,
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Figure 2: (a) Ext4 writes a metadata block to disk twice. It first writes
the metadata block to the journal at some location J and marks it dirty in
memory. Later, the writeback thread writes the same metadata block to its
static location S on disk, resulting in a random write. (b) Ext4-lazy, writes
the metadata block approximately once to the journal and inserts a mapping
(S,J) to an in-memory map so that the file system can find the metadata
block in the journal.

it first writes the metadata block to a temporary location J
in the journal and then marks the block as dirty in memory.
Once it has been in memory for long enough2, the writeback
(or flusher) thread writes the block to its static location S,
resulting in a random write. Although metadata writeback
is typically a small portion of a workload, it results in many
random writes, as Figure 3 shows. Ext4-lazy, on the other
hand, marks the block as clean after writing it to the journal,
to prevent the writeback, and inserts a mapping (S,J) to an
in-memory map allowing the file system to access the block
in the journal, as seen in Figure 2 (b). Ext4-lazy uses a large
journal so that it can continue writing updated blocks while
reclaiming the space from the stale blocks. During mount, it
reconstructs the in-memory map from the journal resulting in
a modest increase in mount time. Our results show that ext4-
lazy significantly improves performance on DM-SMR disks,
as well as on CMR disks for metadata-heavy workloads.

Our key contribution in this paper is the design, implemen-
tation, and evaluation of ext4-lazy on DM-SMR and CMR
disks. Our change is minimally invasive—we modify 80
lines of existing code and introduce the new functionality in
additional files totaling 600 lines of C code. On a metadata-
light (≤ 1% of total writes) file server benchmark, ext4-lazy
increases DM-SMR disk throughput by 1.7-5.4×. For
directory traversal and metadata-heavy workloads it achieves
2-13× improvement on both DM-SMR and CMR disks.

In addition, we make two contributions that are applicable
beyond our proposed approach:
• For purely sequential write workloads, DM-SMR disks
perform at full throughput and do not suffer performance
degradation. We identify the minimal sequential I/O size to
trigger this behavior for a popular DM-SMR disk.
•We show that for physical journaling [45], a small journal
is a bottleneck for metadata-heavy workloads. Based on our

2Controlled by /proc/sys/vm/dirty expire centisecs in Linux.
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Figure 3: Offsets of data and metadata writes obtained with blk-
trace [4], when compiling Linux kernel 4.6 with all of its modules on
a fresh ext4 file system. The workload writes 12 GiB of data, 185 MiB of
journal (omitted from the graph), and only 98 MiB of metadata, making
it 0.77% of total writes.

result, ext4 developers have increased the default journal size
from 128 MiB to 1 GiB for file systems over 128 GiB [54].

In the rest of the paper, we first give background on SMR
technology, describe why random writes are expensive in
DM-SMR disks, and show why metadata writeback in ext4
is causing more random writes (§ 2). Next, we motivate
ext4-lazy and describe its design and implementation (§ 3).
Finally, we evaluate our implementation (§ 4), cover related
work (§ 5) and present our conclusions (§ 6). Source code
and other artifacts to reproduce our results are available
at http://www.pdl.cmu.edu/Publications/
downloads.shtml.

2 Background
We introduce SMR technology in general and describe how
DM-SMR disks work. We then describe how ext4 lays out
data on a disk and how it uses a generic layer in the kernel
to enable journaling.

2.1 DM-SMR Internals
SMR leverages the difference in the width of the disk’s write
head and read head to squeeze more tracks into the same
area than CMR. In CMR, tracks have the width of the write
head even though they are read with a narrow read head, as
seen in Figure 4 (a). In SMR, however, the tracks are written
on top of each other, leaving just enough space for the read
head to distinguish them, increasing track density, as seen
in Figure 4 (b). Unlike CMR, however, overlapping writes
cause the sector updates to corrupt data in adjacent tracks.
Therefore, the surface of an SMR disk is divided into bands
that are collections of narrow tracks divided by wide tracks
called guard regions, as seen in Figure 4 (c). A band in an
SMR disk represents a unit that can be safely overwritten
sequentially, beginning at the first track and ending at the
last. A write to any sector in a band—except to sectors in
the last track of the band—will require read-modify-write
(RMW) of all the tracks forming the band.

http://www.pdl.cmu.edu/Publications/downloads.shtml
http://www.pdl.cmu.edu/Publications/downloads.shtml


(a) Conventional Magnetic Recording (a) Shingled Magnetic Recording (c) Surface of an SMR disk

Guard Regions

Figure 4: (a) In conventional recording the tracks have the width of the write head. (b) In shingled recording the tracks are laid partially on top of each
other reducing the track width to the read head. This allows for more tracks, however, unlike with conventional recording, overwriting a sector corrupts
other sectors. (c) Therefore, the surface of an SMR disk is divided into bands made up of multiple tracks separated by guard regions. (d) An SMR disk
also contains a persistent cache for absorbing random writes, in addition to a sequence of bands to whom a group of sectors are mapped.

HM-SMR disks provide an interface that exposes the
band information and let the host manage data on disk. One
such interface is going through the standardization [23] and
researchers are coming up with others [17,25,34]. DM-SMR
disks, on the other hand, implement a Shingle Translation
Layer (STL)—similar to the Flash Translation Layer (FTL)
in SSDs—that manages data in firmware while exposing
the block interface to the host.

All STLs proposed in the literature and found in actual
DM-SMR disks to this date [1,9,21,22,56] contain one or
more persistent caches for absorbing random writes, to avoid
expensive RMW operation for each write. Consequently,
when a write operation updates some part of a band, the
STL writes the update to the persistent cache, and the
band becomes dirty. An STL cleans a dirty band in the
background or during idle times, by merging updates for the
band from the persistent cache with unmodified data from
the band, and writing back to the band, freeing space used
by the updates in the persistent cache.

