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Abstract

Provisioning a storage system requires balancing the
costs of the solution with the benefits that the solution
will provide. Previous provisioning approaches have
started with a fixed set of requirements and the goal of
automatically finding minimum cost solutions to meet
them. Such approaches neglect the cost-benefit analysis
of the purchasing decision.

Purchasing a storage system involves an extensive set of
trade-offs between metrics such as purchase cost, per-
formance, reliability, availability, power, etc. Increases
in one metric have consequences for others, and failing
to account for these trade-offs can lead to a poor return
on the storage investment. Using a collection of stor-
age acquisition and provisioning scenarios, we show that
utility functions enable this cost-benefit structure to be
conveyed to an automated provisioning tool, enabling
the tool to make appropriate trade-offs between different
system metrics including performance, data protection,
and purchase cost.

1 Introduction

Whether buying a new car or deciding what to eat for
lunch, nearly every decision involves trade-offs. Pur-
chasing and configuring a storage system is no differ-
ent. IT departments want solutions that meet their stor-
age needs in a cost-effective manner. Currently, system
administrators must rely on human “expertise” regarding
the type and quantity of hardware to purchase as well
as how it should be configured. These recommenda-
tions often take the form of standard configurations or
“rules of thumb” that can easily lead to an expensive,
over-provisioned system or one that fails to meet the cus-
tomer’s expectations. Because every organization and in-
stallation is unique, a configuration that works well for
one customer may provide inadequate service or be too
expensive for another. Proper storage solutions account
not only for the needs of the customer’s applications but
also the customer’s budget and cost structure.

Figure 1: Utility provides value beyond mechanism-based
and goal-based specification – Moving from mechanism-
based specification to goal-based specification allowed the cre-
ation of tools for provisioning storage systems to meet fixed
requirements. Moving from goal-based to utility-based specifi-
cation allows tools to design storage systems that balance their
capabilities against the costs of providing the service. This al-
lows the systems to better match the cost and benefit structure
of an organization.

Previous approaches to provisioning [5–7] have worked
to create minimum cost solutions that meet some prede-
fined requirements. Purchasing the cheapest storage sys-
tem that meets a set of fixed requirements neglects the
potential trade-offs available to the customer, because
it separates the analysis of the benefits from that of the
costs. In this scenario, system administrators are forced
to determine their storage requirements (based on their
anticipated benefits) prior to the costs becoming appar-
ent — those “5 nines” are not free. Our goal is to com-
bine these two, currently separate, analyses to produce
more cost-effective storage solutions.

While some requirements may be non-negotiable, most
are flexible based on the costs required to implement
them. Few organizations would say, “I need 5000 IO/s,
and I don’t care what it costs.” Performance objectives
are related to employees’ productivity and potential rev-
enue. Data protection objectives are related to the cost,
inconvenience, and publicity that come from downtime
and repair. These underlying costs and benefits deter-
mine the ROI an organization can achieve, and a provi-
sioning tool needs to consider both.

We propose using utility functions, instead of fixed re-
quirements, as a way for the system administrator to
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communicate these underlying costs and benefits to an
automated provisioning tool. Figure 1 shows a spectrum
of storage configuration methods from setting low-level
mechanisms to communicating costs and benefits using
utility. Utility functions provide a way to specify storage
requirements in terms of the organization’s cost/benefit
structure, allowing an automated tool to provide the level
of service that produces the most cost-effective storage
solution for that environment. A utility function ex-
presses the desirability of a given configuration — the
benefits of the provided service, less the associated costs.
The objective of the tool then becomes maximizing util-
ity in the same way previous work has sought to mini-
mize system cost.

