
Design Guidelines for High Performance RDMA Systems

Anuj Kalia Michael Kaminsky† David G. Andersen
Carnegie Mellon University †Intel Labs

Abstract
Modern RDMA hardware offers the potential for excep-
tional performance, but design choices including which
RDMA operations to use and how to use them signifi-
cantly affect observed performance. This paper lays out
guidelines that can be used by system designers to navi-
gate the RDMA design space. Our guidelines emphasize
paying attention to low-level details such as individual
PCIe transactions and NIC architecture. We empirically
demonstrate how these guidelines can be used to improve
the performance of RDMA-based systems: we design a
networked sequencer that outperforms an existing design
by 50x, and improve the CPU efficiency of a prior high-
performance key-value store by 83%. We also present and
evaluate several new RDMA optimizations and pitfalls,
and discuss how they affect the design of RDMA systems.

1 Introduction
In recent years, Remote Direct Memory Access (RDMA)-
capable networks have dropped in price and made sub-
stantial inroads into datacenters. Despite their newfound
popularity, using their advanced capabilities to best effect
remains challenging for software designers. This chal-
lenge arises because of the nearly-bewildering array of
options a programmer has for using the NIC1, and because
the relative performance of these operations is determined
by complex low-level factors such as PCIe bus transac-
tions and the (proprietary and often confidential) details
of the NIC architecture.

Unfortunately, finding an efficient match between
RDMA capabilities and an application is important: As
we show in Section 5, the best and worst choices of
RDMA options vary by a factor of seventy in their over-
all throughput, and by a factor of 3.2 in the amount of
host CPU they consume. Furthermore, there is no one-
size-fits-all best approach. Small changes in application
requirements significantly affect the relative performance
of different designs. For example, using general-purpose

1In this paper, we refer exclusively to RDMA-capable network inter-
face cards, so we use the more generic but shorter term NIC throughout.

RPCs over RDMA is the best design for a networked
key-value store (Section 4), but this same design choice
provides lower scalability and 16% lower throughput than
the best choice for a networked “sequencer” (Section 4;
the sequencer returns a monotonically increasing integer
to client requests).

This paper helps system designers address this chal-
lenge in two ways. First, it provides guidelines, backed by
an open-source set of measurement tools, for evaluating
and optimizing the most important system factors that
affect end-to-end throughput when using RDMA NICs.
For each guideline (e.g., “Avoid NIC cache misses”), the
paper provides insight on both how to determine whether
this guideline is relevant (e.g., by using PCIe counter mea-
surements to detect excess traffic between the NIC and
the CPU), and a discussion of which modes of using the
NICs are most likely to mitigate the problem.

Second, we evaluate the efficacy of these guidelines by
applying them to both microbenchmarks and real systems,
across three generations of RDMA hardware. Section 4.2
presents a novel design for a network sequencer that out-
performs an existing design by 50x. Our best sequencer
design handles 122 million operations/second using a
single NIC and scales well. Section 4.3 applies the guide-
lines to improve the CPU efficiency and throughput of
the HERD key-value cache [20] by 83% and 35% re-
spectively. Finally, we show that today’s RDMA NICs
handle contention for atomic operations extremely slowly,
rendering designs that use them [27, 30, 11] very slow.

A lesson from our work is that low-level details are
surprisingly important for RDMA system design. Our
underlying goal is to provide researchers and developers
with a roadmap through these details without necessarily
becoming RDMA gurus. We provide simple models of
RDMA operations and their associated CPU and PCIe
costs, plus open-source software to measure and analyze
them (https://github.com/efficient/rdma_bench).

We begin our journey into high-performance RDMA-
based systems with a review of the relevant capabilities
of RDMA NICs, and the PCIe bus that frequently arises
as a bottleneck.

1

https://github.com/efficient/rdma_bench


Connect-IB

NIC

56 Gb/s InfiniBand

E5-2683-v3

PCIe 3.0 x16

PC
Ie

 c
on

tro
l

L3 cache

C1

C14DRAM

56 Gb/s InfiniBand

Figure 1: Hardware components of a node in an RDMA cluster

2 Background
Figure 1 shows the relevant hardware components of a
machine in an RDMA cluster. A NIC with one or more
ports connects to the PCIe controller of a multi-core CPU.
The PCIe controller reads/writes the L3 cache to service
the NIC’s PCIe requests; on modern Intel servers [4], the
L3 cache provides counters for PCIe events.

2.1 PCI Express
The current fastest PCIe link is PCIe “3.0 x16,” the 3rd
generation PCIe protocol, using 16 lanes. The bandwidth
of a PCIe link is the per-lane bandwidth times the number
of lanes. PCIe is a layered protocol, and the layer headers
add overhead that is important to understand for efficiency.
RDMA operations generate 3 types of PCIe transaction
layer packets (TLPs): read requests, write requests, and
read completions (there is no transaction-layer response
for a write). Figure 2a lists the bandwidth and header
overhead for the PCIe generations in our clusters. Note
that the header overhead of 20–26 bytes is comparable to
the common size of data items used in services such as
memcached [25] and RPCs [15].

MMIO writes vs. DMA reads There are important dif-
ferences between the two methods of transferring data
from a CPU to a PCIe device. CPUs write to mapped
device memory (MMIO) to initiate PCIe writes. To avoid
generating a PCIe write for each store instruction, CPUs
use an optimization called “write combining,” which com-
bines stores to generate cache line–sized PCIe transac-
tions. PCIe devices have DMA engines and can read
from DRAM using DMA. DMA reads are not restricted
to cache lines, but a read response larger than the CPU’s
read completion combining size (Crc) is split into multiple
completions. Crc is 128 bytes for the Intel CPUs used in
our measurements (Table 2); we assume 128 bytes for the
AMD CPU [4, 3]. A DMA read always uses less host-
to-device PCIe bandwidth than an equal-sized MMIO;
Figure 2b shows an analytical comparison. This is an
important factor, and we show how it affects performance
of higher-layer protocols in the subsequent sections.

PCIe counters Our contributions rely on understanding
the PCIe interaction between NICs and CPUs. Although
precise PCIe analysis requires expensive PCIe analyzers
or proprietary/confidential NICs manuals, PCIe counters
available on modern CPUs can provide several useful

Gen Bitrate Per-lane b/w Request Completion
2.0 5 GT/s 500 MB/s 24 B 20 B
3.0 8 GT/s 984.6 MB/s 26 B 22 B

(a) Speed and header sizes for PCIe generations. Lane band-
width excludes physical layer encoding overhead.

��

����

����

����

����

�� ��� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
��
��
�
�
��
��
�
�

���������

���

����

(b) CPU-to-device PCIe traffic for an x-byte transfer with
DMA and MMIO, assuming PCIe 3.0 and Crc = 128 bytes.

Figure 2: PCIe background

insights.2 For each counter, the number of captured events
per second is its counter rate. Our analysis primarily uses
counters for DMA reads (PCIeRdCur) and DMA writes
(PCIeItoM).

2.2 RDMA
RDMA is a network feature that allows direct access to
the memory of a remote computer. RDMA-providing
networks include InfiniBand, RoCE (RDMA over Con-
verged Ethernet), and iWARP (Internet Wide Area RDMA
Protocol). RDMA networks usually provide high band-
width and low latency: NICs with 100 Gbps of per-port
bandwidth and ∼ 2µs round-trip latency are commercially
available. The performance and scalability of an RDMA-
based communication protocol depends on several factors
including the operation (verb) type, transport, optimiza-
tion flags, and operation initiation method.

2.2.1 RDMA verbs and transports

RDMA hosts communicate using queue pairs (QPs); hosts
create QPs consisting of a send queue and a receive queue,
and post operations to these queues using the verbs API.
We call the host initiating a verb the requester and the
destination host the responder. For some verbs, the re-
sponder does not actually send a response. On completing
a verb, the requester’s NIC optionally signals completion
by DMA-ing a completion entry (CQE) to a completion
queue (CQ) associated with the QP. Verbs can be made
unsignaled by setting a flag in the request; these verbs do
not generate a CQE, and the application detects comple-
tion using application-specific methods.