The cost of cleaning a band may vary based on the type
of the block mapping used. With dynamic mapping an STL
can read a band, update it in memory, write the updated
band to a different band, and fix the mapping, resulting in
a read and a write of a band. With static mapping, however,
an STL needs to persist the updated band to a scratch space
first—directly overwriting the band can corrupt it in case of a
power failure—resulting in a read and two writes of a band.

As a concrete example, Figure 4 (d) shows the logical
view of Seagate ST8000AS0002 DM-SMR disk that was
recently studied in detail [1]. With an average band size
of 30 MiB, the disk has over 260,000 bands with sectors
statically mapped to the bands, and a ≈25 GiB persistent
cache that is not visible to the host. The STL in this disk
detects sequential writes and starts streaming them directly
to the bands, bypassing the persistent cache. Random writes,
however, end up in the persistent cache, dirtying bands.
Cleaning a single band typically takes 1-2 seconds, but can

take up to 45 seconds in extreme cases.
STLs also differ in their cleaning strategies. Some STLs

constantly clean in small amounts, while others clean during
idle times. If the persistent cache fills before the workload
completes, the STL is forced to interleave cleaning with
work, reducing throughput. Figure 1 shows the behavior of
DM-SMR disks from two vendors. Seagate disks are known
to clean during idle times and to have static mapping [1].
Therefore, they have high throughput while the persistent
cache is not full, and ultra-low throughput after it fills. The
difference in the time when the throughput drops suggests
that the persistent cache size varies among the disks. Western
Digital disks, on the other hand, are likely to clean constantly
and have dynamic mapping [9]. Therefore, they have lower
throughput than Seagate disks while the persistent cache is
not full, but higher throughput after it fills.

2.2 Ext4 and Journaling
The ext4 file system evolved [30,36] from ext2 [8], which
was influenced by Fast File System (FFS) [37]. Similar to
FFS, ext2 divides the disk into cylinder groups—or as ext2
calls them, block groups—and tries to put all blocks of a
file in the same block group. To further increase locality,
the metadata blocks (inode bitmap, block bitmap, and inode
table) representing the files in a block group are also placed
within the same block group, as Figure 5 (a) shows. Group
descriptor blocks, whose location is fixed within the block
group, identify the location of these metadata blocks that are
typically located in the first megabyte of the block group.

In ext2 the size of a block group was limited to 128 MiB—
the maximum number of 4 KiB data blocks that a 4 KiB
block bitmap can represent. Ext4 introduced flexible block
groups or flex bgs [30], a set of contiguous block groups3

whose metadata is consolidated in the first 16 MiB of the
first block group within the set, as shown in Figure 5 (b).

3We assume the default size of 16 block groups per flex bg.



(a) ext2 Block Group
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(c) Disk Layout of ext4 partition on an 8 TB SMR disk

Figure 5: (a) In ext2, the first megabyte of a 128 MiB block group contains the metadata blocks describing the block group, and the rest is data blocks.
(b) In ext4, a single flex bg concatenates multiple (16 in this example) block groups into one giant block group and puts all of the metadata in the first block
group. (c) Modifying data in a flex bg will result in a metadata write that may dirty one or two bands, seen at the boundary of bands 266,565 and 266,566.

Ext4 ensures metadata consistency via journaling, how-
ever, it does not implement journaling itself; rather, it uses a
generic kernel layer called the Journaling Block Device [55]
that runs in a separate kernel thread called jbd2. In response
to file system operations, ext4 reads metadata blocks from
disk, updates them in memory, and exposes them to jbd2 for
journaling. For increased performance, jbd2 batches metadata
updates from multiple file system operations (by default, for
5 seconds) into a transaction buffer and atomically commits
the transaction to the journal—a circular log of transactions
with a head and tail pointer. A transaction may commit early
if the buffer reaches maximum size, or if a synchronous write
is requested. In addition to metadata blocks, a committed
transaction contains descriptor blocks that record the static
locations of the metadata blocks within the transaction. Af-
ter a commit, jbd2 marks the in-memory copies of metadata
blocks as dirty so that the writeback threads would write them
to their static locations. If a file system operation updates an
in-memory metadata block before its dirty timer expires, jbd2
writes the block to the journal as part of a new transaction
and delays the writeback of the block by resetting its timer.

On DM-SMR disks, when the metadata blocks are even-
tually written back, they dirty the bands that are mapped to
the metadata regions in a flex bg, as seen in Figure 5 (c).
Since a metadata region is not aligned with a band, metadata
writes to it may dirty zero, one, or two extra bands, depending
on whether the metadata region spans one or two bands and
whether the data around the metadata region has been written.

3 Design and Implementation of ext4-lazy
We start by motivating ext4-lazy, follow with a high-level
view of our design, and finish with the implementation
details.

3.1 Motivation
The motivation for ext4-lazy comes from two observations:
(1) metadata writeback in ext4 results in random writes that

cause a significant cleaning load on a DM-SMR disk, and
(2) file system metadata comprises a small set of blocks,
and hot (frequently updated) metadata is an even smaller
set. The corollary of the latter observation is that managing
hot metadata in a circular log several times the size of hot
metadata turns random writes into purely sequential writes,
reducing the cleaning load on a DM-SMR disk. We first
give calculated evidence supporting the first observation and
follow with empirical evidence for the second observation.