This paper describes utility, utility functions, and the de-
sign of a utility-based provisioning tool, highlighting the
main components that allow it to take high-level objec-
tives from the administrator and produce cost-effective
storage solutions. It describes the implementation and
provides a brief evaluation of a prototype utility-based
provisioning tool. The purpose of this tool is to show the
feasibility of using utility to guide storage system pro-
visioning. After this provisioning tool is shown to ef-
ficiently find good storage solutions, three hypothetical
case studies are used to highlight several important ben-
efits of using utility for storage provisioning. First, when
both costs and benefits are considered, the optimal con-
figuration may defy the traditional intuition about the rel-
ative importance of systemmetrics (e.g., performance vs.
data protection). Second, utility can be used to provision
systems in the presence of external constraints, such as
a limited budget, making appropriate trade-offs to maxi-
mize benefits while limiting the system’s purchase cost.
The third case study provides an example of how changes
in the cost of storage hardware can affect the optimal
storage design by changing the cost/benefit trade-off —
something not handled by minimum cost provisioning.

2 Background

A goal of many IT departments is to support and add
value to the main activities of an organization in a cost-
effective manner. This endeavor involves balancing the
quality and benefits of services against the costs re-
quired to provide them. In provisioning a storage sys-
tem, the administrator attempts to balance numerous ob-
jectives, including performance (e.g., bandwidth and la-
tency), data protection (e.g., reliability and availabil-
ity), resource consumption (e.g., capacity utilization and
power consumption), configuration manageability (e.g.,
configuration stability and design simplicity), and sys-
tem cost. The current best practices for this problem are

based on simple “rules of thumb” that create classes of
storage to implement different points in this rich design
space [31]. For example, an administrator may define
storage classes, such as “business critical” or “archival,”
to denote particular data encodings (e.g., RAID level)
and pools of disks to use for storing the data. The “busi-
ness critical” class may require both high performance
and a high level of reliability, while “archival” data could
be placed on lower performance, lower cost, yet still re-
liable storage.

The task of the administrator is made more difficult with
the emergence of cluster-based storage that provides the
opportunity for a wider range of data placement and en-
coding options. For instance, both FAB [29] and Ursa
Minor [1] allow the use of arbitrary m-of-n erasure codes
for data protection.1 The PASIS protocol [17] used by
Ursa Minor provides the ability not only to use erasure
coding to store data, but it allows the encoded data frag-
ments to be stored onto an arbitrary subset, l, of the sys-
tem’s storage nodes. For example, with a “2-of-3 declus-
tered across 4” encoding, a data object could be stored
using a 2-of-3 scheme with the data spread across stor-
age nodes one, four, five, and six.

It is difficult to determine which data encodings cost-
effectively produce the proper mix of storage objectives
for a particular class of data. A vendor’s support orga-
nization may provide some guidance based on other in-
stallations, but the decision is ultimately up to the ad-
ministrator. Unfortunately, the system administrator is
ill-equipped to make this decision. He may understand
that increasing the difference between m and n will pro-
vide higher reliability and potentially lower performance,
but quantifying these metrics is difficult, even for ex-
perts in the field. Table 1 illustrates the general effects
that changes to the data encoding parameters cause. A
change to any encoding parameter affects nearly all of
the system metrics — some for the better and some for
the worse.

Gelb [16], Borowsky et al. [10], and Wilkes [37] have ar-
gued that administrators should be concerned with high-
level system metrics, not the underlying mechanisms
(e.g., the levels of performance and data protection, not
the values of m, n, and l) and that a management system
should automatically choose the mechanisms that pro-
duce the desired level of each metric. Unfortunately, the
settings that maximize one metric are likely to severely
impair others. For example, configurations that maxi-
mize reliability tend to consume a large amount of capac-
ity, raising the hardware cost and sacrificing some per-
formance. This lack of independence brings the need to
arbitrate between, or trade off, one metric (e.g., power)

1With m-of-n erasure codes, a data block is divided into n frag-
ments, any m of which can be used to reconstruct the original data.



Metric m⇑ n⇑ l ⇑
Availability ⇓ ⇑ ⇓
Reliability ⇓ ⇑ ⇓
Capacity consumed ⇓ ⇑ –
Read bandwidth ⇓ ⇑ ⇑
Read latency ⇑ – ⇓
Write bandwidth ⇑ ⇓ ⇑
Write latency – ⇑ ⇓

Table 1: General effects of encoding parameters on system
metrics – This table shows the general effects on various sys-
temmetrics caused by increasing the data encoding parameters,
m, n, or l. The magnitude of these effects vary considerably and
are difficult to quantify without detailed models. Making the
proper encoding choice manually is difficult because changing
a single parameter affects nearly all the metrics. A system that
is able to choose these parameters automatically must be able
to make trade-offs across metrics.

against another (e.g., request latency). We show that util-
ity functions provide a good method for administrators to
provide automation tools with the necessary information
to make these choices.

