
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF Master of Science

TITLE

PRESENTED BY

ACCEPTED BY THE DEPARTMENT OF

 Information Networking Institute

 __ ________________________
 THESIS ADVISOR DATE

 __ ________________________
 ACADEMIC ADVISOR DATE

 __ ________________________
 DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 __ ________________________
 DEAN DATE

Comparing Performance of Different

Cleaning Algorithms for SMR disks

Submitted in partial fulfillment of the requirements for

the degree of

Master of Science

in

Information Networking

Mukul Kumar Singh

B.E. Visvesvaraya Technological University

Carnegie Mellon University
Pittsburgh, PA

April, 2014

Copyright c© 2014 by Mukul Kumar Singh
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Acknowledgements

I would like to thank my thesis advisor Professor Garth Gibson for all the guidance

and continuous support. I would like to thank him for developing a research instinct

in me. His guidance helped me a lot while I was working on my thesis. I would also

like to thank the reader of my thesis Professor Greg Ganger. His comments were

invaluable in finishing my thesis. I would also like to thank them for giving me an

opportunity to be a part of Parallel Data Laboratory at Carnegie Mellon University.

I would like to thank Seagate for funding this project through the Data Storage

Systems Center at CMU. I also thank the members and companies of the PDL Con-

sortium (including Actifio, American Power Conversion, EMC Corporation, Face-

book, Fusion-io, Google, Hewlett-Packard Labs, Hitachi, Huawei Technologies Co.,

Intel Corporation, Microsoft Research, NEC Laboratories, NetApp, Inc. Oracle Cor-

poration, Samsung Information Systems America, Seagate Technology, Symantec

Corporation and Western Digital) for their interest, insights, feedback, and support.

I would also like to thank my friends and colleagues at Carnegie Mellon for helping

me with discussions and their continuous support. Finally I would like to thank my

parents, brother and sister-in-law for their encouragement and support. I would

also like to thank my best friends Soumya Koduri and Rahul Goyal for their endless

support and enthusiasm.

ii

Abstract

Shingled Magnetic Recording (SMR) promises to sustain current growth in disk

drive capacities with minimal change in the current disk drive technology. Shingling

implies overlapping of tracks in a hard drive. Shingling would cause overwrites on

down-track sectors with each sector write, hence new interfaces are being proposed

to allow host software to exploit SMR with minimal change. An obvious interface is

a Shingled Translation Layer which is akin to a Flash Translation Layer. Here the

disk can completely hide the layer of remapping and background cleaning, but this

comes at the cost of complexity in the disk processor and hard-to-predict performance

changes. Other interfaces which enable the host application to handle shingling have

been proposed as well. In a strict append model , the disk is divided into fixed sized

bands and data is written to a particular band in a strict append order, with cleaning

done by resetting the write cursor to the beginning of a band. Another promising

interface, Caveat Scriptor, gives the host an address space of all possible sectors. In-

order to handle shingling, this interface exposes two drive parameters to determine

which sectors may or will not be damaged because of a certain write. These parame-

ters are Drive No Overlap Range (DNOR) and Drive Isolation Distance (DID). This

paper will explain these parameters, explain the design of a filesystem designed for

this extreme interface, caveat scriptor, and compare the cleaning performance of a

filesystem designed for the Caveat Scriptor interface to one designed for the Strict

Append interface.

iii

Table of Contents

Acknowledgements ii

Abstract iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background 5

2.1 Types of FileSystem : A cleaning perspective 5

2.1.1 Cleaner thread . 6

2.1.2 Implicit cleanup . 6

2.2 Strict Append Filesystem SMRFs . 7

2.2.1 Disk Apis . 7

2.2.2 Filesystem . 8

2.2.3 Cleaning . 8

3 Caveat Scriptor 11

3.1 Motivation . 11

3.2 Definition . 11

3.3 Disk Semantics . 13

3.4 Support for Implicit Cleaning . 13

4 Caveat Scriptor - SMRfs 15

4.1 Overwrite Detection . 16

iv

4.2 Disk Interfaces . 16

4.2.1 caveat modsense . 16

4.2.2 caveat write . 17

4.2.3 caveat read . 17

4.2.4 caveat create . 17

4.2.5 caveat open . 17

4.2.6 caveat dump . 17

4.3 Disk Partitioning . 18

4.3.1 Unshingled Partition . 18

4.3.2 Shingled Partition . 18

4.4 File System Semantics . 18

4.4.1 File System Metadata . 19

4.4.2 File System Workflows . 20

4.4.3 Block allocation . 22

4.4.4 Allocation Algorithms . 23

5 Results 26

5.1 Testing Infrastructure . 26

5.2 Performance Test . 26

5.2.1 Large File Benchmark . 27

5.2.2 Vdbench . 30

5.2.3 PostMark . 30

5.2.4 Linux Compile . 31

5.3 Capacity Test . 32

5.3.1 Test with DID as 16 4KB blocks 33

5.3.2 Test with DID as 512 4KB blocks 36

6 Conclusion 39

7 Future Work 41

Bibliography 42

v

List of Tables

Table 5.1 Fragmentation with DID as 16 4KB blocks 34

Table 5.2 Fragmentation with DID as 512 4KB blocks 36

vi

List of Figures

Figure 2.1 Strict Append SMRfs Workflow 9

Figure 3.1 DID and DNOR calculation . 12

Figure 4.1 Block extent freelist . 20

Figure 4.2 Caveat SMR Workflows . 21

Figure 4.3 Write Dataflow . 22

Figure 4.4 Extent segregated list . 24

Figure 5.1 Read throughput for LFS test with 100MB file 28

Figure 5.2 Write throughput for LFS test with 100MB file 28

Figure 5.3 Read throughput for LFS test with 500MB file 29

Figure 5.4 Write throughput for LFS test with 500MB file 29

Figure 5.5 File operations per second for vdbench benchmark 30

Figure 5.6 File operations per second for Postmark benchmark 31

Figure 5.7 Linux Compilation time in seconds 32

Figure 5.8 Percentage of unusable free blocks over total blocks in the disk 34

Figure 5.9 Overallocation & cleaning performance for DID as 16 4KB blocks 35

Figure 5.10Percentage of unusable free blocks over total blocks in the disk 37

Figure 5.11Overallocation & cleaning performance for DID as 512 4KB blocks 38

vii

Abbreviations

SMR Shingled Magnetic Recording, a new disk drive technology in
which the tracks are organised as shingles.

DID Drive Isolation Distance, the maximum number of downstream
sectors which may be overwritten because of a write on a par-
ticular sector on a SMR drive.

DNOR Drive No Overlap Range, the minimum number of sectors down-
stream which will definitely not be overwritten because of write
on a particular sector in a SMR drive.