The two types of verbs are memory verbs and messag-
ing verbs. Memory verbs include RDMA reads, writes,

2The CPU intercepts cache line-level activity between the PCIe
controller and the L3 cache, so the counters can miss some critical
information. For example, the counters indicate 2 PCIe reads when the
NIC reads a 4-byte chunk straddling 2 cache lines.

2



SEND/RECV WRITE READ WQE header
RC 3 3 3 36 B
UC 3 3 7 36 B
UD 3 7 7 68 B

Table 1: Operations supported by each transport type, and their
Mellanox WQE header size for SEND, WRITE, and READ.
RECV WQE header size is 16 B for all transports.

and atomic operations. These verbs specify the remote ad-
dress to operate on and bypass the responder’s CPU. Mes-
saging verbs include the send and receive verbs. These
verbs involve the responder’s CPU: the send’s payload
is written to an address specified by a receive that was
posted previously by the responder’s CPU. In this paper,
we refer to RDMA read, write, send, and receive verbs as
READ, WRITE, SEND, and RECV respectively.

RDMA transports are either reliable or unreliable, and
either connected or unconnected (also called datagram).
With reliable transports, the NIC uses acknowledgments
to guarantee in-order delivery of messages. Unreliable
transports do not provide this guarantee. However, mod-
ern RDMA implementations such as InfiniBand use a loss-
less link layer that prevents congestion-based losses using
link layer flow control [1], and bit error–based losses us-
ing link layer retransmissions [8]. Therefore, unreliable
transports drop packets very rarely. Connected transports
require one-to-one connections between QPs, whereas a
datagram QP can communicate with multiple QPs. We
consider two types of connected transports in this pa-
per: Reliable Connected (RC) and Unreliable Connected
(UC). Current RDMA hardware provides only 1 datagram
transport: Unreliable Datagram (UD). Different transports
support different subsets of verbs: UC does not support
RDMA reads, and UD does not support memory verbs.
Table 1 summarizes this.

2.2.2 RDMA WQEs

To initiate RDMA operations, the user-mode NIC driver
at the requester creates Work Queue Elements (WQEs)
in host memory; typically, WQEs are created in a pre-
allocated, contiguous memory region, and each WQE is
individually cache line–aligned. (We discuss methods
of transferring WQEs to the device in Section 3.1.) The
WQE format is vendor-specific and is determined by the
NIC hardware.

WQE size depends on several factors: the type of RDMA
operation, the transport, and whether the payload is refer-
enced by a pointer field or inlined in the WQE (i.e., the
WQE buffer includes the payload). Table 1 shows the
WQE header size for Mellanox NICs for three transports.
For example, with a 36-byte WQE header, the size of a
WRITE WQE with an x-byte inlined payload is 36 + x
bytes. UD WQEs have larger, 68-byte headers to store
additional routing information.

Server
(requester)

WRITE, UC

READ, RC

SEND, UD

a) Outbound verbs b) Inbound verbs

Clients
(requester)

WRITE, UC

READ, RC

RECV, UD

Clients
(responder)

Server
(responder)

Figure 3: Inbound and outbound verbs at the server.

1, 21, 2

0 64Doorbell

a) WQE-by-MMIO method b) Doorbell method

128 192 2560 64 128 192 256

2211

Figure 4: The WQE-by-MMIO and Doorbell methods for trans-
ferring two WQEs (shaded) spanning 2 cache lines. Arrows rep-
resent PCIe transactions. Red (thin) arrows are MMIO writes;
the blue (thick) arrow is a DMA reads. Arrows are marked with
WQE numbers; arrow width represents transaction size.

2.2.3 Terminology and default assumptions

We distinguish between inbound and outbound verbs be-
cause their performance differs significantly (Section 5):
memory verbs and SENDs are outbound at the requester
and inbound at the responder; RECVs are always inbound.
Figure 3 summarizes this. As our study focuses on small
messages, all WRITEs and SENDs are inlined by default.
We define the padding-to-cache-line-alignment function
x′ := dx/64e ∗ 64. We denote the per-lane bandwidth,
request header size, and completion header size of PCIe
3.0 by Pbw , Pr , and Pc , respectively.

3 RDMA design guidelines
We now present our design guidelines. Along with each
guideline, we present new optimizations and briefly de-
scribe those presented in prior literature. We make two
assumptions about the NIC hardware that are true for all
currently available NICs. First, we assume that the NIC is
PCIe-based device. Current network interfaces (NIs) are
predominantly discrete PCIe cards; vendors are beginning
to integrate NIs on-die [2, 5], or on-package [6], but these
NIs still communicate with the PCIe controller using the
PCIe protocol, and are less powerful than discrete NIs.
Second, we assume that the NIC has internal parallelism
using multiple processing units (PUs)—this is generally
true of high-speed NIs [19]. As in conventional parallel
programming, this parallelism provides both optimization
opportunities (Section 3.3) and pitfalls (Section 3.4).

To discuss the impact on CPU and PCIe use of the
optimizations below, we consider transferring N WQEs
of size D bytes from the CPU to the NIC.

3.1 Reduce CPU-initiated MMIOs
Both CPU efficiency and RDMA throughput can improve
if MMIOs are reduced or replaced with the more CPU-

3



1
WQE MMIO

CQE DMA

1

2
2

1

2

CPU NIC

+Unsignaled: CQEs are 
dropped; reduces PCIe 
txns, NIC processing

+Doorbell batching: 
Multiple WQEs DMA-ed in 
one transaction; reduces 
CPU use, PCIe txns

1, 2
Dbell MMIO

WQE DMA
1, 2

CPU NIC

+WQE shrinking via 
header-only SEND: 
Uses 4B header field 
for application data; 
reduces PCIe 
bandwidth use(256 B DMA)

1, 2
Dbell MMIO

WQE DMA
1, 2

CPU NIC

(128 B DMA)

Figure 5: Optimizations for issuing two 4-
byte UD SENDs. A UD SEND WQE spans
2 cache lines on Mellanox NICs because of
the 68-byte header; we shrink it to 1 cache
line by using a 4-byte header field for pay-
load. Arrow notation follows Figure 4.

and bandwidth-efficient DMAs. CPUs initiate network op-
erations by sending a message to the NIC via MMIO. The
message can (1) contain the new work queue elements,
or (2) it can refer to the new WQEs by using information
such as the address of the last WQE. In the first case,
the WQEs are transferred via 64-byte write-combined
MMIOs. In the second case, the NIC reads the WQEs
using one or more DMAs.3 We refer to these methods
as WQE-by-MMIO and Doorbell respectively. (Differ-
ent technologies have different terms for these methods.
Mellanox uses “BlueFlame” and “Doorbell,” and Intel®
Omni-Path Architecture uses “PIO send” and “SDMA,”
respectively.) Figure 4 summarizes this. The WQE-by-
MMIO method optimizes for low latency and is typically
the default. Two optimizations can improve performance
by reducing MMIOs:

Doorbell batching If an application can issue multiple
WQEs to a QP, it can use one Doorbell MMIO for the
batch. CPU: Doorbell reduces CPU-generated MMIOs
from N ∗ D′ / 64 with WQE-by-MMIO to 1. PCIe:
For N = 10 and D = 65 and PCIe 3.0, Doorbell trans-
fers 1534 bytes, whereas WQE-by-MMIO transfers 1800
bytes (Appendix A).

In this paper, we refer to Doorbell batching as
batching—a batched WQE transfer via WQE-by-MMIO
is identical to a sequence of individual WQE-by-MMIOs,
so batching is only useful for Doorbell.