2.1 Utility

Utility is a value that represents the desirability of a par-
ticular state or outcome. This concept is common in
both economics (to explain consumer preferences) and
in decision theory [20] (as a method for weighing alter-
natives). The main feature we use in this paper is its
ability to collapse multiple objectives (e.g., performance
and reliability) into a single axis that can be used to com-
pare alternatives. When presented with a suitable utility
function, an automated tool can use the utility values to
compare storage designs in a manner consistent with the
desires of the system administrator.

To use utility to guide storage provisioning, it is neces-
sary to have a utility function that is able to evaluate a po-
tential storage configuration and produce a single value
(its utility) that can be compared against other candidate
configurations. The optimal configuration is the one with
the highest utility value. The utility value for a configu-
ration should be influenced by the system metrics that
are important to the administrator. For example, config-
urations with high performance would have higher utility
values than those with low performance — likewise for
availability and reliability.

Examining system metrics in isolation, one could use the
actual metric as the utility value. For example, setting
Utility = Bandwidth would cause the provisioning sys-
tem to prefer configurations with high bandwidth over
those with low bandwidth. The goal of utility, how-

ever, is to combine all relevant system metrics into a
single framework. The various metrics cannot simply
be summed; they must be combined in a manner that
captures their relative importance. This restriction re-
quires the metrics to be normalized or scaled relative to
each other. Experience suggests that the easiest method
for normalizing these different metrics is via a common
scale that has meaning for each metric. One such scale
is money (e.g., dollars). Since each storage metric has
an effect on the service provided, it impacts an organi-
zation’s business, and this business impact can be ex-
pressed in dollars. For example, performance (through-
put) affects the number of orders per second that an e-
commerce site can handle, and loss of availability causes
lost business and decreased productivity. By expressing
each source of utility (e.g., performance, data protection,
and system cost) in dollars, they can be easily combined.

System administrators can create utility functions by as-
sessing the objectives of the storage system from a busi-
ness perspective. This type of analysis tends to yield a
set of functions related to different aspects of the stor-
age service. For example, one function may express
e-commerce revenue as a function of performance and
availability. Another could describe the costs associated
with a data-loss event. Other, more direct costs can be
incorporated as well, such as the cost of power and cool-
ing for the storage system or its purchase cost. These
separate functions, expressed in the same “units” of cur-
rency can be summed to produce a single utility func-
tion for use in automated provisioning. While some may
question the ability of the administrator to evaluate their
storage needs in such business terms, we believe this ap-
proach is just providing a more formal framework for an
analysis that is already performed. The system adminis-
trator is already required to justify purchase and configu-
ration decisions to upper-level management — a conver-
sation that is surely framed in a business context.

2.2 Related work

The problem of replica placement has been studied ex-
tensively in the context of the File Assignment Prob-
lem [12]. A similar problem has been examined for plac-
ing replicas in content distribution networks (e.g., Baev
and Rajaraman [9], Tang and Xu [32]). While some of
the work on FAP has examined detailed storage per-
formance models [38], the content distribution work is
largely concerned with communication costs and net-
works where constraints are linear, a condition that does
not hold for either the performance models nor the utility
functions. Additionally, because data encodings, in addi-
tion to locations, are selected as part of the optimization,



replica placement is just one part of the overall provi-
sioning task.

Storage provisioning and configuration tools, including
Minerva [2], Ergastulum [5], and the Disk Array De-
signer [7], have largely been targeted at creating mini-
mum cost designs that satisfy some fixed level of per-
formance and data protection. Our work builds on these
tools by removing the fixed requirements, and, instead,
using utility as the objective function. Using utility al-
lows our system to make automatic trade-offs across the
various storage metrics.