KB, MB, GB These are the units of storage capacities in multiple of bytes.
These units are Kilobyte(21̂0), Megabyte(22̂0) and Gigabyte(23̂0)
respectively.

LBA Sectors in a disk are addressed by logical block address aka lba.

viii

1

Introduction

Hard disk drives have been in use for a significant amount of time now. Even with

the availability of Solid State Drives(SSDs), hard disk drives are still popular because

they provides cheap and reliable storage. Moore’s Law states that the speed of the

processor double every 18 months. But according to Mark Kryder, when we compare

this growth rate to the rate of growth of hard disk drive capacities, even that rate

seems slow[25]. This explosive growth in the disk drive capacities has been possible

with the support of new disk drive technologies as perpendicular recording etc[14].

The growth which is being currently observed is reaching its limit in terms of areal

densities. Sustained growth at this rate is not possible without new technologies

and significant changes to the hard disk drive technologies and interfaces. Most

of proposed technologies are disruptive and define new methods to store data in

a denser format on the hard disk drive then what is possible using current hard

disk drive technologies. More disruptive the technology, the longer it will take for

it to be assimilated in the market, also parameters such as performance, cost and

compatibility with the current hardware and software architecture will also play a

very important factor in their acceptance in the market. Technologies such as Bit

1

Patterned Magnetic Recording (BPMR)[13] and Heat Assisted Magnetic recording

(HAMR)[22] promise significant increase in the areal density but they will also require

significant change in the drive physical layout, interfaces, architecture and operating

techniques, hence it might take a considerable amount of time for these technologies

to be accepted in the market[19].

Shingled Magnetic Recording(SMR)[15, 12, 17] promises to increase the areal

densities of the hard drive without significant changes in either the manufacturing

process or the operation techniques of these hard drives. SMR will be able to support

the current growth rate being observed with the hard drives areal densities.

One of the biggest factors hindering the increase in areal densities is the disparity

in the width of read and the write head. In order to provide persistent data storage,

data needs to be written on a wider pitch to make sure that enough magnetic flux

is generated to store the data, however data can be read correctly from a much

narrower pitch than what it is written to. Write heads can’t be made any narrower

than what they currently are, it will be unable to maintain sufficient magnetic flux

to store the data correctly[24]. Currently track pitch is defined by the width of the

write head and this ensures that two adjacent tracks do not overlap. Read heads are

also aligned to write pitch as well and it can read data correctly from one track at a

time. Although write heads can’t be made narrower than what they are, read heads

still can be, hence new methods for arranging tracks can be designed to increase

areal densities.

SMR works by overlapping the track in a hard drive in a method similar to

shingles on the roof of a house. Hence a track on SMR drive overlap with ’n’ other

downstream tracks. Such an arrangement will help in increasing the areal densities

for these drives. Though the data can be read correctly using a narrower read head,

writing data on any random sector will result in extremely peculiar write anomalies.

A write on any group of sectors might overwrite data on certain downstream sector.

2

The extent of overwrite is influenced by various disk geometry parameters such as

position of the sector being written, level of shingling supported on the hard drive,

zoning etc. Hence new methods to handle this write anomaly needs to be designed,

however data can still be read conventionally using a narrower read head. Hence

SMR promises to offer increased areal densities with minimal changes in the current

disk technology.

Various methods to make use of SMR drives have been discussed in Feldman13

and can be broadly classifies as Drive Managed SMR, Host Assistive SMR and Co-

operative SMR[14].

Drive Managed SMR describes methods in which the disk firmware manages

the write anomalies of the drives. This can be done by maintaining a mapping of

the logical block numbers (LBAs) to the sectors on the hard drive. A write which

can cause an overwrite on downstream sectors can be redirected to another set of

sectors in the drive and an entry for this can be maintained in the mapping table.

This method is similar to Flash Translation Layer(FTL) which is currently being

used extensively on Solid State Drives(SSDs). Such a method will not require any

changes in the current file system implementation and can be an important factor

for the early adoption of this drive technology. However with such an approach, file

system developers will not be able to ensure good locality of the data on the drive

and on a drive with mechanical parts, locality will play a very important role in

defining the performance characteristics of the drive[15].

Host Assisted SMR is another approach in which, it is the responsibility of the

host application to manage the write anomalies of the drive. Such a method will

either require changes in the current filesystem implementations or new file systems

need to be developed to leverage these drives. By letting the host application manage

the write anomaly, host applications will be able to guarantee good locality for the

data stored on these drives and hence provide good performance characteristics for

3

the application. As discussed in Feldman13, these disks can be modelled as either

as Strict Append SMR[14] or as Caveat Scriptor SMR[14]. Strict Append model

visualizes the drive as being divided into multiple bands, where each band is of fixed

capacity. Two bands are separated by an ’interband gap’, with such an arrangment,

writes on one band do not overwrite data on the other band and hence localize the

shingling effect to only one band[12]. On the other hand in the Caveat Scriptor model,

entire drive is exposed to the application, and it is responsibility of the application

to cope up with the characteristics of the drive.

4

2

Background

This chapter describes the motivation behind Caveat Scriptor.

2.1 Types of FileSystem : A cleaning perspective

Although filesystems can be classified into many different types depending upon its

applications, use cases, devices being supported, optimization and performance etc,

here we will try to classify them on the type of allocation, de allocation and cleaning

algorithm used with the filesystems.

All the filesystems need to keep track of free and allocated data blocks, allocated

data blocks are one which have live data which the user is accessing on them while

free blocks are one which do not have live data. Blocks are marked live when user

writes data on a block and marked free when file is deleted. Depending upon the

allocation algorithm, a background cleaner thread might be used to perform garbage

collection on the file system otherwise cleaning can be done implicitly as well.

5

2.1.1 Cleaner thread

If we look into log structured file systems[21] like BSD-LFS[20] and NILFS[7] which

have been designed to improve the write performance, require a garbage collection

algorithm to free blocks. This cleaning algorithm moves live data around in the

filesystem to free up segments. These freed segments can be used later to write data.

Such an implementation adds the complexity of managing a cleaner thread. This

thread identifies live and dead blocks and copies data into a new segment to free

data blocks.

2.1.2 Implicit cleanup

On the other hand, there are filesytems which perform implicit garbage collection, like

the ext 2/3/4 filesystems. These filesystems allocate blocks when a file or directory

is created from the block bitmap. Blocks in this bitmap are marked as allocated

when blocks are allocated for a write operations and free when these blocks are no

longer in use[1]. This bitmap is used by the allocation mechanism to satisfy the

next allocation request. Using such a method performs implicit garbage collection

because the block allocation are done from the bitmap and no cleaner thread is used

to reclaim blocks later, blocks are marked as free as soon as they are not in use.