On an 8 TB partition, there are about 4,000 flex bgs,
the first 16 MiB of each containing the metadata region, as
shown in Figure 5 (c). With a 30 MiB band size, updating
every flex bg would dirty 4,000 bands on average, requiring
cleaning of 120 GiB worth of bands, generating 360 GiB of
disk traffic. A workload touching 1/16 of the whole disk, that
is 500 GiB of files, would dirty at least 250 bands requiring
22.5 GiB of cleaning work. The cleaning load increases
further if we consider floating metadata like extent tree
blocks and directory blocks.

To measure the hot metadata ratio, we emulated the
I/O workload of a build server on ext4, by running 128
parallel Compilebench [35] instances, and categorized all
of the writes completed by disk. Out of 433 GiB total writes,
388 GiB were data writes, 34 GiB were journal writes, and
11 GiB were metadata writes. The total size of unique meta-
data blocks was 3.5 GiB, showing that it was only 0.8% of
total writes, and that 90% of journal writes were overwrites.

3.2 Design
At a high level, ext4-lazy adds the following components
to ext4 and jbd2:
Map: Ext4-lazy tracks the location of metadata blocks in
the journal with jmap—an in-memory map that associates
the static location S of a metadata block with its location J
in the journal. The mapping is updated whenever a metadata
block is written to the journal, as shown in Figure 2 (b).



Indirection: In ext4-lazy all accesses to metadata blocks go
through jmap. If the most recent version of a block is in the
journal, there will be an entry in jmap pointing to it; if no en-
try is found, then the copy at the static location is up-to-date.
Cleaner: The cleaner in ext4-lazy reclaims space from loca-
tions in the journal which have become stale, that is, invali-
dated by the writes of new copies of the same metadata block.
Map reconstruction on mount: On every mount, ext4-lazy
reads the descriptor blocks from the transactions between the
tail and the head pointer of the journal and populates jmap.

3.3 Implementation
We now detail our implementation of the above components
and the trade-offs we make during the implementation. We
implement jmap as a standard Linux red-black tree [31]
in jbd2. After jbd2 commits a transaction, it updates jmap
with each metadata block in the transaction and marks the
in-memory copies of those blocks as clean so they will not
be written back. We add indirect lookup of metadata blocks
to ext4 by changing the call sites that read metadata blocks
to use a function which looks up the metadata block location
in jmap, as shown in Listing 1, modifying 40 lines of ext4
code in total.

− submit bh (READ | REQ META | REQ PRIO, bh);
+ jbd2 submit bh ( journal , READ | REQ META | REQ PRIO, bh);

Listing 1: Adding indirection to a call site reading a metadata block.

The indirection allows ext4-lazy to be backward-
compatible and gradually move metadata blocks to the
journal. However, the primary reason for indirection is to be
able to migrate cold (not recently updated) metadata back to
its static location during cleaning, leaving only hot metadata
in the journal.

We implement the cleaner in jbd2 in just 400 lines of
C, leveraging the existing functionality. In particular, the
cleaner merely reads live metadata blocks from the tail of
the journal and adds them to the transaction buffer using the
same interface used by ext4. For each transaction it keeps
a doubly-linked list that links jmap entries containing live
blocks of the transaction. Updating a jmap entry invalidates a
block and removes it from the corresponding list. To clean a
transaction, the cleaner identifies the live blocks of a transac-
tion in constant time using the transaction’s list, reads them,
and adds them to the transaction buffer. The beauty of this
cleaner is that it does not “stop-the-world”, but transparently
mixes cleaning with regular file system operations causing
no interruptions to them, as if cleaning was just another
operation. We use a simple cleaning policy—after commit-
ting a fixed number of transactions, clean a fixed number
of transactions—and leave sophisticated policy development,
such as hot and cold separation, for future work.

Map reconstruction is a small change to the recovery code
in jbd2. Stock ext4 resets the journal on a normal shutdown;

10
0

10
1

10
2

10
3

T
im

e 
(s

)

(a)

ext4-stock
ext4-baseline

0

0.5

1

 0  150  300  450

D
ir

ty
 P

ag
es

 (
G

iB
)

Time (s)

(b)

ext4-stock
ext4-baseline

Figure 6: (a) Completion time for a benchmark creating 100,000 files on
ext4-stock (ext4 with 128 MiB journal) and on ext4-baseline (ext4 with
10 GiB journal). (b) The volume of dirty pages during benchmark runs
obtained by sampling /proc/meminfo every second.

finding a non-empty journal on mount is a sign of crash and
triggers the recovery process. With ext4-lazy, the state of the
journal represents the persistent image of jmap, therefore,
ext4-lazy never resets the journal and always “recovers”. In
our prototype, ext4-lazy reconstructs the jmap by reading
descriptor blocks from the transactions between the tail and
head pointer of the journal, which takes 5-6 seconds when
the space between the head and tail pointer is≈1 GiB.

4 Evaluation
We run all experiments on a system with a quad-core Intel i7-
3820 (Sandy Bridge) 3.6 GHz CPU, 16 GB of RAM running
Linux kernel 4.6 on the Ubuntu 14.04 distribution, using
the disks listed in Table 1. To reduce the variance between
runs, we unmount the file system between runs, always start
with the same file system state, disable lazy initialization4

when formatting ext4 partitions, and fix the writeback cache
ratio [62] for our disks to 50% of the total—by default, this
ratio is computed dynamically from the writeback through-
put [53]. We repeat every experiment at least five times and
report the average and standard deviation of the runtime.

4.1 Journal Bottleneck
Since it affects our choice of baseline, we start by showing
that for metadata-heavy workloads, the default 128 MiB
journal of ext4 is a bottleneck. We demonstrate the
bottleneck on the CMR disk WD5000YS from Table 1
by creating 100,000 small files in over 60,000 directories,
using CreateFiles microbenchmark from Filebench [52].
The workload size is≈1 GiB and fits in memory.