WQE shrinking Reducing the number of cache lines
used by a WQE can improve throughput drastically. For
example, consider reducing WQE size by only 1 byte
from 129 B to 128 B, and assume that WQE-by-MMIO
is used. CPU: CPU-generated MMIOs decreases from 3
to 2. PCIe: Number of PCIe transactions decreases from
3 to 2. Shrinking mechanisms include compacting the
application payload, or overloading unused WQE header
fields with application data.

3.2 Reduce NIC-initiated DMAs
Reducing DMAs saves NIC processing power and PCIe
bandwidth, improving RDMA throughput. Note that the
batching optimization above adds a DMA read, but it
avoids multiple MMIOs, which is usually a good tradeoff.

3In this paper, we assume that the NIC reads all new WQEs in one
DMA, as is done by Mellanox’s Connect-IB and newer NICs. Older
Mellanox NICs read one or more WQEs per DMA, depending on the
NIC’s proprietary prefetching logic.

1, 2
Dbell MMIO

WQE DMA

CPU NIC

Payload, CQE
1

1

Payload, CQE
2

2

Dbell MMIO

WQE DMA

CPU NIC

CQE
1

CQE
2

Header-only RECV: CQE contains application data
from SEND header; saves a PCIe transaction

Inline RECV: 
CQE contains
payload; saves a 
PCIe transaction

Dbell MMIO

WQE DMA

CPU NIC

CQE
1

CQE
2

1, 2

1, 2 1, 2

1, 2 1, 2

Figure 6: Optimizations for RECVs with small SENDs.
.

Known optimizations to reduce NIC-initiated DMAs in-
clude unsignaled verbs which avoid the completion DMA
write (Section 2.2.1), and payload inlining which avoids
the payload DMA read (Section 2.2.2). The two opti-
mizations in Section 3.1 affect DMAs, too: batching with
large N requires fewer DMA reads than smaller N ; WQE
shrinking further makes these reads smaller.

NICs must DMA a completion queue entry for com-
pleted RECVs [1]; this provides an additional optimiza-
tion opportunity, as discussed below. Unlike CQEs of
other verbs that only signal completion and are dispensi-
ble, RECV CQEs contain important metadata such as the
size of received data. NICs typically generate two sepa-
rate DMAs for payload and completion, writing them to
application- and driver-owned memory respectively. We
later show that the corresponding performance penalty ex-
plains the rule-of-thumb that messaging verbs are slower
than memory verbs, and using the DMA-avoiding opti-
mizations below challenges this rule-of-thumb for some
payload sizes. We assume here that the corresponding
SEND for a RECV carries an X-byte payload.

Inline RECV If X is small (∼ 64 for Mellanox’s NICs),
the NIC encapsulates the payload in the CQE, which
is later copied by the driver to the application-specified
address. CPU: Minor overhead for copying the small
payload. PCIe: Uses 1 DMA instead of 2.

Header-only RECV If X = 0 (i.e., the RDMA SEND
packet consists of only a header and no payload), the
payload DMA is not generated at the receiver. Some
information from the packet’s header is included in the
DMA-ed CQE, which can be used to implement applica-
tion protocols. We call SENDs and RECVs with X = 0
header-only, and regular otherwise. PCIe: Uses 1 DMA
instead of 2.

4



Figure 5 and Figure 6 summarize these two guidelines
for UD SENDs and RECVs, respectively. These two
verbs are used extensively in our evaluation.

3.3 Engage multiple NIC PUs
Exploiting NIC parallelism is necessary for high perfor-
mance, but requires explicit attention. A common RDMA
programming decision is to use as few queue pairs as pos-
sible, but doing so limits NIC parallelism to the number of
QPs. This is because operations on the same QP have or-
dering dependencies and are ideally handled by the same
NIC processing unit to avoid cross-PU synchronization.
For example, in datagram-based communication, one QP
per CPU core is sufficient for communication with all re-
mote cores. Using one QP consumes the least NIC SRAM
to hold QP state, while avoiding QP sharing among CPU
cores. However, it “binds” a CPU core to a PU and may
limit core throughput to PU throughput. This is likely to
happen when per-message application processing is small
(e.g., the sequencer in Section 4.2) and a high-speed CPU
core overwhelms a less powerful PU. In such cases, using
multiple QPs per core increases CPU efficiency; we call
this the multi-queue optimization.

3.4 Avoid contention among NIC PUs
RDMA operations that require cross-QP synchronization
introduce contention among PUs, and can perform over
an order of magnitude worse than uncontended operations.
For example, RDMA provides atomic operations such as
compare-and-swap and fetch-and-add on remote mem-
ory. To our knowledge, all NICs available at the time of
writing (including the recently released ConnectX-4 [7])
use internal concurrency control for atomics: PUs ac-
quire an internal lock for the target address and issue
read-modify-write over PCIe. Note that atomic opera-
tions contend with non-atomic verbs too. Future NICs
may use PCIe’s atomic transactions for higher performing,
cache coherence-based concurrency control.

Therefore, the NIC’s internal locking mechanism, such
as the number of locks and the mapping of atomic ad-
dresses to these locks, is important; we describe exper-
iments to infer this in Section 5.4. Note that due to the
limited SRAM in NICs, the number of available locks is
small, which amplifies contention in the workload.

3.5 Avoid NIC cache misses
NICs cache several types of information; it is critical to
maintain a high cache hit rate because a miss translates
to a read over PCIe. Cached information includes (1) vir-
tual to physical address translations for RDMA-registered
memory, (2) QP state, and (3) a work queue element
cache. While the first two are known [13], the third is
undocumented and was discovered in our experiments.
Address translation cache misses can be reduced by using

Name Hardware

CX ConnectX (1x 20 Gb/s InfiniBand ports), PCIe
2.0 x8, AMD Opteron 8354 (4 cores, 2.2 GHz)

CX3 ConnectX-3 (1x 56 Gb/s InfiniBand ports), PCIe
3.0 x8, Intel® Xeon® E5-2450 CPU (8 cores, 2.1
GHz)

CIB Connect-IB (2x 56 Gb/s InfiniBand ports), PCIe
3.0 x16, Intel® Xeon® E5-2683-v3 CPU (14 cores,
2 GHz)

Table 2: Measurement clusters. CX is NSF PRObE’s Nome
cluster [17], CX3 is Emulab’s Apt cluster [31], and CIB is a
cluster at NetApp. CX uses PCIe 2.0 at 2.5 GT/s.

large (e.g., 2 MB) pages, and QP state cache misses by
using fewer QPs [13]. We make two new contributions in
this context:

Detecting cache misses All types of NIC cache misses
are transparent to the application and can be difficult to de-
tect. We demonstrate how PCIe counters can be leveraged
to accomplish this, by detecting and measuring WQE
cache misses (Section 5.3.2). In general, subtracting the
application’s expected PCIe reads from the actual reads
reported by PCIe counters gives an estimate of cache
misses. Estimating expected PCIe reads in turn requires
PCIe models of RDMA operations (Section 5.1).

WQE cache misses The initial work queue element
transfer from CPU to NIC triggers an insertion of the
WQE into the NIC’s WQE cache. When the NIC eventu-
ally processes this WQE, a cache miss can occur if it was
evicted by newer WQEs. In Section 5.3.2, we show how
to measure and reduce these misses.

4 Improved system designs
We now demonstrate how these guidelines can be used to
improve the design of whole systems. We consider two
systems: networked sequencers, and key-value stores.

Evaluation setup We perform our evaluation on the
three clusters described in Table 2. We name the clusters
with the initials of their NICs, which is the main hardware
component governing performance. CX3 and CIB run
Ubuntu 14.04 with Mellanox OFED 2.4; CX runs Ubuntu
12.04 with Mellanox OFED 2.3. Throughout the paper,
we use WQE-by-MMIO for non-batched operations and
Doorbell for batched operations. However, when batching
is enabled but the available batch size is one, WQE-by-
MMIO is used. (Doorbell provides little CPU savings for
transferring a single small WQE, and uses an extra PCIe
transaction.) For brevity, we primarily use the state-of-
the-art CIB cluster in this section; Section 5 evaluates our
optimizations on all clusters.