These methods for allocating and deallocating data blocks have been developed

assuming the current behaviour of disk drives. Currently the effects of write onto

a particular sector are localized to the sector being written to. This approach will

not work on SMR drives, as a write will overwrite data on downstream sectors.

Hence new allocation, de-allocation and cleaning mechanism needs to be developed

to support shingled drives.

6

2.2 Strict Append Filesystem SMRFs

In Strict Append, a SMR disk is modelled as a drive which is divided into multiple

bands, where each band is of a fixed capacity. Each band will also maintain a write

pointer to which the new data is appended to. When a band does not contain any

live data then the write pointer for this band can be reset to the start of the band

and new data can then be written using the append only semantic[17].This model

will also require new disk interfaces to add support for bands and the write pointer

in the band.

2.2.1 Disk Apis

modesense

This command is used to determine the characteristics of the hard drive such as the

sector size, band size and the number of bands in the drive.

managebands

This command will help in managing the band inside the disk. This command will

also provide interfaces to set the position of the write pointer for a band, set the

position of the write pointer for a band and also a method to reset the pointer for

all the bands.

read

This command is similar to the read command on a normal drive, this command will

also provide method to specify the band id and also the relative band address inside

this band from where the data would be read.

write

This command will also take a parameter to specify the band id where the data

would be written to. The data to be written will be appended after the position of

7

the current write pointer. Once the data has been written, then the write pointer

for the band will be updated to the new position.

2.2.2 Filesystem

As explained in Suresh’s report Strict Append-SMRfs[23] is a filesystem which is

implemented on strict append SMR disk. Strict Append-SMRfs is a FUSE based

filesystem and it also had a 2GB buffercache. All the read and write operations cause

the file to be staged in the buffercache. When the buffercache decides to move the

file to the disk then it identifies a band to be written to using the band meminfo

module. This module keeps information about the free capacity of the various bands

in the drive. Once a band is identified then the data is written on the disk. The

drive is partitioned into unshingled and shingled partition. Unshingled partition is

used to store the file metadata while the shingled partition is used to store the actual

file data. A file on Strict Append-SMRfs resides only in one band. A file is identified

by a pointer which contains the band id, the offset inside the band where the file

data resides and number of blocks of the file which are in that band. Buffercache in

SMRfs supports full files and all the writes for a file are collated in the buffercaches

before the file is pushed to the disk when it is closed. When a file is overwritten, then

the file is moved to a new location and the blocks which were previously allocated

are marked for cleaning. Since the data is written inside a band in a strictly append

manner hence old live data should be moved to a new band to free up space in a

partially filled up band.

2.2.3 Cleaning

When the filesystem reaches a certain pre-determined threshold on the filled up

filesystem capacity or when cleaning is explicitly triggered, a garbage collection

thread runs to free up bands which contain partial live data. Cleaning works by

8

Disk/EDI
Layer

Address
Interpretation
Layer

Syscall
Wrappers

Cleaner Buffercache

Shingled
space

Unshingled
Space
(BTRFS)

Band meminfo module

Read/write request
Get/Set band util

Update metadataCleaning in bands Read/write data

Update file
metadata

Address
Agnostic
Layer

Figure 2.1: Strict Append SMRfs Workflow

moving the live data in one band to another band and then resetting position of the

write pointer in this band to the start of the band, hence cleaning the band and

freeing up the dead blocks in the band. This thread then updates the inode struc-

ture accordingly to the new location of the file. Cleaning is influenced by various

cleaning strategies which have different efficiencies and cleaning cost associated with

them. Cleaning cost is attributed to the compute overhead spent and disk resources

used while performing the cleaning. It is also influenced by other parameters as the

9

thread management overhead and inode update overhead etc. Such a filesystem will

also require running a cleaning algorithm even when the dataset has lots of small

files which have a small life span.

10

3

Caveat Scriptor

3.1 Motivation

As observed earlier, strict append approach to SMR helps in avoiding the write

anomaly of the caveat drive, but it introduces the cost of running a cleaning algorithm

on the filesystem to free up the blocks, hence attributing to additional complexity

and cost.

In order to improve the cleaning cost observed with Strict Append SMRfs, Caveat

Scriptor is proposed as a model which will expose important disk parameters to the

host application, which will have to take care of the write anomaly of the disk. Such

a model will also help in performing implicit garbage collection in the file system.

While this might add extra complexity in the allocation algorithm and filesystem

workflows but will ensure a much lower cleaning cost associated with the filesystem.

3.2 Definition

Caveat Scriptor models the SMR disk as a standard disk, which is addressed using

logical block number, where size of sector is configurable (4KB in this document).

11

Figure 3.1: DID and DNOR calculation

In order to describe the unique nature of these drives, minor disk interface changes

are necessary. These changes will help in differentiating these drives from the regular

hard disk drives.

Caveat disks introduce two important parameters called the Drive No Overlap

Range(DNOR)[14] and the Drive Isolation Distance(DID)[14]. Drive No Overlap

Range is the minimum number of sectors which are adjacent to a particular sector

and will not be damaged by a write on that sector. Drive Isolation Distance is the

maximum number of downstream sectors which might be overwritten because of write

on a particular sector. These parameters are heavily influenced by the actual disk

geometry: number of tracks which are overlapping, disk layout, number of platters,

number of sector on each track and zoning. The disk drive can be conservative with

these parameters, but it must guarantee that DNOR and DID are valid for every

write at any address on the drive. These parameters are explained in Figure 3.1.

DNOR for a disk with variable number of sectors per track is defined as minimum

12

of all DNORs for every track while DID for a disk is maximum of all the DIDs for

each track. DID and DNOR must be selected so that they will work for all the

addresses, even if the disk has zoning as well.

The parameters DID and DNOR satisfy the equation 0 <= DNOR <= DID.

Whenever a write is performed on sectors from i to j, then sectors from MAX(i + 1

+ DNOR, j + 1) to j + DID might be damaged. Number of sectors which actually

get damaged depend a lot on the sector number, position of the sector on the track

and alignment of the sector with adjacent tracks.

Sectors which will actually be damaged because of a write on a particular sector

can be determined correctly with the complete knowledge of the disk geometry, but

that would require keeping an extremely large metadata to identify the precise sectors

which are definitely damaged because of a particular write. With the help of these

two parameters, sectors which might be damaged because of the write can easily be

determined. These parameters will simplify the calculation for the ”maybe” damaged

sectors.

3.3 Disk Semantics

A Caveat Scriptor disk is defined by four parameters which are disk size, sector size,

DID and DNOR. Support should be added to disk interface protocols to fetch these

parameters from the disk.