Although ext4-lazy uses a large journal by definition,
since enabling a large journal on ext4 is a command-line
option to mkfs, we choose ext4 with a 10 GiB journal5 as
our baseline. In the rest of this paper, we refer to ext4 with
the default journal size of 128 MiB as ext4-stock, and we
refer to ext4 with 10 GiB journal as ext4-baseline.

4mkfs.ext4 -E lazy itable init=0,lazy journal init=0 /dev/<dev>
5Created by passing “-J size=10240” to mkfs.ext4.



We measure how fast ext4 can create the files in memory
and do not consider the writeback time. Figure 6 (a) shows
that on ext4-stock the benchmark completes in ≈460
seconds, whereas on ext4-baseline it completes 46× faster,
in≈10 seconds. Next we show how a small journal becomes
a bottleneck.

The ext4 journal is a circular log of transactions with a
head and tail pointer (§ 2.2). As the file system performs
operations, jbd2 commits transactions to the journal, moving
the head forward. A committed transaction becomes check-
pointed when every metadata block in it is either written back
to its static location due to a dirty timer expiration, or it is writ-
ten to the journal as part of a newer transaction. To recover
space, at the end of every commit jbd2 checks for transactions
at the tail that have been checkpointed, and when possible
moves the tail forward. On a metadata-light workload with a
small journal and default dirty timer, jbd2 always finds check-
pointed transactions at the tail and recovers the space without
doing work. However, on a metadata-heavy workload, incom-
ing transactions fill the journal before the transactions at the
tail have been checkpointed. This results in a forced check-
point, where jbd2 synchronously writes metadata blocks at
the tail transaction to their static locations and then moves
the tail forward, so that a new transaction can start [55].

We observe the file system behavior while running the
benchmark by enabling tracepoints in the jbd2 code6. On
ext4-stock, the journal fills in 3 seconds, and from then on
until the end of the run, jbd2 moves the tail by performing
forced checkpoints. On ext4-baseline the journal never be-
comes full and no forced checkpoints happen during the run.

Figure 6 (b) shows the volume of dirtied pages during
the benchmark runs. On ext4-baseline, the benchmark
creates over 60,000 directories and 100,000 files, dirtying
about 1 GiB worth of pages in 10 seconds. On ext4-stock,
directories are created in the first 140 seconds. Forced
checkpoints still happen during this period, but they complete
fast, as the small steps in the first 140 seconds show. Once
the benchmark starts filling directories with files, the block
groups fill and writes spread out to a larger number of block
groups across the disk. Therefore, forced checkpoints start
taking as long as 30 seconds, as indicated by the large steps,
during which the file system stalls, no writes to files happen,
and the volume of dirtied pages stays fixed.

This result shows that for disks, a small journal is a bot-
tleneck for metadata-heavy buffered I/O workloads, as the
journal wraps before metadata blocks are written to disk, and
file system operations are stalled until the journal advances
via synchronous writeback of metadata blocks. With a suf-
ficiently large journal, all transactions will be written back
before the journal wraps. For example, for a 190 MiB/s disk
and a 30 second dirty timer, a journal size of 30s× 190 MiB/s
= 5,700 MiB will guarantee that when the journal wraps, the

6/sys/kernel/debug/tracing/events/jbd2/
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Figure 7: Microbenchmark runtimes on ext4-baseline and ext4-lazy.

transactions at the tail will be checkpointed. Having estab-
lished our baseline, we move on to evaluation of ext4-lazy.

4.2 Ext4-lazy on a CMR disk
We first evaluate ext4-lazy on the CMR disk WD5000YS
from Table 1 via a series of microbenchmarks and a file
server macrobenchmark. We show that on a CMR disk,
ext4-lazy provides a significant speedup for metadata-heavy
workloads, and specifically for massive directory traversal
workloads. On metadata-light workloads, however, ext4-lazy
does not have much impact.

4.2.1 Microbenchmarks

We evaluate directory traversal and file/directory create
operations using the following benchmarks. MakeDirs
creates 800,000 directories in a directory tree of depth
10. ListDirs runs ls -lR on the directory tree. TarDirs
creates a tarball of the directory tree, and RemoveDirs
removes the directory tree. CreateFiles creates 600,000
4 KiB files in a directory tree of depth 20. FindFiles runs
find on the directory tree. TarFiles creates a tarball of
the directory tree, and RemoveFiles removes the directory
tree. MakeDirs and CreateFiles—microbenchmarks from
Filebench—run with 8 threads and execute sync at the end.
All benchmarks start with a cold cache7.

Benchmarks that are in the file/directory create category
(MakeDirs, CreateFiles) complete 1.5-2× faster on ext4-lazy
than on ext4-baseline, while the remaining benchmarks
that are in the directory traversal category, except TarFiles,
complete 3-5× faster, as seen in Figure 7. We choose
MakeDirs and RemoveDirs as a representative of each
category and analyze their performance in detail.

MakeDirs on ext4-baseline results in ≈4,735 MiB of
journal writes that are transaction commits containing
metadata blocks, as seen in the first row of Table 2 and at
the center in Figure 8 (a); as the dirty timer on the metadata
blocks expires, they are written to their static locations,
resulting in a similar amount of metadata writeback. The
block allocator is able to allocate large contiguous blocks for

7echo 3 > /proc/sys/vm/drop caches
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Figure 8: Disk offsets of I/O operations during MakeDirs and RemoveDirs microbenchmarks on ext4-baseline and ext4-lazy. Metadata reads and writes
are spread out while journal writes are at the center. The dots have been scaled based on the I/O size. In part (d), journal writes are not visible due to low
resolution. These are pure metadata workloads with no data writes.