In the push toward automation, the notion of using utility
to guide self-tuning and autonomic systems is becoming
more popular. Kephart andWalsh [23] provide a compar-
ison of event-condition-action (ECA) rules, goals, and
utility functions for guiding autonomic systems. They
note that both goals and utility are above the level of the
individual system mechanisms and that utility provides
a level of detail over goal-based specification that allows
conflicting objectives to be reconciled automatically.

Utility has been applied to scheduling batch compute
jobs to maximize usefulness for the end user in the face
of deadlines [19] or where the results of many depen-
dent jobs are needed [8]. For web-based workloads,
Walsh et al. [35] describe a system that allocates server
resources to control the response time between two dif-
ferent service classes.

There has also been work on designing cost-effective dis-
aster recovery solutions, trading off solution costs with
expected penalties for data loss and downtime [14, 21,
22]. This work has effectively used utility to trade off the
costs of data protection mechanisms against the penalties
when data is lost, creating minimum (overall) cost solu-
tions for disaster recovery. This result lends support to
the notion of using business costs as the basis for evalu-
ating storage solutions.

3 Provisioning with utility

Provisioning a storage system to provide the most value
for its owner requires the ability to make appropriate
trade-offs among competing objectives. A provisioning
tool begins with an initial system description that con-
tains the parameters of the problem, including the avail-
able hardware types as well as the workload and dataset
descriptions. The tool needs three main components to
automatically create cost-effective storage systems using
utility. The system models analyze a candidate configu-
ration, annotating it with one or more metrics. The utility
function uses these metrics to evaluate the configuration,
assigning it a single utility value that indicates the de-

Figure 2: Overview of a utility-based provisioning tool –
The solver produces candidate system configurations. The sys-
tem models annotate the configurations with system, workload,
and dataset metrics. The utility function uses the administra-
tor’s preferences to rank the annotated configurations by as-
signing a utility value to each.

sirability of the configuration. The solver generates new
candidate configurations based on the feedback provided
by these utility values. Figure 2 shows the interaction
between these three main components.

3.1 System description

The system description provides the baseline compo-
nents, such as the clients, workloads, datasets, and stor-
age nodes, that are available to the provisioning sys-
tem. These components are the building-blocks that
the provisioning tool uses when creating solutions. The
workloads describe the demands placed on stored data
by applications. Workloads are statically assigned to
clients, and their I/O requests are directed at specific
datasets. The main task of the provisioning tool is to
assign datasets to storage nodes, choosing the data distri-
bution that maximizes utility. A candidate configuration
describes the mapping of each dataset onto the storage
nodes. This configuration information, combined with
the system description defines a provisioned storage sys-
tem that can be evaluated by the system models.

3.2 System models

System models translate from the low-level mechanism-
centric configuration into a description that contains
high-level system metrics, such as the performance or
data protection characteristics that the design is expected
to produce. For example, the configuration presented to



the system models may indicate that a dataset is encoded
as “2-of-3 spread across storage nodes one, four, six, and
seven.” An availability model may translate this into a
metric that states “the dataset has a fractional availabil-
ity of 0.9997.” Numerous projects have produced stor-
age system models for performance [4, 25, 33, 34], data
protection [3, 11, 15], and power [36, 39] that could po-
tentially be used as modules.

3.3 Utility function

Using a utility function, administrators can communi-
cate the cost and benefit structure of their environment
to the provisioning tool. This allows the tool to make
design trade-offs that increase the value of the system in
their specific environment, “solving for” the most cost-
effective level of each metric. The utility function is a
mathematical expression that uses one or more of the sys-
tem metrics to rank potential configurations. The func-
tion serves to collapse the many axes of interest to an ad-
ministrator (the system metrics) into a single utility value
that can be used by the provisioning tool.