3.4 Support for Implicit Cleaning

When Caveat Scriptor model is compared to Strict Append in which cleaning was

required because a band contained both live and dead data and since the data could

only be written in a strict append manner a band should be cleaned before it can

be re written again. In order to clean a band, the current live data was moved to a

different band, the write pointer for the band reset to the start of the band and thats

13

when the band can be written again. With the Caveat Scriptor model, the data can

be written anywhere on the disk ensuring that the shingling effects of the writes are

taken care of. With this model implicit cleaning can be supported by maintaining

a bitmap of free and allocated blocks and using that bitmap in making allocation

decisions while allocating the blocks for write.

Filesystem on the caveat disk can make use of this bitmap and pad the write

with extra unused sectors which will be used to absorb the shingled effects of the

write operation. These extra padded sectors can be reclaimed later and used for the

subsequent allocation decisions.

14

4

Caveat Scriptor - SMRfs

In this chapter, we describe the disk interface for Caveat Scriptor. We also describe

a method to implement filesystem over Caveat Scriptor disk.

We implemented a host assisted file system in which the filesystem handles the

write anomalies of the Caveat Scriptor disks. The motivation was to build a filesys-

tem on a Caveat Scriptor disk which perform cleaning implicitly. Such a method will

help in efficient use of SMR disks with minimal cleaning overhead. This filesystem is

developed using the File System in UserSpace(FUSE), this makes the development of

the filesystem easier. Also this file system has been developed by modifying the Strict

Append-SMRfs, metadata and buffercache implementation in Strict Append-SMRfs

has been used in this implementation. This helped in minimizing the development

time.

This implementation will make use of the DNOR and DID parameters exposed

by the disk and use them while making allocation decisions and also while writing

data on to the disk.

15

4.1 Overwrite Detection

Since the data on a downstream sector can be overwritten because of write on an

upstream sector, method to detect read from an overwritten sector should be added

to the disk firmware. This method will help in identifying a read on sector which

has previously been damaged by an overwrite. To support such a method, a bitmap

should be maintained by the caveat disk. This bitmap keeps a track of overwrite

on the disk blocks. This bitmap will ensure that a read request from a ”maybe

damaged” sector fails and appropriate error is returned. Initially all the sectors in

the disk are marked as maybe damaged. Whenever a write is performed on any set

of sectors, they are marked as ”not damaged” while downstream overwritten sectors

derived from DID and DNOR are marked as maybe damaged. Hence after writes on

the disk drive, ”not damaged” sectors will contain user data while ”maybe damaged”

sectors have been overwritten because of write on other sectors.

Such a method would help in identifying and debugging invalid read requests to

the disk.

4.2 Disk Interfaces

Caveat disk apis are the api for the software layer wrapped around the disk. These

apis have been designed such that the interfaces are independent of the filesystem

implemented over these disks.

4.2.1 caveat modsense

Caveat modsense will fetch important drive parameters from the disk, it will fetch

parameters as sector size, disk size and the values of DID and DNOR. These param-

eters will greatly influence the behaviour of the disk and also the filesystem designed

over these disks.

16

4.2.2 caveat write

Caveat write will accept a buffer, the starting logical block address on the disk and

number of sector to be written. This api will write the data on the disk and will

also determine the number of sectors which might potentially get damaged because

of this write and mark them appropriately in the caveat bitmap.

4.2.3 caveat read

Caveat read will accept a buffer, the starting logical block address on the disk and

number of sector to be read. This api will first check that the sectors being read

are not damaged from a previous write using the disk bitmap and then will read the

required number of sectors from the disk. If an error is detected, then read fails and

an appropriate error is returned.

4.2.4 caveat create

This api is used to create an emulated caveat disk. This will create and initialize the

disk with the disk parameters as sector size, disk size, DID and DNOR. This will

also initialize disk bitmap as maybe damaged for all sectors.

4.2.5 caveat open

Caveat open opens a disk which was previously created with caveat create api and

initializes the in-memory data structures. This disk can then be accessed using

caveat read and caveat write apis.

4.2.6 caveat dump

This api is present only for debugging purposes and can be used to dump caveat disk

information when an error occurs. This api was found to be extremely useful while

developing the filesystem for caveat disk.

17

4.3 Disk Partitioning

Caveat drive is divided into two partitions, one of the partition is unshingled, which

implies that all the write operations on the blocks of this partition do not cause any

shingling effect while the other partition still exhibits shingling nature of the drive.

4.3.1 Unshingled Partition

A small portion of the drive is marked as unshingled where all the file metadata is

stored, other information such as directory and extended attributes are also stored

in this partition. This partition is formatted using ext4 filesystem. This method was

used to expedite the prototyping. With correct implementation all the metadata

can also be stored in the unshingled portion as well, but would require longer devel-

opment cycle. Unshingled portion can be generated in shingled area by appending

DNOR sectors by DID number of sectors. This will ensure that the writes on these

unshingled sectors do not cause any overwriting on downstream sectors.

4.3.2 Shingled Partition

Shingled partition is used to store the actual file data blocks. Writes on this portion

is susceptible to write anomalies of shingled drives.

4.4 File System Semantics

Caveat Scriptor-SMRfs implements a 2GB buffercache. Currently the buffercache

supports full files only. All the read and write to a file will cause the entire file to be

read to the buffercache. When a file is closed and is pushed onto the disk, even then

the entire file is stored contiguously on the disk

18

4.4.1 File System Metadata

File System Bitmap

Caveat SMRfs maintains a filesystem bitmap, this bitmap is used to make alloca-

tion decisions. These allocation decisions are triggered by a write operation on the

filesystem. It should be remembered that this bitmap is different from the bitmap

maintained by the caveat disk. This bitmap is used to determine the free block in

the filesystem. This bitmap is updated everytime a file is stored by the filesystem

onto the disk. Blocks will be marked as allocated in the bitmap when the blocks are

allocated for write operation on a file while they will be marked as free when a file

is unlinked.

Initially when the filesystem is created for the first time, all the blocks are marked

as free, subsequent write and unlink operation will change the bitmap.

Block freelist

Blocks which are marked as free in the bitmap are also tracked in a linked list as

shown in figure Figure 4.1. Every node in this linked list tracks an extent of blocks.

An extent is defined by the starting block address and number of contiguous blocks

from the starting block. This linked list is sorted in ascending order on logical block

addresses, sorting will help in identifying the adjacent free blocks. This will help in

identifying extents which can be coalesced together to create a bigger extent. All

the allocation and de-allocation requests will be done with the help of this linked list

and will also modify the list as well.

Such a method to store this list in memory will perform better than lookups to

block bitmap which is stored on the disk and would require frequent disk operations.