Metadata
Reads (MiB)

Metadata
Writes (MiB)

Journal
Writes (MiB)

MakeDirs/ext4-baseline 143.7±2.8 4,631±33.8 4,735±0.1
MakeDirs/ext4-lazy 144±4 0 4,707±1.8
RemoveDirs/ext4-baseline 4,066.4±0.1 322.4±11.9 1,119±88.6
RemoveDirs/ext4-lazy 4,066.4±0.1 0 472±3.9

Table 2: Distribution of the I/O types with MakeDirs and RemoveDirs
benchmarks running on ext4-baseline and ext4-lazy.

the directories, because the file system is fresh. Therefore, in
addition to journal writes, metadata writeback is sequential as
well. The write time dominates the runtime in this workload,
hence, by avoiding metadata writeback and writing only to
the journal, ext4-lazy halves the writes as well as the runtime,
as seen in the second row of Table 2 and Figure 8 (b). On an
aged file system, the metadata writeback is more likely to be
random, resulting in even higher improvement on ext4-lazy.

An interesting observation about Figure 8 (b) is that
although the total volume of metadata reads—shown as
periodic vertical spreads—is ≈140 MiB (3% of total I/O
in the second row of Table 2), they consume over 30% of
runtime due to long seeks across the disk. In this benchmark,
the metadata blocks are read from their static locations
because we run the benchmark on a fresh file system, and
the metadata blocks are still at their static locations. As we
show next, once the metadata blocks migrate to the journal,
reading them is much faster since no long seeks are involved.

In RemoveDirs benchmark, on both ext4-baseline and
ext4-lazy, the disk reads≈4,066 MiB of metadata, as seen in
the last two rows of Table 2. However, on ext4-baseline the
metadata blocks are scattered all over the disk, resulting in
long seeks as indicated by the vertical spread in Figure 8 (c),
while on ext4-lazy they are within the 10 GiB region in the
journal, resulting in only short seeks, as Figure 8 (d) shows.
Ext4-lazy also benefits from skipping metadata writeback,
but most of the improvement comes from eliminating long

seeks for metadata reads. The significant difference in the
volume of journal writes between ext4-baseline and ext4-lazy
seen in Table 2 is caused by metadata write coalescing: since
ext4-lazy completes faster, there are more operations in each
transaction, with many modifying the same metadata blocks,
each of which is only written once to the journal.

The improvement in the remaining benchmarks, are also
due to reducing seeks to a small region and avoiding meta-
data writeback. We do not observe a dramatic improvement
in TarFiles, because unlike the rest of the benchmarks that
read only metadata from the journal, TarFiles also reads data
blocks of files that are scattered across the disk.

Massive directory traversal workloads are a con-
stant source of frustration for users of most file sys-
tems [3, 18, 33, 43, 50]. One of the biggest benefits of
consolidating metadata in a small region is an order of mag-
nitude improvement in such workloads, which to our surprise
was not noticed by previous work [44,46,61]. On the other
hand, the above results are obtainable in the ideal case that all
of the directory blocks are hot and therefore kept in the jour-
nal. If, for example, some part of the directory is cold and the
policy decides to move those blocks to their static locations,
removing such a directory will incur an expensive traversal.

4.2.2 File Server Macrobenchmark

We first show that ext4-lazy slightly improves the throughput
of a metadata-light file server workload. Next we try to
reproduce a result from previous work without success.

To emulate a file server workload, we started with the
Fileserver macrobenchmark from Filebench but encountered
bugs for large configurations. The development on Filebench
has been recently restarted and the recommended version
is still in alpha stage. Therefore, we decided to use
Postmark [27], with some modifications.

Like the Fileserver macrobenchmark from Filebench,
Postmark first creates a working set of files and directories



Data
Writes (MiB)

Metadata
Writes (MiB)

Journal
Writes (MiB)

ext4-baseline 34,185±10.3 480±0.2 1,890±18.6
ext4-lazy 33,878±9.8 0 1,855±15.4

Table 3: Distribution of write types completed by the disk during Postmark
run on ext4-baseline and ext4-lazy. Metadata writes make 1.3% of total
writes in ext4-baseline, only 1/3 of which is unique.
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Figure 9: The top graph shows the throughput of the disk during a
Postmark run on ext4-baseline and ext4-lazy. The bottom graph shows the
offsets of write types during ext4-baseline run. The graph does not reflect
sizes of the writes, but only their offsets.

and then executes transactions like reading, writing,
appending, deleting, and creating files on the working set.
We modify Postmark to execute sync after creating the
working set, so that the writeback of the working set does
not interfere with transactions. We also modify Postmark
not to delete the working set at the end, but to run sync,
to avoid high variance in runtime due to the race between
deletion and writeback of data.

Our Postmark configuration creates a working set of
10,000 files spread sparsely across 25,000 directories with
file sizes ranging from 512 bytes to 1 MiB, and then executes
100,000 transactions with the I/O size of 1 MiB. During the
run, Postmark writes 37.89 GiB of data and reads 31.54 GiB
of data from user space. Because ext4-lazy reduces the
amount of writes, to measure its effect, we focus on writes.