5



��

���

���

���

���

����

����

����

�� �� �� �� �� ���

�
�
�
��
��
���
��
�
�
��
�
�
�

��������������������������

��������
���������

�����
�������
�������

Figure 7: Impact of optimizations on HERD RPC-based se-
quencer (blue lines with circular dots), and throughput of
Spec-S0 and the atomics-based sequencer

4.1 Overview of HERD RPCs
We use HERD’s RPC protocol for communication be-
tween clients and the sequencer/key-value server. HERD
RPCs have low overhead at the server and high number-
of-clients scalability. Protocol clients use unreliable
WRITEs to write requests to a request memory region at
the server. Before doing so, they post a RECV to an un-
reliable datagram QP for the server’s response. A server
thread (a worker) detects a new request by polling on the
request memory region. Then, it performs application
processing and responds using a UD SEND posted via
WQE-by-MMIO.

We apply the following two optimizations to HERD
RPCs in general; we present specific optimizations for
each system later.
• Batching Instead of responding after detecting one

request, the worker checks for one request from each
of the C clients, collecting N ≤ C requests. Then, it
SENDs N responses using a batched Doorbell.
• Multi-queue Each worker alternates among a tune-

able number of UD queue pairs across the batched
SENDs.

Note that batching does not add significant latency be-
cause we do it opportunistically [23, 21]; we do not wait
for a number of requests to accumulate. We briefly dis-
cuss the latency added by batching in Section 4.2.2.

4.2 Networked sequencers
Centralized sequencers are useful building blocks for a va-
riety of network applications, such as ordering operations
in distributed systems via logical or real timestamps [11],
or providing increasing offsets into a linearly growing
memory region [10]. A centralized sequencer can be the
bottleneck in high-performance distributed systems, so
building a fast sequencer is an important step to improving
whole-system performance.

Our sequence server runs on a single machine and
provides an increasing 8-byte integer to client processes
running on remote machines. The baseline design uses
HERD RPCs. The worker threads at the server share an 8-
byte counter; each client can send a sequencer request to

Baseline +RPC opts Spec-S0 Atomics

Throughput 26 97.2 122 2.24
Bottleneck CPU DMA bw NIC PCIe RTT

Table 3: Sequencer throughput (Mrps) and bottlenecks on CIB

any worker. The worker’s application processing consists
of atomically incrementing the shared counter by one.
When Doorbell batching is enabled, we use an additional
application-level optimization to reduce contention for
the shared counter: after collecting N requests, a worker
atomically increments the shared counter by N , thereby
claiming ownership of a sequence of N consecutive inte-
gers. It then sends these N integers to the clients using a
batched Doorbell (one integer per client).

Figure 7 shows the effect of batching and multi-queue
on the HERD RPC-based sequencer’s throughput with
an increasing number of server CPU cores. We run 1
worker thread per core and use 70 client processes on 5
client machines. Batching increases single-core through-
put from 7.0 million requests per second (Mrps) to 16.6
Mrps. In this mode, each core still uses 2 response UD
queue pairs—one for each NIC port—and is bottlenecked
by the NIC processing units handling the QPs; engaging
more PUs with multi-queue (3 per-port QPs per core) in-
creases core throughput to 27.4 Mrps. With 6 cores and
both optimizations, throughput increases to 97.2 Mrps
and is bottlenecked by DMA bandwidth: The DMA band-
width limit for the batched UD SENDs used by our se-
quencer is 101.6 million operations/s (Section 5.2.1). At
97.2 Mrps, the sequencer is within 5% of this limit; we
attribute the gap to PCIe link- and physical-layer over-
heads in the DMA-ed requests, which are absent in our
SEND-only benchmark. When more than 6 cores are
used, throughput drops because the response batch size
are smaller: With 6 cores (97.2 Mrps), there are 15.9 re-
sponses per batch; with 10 cores (84 Mrps), there are 4.4
responses per batch.

4.2.1 Sequencer-specific optimizations

The above design is a straightforward adoption of general-
purpose RPCs for a sequencer, and inherits the limitations
of the RPC protocol. First, the connected QPs used for
writing requests require state in the server’s NIC and limit
scalability to a few hundred RPC clients [20]. Higher scal-
ability necessitates exclusive use of datagram transport
which only supports SEND/RECV verbs. The challenge
then is to use SEND/RECV instead of WRITEs for se-
quencer requests without sacrificing server performance.
Second, it uses PCIe inefficiently: UD SEND work queue
elements on Mellanox’s NICs span ≥ 2 cache lines be-
cause of their 68-byte header (Table 1); sending 8 bytes
of useful sequencer data requires 128 bytes (2 cache lines)
to be DMA-ed by the NIC.

6



��

��

��

��

��

���

�� ��� ��� ��� ��� ���� ���� ����

�
�
�
���
��
�
�
�
��
�
��
��
�
�
�
�
�
�
�
�

�����������������

�����������

��������

Figure 8: Impact of response batching on Spec-S0 latency

We exploit the specific requirements of the sequencer to
overcome these limitations. We use header-only SENDs
for both requests and responses to solve both problems:

1. The client’s header-only request SENDs generate
header-only, single-DMA RECVs at the server (Fig-
ure 6), which are as fast as the WRITEs used earlier.

2. The server’s header-only response SEND WQEs use
a header field for application payload and fit in 1
cache line (Figure 5), reducing the data DMA-ed per
response by 50% to 64 bytes.

Using header-only SENDs requires encoding applica-
tion information in the SEND packet header; we use the
4-byte immediate integer field of RDMA packets [1]. Our
8-byte sequencer works around the 4-byte limit as follows:
Clients speculate the 4 higher bytes of the counter and
send it in a header-only SEND. If the client’s guess is cor-
rect, the server sends the 4 lower bytes in a header-only
SEND, else it sends the entire 8-byte value in a regular,
non header-only SEND which later triggers an update of
the client’s guess. Only a tiny fraction (≤ C/232 with C
clients) of SENDs are regular. We discuss this speculation
technique further in Section 5.

We call this datagram-only sequencer Spec-S0 (spec-
ulation with header-only SENDs). Figure 7 shows its
throughput with increasing server CPU cores. Spec-S0’s
DMA bandwidth limit is higher than HERD RPCs be-
cause of smaller response WQEs; it achieves 122 Mrps
and is limited by the NIC’s processing power instead of
PCIe bandwidth. Spec-S0 has lower single-core through-
put than the HERD RPC-based sequencer because of the
additional CPU overhead of posting RECVs.

4.2.2 Latency

Figure 8 shows the average end-to-end latency of
Spec-S0 with and without response batching. Both
modes receive a batch of requests from the NIC; the two
modes differ only in the method used to send responses.
The non-batched mode sends responses one-by-one using
WQE-by-MMIO whereas the batched mode uses Door-
bell when multiple responses are available to send. We
batch atomic increments to the shared counter in both
modes. We use 10 server CPU cores, which is the mini-
mum required to achieve peak throughput. We measure

��

���

���

���

���

����

�� �� �� �� �� ��� ��� ���

�
�
�
��
��
���
��
�
�
��
�
�
�

������������������������

��������

���������

��������������������������

Figure 9: Improvement in HERD’s throughput with 5% PUTs

throughput with increasing client load by adding more
clients, and by increasing the number of outstanding re-
quests per client. Batching adds up to 1 µs of latency
because of the additional DMA read required with the
Doorbell method. We believe that the small additional
latency is acceptable because of the large throughput and
CPU efficiency gains from batching.