19

Figure 4.1: Block extent freelist

File System Inode

Since SMRfs stores a file contiguously on the disk, an inode contains the starting

block address on the disk where the file is stored and its length.

4.4.2 File System Workflows

All the filesystem operation can be divided into 2 sets, (1) operations on metadata

and (2) operations on data blocks. Workflows which require access to the file data

are depicted in Figure 4.2 and explained in following section.

init

This api is called when the filsystem is mounted. This api will read the filesystem

bitmap and will determine the free and allocated blocks and will construct the freelist

as well.

write

This api will write data on the shingled portion of the disk. Whenever the buffercache

decides to push a file to the disk, this api ensures that live data on the drive is not

overwritten. It determines the number of blocks which are to be written to the disk

and then appends DID number of blocks as footer to ensure that overwrite caused

20

Figure 4.2: Caveat SMR Workflows

by this write does not overwrites other files, this is shown in Figure 4.3. This

footer is only appended when the blocks for this file are being allocated on the disk

and is freed up when the write to the disk succeeds. A write operation will cause

modification to the filesystem and disk bitmap as well.

It should be noted that any inplace writes for a file, causes the file to be relocated

to another set of blocks on the disk. The space reserved by the file earlier is freed

and inode is updated with the location of the file.

read

Read operation will not be affected by the shingling nature of the drive. Read

operations can be satisfied by the file information stored in the inode structure i.e.

starting block address and the size of the file.

21

Figure 4.3: Write Dataflow

unlink

Whenever a file is deleted, and if the number of links are zero then the blocks

allocated to the file can be marked as free. Blocks will be updated both in the

filesystem bitmap as well as in the freelist. While updating the blocks in the freelist,

blocks adjacent to a freelist extent will also be checked in the bitmap. If the adjacent

blocks are found to be free then these extents will be coalesced to create a bigger

extent. These blocks will be used later for other allocation decisions.

truncate

Truncate will be similar to unlink and will free the blocks in the file if the file is larger

than the offset specified in truncate, otherwise truncate might lead to allocation of

blocks as well.

4.4.3 Block allocation

All the free blocks in the file system are clustered into extents, where each extent

maps contiguous blocks in the drive. These extents are sorted on block addresses

and referenced using a linked list. This list is called as freelist as explained earlier.

All the allocation and deallocation operations will access and modify this freelist.

22

These operations will cause fragmentation in the file system. After sufficient number

of operations, there will be extents which have free blocks but can’t be used to make

allocations because they are too small for the current allocation request. Extents

with number of blocks less than DID will not be used for making allocation decisions

unless blocks adjacent to it are freed and then these extents are coalesced to create a

bigger extent. As discussed earlier use of extents and coalescing will perform implicit

cleaning in case of Caveat Scriptor.

4.4.4 Allocation Algorithms

Various allocation algorithms have been explored to determine the effects of alloca-

tion strategies on fragmentation. Allocation algorithms also play an important factor

in the amount of seek resulting from the operations on the caveat disk.

Best Fit Allocation

In this allocation policy, all the free extents are organised in a segregated list Figure

4.4, in this segregated list extents are grouped together by their sizes. Every group in

this list track atleast 1MB of extents and the sizes of these groups grow exponentially

in powers of 2. Free nodes inside every group are sorted in increasing order of sizes.

Sorting of extents help in best fit and worst fit allocation algorithm.

In this algorithm, allocation decisions are taken with the help of this segregated

list. For a given allocation request, a group is selected depending upon the size of

the request and then the list is traversed to select an extent with the best fit. When

a request to free a certain number of blocks on the disk is made, the required number

of blocks are freed and then coalesced. This extent is then inserted into the freelist

and the segregated list.

23

[0]
sizeof (DID) to 10MB

[1]
10MB to 100MB

[2]
100MB to 500MB

[3]
500 MB to 1GBMB

[4]
1GB to 10GB

[n]
M GB to N GB

1MB LBA:
4000

5MB LBA:
10000

2MB LBA:
20000

300MB
LBA:1000

400MB
LBA:5000

NULL

NULL

NULL

NULL

NULL

NULLX GB LBA:
60000

Sorted by LBAs

Segregated Free List

Figure 4.4: Extent segregated list

Worst Fit Allocation

In this allocation policy, all the free extents are organised in a segregated list, similar

to the method used in case of best fit allocation. Allocation decision are again done

from a group determined by the size of the allocation. However in case of worst fit,

allocation is always done from the last free node in the group, this last node is always

the biggest node. Free request are again satisfied the same way as in case of best fit

allocation policy, free nodes are coalesced before they are added into the freelist and

segregated list.

First Fit

In this allocation policy, all allocation decision are made using the freelist in which

all the free nodes are sorted in increasing order of logical block address. For every

allocation request the freelist is searched from the first node and required number

of blocks are allocated from the first free node with sufficient number of blocks. A

24

request to free the blocks works in exactly the same way as defined for the previous

algorithms.

Next Fit

This allocation policy works on the allocation requests from the freelist and the

allocator keeps a track of the last allocation request and performs the next allocation

from an extent which adjacently after the previously allocated lba. If the previously

allocated lba is in between a extent and the extent has sufficient number of blocks

then, the extent will be split into two. Allocation is satisfied from one extent while

the other is added back into the freelist. A request to free the blocks works in exactly

the same way as defined for the previous algorithms.

Last Accessed Postion Fit

In this allocation policy too, the allocation requests are satisfied from the freelist.

The allocator keep the track of the last disk access operation. This operation can

either be a read or write. Allocator queries the disk for the current location of the

disk head. In order to fetch this location, support was added into the disk emulation

api to return the current location of the disk head. This location is then used to

perform the allocation from the freelist using an extent whose whose starting block

address adjacently after the queried position. Also similar to next fit, if the previously

allocated lba is in between a extent and the extent has sufficient number of blocks

then, the extent will be split into two. Allocation is satisfied from one extent while

the other is added back into the freelist. A request to free the blocks works in exactly

the same way as defined for the previous algorithms.

25

5

Results

In this chapter we will describe the testing infrastructure and discuss the test results

in detail as well.

5.1 Testing Infrastructure

All the test were performed on NSF Probe Cluster [16, 26, 8] nodes available with

Parallel Data Lab at Carnegie Mellon University. Every node in the Marmot has

single core AMD Opetron 1Ghz processor, 8 GB RAM and a Western Digital SATA

7200 rpm 2TB WD Caviar Black hard drive.

Caveat drives have been emulated over the standard hard drives with appropriate

DID and DNOR values. Different values of DID and DNOR have been tried while

running the capacity test.