Table 3 shows the distribution of data writes completed by
the disk while the benchmark is running on ext4-baseline and
on ext4-lazy. On ext4-baseline, metadata writes comprise
1.3% of total writes, all of which ext4-lazy avoids. As a
result, the disk sees 5% increase in throughput on ext4-lazy
from 24.24 MiB/s to 25.47 MiB/s and the benchmark
completes 100 seconds faster on ext4-lazy, as the throughput
graph in Figure 9 shows. The increase in throughput is
modest because the workload spreads out the files across
the disk resulting in traffic that is highly non-sequential,
as data writes in the bottom graph of Figure 9 show.
Therefore, it is not surprising that reducing random writes
of a non-sequential write traffic by 1.3% results in a 5%
throughput improvement. However, the same random writes
result in extra cleaning work for DM-SMR disks (§ 2).
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Figure 10: Disk and CPU utilization sampled from iostat output
every second, while compiling Linux kernel 4.6 including all its modules,
with 16 parallel jobs (make -j16) on a quad-core Intel i7-3820 (Sandy
Bridge) CPU with 8 hardware threads.

Previous work [44] that writes metadata only once reports
performance improvements even in a metadata-light work-
loads, like kernel compile. This has not been our experience.
We compiled Linux kernel 4.6 with all its modules on
ext4-baseline and observed that it generated 12 GiB of data
writes and 185 MiB of journal writes. At 98 MiB, metadata
writes comprised only 0.77% of total writes completed by
the disk. This is expected, since metadata blocks are cached
in memory, and because they are journaled, unlike data pages
their dirty timer is reset whenever they are modified (§ 3),
delaying their writeback. Furthermore, even on a system
with 8 hardware threads running 16 parallel jobs, we found
kernel compile to be CPU-bound rather than disk-bound, as
Figure 10 shows. Given that reducing writes by 1.3% on a
workload that utilized the disk 100% resulted in only 5%
increase in throughput (Figure 9), it is not surprising that
reducing writes by 0.77% on such a low-utilized disk does
not cause improvement.

4.3 Ext4-lazy on DM-SMR disks
We show that unlike CMR disks, where ext4-lazy had
a big impact on just metadata-heavy workloads, on
DM-SMR disks it provides significant improvement on
both, metadata-heavy and metadata-light workloads. We also
identify the minimal sequential I/O size to trigger streaming
writes on a popular DM-SMR disk.

An additional critical factor for file systems when running
on DM-SMR disks is the cleaning time after a workload. A
file system resulting in a short cleaning time gives the disk
a better chance of emptying the persistent cache during idle
times of a bursty I/O workload, and has a higher chance
of continuously performing at the persistent cache speed,
whereas a file system resulting in a long cleaning time is
more likely to force the disk to interleave cleaning with file
system user work.

In the next section we show microbenchmark results on
just one DM-SMR disk—ST8000AS0002 from Table 1.
At the end of every benchmark, we run a vendor provided
script that polls the disk until it has completed background
cleaning and reports the total cleaning time, which we report
in addition to the benchmark runtime. We achieve similar
normalized results for the remaining disks, which we skip
to save space.
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Figure 11: Microbenchmark runtimes and cleaning times on ext4-baseline
and ext4-lazy running on an DM-SMR disk. Cleaning time is the additional
time after the benchmark run that the DM-SMR disk was busy cleaning.

4.3.1 Microbenchmarks

Figure 11 shows results of the microbenchmarks (§ 4.2.1)
repeated on ST8000AS0002 with a 2 TB partition, on ext4-
baseline and ext4-lazy. MakeDirs and CreateFiles do not fill
the persistent cache, therefore, they typically complete 2-3×
faster than on CMR disk. Similar to CMR disk, MakeDirs
and CreateFiles are 1.5-2.5× faster on ext4-lazy. On the
other hand, the remaining directory traversal benchmarks,
ListDir for example, completes 13× faster on ext4-lazy,
compared to being 5× faster on CMR disk.

The cleaning times for ListDirs, FindFiles, TarDirs, and
TarFiles are zero because they do not write to disk8. However,
cleaning time for MakeDirs on ext4-lazy is zero as well, com-
pared to ext4-baseline’s 846 seconds, despite having written
over 4 GB of metadata, as Table 2 shows. Being a pure meta-
data workload, MakeDirs on ext4-lazy consists of journal
writes only, as Figure 8 (b) shows, all of which are streamed,
bypassing the persistent cache and resulting in zero cleaning
time. Similarly, cleaning time for RemoveDirs and Remove-
Files are 10-20 seconds on ext4-lazy compared to 590-366
seconds on ext4-baseline, because these too are pure meta-
data workloads resulting in only journal writes for ext4-lazy.
During deletion, however, some journal writes are small and
end up in persistent cache, resulting in short cleaning times.

We confirmed that the disk was streaming journal
writes in previous benchmarks by repeating the MakeDirs
benchmark on the DM-SMR disk with an observation
window from Skylight [1] and observing the head movement.
We observed that shortly after starting the benchmark, the
head moved to the physical location of the journal on the
platter9 and remained there until the end of the benchmark.
This observation lead to Test 1 for identifying the minimal
sequential write size that triggers streaming. Using this test,
we found that sequential writes of at least 8 MiB in size
are streamed. We also observed that a single 4 KiB random
write in the middle of a sequential write disrupted streaming

8TarDirs and TarFiles write their output to a different disk.
9Identified by observing the head while reading the journal blocks.
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Figure 12: The top graph shows the throughput of a ST8000AS0002
DM-SMR disk with a 400 GB partition during a Postmark run on
ext4-baseline and ext4-lazy. The bottom graph shows the offsets of write
types during the run on ext4-baseline. The graph does not reflect sizes of
the writes, but only their offsets.

and moved the head to the persistent cache; soon the head
moved back and continued streaming.

Test 1: Identify the minimal sequential write size for streaming

1 Choose identifiable location L on the platter
2 Start with a large sequential write size S
3 do

Write S bytes sequentially at L
S = S - 1 MiB

while Head moves to L and stays there until the end of the write
4 S = S + 1 MiB
5 Minimal sequential write size for streaming is S

4.3.2 File Server Macrobenchmark

We show that on DM-SMR disks the benefit of ext4-lazy
increases with the partition size, and that ext4-lazy achieves
a significant speedup on a variety of DM-SMR disks with
different STLs and persistent cache sizes.