While the function can be any arbitrary expression based
on the system metrics, the purpose is to generate config-
urations that match well with the environment in which
the system will be deployed. This argues for an approach
that uses business costs and benefits as the basis for the
utility function. Typically, it takes the form of a number
of independent sub-expressions that are summed to form
the final utility value. For example, an online retailer
may derive a large fraction of its income from its trans-
action processing workload. Based on the average order
amount, the fraction of transactions that are for new or-
ders, and the average number of I/Os per transaction, the
retailer may determine that, on average, its OLTP work-
load generates 0.1¢ per I/O. This would lead to an ex-
pression for the annualized revenue such as:

Revenue = $0.001 · IOPSWL ·AVDS ·

(
3.2×107 s

1 yr

)

Here, the revenue is tied to the throughput of the work-
load (in I/Os per second). It is also scaled by the frac-
tional availability of the dataset because revenue is not
generated when the dataset is unavailable. Finally, it is
converted to an annualized amount.

The administrator would also want to add expressions for
the annualized cost of repair and lost productivity during
downtime (e.g., $10,000 per hour):

Costdowntime =

(
$10,000

hr

)
· (1−AVDS) ·

(
8766 hr
1 yr

)

The cost of losing the dataset (e.g., $100 M) would be
scaled by the annual failure rate:

Costdataloss = $100 M ·AFRDS

These individual expressions of annual revenue and costs
would be combined to form the utility function:

Utility = Revenue−Costdowntime−Costdataloss

While this example has examined only a single workload
and dataset, functions for other workloads and datasets in
the same system can be included. In the case of indepen-
dent applications (i.e., their associated revenue and costs
are independent of other applications), such as combin-
ing an e-mail system with the e-commerce application,
the components of utility from the different applications
could be summed to produce a single composite function
for the entire system. For environments where multiple
applications depend on each other, a simple summation
of the utility functions (i.e., assuming additive indepen-
dence) may not be appropriate. Instead, the combination
can be expressed by examining the benefits and costs of
the combined service. For example, a web server and
a database may be dependent, leading to an expression
for the overall web application’s cost of downtime as a
function of the availability of both the database and the
web server (i.e., they must both be available to provide
service).

The choice to use annualized amounts is arbitrary (e.g.,
hourly or monthly rates could be used as well), but all
utility expressions need to share the same time frame to
ensure they are scaled accurately relative to each other.

The benefit of taking a business-cost approach is that
the utility function can be derived from an analysis of
the business’ needs and objectives, reducing the need to
invent a set of arbitrary requirements. While it still re-
quires a thorough understanding of the application (e.g.,
to produce an estimate of the revenue per I/O), there is
potential for the application, or its management tool, to
assist. Future “utility-aware” applications could trans-
late between their own high-level metrics and those of
the storage system, again moving the level of specifica-
tion closer to the administrator. For example, a database
could provide a model for its expected transactions per
second as a function of storage system performance met-
rics, allowing an administrator to express revenue as a
function of the transactions per second achieved by the
database.

3.4 Solver

The purpose of the solver is to generate improved storage
system configurations based on the feedback provided



by the utility function. The solver is attempting to op-
timize a bin-packing problem wherein it must assign the
datasets to storage nodes while attempting to maximize
the administrator-provided utility function.

Developing an efficient solver can be difficult because
the value (utility) of the storage system is only indirectly
connected to the raw configuration settings (e.g., m, n,
and l) the solver manipulates. The effect of the config-
uration on the utility value passes through both the sys-
tem models and the utility function. Because this utility
function is supplied by the system administrator at run-
time, the tool designer cannot know how a configuration
change is likely to affect utility, complicating the process
of finding an efficient optimization algorithm.

4 A utility-based provisioning tool

We have implemented a utility-based provisioning tool
that is targeted toward a cluster-based storage architec-
ture [1] in which each client communicates directly to
individual storage nodes. Datasets are spread across stor-
age nodes using m-of-n data encodings, and the n data
fragments may be declustered across an arbitrary set of
l storage nodes. Workloads are statically assigned to a
client, and they target a single dataset. However, clients
may run multiple workloads, and datasets may be ac-
cessed by multiple workloads.

The system is described by the set of clients and work-
loads, the datasets they access, and the storage nodes
that are available for use by the tool. Each component
is described by a set of attributes specific to that com-
ponent type. For example, storage nodes have attributes
that describe their raw capacity, disk positioning time,
streaming bandwidth, as well as network latency and
bandwidth. Table 2 lists each component type and the
attributes that are used to describe it.