4.2.3 Atomics-based sequencers

Atomic fetch-and-add over RDMA is an appealing
method to implement a sequencer: Binnig et al. [11]
use this design for the timestamp server in their dis-
tributed transaction protocol. However, lock contention
for the counter among the NIC’s PUs results in poor per-
formance. The effects of contention are exacerbated by
the duration for which locks are held—several hundred
nanoseconds for PCIe round trips. Our RPC-based se-
quencers have lower contention and shorter lock duration:
the programmability of general-purpose CPUs allows us
to batch updates to the counter which reduces cache line
contention, and proximity to the counter’s storage (i.e.,
core caches) makes these updates fast. Figure 7 shows the
throughput of our atomics-based sequencer: it achieves
only 2.24 Mrps, which is 50x worse than our optimized
design, and 12.2x worse than our single-core throughput.
Table 3 summarizes the performance of our sequencers.

4.3 Key-value stores

Several designs have been proposed for RDMA-based
key-value storage. The HERD key-value cache uses
HERD RPCs for all requests and does not bypass the
remote CPU; other key-value designs bypass the re-
mote CPU for key-value GETs (Pilaf [24] and FaRM-
KV [13]), or for both GETs and PUTs (DrTM-KV [30]
and Nessie [27]). Our goal here is to demonstrate how our
guidelines can be used to optimize or find flaws in RDMA
system designs in general; we do not compare across dif-
ferent key-value systems. We first present performance
improvements for HERD. Then, we show how the per-
formance of atomics-based key-value stores is adversely
affected by lock contention inside NICs.

7



��
���
���
���
���
����
����

��� ���

�
�
�
��
��
���
��
�
�
��
�
�
�

������
�������
�������
��������

����

�����

���

����

���

����

��
����

Figure 10: Throughput of emulated DrTM-KV with increasing
updates.

4.3.1 Improving HERD’s performance

We apply batching to HERD as follows. After collecting
N ≤ C requests, the server-side worker performs the
GET or PUT operations on the backing datastore. It uses
prefetching to hide the memory latency of accesses to the
storage data structures [32, 23]. Then, the worker sends
the responses either one-by-one using WQE-by-MMIO,
or as a single batch using Doorbell.

For evaluation, we run a HERD server with a variable
number of workers on a CIB machine; we use 128 client
threads running on eight client machines to issue requests.
We pre-populate the key space partition owned by each
worker with 8 million key-value pairs, which map 16-byte
keys to 32-byte values. The workload consists of 95%
GET and 5% PUT operations, with keys chosen uniformly
at random from the inserted keys.

Figure 9 shows the throughput achieved in the above
experiment. We also include the maximum throughput
achievable by a READ-based key-value store such as Pilaf
or FaRM-KV that uses ≥ 2 small READs per GET (one
READ for fetching the index entry, and one for fetching
the value). We compute this analytically by halving CIB’s
peak inbound READ throughput (Section 5.3.1). We
make three observations:
• Batching improves HERD’s per-core throughput by

83% from 6.7 Mrps to 12.3 Mrps. This improve-
ment is smaller than for the sequencer because the
CPU processing time saved from avoiding MMIOs is
smaller relative to per-request processing in HERD
than in the sequencer.
• Batching improves peak throughput by 35% from

72.8 Mrps to 98.3 Mrps. Batched throughput is bot-
tlenecked by PCIe DMA bandwidth.
• With batching, HERD’s throughput is up to 63%

higher than a READ-based key-value store. While
HERD’s original non-batched design requires 12
cores to outperform a READ-based design, only 7
cores are needed with batching. This highlights the
importance of including low-level factors such as
batching when comparing RDMA system designs.

4.3.2 Atomics-based key-value stores

DrTM-KV [30] and Nessie [27, 28] use RDMA atom-
ics to bypass the remote CPU for both GETs and PUTs.
However, these projects do not consider the impact of the

NIC’s concurrency control on performance, and present
performance for either GET-only (DrTM-KV) or GET-
mostly workloads (Nessie). We now show that locking
inside the NIC results in low PUT throughput, and de-
grades throughput even when only a small fraction of
key-value operations are PUTs.

We discuss DrTM-KV here because of its sim-
plicity, but similar observations apply to Nessie.
DrTM-KV caches some fields of its key-value index at
all clients; GETs for cached keys use one READ. PUT
operations lock, update, and unlock key-value items;
locking and unlocking is done using atomics. Running
DrTM-KV’s codebase on CIB requires significant mod-
ification because CIB’s dual-port NIC are connected in
a way that does not allow cross-port communication. To
overcome this, we wrote a simplified emulated version of
DrTM-KV: we emulate GETs with 1 READ and PUTs
with 2 atomics, and assume a 100% cache hit rate.

Figure 10 shows the throughput of our emulated
DrTM-KV server with different fractions of PUT oper-
ations in the workload. The server hosts 16 million items
with 16-byte keys and 32-byte values. Clients use ran-
domly chosen keys and we use as many clients as required
to maximize throughput. Although throughput for a 100%
GET workload is high, adding only 10% PUTs degrades
it by 72% on CX3 and 31% on CIB. Throughput with
100% PUTs is a tiny fraction of GET-only throughput:
4% on CX3 and 12% on CIB. Note that the degradation
for CIB is more gradual than for CX3 because CIB has a
better locking mechanism, as shown in Section 5.

5 Low-level factors in RDMA
Our guidelines and system designs are based on an im-
proved understanding of low-level factors that affect
RDMA performance, including I/O initiation mecha-
nisms, PCIe, and NIC architecture. These factors are
complicated and there is little existing literature describ-
ing them or studying their relevance to networked systems.
We attempt to fill this void by presenting clarifying perfor-
mance measurements, experiments, and models; Table 4
shows a partial summary for CIB. Additionally, we dis-
cuss the importance of these factors to general RDMA
system design beyond the two systems in Section 4.

We divide our discussion into three common use cases
that highlight different low-level factors: (1) batched op-
erations, (2) non-batched operations, and (3) atomic oper-
ations. For each case, we present a performance analysis
focusing on hardware bottlenecks and optimizations, and
discuss implications on RDMA system design.

5.1 PCIe models
We have demonstrated that understanding the PCIe behav-
ior is critical for improving RDMA performance. How-

8



Outbound verbs Inbound verbs

UD SENDs UD RECVs READs Atomics

Non-batch Batch Batch + HO Batch Batch + HO ≤ 64 B 128 B Z = 1 Z ≥ 4096

Rate (Mops) 80 101.6 157 82 122 121.6 76.2 2.24 52
Bottleneck MMIO bw DMA bw NIC NIC NIC NIC IB bw PCIe RTT NIC

Table 4: Throughput and bottleneck of different modes of RDMA verbs on CIB. HO denotes the header-only optimization.

��

���

����

����

����

�� ��� ���� ���� ���� ����

�
�
��
��
�
���
��
�
�
��
�
�
�

��������������������

����������������������

�����������������

������������

(a) CIB

��

���

���

���

���

���

�� ��� ���� ���� ���� ����
��������������������

(b) CX3

��

���

���

���

�� ��� ���� ���� ���� ����
��������������������

(c) CX

Figure 12: Inbound READ and UC WRITE throughput, and the InfiniBand limit for READs. Note the different scales for Y axes.

��

���

���

���

���

����

����

�� ��� ���� ���� ���� ����

�
�
��
��
�
���
��
�
�
��
�
�
�

��������������������

�����������������

�����������

����������������

����������

(a) PCIe limits for UD SEND with batch size B

��

���

���

���

���

�� ��� ���

�
�
��
��
�
���
��
�
�
��
�
�
�

��������
������������
������
������

���

����
����

���

��� ���

���

���� ����

���

����

����

(b) Optimizations for UD SEND

Figure 11: (a) Peak batched and non-batched UD SEND
throughput on CIB, with batch size B; dotted lines show corre-
sponding PCIe limits. (b) Effect of optimizations on single-core
UD SEND throughput with 60-byte payload (128-byte WQE).

ever, deriving analytical models of PCIe behavior with-
out access to proprietary/confidential NIC manuals and
our limited resources—per–cache line PCIe counters and
undocumented driver software—required extensive ex-
perimentation and analysis. Our derived models are
presented in a slightly simplified form at several points
in this paper (Figures 5, 6, 13). The exact analytical
models are complicated and depend on several factors
such as the NIC, its PCIe capability, the verb and trans-
port, the level of Doorbell batching, etc. To make our

models easily accessible, we instrumented the datapath
of two Mellanox drivers (ConnectX-3 and Connect-IB)
to provide statistics about PCIe bandwidth use (https:
//github.com/efficient/rdma_bench). Our models
and drivers are restricted to requester-side PCIe behav-
ior. We omit responder-side PCIe behavior because it
is the same as described in our previous work [20]: in-
bound READs and WRITEs generate one PCIe read
and write, respectively; inbound SENDs trigger a RECV
completion—we discuss the PCIe transactions for the
RECV.