Table 4 shows the distribution of write types completed
by a ST8000AS0002 DM-SMR disk with a 400 GB
partition during the file server macrobenchmark (§ 4.2.2).
On ext4-baseline, metadata writes make up 1.6% of total
writes. Although the unique amount of metadata is only
≈120 MiB, as the storage slows down, metadata writeback
increases slightly, because each operation takes a long time
to complete and the writeback of a metadata block occurs
before the dirty timer is reset.

Unlike the CMR disk, the effect is profound on a
ST8000AS0002 DM-SMR disk. The benchmark completes
more than 2× faster on ext4-lazy, in 461 seconds, as seen
in Figure 12. On ext4-lazy, the disk sustains 140 MiB/s
throughput and fills the persistent cache in 250 seconds, and
then drops to a steady 20 MiB/s until the end of the run. On
ext4-baseline, however, the large number of small metadata
writes reduce throughput to 50 MiB/s taking the disk 450
seconds to fill the persistent cache. Once the persistent cache
fills, the disk interleaves cleaning and file system user work,
and small metadata writes become prohibitively expensive,
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(c) Seagate ST5000AS0011
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Figure 13: The top graphs show the throughput of four DM-SMR disks on a full disk partition during a Postmark run on ext4-baseline and ext4-lazy.
Ext4-lazy provides a speedup of 5.4× 2×, 2×, 1.7× in parts (a), (b), (c), and (d), respectively. The bottom graphs show the offsets of write types during
ext4-baseline run. The graphs do not reflect sizes of the writes, but only their offsets.
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Figure 14: Postmark reported transaction throughput numbers for ext4-baseline and ext4-lazy running on four DM-SMR disks with on a full disk partition.
Only includes numbers from the transaction phase of the benchmark.



Data
Writes (MiB)

Metadata
Writes (MiB)

Journal
Writes (MiB)

ext4-baseline 32,917±9.7 563±0.9 1,212±12.6
ext4-lazy 32,847±9.3 0 1,069±11.4

Table 4: Distribution of write types completed by a ST8000AS0002
DM-SMR disk during a Postmark run on ext4-baseline and ext4-lazy.
Metadata writes make up 1.6% of total writes in ext4-baseline, only 1/5 of
which is unique.

as seen, for example, between seconds 450-530. During this
period we do not see any data writes, because the writeback
thread alternates between page cache and buffer cache when
writing dirty blocks, and it is the buffer cache’s turn. We do,
however, see journal writes because jbd2 runs as a separate
thread and continues to commit transactions.

The benchmark completes even slower on a full 8 TB par-
tition, as seen in Figure 13 (a), because ext4 spreads the same
workload over more bands. With a small partition, updates to
different files are likely to update the same metadata region.
Therefore, cleaning a single band frees more space in the per-
sistent cache, allowing it to accept more random writes. With
a full partition, however, updates to different files are likely
to update different metadata regions; now the cleaner has to
clean a whole band to free a space for a single block in the
persistent cache. Hence, after an hour of ultra-low throughput
due to cleaning, it recovers slightly towards the end, and the
benchmark completes 5.4× slower on ext4-baseline.

On the ST4000LM016 DM-SMR disk, the benchmark
completes 2× faster on ext4-lazy, as seen in Figure 13 (b),
because the disk throughput is almost always higher than
on ext4-baseline. With ext4-baseline, the disk enters a long
period of cleaning with ultra-low throughput starting at
second 2000, and recovers around second 4200 completing
the benchmark with higher throughput.

We observe a similar phenomenon on the ST5000AS0011
DM-SMR disk, as shown in Figure 13 (c). Unlike with
ext4-baseline that continues with a low throughput until the
end of the run, with ext4-lazy the cleaning cycle eventually
completes and the workload finishes 2× faster.

The last DM-SMR disk in our list, WD40NMZW model
found in My Passport Ultra from Western Digital [57],
shows a different behavior from previous disks, suggesting
a different STL design. We think it is using an S-blocks-like
architecture [9] with dynamic mapping that enables cheaper
cleaning (§ 2.1). Unlike previous disks that clean only when
idle or when the persistent cache is full, WD40NMZW
seems to regularly mix cleaning with file system user work.
Therefore, its throughput is not as high as the Seagate
disks initially, but after the persistent cache becomes full,
it does not suffer as sharp of a drop, and its steady-state
throughput is higher. Nevertheless, with ext4-lazy the disk
achieves 1.4-2.5× increase in throughput over ext4-baseline,
depending on the state of the persistent cache, and the
benchmark completes 1.7× faster.

Figure 14 shows Postmark transaction throughput
numbers for the runs. All of the disks show a significant
improvement with ext4-lazy. An interesting observation is
that, while with ext4-baseline WD40NMZW is 2× faster
than ST8000AS0002, with ext4-lazy the situation is reversed
and ST8000AS0002 is 2× faster than WD40NMZW, and
fastest overall.