A candidate configuration describes the mapping of each
dataset onto storage nodes. The mapping is a tuple,
{dataset,m,n, list{storage nodes}}, for each dataset in
the system description, and the union of the storage node
lists across these tuples determines the set of storage
nodes in the configuration.

Our prototype tool is implemented in approximately
5000 lines of Perl. Text configuration files are used to
define the characteristics of the system components and
the utility function. The tool is designed to work with
heterogeneous components, allowing each client, work-
load, storage node, and dataset to be unique.

The remainder of this section describes the tool’s models
and metrics, how utility is specified, and the implemen-

– Attributes of Components –

Client:
• CPU time for data encode/decode (s)
• Network streaming bandwidth (MB/s)
• Network latency (s)

Dataset:
• Size of the dataset (MB)

Storage node:
• Annual failure rate (%)
• Fractional availability of the node (%)
• Disk capacity (MB)
• Purchase cost ($)
• Max streaming bandwidth (MB/s)
• Initial positioning time (s)
• Network streaming bandwidth (MB/s)
• Network latency (s)
• Power consumption (W)

Workload:
• Average request size (kB)
• Multi-programming level for closed-loop
workload

• Think time for closed-loop workload (s)
• Fraction of non-sequential I/Os (%)
• Fraction of I/Os that are reads (%)

Table 2: Main components and their attributes – This ta-
ble lists each of the main component types used in the system
description for the provisioning tool. Listed with each of the
component types is the set of attributes that define its proper-
ties. Each instance of a component (e.g., each storage node)
may have different values for these attributes, allowing the tool
to evaluate heterogeneous configurations.

tation of the solver. It concludes with an evaluation of
the efficiency of the tool.

4.1 Models and metrics

The system models are plug-in modules that examine a
configuration and produce metrics that describe the ex-
pected characteristics and level of service the system
would provide. Additional models can be easily added
to the existing list, expanding the menu of metrics that
can be used by the utility function. The discussion below
describes the existing set of models and the metrics that
they provide. These models cover a wide range in their
complexity and analysis techniques, highlighting the ver-
satility of this architecture. While there exist potentially
more accurate models for each of these metrics, the exist-
ing models provide sufficient detail to evaluate the value
of utility for storage provisioning.

Performance: The performance model is the most in-
tricate of the current models. It provides utilization



estimates for disk and network resources as well as
throughput and latency estimates for the workloads.
This information is derived from a closed-loop queue-
ing model that is constructed and solved based on the
system description and dataset assignments in the can-
didate configuration. The model is similar to that de-
scribed by Thereska et al. [33], with queueing centers
for the clients’ CPU and network as well as the storage
nodes’ network and disk. The service demand placed on
each queueing center is based on the encoding parame-
ters for each dataset as well as the read/write ratio, I/O
size, and sequentiality of the workloads. Workload in-
tensity is specified as a multiprogramming level and a
think time. These correspond to a maximum level of par-
allelism and an application’s processing delay between
I/Os, respectively. The open source PDQ [18] queue-
ing model solver is used to analyze the model via Mean
Value Analysis.

Availability: The availability model estimates the frac-
tional availability of each dataset based on the availabil-
ity of the storage nodes that the dataset is spread across
and the encoding parameters used. The module calcu-
lates the dataset’s availability as:

AV =
n−m

∑
f=0

(
l

l− f

)
ASN

l− f (1−ASN) f

where n and m are the encoding parameters for the
dataset, l is the number of storage nodes that the data is
spread across, and ASN is the minimum individual avail-
ability of the set of l storage nodes. The dataset is consid-
ered to be available as long as no more than n−m of the
l storage nodes are down.2 The formula above sums the
probability for each “available” state ( f = 0 . . .(n−m)).

This model makes some simplifications, such as using
a single availability value for all nodes. It also assumes
independent failures of storage nodes, an assumption that
has been called into question [28, 30] but is nonetheless
sufficient for this study.