5.2 Batched operations

A limitation of batching on current hardware makes it
useful mainly for datagram transport: all operations in a
batch must use the same queue pair because Doorbells
are per QP. This limitation seems fundamental to the
parallel architecture of NICs: In a hypothetical NIC de-
sign where Doorbells contained information relevant for
multiple queue pairs (e.g., a compact encoding of “2 and
1 new WQEs for QP 1 and QP 2, respectively”), sending
the Doorbell to the NIC processing units handling these
QPs would require an expensive selective broadcast inside
the NIC. These PUs would then issue separate DMAs for
WQEs, losing the coalescing advantage of batching. This
limitation makes batching less useful for connected QPs,
which provide only one-to-one communication between
two machines: the chances that a process has multiple
messages for the same remote machine are low in large
deployments. We therefore discuss batching for UD trans-
port only.

9

https://github.com/efficient/rdma_bench
https://github.com/efficient/rdma_bench


Payload, CQE DMA

WQE DMA: cache miss 
while generating request

RDMA request
RDMA response

WQE DMA: cache miss 
while servicing response

CPU NIC

WQE MMIO: inserts
WQE into cache

1

1

1
1

1

(a) PCIe model for reliable verbs

��

���

���

���

���

����

�� �� �� �� ��� ��� ��� ���� ���� ����

�
�
��
��
�
���
��
�
�
��
�

���������������������������������

������

����������

������

����������

(b) WQE cache misses for READs

��

���

���

���

���

����

����

�� �� �� �� ��� ��� ��� ���� ���� ����
���������������������������������

������
����������

������
����������

(c) WQE cache misses for RC WRITEs

Figure 13: PCIe model showing possible WQE cache misses, and measurement of WQE cache misses for READs and RC WRITEs.

5.2.1 UD SENDs

Figure 11 shows the throughput and PCIe bandwidth limit
of batched and non-batched UD SENDs on CIB. We use
one server to issue SENDs to multiple client machines.
With batching, we use batches of size 16 (i.e., the NIC
DMAs 16 work queue elements per Doorbell). Otherwise,
the CPU writes WQEs by the WQE-by-MMIO method.
We use as many cores as required to maximize throughput.
Batching improves peak SEND throughput by 27% from
80 million operations/s (Mops) to 101.6 Mops.

Bottlenecks Batched throughput is limited by DMA
bandwidth. For every DMA completion of size Crc bytes,
there is header overhead of Pc bytes (Section 2.1), leading
to 13443 MB/s of useful DMA read bandwidth on CIB.
As UD WQEs span at least 2 cache lines, the maximum
WQE transfer rate is 13443/128 = 105 million/s, which
is within 5% of our achieved throughput; we attribute the
difference to link- and physical-layer PCIe overheads.

Non-batched throughput is limited by MMIO band-
width. The write-combining MMIO rate on CIB is
(16 ∗ Pbw )/(64 + Pr ) = 175 million cache lines/s. UD
SEND WQEs with non-zero payload span at least 2 cache
lines (Table 1), and achieve up to 80 Mops. This is within
10% of the 87.5 Mops bandwidth limit.

Multi-queue optimization Figure 11b shows single-
core throughput for batched and non-batched 60-byte UD
SENDs—the largest payload size for which the WQEs
fit in 2 cache lines. Interestingly, batching decreases
core throughput if only one QP is used: with one QP, a
core is coupled to a NIC processing unit (Section 3.3),
so throughput depends on how the PU handles batched
and non-batched operations. Batching has the expected
effect when we break this coupling by using multiple
QPs. Batched throughput increases by ∼ 2x on all clus-
ters with 2 QPs, and between 2–3.2x with 4 QPs. Non-
batched (WQE-by-MMIO) throughput does not increase
with multiple QPs (not shown in graph), showing that it
is CPU-limited.

RECV 0 RECV ≥ 1 SEND 0 SEND ≥ 1

CIB 122.0 82.0 157.0 101.6
CX3 34.0 21.8 32.1 26.0
CX 15.3 9.6 11.9 11.9

Table 5: Per-NIC rate (millions/s) for header-only (0) and regu-
lar (≥ 1) SENDs and RECVs

Design implications RDMA-based systems can often
choose between CPU-bypassing and CPU-involving de-
signs. For example, clients can access a key-value
store either by READing directly from the server’s mem-
ory [24, 13, 30, 28], or via RPCs as in HERD [20]. Our
results show that achieving peak performance on even
the most powerful NICs does not require a prohibitive
amount of CPU power: only 4 cores are needed to saturate
the fastest PCIe links. Therefore, CPU-involving designs
will not be limited by CPU processing power, provided
that their application-level processing permits so.

5.2.2 UD RECVs

Table 5 compares the throughput of header-only and
payload-carrying regular RECVs (Figure 6). In our experi-
ment, multiple client machines issue SENDs to one server
machine that posts RECVs. On CIB, avoiding the payload
DMA with header-only RECVs increases throughput by
49% from 82 Mops to 122 Mops, and makes them as fast
as inbound WRITEs (Figure 12a).4 Table 5 also compares
header-only and regular SENDs (Figure 5). Header-only
SENDs use single-cache line WQEs and achieve 54%
higher throughput.

Design implications Developers avoid RECVs at perfor-
mance critical machines as a rule of thumb, favoring the
faster READ/WRITE verbs [24, 20]. Our work provides
the exact reason: RECVs are slow due to the CQE DMA;
they are as fast as inbound WRITEs if it is avoided.

Speculation Current RDMA implementations allow 4
bytes of application data in the packet header of header-

4Inline-receive improves regular RECV throughput from 22 Mops
to 26 Mops on CX3, but is not yet supported for UD on CIB.

10



only SENDs. For applications that require larger mes-
sages, header-only SEND/RECV can be used if specu-
lation is possible; we demonstrated such a design for
an 8-byte sequencer in Section 4.2. In general, specu-
lation works as follows: clients transmit their expected
response along with requests, and get a small confirma-
tion response in the common case. For example, in a
key-value store with client-side caching, clients can send
GET requests with the key and its cached version number
(using a WRITE or regular SEND). The server replies
with a header-only “OK” SEND if the version is valid.

There are applications for which 4 bytes of per-message
data suffices. For example, some database tables in the
TPC-C [29] benchmark have primary key size between 2
and 3 bytes. A table access request can be sent using a
header-only SEND (using the remaining 1 byte to specify
the table ID), while the response may need a larger SEND.

5.3 Non-batched operations
5.3.1 Inbound READs and WRITEs

Figure 12 shows the measured throughput of inbound
READs and UC WRITEs, and the InfiniBand bandwidth
limit of inbound READs. We do not show the InfiniBand
limit for WRITEs and the PCIe limits as they are higher.

Bottlenecks On our clusters, inbound READs and
WRITEs are initially bottlenecked by the NIC’s process-
ing power, and then by InfiniBand bandwidth. The pay-
load size at which bandwidth becomes a bottleneck de-
pends on the NIC’s processing power relative to band-
width. For READs, the transition point is approximately
128 bytes, 256 bytes, and 64 bytes for CX, CX3, and
CIB, respectively. CIB NICs are powerful enough to satu-
rate 112 Gbps with 64-byte READs, whereas CX3 NICs
require 256-byte READs to saturate 56 Gbps.