5.2 Performance Test

Performance of the Caveat Scriptor SMRfs was compared with ext4[3], NILFS[7] and

Strict Append-SMRfs. Ext4 is a journaling file system for linux which supports ex-

tents and performs cleaning implicitly and is currently the default filesystem shipped

26

with linux. NILFS is a log structured based file system which supports continuous

snapshotting. Strict Append-SMRfs is a file system developed for Strict Append

SMR disks, this file system considers the disk to be divided into multiple bands,

each band maintains a write pointer where the data to be written is appended to,

any data is written on a particular band in a strict append order.

All the performance analysis for Caveat Scriptor was done using the Best-Fit

allocation algorithm. Also all the test have been run with size of buffercache limited

to 2GB. Performance was compared with the following benchmarks PostMark[18],

Lfs and vdbench[9] benchmarks. Apart from these benchmarks, compilation time of

Linux code was also measured for each of these filesystems.

While running the performance tests, the value for DNOR is 6 blocks of 4096 /

48 sectors of 512 bytes each and DID is 16 blocks of 4096/ 128 sectors of 512 bytes

each. These values are based on the assumption that there are 63 sectors of 512

bytes each on a single track of the Hard drive. These values were derived from the

”fdisk -l” output of the disk mentioned above.

5.2.1 Large File Benchmark

LFS test will create files of size 100MB and 500MB each and will run sequential read

and write as well as random read and writes on the same file. Throughput is being

compared for this benchmark.

When the throughput observed in this benchmark is compared for different filesys-

tems, from Figure 5.1 and Figure 5.3 it can be observed that Caveat Scriptor-SMRfs

exhibits similar throughput characteristics as other filesystems. It should be noted

however that the throughput for write operation from Figure 5.2 and Figure 5.4,

is significantly lower in case of Caveat Scriptor-SMRfs. One of the most probable

reason for this can be user space implementation of the filesystem.

27

Figure 5.1: Read throughput for LFS test with 100MB file

Figure 5.2: Write throughput for LFS test with 100MB file

28

Figure 5.3: Read throughput for LFS test with 500MB file

Figure 5.4: Write throughput for LFS test with 500MB file

29

Figure 5.5: File operations per second for vdbench benchmark

5.2.2 Vdbench

Vdbench will create 110 directories and a total of 10,000 small files distributed evenly

across these directories. The size of all the files combined is equal to 1.2 GB. This

benchmark computes the number of file operations every second.

In case of Vdbench, as shown in figure Figure 5.5, the number of file operation

per second are again similar to the other filesystems. Caveat Scriptor SMRfs here

performs better than NILFS and Strict Append-SMRfs.

5.2.3 PostMark

Postmark is a benchmark which simulates the behaviour of mail servers. This bench-

mark will create multiple small files.

As can be seen from Figure 5.6 All the filesystems perform equally in all param-

30

Figure 5.6: File operations per second for Postmark benchmark

eters for this benchmark. The most probable reason for this might be the small size

of this benchmark.

5.2.4 Linux Compile

In this test, linux code was compiled on all the four filesystems. For this benchmark

linux version 2.6.31.10 was used.

As can be seen from Figure 5.7, Ext4 and Nilfs performs equally good when we

compare the compilation time. The same can also be observed for FUSE based Strict

Append and Caveat Scriptor as well.

All the performance test result show that Caveat Scriptor-SMRfs exhibits similar

performance when compared to Strict Append-SMRfs.

31

Figure 5.7: Linux Compilation time in seconds

5.3 Capacity Test

In order to evaluate the cleaning performance of the disk, we used Aging tool [27]

to create multiple files on the filesystem. This tool takes the filesystem size to fill

up as an argument, and then it creates multiple files to reach the required size and

then keeps deleting and re-creating new files to maintain the filled-up size of the

filesystem. This tool is extremely useful in determining the cleaning efficiency of the

file system.

Aging tool can be configured to create different kinds of workloads, here in the

current experiment, aging tool will run for 100,000 operations. Operations are ran-

dom in order and will create and delete files randomly. The ratio of create operations

to delete operations is 4:1 until steady state is reached. This tool generates differ-

ent files determined by a weight associated with each file size. Heaviest weight was

32

assigned to small files of size 4 KB and 8 KB, this tool will also generate big file of

size close to 4 MB a lot less frequently. The files thus created are also deleted in a

similar manner. Frequent creation and deletion of files causes aging in the filesystem

and will cause frequent coalescing to happen when files will be deleted. This tools

hence helps in understanding the cleaning performance of the filesystem.

All the tests have been run for a filesystem of usable capacity of 1 GB, this size

is only the size of the data blocks in the filesystem and not the metadata.

Since Caveat Scriptor-SMRfs appends a DID at the end of every write, hence it

introduces fragmentation in the filesystem. Also since DID is appended to the end

of every write, hence we will never be able to run a benchmark to completion on

Caveat Scriptor-SMRfs without overallocating the drive capacity. Hence the aging

tool was run multiple times to determine the percentage of overallocation for various

allocation algorithms.

In order to check for different DID values, aging tool was run once with DID as 16

blocks of 4KB and then with DID as 512 blocks of 4KB. Both of these test were run

on a filesystem with usable capacity of 1GB. Different over-allocation percentages of

the disk capacities were observed for both the values of DID.

5.3.1 Test with DID as 16 4KB blocks

For this value of DID it can be observed from Figure 5.8 and Table 5.1 that differ-

ent values of overallocation were needed to run a 1GB workload on this filesystem.

The lowest value of overallocation(2%) was observed for Next fit and Last Accessed

Position fit algorithm while the highest overallocation(5%) was needed for Worst fit

and Best Fit allocation algorithm.

If we also look into Figure 5.9, it is observed that the total amount of blocks

allocated by the filesystem is 2.5 times the usable filesystem capacity of 1GB. The

implicit cleaning algorithm used in Caveat Scriptor-SMRfs marks the blocks as free

33

Figure 5.8: Percentage of unusable free blocks over total blocks in the disk

Best Fit First Fit Next Fit LAP Fit Worst Fit

Total Disk blocks 272642 275354 267399 267399 275354
Total Free blocks 10498 13210 5255 5255 13210
% of free block over total
blocks

4% 5% 2% 2% 5%

unusable blocks 8287 8437 936 1166 819
% of unusable blocks 3.04% 3.06 % 0.35% 0.44% 0.30%
Total usable blocks 2211 12391 4319 4089 4779
% of usable blocks over total
free blocks

21.06% 36.13 % 82.19 % 77.81% 93.80%

Table 5.1: Fragmentation with DID as 16 4KB blocks

34

Figure 5.9: Overallocation & cleaning performance for DID as 16 4KB blocks

Brown line shows the over allocation for Best Fit, yellow line for Worst Fit and First
Fit, while the dark blue line for Next Fit and LAP Fit

and coalesces the blocks to create bigger extents which will be used for the subsequent

allocations. Also the cleaning algorithm implicitly cleans blocks with total capacity