Reliability: The reliability model uses a Markov chain to
estimate the annual failure rate for a dataset. The chain
has n−m+ 2 states, representing the number of device
failures. The final state of the chain is an absorbing state,
representing a data loss event. The transition rates for
device failures are calculated as the number of storage
nodes that contain fragments for the dataset (l) times the
failure rate of the individual nodes. In the case where
nodes have differing failure rates, the maximum is used,
producing a conservative estimate. Repair operations are
handled by re-encoding the dataset. The re-encode op-
eration repairs all failures in the same operation, caus-

2We focus on a synchronous timing model and a crash failure model
for the storage nodes.

f = 0 f = 1 f = 3f = 2

lλ

μ

μ

(l-1)λ (l-2)λ

Figure 3: Markov chain for a 1-of-3 data encoding – A 1-
of-3 data encoding is able to withstand up to 2 failures without
losing data; the third failure ( f = 3) results in a data loss. The
transition rates between states are, in the case of failure tran-
sitions, related to the number of storage nodes that hold data
for this dataset, l, and the annual failure rate of the nodes. The
repair rate is calculated as a fixed fraction of the individual stor-
age nodes streaming bandwidth (e.g., 5% of the slowest node)
and the size of the dataset. A single repair operation is able to
fix multiple failures simultaneously.

ing all repair transitions to lead to the failure-free state.
The repair rate is based on the size of the dataset and a
fixed fraction of the streaming bandwidth from the slow-
est storage node in the data distribution. The chain is
solved for the expected time until the absorbing state is
reached using the technique described by Pâris et al. [27].
Figure 3 shows an example chain for a 1-of-3 encoding.
This reliability model represents only the likelihood of
losing data from the primary storage system (i.e., it does
not account for remote mirroring or external backup).
More detailed models incorporating backup and remote
replication, such as those by Keeton et al. [21], could be
used.

Capacity: The capacity model calculates the storage
blowup of each dataset due to the redundancy of the en-
coding scheme. The storage blowup is calculated as: n

m .
It also calculates the capacity usage of each storage node
based on the datasets they store.

Cost and power: The purchase cost and power models
are very similar, producing system-wide metrics based
on the quantity and type of storage nodes that are used.
Each storage node type has fixed cost and power at-
tributes. When a storage node is used in a configuration,
it is assumed to cost a fixed amount to purchase and con-
sume a fixed amount of power. These cost and power
attributes are then summed to produce the system-wide
metrics for cost and power consumption (e.g., a system
with three storage nodes that cost $10 k each would have
a total system cost of $30 k).

Table 3 lists the set of metrics provided by the current
system models. This list provides the framework for cre-
ating utility functions to evaluate configurations. Ad-
ditional models can be added to expand the menu of
metrics available for the administrator to express his ob-



– System Metrics –

Client:
• CPU utilization (%)
• Network utilization (%)

Dataset:
• Annual failure rate (%)
• Fractional availability (%)
• Capacity blowup from encoding
• Mean time to failure (hr)
• “Nines” of availability

Storage node:
• Raw capacity consumed (MB)
• Capacity utilization (%)
• Disk utilization (%)
• Network utilization (%)
• Power consumed (W)

System-wide:
• Total capacity consumed (MB)
• Capacity utilization (%)
• System power consumed (W)
• Total system cost ($)

Workload:
• Bandwidth (MB/s)
• Throughput (IO/s)
• Request latency (s)

Table 3: Storage metrics provided by system models – This
table lists the metrics that are calculated for candidate config-
urations by the current set of system models. The table is or-
ganized by the component to which the metric refers. With the
exception of the system-wide metrics, these metrics are calcu-
lated for each instance of a component (e.g., each storage node
has a disk utilization that is calculated based on the accesses
that it receives).

jectives. For example, an additional availability model
could be created that estimates the frequency and dura-
tion of outages instead of just a fractional availability.