Implications The transition point is an important factor
for systems that make tradeoffs between the size and
number of READs: For key-value lookups of small items
(∼32 bytes), FaRM’s key-value store [13] can use one
large (∼256-byte) READ. In a client-server design where
inbound READs determine GET performance, this design
performs well on CX3 because 32- and 256-byte READs
have similar throughput; other designs such as DrTM-
KV [30] and Pilaf [24] that instead use 2–3 small READs
may provide higher throughput on CIB.

5.3.2 Outbound READs and WRITEs

For brevity, we only present a summary of the perfor-
mance of non-batched outbound operations on CIB. Out-
bound UC WRITEs larger than 28 bytes, i.e., WRITEs
with WQEs spanning more than one cache line (Ta-
ble 1), achieve up to 80 Mops and are bottlenecked by
PCIe MMIO throughput, similar to non-batched outbound
SENDs (Figure 11a). READs achieve up to 88 Mops and

��
���
���
���
���
���
���

�� �� ��� ��� ���� ����� �����

�
�
��
��
�
���
��
�
�
��
�

�����������������������������

���

���

Figure 14: Atomics throughput with increasing concurrency

are bottlenecked by NIC processing power.

Achieving high outbound throughput requires main-
taining multiple outstanding requests via pipelining.
When the CPU initiates an RDMA operation, the work
queue element is inserted into the NIC’s WQE cache.
However, if the CPU injects new WQEs faster than the
NIC’s processing speed, this WQE can be evicted by
newer WQEs. This can cause cache misses when the
NIC eventually processes this WQE while generating its
RDMA request packets, while servicing its RDMA re-
sponse, or both. Figure 13a summarizes this model.

To quantify this effect, we conduct the following ex-
periment on CIB: 14 requester threads on a server issue
windows of N 8-byte READs or WRITEs over reliable
transport to 14 remote processes. In Figures 13b and 13c,
we show the cumulative RDMA request rate, and the ex-
tent of WQE cache misses using the PCIeRdCur counter
rate. Each thread waits for the N requests to complete
before issuing the next window. We use all 14 cores on
the server to generate the maximum possible request rate,
and RC transport to include cache misses generated while
processing ACKs for WRITEs. We make the following
observations, showing the importance of the WQE cache
in improving and understanding RDMA throughput:
• The optimal window size for maximum throughput

is not obvious: throughput does not always increase
with increasing window size, and is dependent on the
NIC. For example, N = 16 and N = 512 maximize
READ throughput on CX3 and CIB respectively.
• Higher RDMA throughput may be obtained at the

cost of PCIe reads. For example, on CIB, both
READ throughput and PCIe read rate increases as
N increases. Although the largest N is optimal for a
machine that only issues outbound READs, it may
be suboptimal if it also serves other operations.
• CIB’s NIC can handle the CPU’s peak WQE injec-

tion rate for WRITEs and never suffers cache misses.
This is not true for READs, indicating that they re-
quire more NIC processing than reliable WRITEs.

5.4 Atomic operations
NIC processing units contend for locks during atomic
operations (Section 3.4). The performance of atomics
depends on the amount of parallelism in the workload
with respect to the NIC’s internal locking scheme. To vary

11



the amount of parallelism, we create an array of Z 8-byte
counters in a server’s memory, and multiple remote client
processes issue atomic operations on counters chosen
randomly at each iteration. Figure 14 shows the total
client throughput in this experiment. For CX3, it remains
2.7 Mops irrespective of Z; for CIB, it rises to 52 Mops.

Inferring the locking mechanism The flatness of CX3’s
throughput graph indicates that it serializes all atomic
operations. For CIB, we measured performance with
randomly chosen pairs of addresses and observed lower
performance for pairs where both addresses have the same
12 LSBs. This strongly suggests that CIB uses 4096 buck-
ets to slot atomic operations by address—a new operation
waits until its slot is empty.

Bottlenecks and implications Throughput on CX3 is
limited by PCIe latency because of serialization. For CIB,
buffering and computation needed for PCIe read-modify-
write makes NIC processing power the bottleneck.

The abysmal throughput for Z = 1 on both NICs re-
affirms that atomics are a poor choice for a sequencer; our
optimized sequencer in Section 4 provides 12.2x higher
performance with a single server CPU core. A lock ser-
vice for data stores, however, might use a larger Z . Atom-
ics could perform well if such an application used CIB,
but they are very slow with CX3, which is the NIC used in
prior work [27, 30]. With CIB, careful lock placement is
still necessary. For example, if page-aligned data records
have their lock variables at the same offset in the record,
all lock requests will have the same 12 LSBs and will get
serialized. A deterministic scheme that places the lock
at different offsets in different records, or a scheme that
keeps locks separate from the data will perform better.

6 Related work
High-performance RDMA systems Designing high-
performance RDMA systems is an active area of research.
Recent advances include several key-value storage sys-
tems [24, 13, 20, 30, 28] and distributed transaction pro-
cessing systems [30, 12, 14, 11]. A key design decision in
each of these systems is the choice of verbs, made using
a microbenchmark-based performance comparison. Our
work shows that there are more dimensions to these com-
parisons than these projects explore: two verbs cannot
be exhaustively compared without exploring the space of
low-level factors and optimizations, each of which can
offset verb performance by several factors.

Low-level factors in network I/O Although there is a
large body of work that measures the throughput and CPU
utilization of network communication [18, 16, 26, 13, 20],
there is less existing literature on understanding the low-
level behavior of network cards. NIQ [15] presents a high-
level picture of the PCIe interactions between an Ethernet

NIC and CPUs, but does not discuss the more subtle
interactions that occur during batched transfers. Lee et
al. [22] study the PCIe behavior of Ethernet cards using
a PCIe protocol analyzer, and divide the PCIe traffic into
Doorbell traffic, Ethernet descriptor traffic, and actual data
traffic. Similarly, analyzing RDMA NICs using a PCIe
analyzer may reveal more insights into their behavior than
what is achievable using PCIe counters.

7 Conclusion
Designing high-performance RDMA systems requires a
deep understanding of low-level RDMA details such as
PCIe behavior and NIC architecture: our best sequencer
is ∼50x faster than an existing design and scales perfectly,
our optimized HERD key-value store is up to 83% faster
than the original, and our fastest transmission method is
up to 3.2x faster than the commonly-used baseline. We
believe that by presenting clear guidelines, significant
optimizations based on these guidelines, and tools and
experiments for low-level measurements on their hard-
ware, our work will encourage researchers and developers
to develop a better understanding of RDMA hardware
before using it in high-performance systems.

Acknowledgments We are tremendously grateful to
Joseph Moore and NetApp for providing access to the
CIB cluster. We thank Hyeontaek Lim and Sol Boucher
for providing feedback, and Liuba Shrira for shepherd-
ing. Emulab [31] and PRObE [17] resources were used
in our experiments. PRObE is supported in part by NSF
awards CNS-1042537 and CNS-1042543 (PRObE). This
work was supported by funding from the National Sci-
ence Foundation under awards 1345305 and 1314721,
and by Intel via the Intel Science and Technology Center
for Cloud Computing (ISTC-CC).

Appendix A. WQE-by-MMIO and Door-
bell PCIe use

We denote the doorbell size by d. The total data transmit-
ted from CPU to NIC with the WQE-by-MMIO method
is Tb f = 10 ∗ (d65/64e ∗ (64 + Pr )) bytes. With cache
line padding, 65-byte WQEs are laid out in 128-byte
slots in host memory; assuming Crc = 128, Tdb =

(d+Pr )+(10∗(128+Pc )) bytes. We ignore the PCIe link-
layer traffic since it is small compared to transaction-layer
traffic: it is common to assume 2 link-layer packets (1
flow control update and 1 acknowledgment, both 8 bytes)
per 4-5 TLPs [9], making the link-layer overhead < 5%.
Substituting d = 8 gives Tb f = 1800, and Tdb = 1534.