1.5 GB !

Fragmentation produced by all the algorithms show different characteristics. Last

Accessed Position Fit and Next Fit and Worst Fit algorithm mark the least number

of blocks as unusable while the best fit and first fit algorithm results in most block of

the disk to be marked as unusable this is shown in Figure 5.8. Most of the extents

for these algorithms have less than 16 blocks, and since the value of DID is 16, any

extent with less than 16 blocks will be marked as unusable and hence will not be

35

Best Fit First Fit Next Fit LAP Fit Worst Fit

Total Disk blocks 327693 327693 288371 288371 340800
Total Free blocks 65549 65549 26227 26227 78656
% of free block over total
blocks

25% 25% 10% 10% 30%

unusable blocks 61120 65891 8651 6708 62005
% of unusable blocks 18.65% 19.33% 3.00% 2.33% 18.92%
Total usable blocks 4429 12765 17576 19519 3544
% of usable blocks over total
free blocks

6.76% 16.23% 67.01% 74.42% 5.41%

Table 5.2: Fragmentation with DID as 512 4KB blocks

used in further allocation decision unless coalescing happens on adjacent blocks to

create bigger extents.

5.3.2 Test with DID as 512 4KB blocks

Apart from the DID value of 16 blocks of 4KB each, the other value of DID which we

chose is 512 blocks of 4KB. This value was calculated depending on the Drive Transfer

Rate (138MB/s) and the rotational speed (7200 rpm) for the current drives[10], from

these parameters, the amount of data fetched from every rotation is close to 1MB

and we chose this value to calculated the value of DID.

For this new value of DID it can be observed from Figure 5.10 and Table

5.2 that different values of overallocation were needed to run a 1GB workload on

this filesystem. The lowest value of overallocation(10%) was observed for Next fit

and Last Accessed Position fit algorithm while the highest overallocation(30%) was

needed for Worst fit allocation algorithm. As can be seen from Figure 5.11 the total

amount of allocation requests are almost 2.5 times the fill-up size of the filesystem.

The implicit cleaning frees up blocks when the files are deleted. Cleaning would also

coalesce data blocks to create bigger extents which would be used later for coalescing.

For this value of DID also, Last Accessed Position Fit and Next Fit algorithm

36

Figure 5.10: Percentage of unusable free blocks over total blocks in the disk

mark the least number of blocks as unusable while the best fit, first fit and next fit

algorithm results in most block of the disk to be marked as unusable this is shown in

Figure 5.10. Most of the extents for these algorithms have less than 512 blocks, and

since the value of DID is 512, any extent with less than 512 blocks will be marked as

unusable and hence will not be used in further allocation decision unless coalescing

happens on adjacent blocks to create bigger extents.

37

Figure 5.11: Overallocation & cleaning performance for DID as 512 4KB blocks

Yellow line shows the over allocation for Best Fit and First Fit Algorithm, light blue
line for Worst Fit, while the dark blue line for Next Fit and LAP Fit

38

6

Conclusion

From the results and analysis, it can be concluded that a filesystem can be designed

and developed over this extreme interface, Caveat Scriptor. Although this interface

might corrupt data on downstream sector, but if the allocation decisions are taken

correctly, then overwrites can be avoided and existing live data on the disk would

still be consistent.

Filesystems can easily be implemented on disk supporting Caveat Scriptor model

by doing an over-allocation for every allocation request. This over allocation will

mitigate the shingling effects of the writes and then these blocks, which are serve as

padding for the actual user data can later be freed when the write request finishes.

Caveat Scriptor also provides a simple interface when compared to Strict Append

model, Strict Append model will require extensive changes in the disk interface

and disk firmware. Firmware changes will be required to maintain the position of

the current write pointer inside the band. Interface changes will be required to

fetch and set the position of the write pointer apart from fetching the disk drive

parameters. Caveat scriptor can be used with an interface similar to the one used

in the current disk drive technology, however minor modification will be needed to

39

return the important disk parameters as DID and DNOR so that a filesystem can

be implemented over these disk.

It can also be concluded that the cleaning cost associated with the Caveat Disk

is minimal when compared to the strict append model. In the strict append model,

data is always written on the drive in a log structured nature and hence cleaning is

always necessary to perform garbage collection and free dead data blocks. Caveat

Scriptor provides a technique where garbage collection happens implicitly and hence

provides simpler and efficient cleaning semantics.

Shingling nature of the disk will definitely cause fragmentation in the file system

and some blocks will be marked as unusable because the number of contiguous free

blocks is less than DID. Using the correct block allocation algorithm will help in

minimizing this unused capacity. This unused capacity of the caveat drive can also be

mitigated by over-allocating drive capacity by a small percentage so that workloads

meant for actual capacities can successfully be run on a Caveat Scriptor drive.

40

7

Future Work

Current implementation for Caveat Scriptor is based on a FUSE[5] based file system,

one of the first enhancement will be into to tweak ext4[4, 3] filesystem to support

caveat scriptor. This can be done by changing the block allocation technique in ext4.

Interfaces defined in ext4 maps blocks() should be explored to identify the required

changes.

Another modification will be to enhance buffercache for Caveat Scriptor SMRfs

to support segments of files rather than to support full files in the buffercache. This

might lead to interesting results in the allocation and deallocation because a file now

can reside in multiple contiguous portions of the disk unlike what’s happening with

the current implementation. This might exhibit interesting fragmentation results to

be observed in the filesystem. Efficient use of buffercache and pre allocation of blocks

should help in reducing fragmentation for large files.

Other filesystems as xfs[11] and btrfs[2] can also be modified to add support for

caveat scriptor.

41

Bibliography

[1] “Block bitmap.” [Online]. Available: http://www.nongnu.org/ext2-doc/ext2.
html#BLOCK-BITMAP.” [Accessed 1-September-2013].

[2] “Btrfs.” [Online]. Available: https://btrfs.wiki.kernel.org/index.php/Main
Page.” [Accessed 2-January-2014].

[3] “ext4.” [Online]. Available: http://en.wikipedia.org/wiki/Ext4.” [Accessed
31-September-2013].

[4] “Ext4 (and ext2/ext3) wiki.” [Online]. Available: https://ext4.wiki.kernel.org/
index.php/Main Page.” [Accessed 31-September-2013].

[5] “Filesystem in userspace.” [Online]. Available: http://fuse.sourceforge.net/.”
[Accessed 1-September-2013].

[6] “fs mark.” [Online]. Available: http://fsmark.sourceforge.net/.” [Accessed
1-January-2014].

[7] “Nilfs.” [Online]. Available: http://nilfs.sourceforge.net/en/index.html.” [Ac-
cessed 10-September-2013].