4.4 Performance Overhead
Indirection Overhead: To determine the overhead of in-
memory jmap lookup, we populated jmap with 10,000 map-
pings pointing to random blocks in the journal, and measured
the total time to read all of the blocks in a fixed random order.
We then measured the time to read the same random blocks
directly, skipping the jmap lookup, in the same order. We re-
peated each experiment five times, starting with a cold cache
every time, and found no difference in total time read time—
reading from disk dominated the total time of the operation.
Memory Overhead: A single jmap entry consists of a
red-black tree node (3×8 bytes), a doubly-linked list node
(2×8 bytes), a mapping (12 bytes), and a transaction id (4
bytes), occupying 66 bytes in memory. Hence, for example,
a million-entry jmap that can map 3.8 GiB of hot metadata,
requires 63 MiB of memory. Although this is a modest
overhead for today’s systems, it can further be reduced with
memory-efficient data structures.
Seek Overhead: The rationale for introducing cylinder
groups in FFS, which manifest themselves as block groups
in ext4, was to create clusters of inodes that are spread over
the disk close to the blocks that they reference, to avoid
long seeks between an inode and its associated data [38].
Ext4-lazy, however, puts hot metadata in the journal located
at the center of the disk, requiring a half-seek to read a file
in the worst case. The TarFiles benchmark (§ 4.2.1) shows
that when reading files from a large and deep directory
tree, where directory traversal time dominates, putting the
metadata at the center wins slightly over spreading it out.
To measure the seek overhead on a shallow directory, we
created a directory with 10,000 small files located at the
outer diameter of the disk on ext4-lazy, and starting with a
cold cache creating the tarball of the directory. We observed
that since files were created at the same time, their metadata
was written sequentially to the journal. The code for reading
metadata blocks in ext4 uses readahead since the introduction
of flex bgs. As a result, the metadata of all files was brought
into the buffer cache in just 3 seeks. After five repetitions
of the experiment on ext4-baseline an ext4-lazy, the average
times were 103 seconds and 101 seconds, respectively.
Cleaning Overhead: In our benchmarks, the 10 GiB journal
always contained less than 10% live metadata. Therefore,
most of the time the cleaner reclaimed space simply by ad-
vancing the tail. We kept reducing the journal size and the first
noticeable slowdown occurred with a journal size of 1.4 GiB,
that is, when the live metadata was≈70% of the journal.



5 Related Work
Researchers have tinkered with the idea of separating
metadata from data and managing it differently in local file
systems before. Like many other good ideas, it may have
been ahead of its time because the technology that would
benefit most from it did not exist yet, preventing adoption.

The Multi-Structured File System [39] (MFS) is the first
file system proposing the separation of data and metadata.
It was motivated by the observation that the file system
I/O is becoming a bottleneck because data and metadata
exert different access patterns on storage, and a single
storage system cannot respond to these demands efficiently.
Therefore, MFS puts data and metadata on isolated disk
arrays, and for each data type it introduces on-disk structures
optimized for the respective access pattern. Ext4-lazy differs
from MFS in two ways: (1) it writes metadata as a log,
whereas MFS overwrites metadata in-place; (2) facilitated by
(1), ext4-lazy does not require a separate device for storing
metadata in order to achieve performance improvements.

DualFS [44] is a file system influenced by MFS—it also
separates data and metadata. Unlike MFS, however, DualFS
uses well known data structures for managing each data type.
Specifically, it combines an FFS-like [37] file system for
managing data, and LFS-like [47] file system for managing
metadata. hFS [61] improves on DualFS by also storing
small files in a log along with metadata, thus exploiting disk
bandwidth for small files. Similar to these file systems ext4-
lazy separates metadata and data, but unlike them it does not
confine metadata to a log—it uses a hybrid design where
metadata can migrate back and forth between file system and
log as needed. However, what really sets ext4-lazy apart is
that it is not a new prototype file system; it is an evolution of a
production file system, showing that a journaling file system
can benefit from the metadata separation idea with a small
set of changes that does not require on-disk format changes.

ESB [26] separates data and metadata on ext2, and
puts them on CMR disk and SSD, respectively, to explore
the effect of speeding up metadata operations on I/O
performance. It is a virtual block device that sits below ext2
and leverages the fixed location of static metadata to forward
metadata block requests to an SSD. The downside of this
approach is that unlike ext4-lazy, it cannot handle floating
metadata, like directory blocks. ESB authors conclude
that for metadata-light workloads speeding up metadata
operations will not improve I/O performance on a CMR
disk, which aligns with our findings (§ 4.2.2).

A separate metadata server is the norm in distributed
object-based file systems like Lustre [7], Panasas [59], and
Ceph [58]. TableFS [46] extends the idea to a local file sys-
tem: it is a FUSE-based [51] file system that stores metadata
in LevelDB [19] and uses ext4 as an object store for large
files. Unlike ext4-lazy, TableFS is disadvantaged by FUSE
overhead, but still it achieves substantial speedup against
production file systems on metadata-heavy workloads.

In conclusion, although it is likely that the above file
systems could have taken a good advantage of DM-SMR
disks, they could not have shown it because all of them
predate the hardware. We reevaluate the metadata separation
idea in the context of a technological change and demonstrate
its amplified advantage.

6 Conclusion
Our work is the first step in adapting a legacy file system to
DM-SMR disks. It shows how effective a well-chosen small
change can be. It also suggests that while three decades
ago it was wise for file systems depending on the block
interface to scatter the metadata across the disk, today, with
large memory sizes that cache metadata and with changing
recording technology, putting metadata at the center of the
disk and managing it as a log looks like a better choice. Our
work also rekindles an interesting question: How far can we
push a legacy file system to be SMR friendly?

We conclude with the following general takeaways:
•We think modern disks are going to practice more exten-
sive “lying” about their geometry and perform deferred clean-
ing when exposed to random writes; therefore, file systems
should work to eliminate structures that induce small isolated
writes, especially if the user workload is not forcing them.
• With modern disks operation costs are asymmetric:
Random writes have a higher ultimate cost than random
reads, and furthermore, not all random writes are equally
costly. When random writes are unavoidable, file systems
can reduce their cost by confining them to the smallest
perimeter possible.
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