12



References

[1] Infiniband architecture specification volume 1.
https://cw.infinibandta.org/document/dl/
7859.

[2] Intel Atom Processor C2000 Product Family for Mi-
croserver. http://www.intel.in/content/dam/
www/public/us/en/documents/datasheets/
atom-c2000-microserver-datasheet.pdf.

[3] Intel Xeon Processor E5-1600/2400/2600/4600
v3 Product Families. http://www.intel.com/
content/dam/www/public/us/en/documents/
datasheets/xeon-e5-v3-datasheet-vol-2.
pdf.

[4] Intel Xeon Processor E5-1600/2400/2600/4600
(E5-Product Family) Product Families.
http://www.intel.com/content/dam/www/
public/us/en/documents/datasheets/
xeon-e5-1600-2600-vol-2-datasheet.pdf.

[5] Intel Xeon Processor D-1500 Product Family.
http://www.intel.in/content/dam/www/
public/us/en/documents/product-briefs/
xeon-processor-d-brief.pdf.

[6] Intel Xeon Phi Processor Knights Land-
ing Architectural Overview. https:
//www.nersc.gov/assets/Uploads/
KNL-ISC-2015-Workshop-Keynote.pdf.

[7] Mellanox ConnectX-4 product brief.
http://www.mellanox.com/related-docs/
prod_silicon/PB_ConnectX-4_VPI_Card.pdf.

[8] Mellanox OFED for linux user manual.
http://www.mellanox.com/related-docs/
prod_software/Mellanox_OFED_Linux_User_

Manual_v2.2-1.0.1.pdf.
[9] Understanding Performance of PCI Express

Systems. http://www.xilinx.com/support/
documentation/white_papers/wp350.pdf.

[10] M. Balakrishnan, D. Malkhi, V. Prabhakaran,
T. Wobber, M. Wei, and J. D. Davis. CORFU: a
shared log design for flash clusters. In Proc. 9th
USENIX NSDI, Apr. 2012.

[11] C. Binnig, U. Çetintemel, A. Crotty, A. Galakatos,
T. Kraska, E. Zamanian, and S. B. Zdonik. The end
of slow networks: It’s time for a redesign. CoRR,
abs/1504.01048, 2015. URL http://arxiv.org/
abs/1504.01048.

[12] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast
and general distributed transactions using RDMA
and HTM. In Proc. 11th ACM European Conference
on Computer Systems (EuroSys), Apr. 2016.

[13] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast remote memory. In Proc.

11th USENIX NSDI, Apr. 2014.
[14] A. Dragojević, D. Narayanan, E. B. Nightingale,

M. Renzelmann, A. Shamis, A. Badam, and M. Cas-
tro. No compromises: Distributed transactions with
consistency, availability, and performance. In Proc.
25th ACM Symposium on Operating Systems Prin-
ciples (SOSP), Oct. 2015.

[15] M. Flajslik and M. Rosenblum. Network interface
design for low latency request-response protocols.
In Proc. USENIX Annual Technical Conference,
June 2013.

[16] S. Gallenmüller, P. Emmerich, F. Wohlfart,
D. Raumer, and G. Carle. Comparison of frame-
works for high-performance packet io. In ANCS,
2015.

[17] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.
PRObE: A Thousand-Node Experimental Cluster
for Computer Systems Research.

[18] S. Han, K. Jang, K. Park, and S. Moon. Packet-
Shader: a GPU-accelerated software router. In Proc.
ACM SIGCOMM, Aug. 2010.

[19] S. Hauger, T. Wild, A. Mutter, A. Kirstaedter,
K. Karras, R. Ohlendorf, F. Feller, and J. Scharf.
Packet processing at 100 Gbps and beyond - chal-
lenges and perspectives. In Photonic Networks,
2009 ITG Symposium on, 2009.

[20] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA efficiently for key-value services. In Proc.
ACM SIGCOMM, Aug. 2014.

[21] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Ander-
sen. Raising the bar for using GPUs in software
packet processing. In Proc. 12th USENIX NSDI,
May 2015.

[22] S. Larsen and B. Lee. Platform io dma transaction
acceleration. In CACHES. ACM, 2011.

[23] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-
value storage. In Proc. 11th USENIX NSDI, Apr.
2014.

[24] C. Mitchell, Y. Geng, and J. Li. Using one-sided
RDMA reads to build a fast, CPU-efficient key-value
store. In Proc. USENIX Annual Technical Confer-
ence, June 2013.

[25] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkatara-
mani. Scaling Memcache at Facebook. In Proc.
10th USENIX NSDI, Apr. 2013.

[26] L. Rizzo. netmap: a novel framework for fast packet
I/O. In Proceedings of the 2012 USENIX conference
on Annual Technical Conference, June 2012.

[27] T. Szepesi, B. Wong, B. Cassell, , and T. Brecht.

13

https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
http://www.intel.in/content/dam/www/public/us/en/documents/datasheets/atom-c2000-microserver-datasheet.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/datasheets/atom-c2000-microserver-datasheet.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/datasheets/atom-c2000-microserver-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-1600-2600-vol-2-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-1600-2600-vol-2-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-1600-2600-vol-2-datasheet.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/product-briefs/xeon-processor-d-brief.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/product-briefs/xeon-processor-d-brief.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/product-briefs/xeon-processor-d-brief.pdf
https://www.nersc.gov/assets/Uploads/KNL-ISC-2015-Workshop-Keynote.pdf
https://www.nersc.gov/assets/Uploads/KNL-ISC-2015-Workshop-Keynote.pdf
https://www.nersc.gov/assets/Uploads/KNL-ISC-2015-Workshop-Keynote.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v2.2-1.0.1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v2.2-1.0.1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v2.2-1.0.1.pdf
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf
http://arxiv.org/abs/1504.01048
http://arxiv.org/abs/1504.01048


Designing a low-latency cuckoo hash table for write-
intensive workloads. In WSRC, 2014.

[28] T. Szepesi, B. Cassell, B. Wong, T. Brecht, and
X. Liu. Nessie: A decoupled, client-driven, key-
value store using RDMA. Technical Report CS-
2015-09, University of Waterloo, David R. Cheriton
School of Computer Science, Waterloo, Canada,
June 2015.

[29] TPC-C. TPC benchmark C. http://www.tpc.org/
tpcc/.

[30] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
in-memory transaction processing using RDMA and
HTM. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP), 2015.

[31] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networks. In Proc.
5th USENIX OSDI, pages 255–270, Dec. 2002.

[32] D. Zhou, B. Fan, H. Lim, D. G. Andersen, and
M. Kaminsky. Scalable, High Performance Ethernet
Forwarding with CuckooSwitch. In Proc. 9th Inter-
national Conference on emerging Networking EX-
periments and Technologies (CoNEXT), Dec. 2013.

14

http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

	Introduction
	Background
	PCI Express
	RDMA
	RDMA verbs and transports
	RDMA WQEs
	Terminology and default assumptions


	RDMA design guidelines
	Reduce CPU-initiated MMIOs
	Reduce NIC-initiated DMAs
	Engage multiple NIC PUs
	Avoid contention among NIC PUs
	Avoid NIC cache misses

	Improved system designs
	Overview of HERD RPCs
	Networked sequencers
	Sequencer-specific optimizations
	Latency
	Atomics-based sequencers

	Key-value stores
	Improving HERD's performance
	Atomics-based key-value stores


	Low-level factors in RDMA
	PCIe models
	Batched operations
	UD SENDs
	UD RECVs

	Non-batched operations
	Inbound READs and WRITEs
	Outbound READs and WRITEs

	Atomic operations

	Related work
	Conclusion
	WQE-by-MMIO and Doorbell PCIe use