[8] “Probe: Parallel reconfigurable observarional environment.” [Online]. Available:
http://marmot.pdl.cmu.edu/.” [Accessed 1-January-2014].

[9] “vdbench.” [Online]. Available: http://vdbench.sourceforge.net/.” [Accessed
1-January-2014].

[10] “Wd caviar black spec sheet.” [Online]. Available: http://www.wdc.com/
wdproducts/library/SpecSheet/ENG/2879-701276.pdf.” [Accessed accessed 2-
January-2014].

[11] “Xfs.” [Online]. Available: http://xfs.org/index.php/Main Page.” [Accessed
accessed 2-January-2014].

42

http://www.nongnu.org/ext2-doc/ext2.html#BLOCK-BITMAP
http://www.nongnu.org/ext2-doc/ext2.html#BLOCK-BITMAP
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
http://en.wikipedia.org/wiki/Ext4
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
http://fuse.sourceforge.net/
http://fsmark.sourceforge.net/
http://nilfs.sourceforge.net/en/index.html
http://marmot.pdl.cmu.edu/
http://vdbench.sourceforge.net/
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701276.pdf
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701276.pdf
http://xfs.org/index.php/Main_Page

[12] A. Amer, J. Holliday, D. D. E. Long, E. L. Miller, J.-F. Pris, and T. Schwarz,
“Data management and layout for shingled magnetic recording,” IEEE Trans-
actions on Magnetics, vol. 47, no. 10, oct 2011.

[13] E. A. Dobisz, Z. Bandic, T.-W. Wu, and T. Albrecht, “Patterned media:
Nanofabrication challenges of future disk drives,” Proceedings of the IEEE,
vol. 96, no. 11, pp. 1836–1846, Nov 2008.

[14] T. Feldman and G. Gibson, “Shingled magnetic recording: Areal density
increase requires new data management,” ;login: the USENIX Association
newsletter, vol. 38, no. 3, pp. 22–30, June 2013.

[15] G. Gibson and G. Ganger, “Principles of operation for shingled disk devices,”
Carnegie Mellon University Parallel Data Lab, Tech. Rep. CMU-PDL-11-107,
April 2011.

[16] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd, “Probe: A thousand-node
experimental cluster for computer systems research,” vol. 38, no. 3, June 2013.

[17] G. Gibson and M. Polte, “Directions for shingled-write and two-dimensional
magnetic recording system architectures: Synergies with solid-state disks,”
Carnegie Mellon University Parallel Data Lab, Tech. Rep. CMU-PDL-09-104,
May 2009.

[18] J. Katcher, “Postmark: A new file system benchmark,” 1997, technical report
TR3022. Network Applicance Inc. October 1997.

[19] Q. M. Le, K. SathyanarayanaRaju, A. Amer, and J. Holliday, “Workload
impact on shingled write disks: All-writes can be alright,” in Proceedings of
the 2011 IEEE 19th Annual International Symposium on Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems, ser. MASCOTS
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 444–446.
[Online]. Available: http://dx.doi.org/10.1109/MASCOTS.2011.58. [Accessed
31-September-2013].

[20] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman, The Design
and Implementation of the 4.4BSD Operating System. Redwood City, CA,
USA: Addison Wesley Longman Publishing Co., Inc., 1996.

[21] M. Rosenblum and J. K. Ousterhout, “The design and implementation of a
log-structured file system,” ACM Trans. Comput. Syst., vol. 10, no. 1, pp. 26–
52, feb 1992. [Online]. Available: http://doi.acm.org/10.1145/146941.146943.
[Accessed 1-September-2013].

43

http://dx.doi.org/10.1109/MASCOTS.2011.58
http://doi.acm.org/10.1145/146941.146943

[22] R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota,
L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A.
Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” Magnetics,
IEEE Transactions on, vol. 42, no. 10, pp. 2417–2421, Oct 2006.

[23] A. Suresh, G. Gibson, and G. Ganger, “Shingled magnetic recording for big
data applications,” Carnegie Mellon University Parallel Data Lab, Tech. Rep.
CMU-PDL-12-105, May 2012.

[24] D. A. Thompson and J. S. Best, “The future of magnetic data storage
technology,” IBM J. Res. Dev., vol. 44, no. 3, pp. 311–322, may 2000. [Online].
Available: http://dx.doi.org/10.1147/rd.443.0311. [Accessed 14-January-2014].

[25] C. Walter, “Kryder’s law,” July 2005. [Online]. Available: http://www.
scientificamerican.com/article/kryders-law/. [Accessed 10-February-2014].

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar, “An integrated experimental environment for
distributed systems and networks,” in Proceedings of the USENIX Symposium
on Operating System Design and Implementation (OSDI). USENIX, dec 2002.

[27] S. wiki, “Aging tool.” [Online]. Available: https://wiki.pdl.cmu.edu/SMR/
SMRfsTools.” [Accessed 31-September-2013].

44

http://dx.doi.org/10.1147/rd.443.0311
http://www.scientificamerican.com/article/kryders-law/
http://www.scientificamerican.com/article/kryders-law/
https://wiki.pdl.cmu.edu/SMR/SMRfsTools
https://wiki.pdl.cmu.edu/SMR/SMRfsTools

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 Types of FileSystem : A cleaning perspective
	2.1.1 Cleaner thread
	2.1.2 Implicit cleanup

	2.2 Strict Append Filesystem SMRFs
	2.2.1 Disk Apis
	2.2.2 Filesystem
	2.2.3 Cleaning

	3 Caveat Scriptor
	3.1 Motivation
	3.2 Definition
	3.3 Disk Semantics
	3.4 Support for Implicit Cleaning

	4 Caveat Scriptor - SMRfs
	4.1 Overwrite Detection
	4.2 Disk Interfaces
	4.2.1 caveat modsense
	4.2.2 caveat write
	4.2.3 caveat read
	4.2.4 caveat create
	4.2.5 caveat open
	4.2.6 caveat dump

	4.3 Disk Partitioning
	4.3.1 Unshingled Partition
	4.3.2 Shingled Partition

	4.4 File System Semantics
	4.4.1 File System Metadata
	4.4.2 File System Workflows
	4.4.3 Block allocation
	4.4.4 Allocation Algorithms

	5 Results
	5.1 Testing Infrastructure
	5.2 Performance Test
	5.2.1 Large File Benchmark
	5.2.2 Vdbench
	5.2.3 PostMark
	5.2.4 Linux Compile

	5.3 Capacity Test
	5.3.1 Test with DID as 16 4KB blocks
	5.3.2 Test with DID as 512 4KB blocks

	6 Conclusion
	7 Future Work
	Bibliography