4.2 Specifying utility

The provisioning tool’s interface for specifying utility al-
lows the use of an arbitrary function that assesses the
metrics for the current system configuration. The util-
ity function returns a single floating point number that is
the utility value for the configuration. It is specified in
the text configuration file as a block of Perl syntax that
is eval()-ed when the configuration is loaded. This
code has the ability to use any of the metrics listed in Ta-
ble 3 when computing utility. Maintaining such a flexible
interface to specify utility has proven valuable for exper-
imentation. It allows not only utility functions based on
business costs (as discussed in Section 3.3) but also util-

ity functions that implement strict priorities (e.g., first
obtain 4 “nines” of availability, next achieve 300 IO/s,
then minimize capacity utilization).

4.3 Solver

While many optimization techniques could be employed
to generate candidate configurations, we have chosen to
use a solver based on a genetic algorithm [26]. It re-
fines a population of candidate solutions over a number
of generations. Each generation contains a population of
100 candidates that are evaluated by the models and util-
ity function. The utility value is used to generate a fitness
value for each candidate. These fitness values are used to
create a new population of candidates, and the process re-
peats. The creation of a new population based on the ex-
isting population occurs via selection, crossover, andmu-
tation operations. These operations each introduce ran-
domness into the search, attempting to avoid local max-
ima and maintain diversity within the population. The
solver continues, producing configurations with higher
utility, until some stopping condition is reached. As the
solver progresses through a number of generations, the
observed gains in utility diminish. The solver terminates
if there has been no improvement upon the best configu-
ration for 40 generations.

Fitness: The fitness value determines how likely a candi-
date is to be selected for reproduction into the next gen-
eration. The fitness value accounts for both the utility
of the candidate as well as the feasibility of the solu-
tion. Due to capacity constraints, not all configurations
are feasible. To bias the solution toward feasible, high-
utility solutions, fitness is calculated as:

fitness =

⎧⎨
⎩

utility if(utility≥ 2 & OCC = 0)
1

1+OCC if(OCC > 0)
1

3−utility +1 otherwise

OCC is the sum of the over-committed capacity from the
individual storage nodes (in MB). For those infeasible
solutions, the fitness value will be between zero and one.
When the solution is feasible,OCC= 0 (no storage nodes
are over-committed). Utility values less than two are
compressed into the range between two and one, elimi-
nating negative utility to be compatible with the Roulette
selection algorithm and ensuring that all feasible solu-
tions have a fitness value greater than the infeasible ones.
This type of penalty scheme for infeasible solutions is
similar to that used by Feltl and Raidl [13].

Selection function: Using the fitness value for guidance,
a selection function probabilistically chooses candidates
to use as a basis for the next generation of solutions. The
solver can use either Tournament or Roulette selection



algorithms [26], but it defaults to Tournament. Empiri-
cally, the solver performs better using Tournament selec-
tion for utility functions that are ordinal (where the utility
value specifies only an ordering of candidates, not “how
much” better a given solution is). With Tournament se-
lection, two candidates are chosen at random (uniformly)
from the current population. From these two candidates,
the one with the larger fitness value is output as the se-
lected candidate. The result of this process is that the se-
lection algorithm chooses candidates weighted by their
rank within the current population.

Roulette selection, on the other hand, chooses candidates
for the next generation with a probability proportional to
the relative magnitude of their fitness values. For ex-
ample, a candidate with a fitness value of 100 would be
twice as likely to be selected as one with a value of 50.

Candidate representation: For use in the genetic algo-
rithm (GA), the storage configuration space is encoded
as a matrix. This matrix has one row for each dataset
and one column for each storage node. Each location in
the matrix may take on integer values between zero and
three, inclusive. Any non-zero value at a particular lo-
cation is used to indicate that the dataset (represented by
the row) is stored on the storage node (represented by the
column). The values of the m and n encoding parameters
for a dataset are determined by the number of entries in
that dataset’s row with values greater than two and one,
respectively. For example, a row of [0 3 2 1 2] denotes an
encoding of 1-of-3, with fragments stored on nodes two,
three, four, and five (l = 4). This matrix representation
was chosen because of the relative ease of maintaining
the invariant: 1≤m≤ n≤ l. This representation ensures
the relationship of m, n, and l. The only condition that
must be verified and corrected is that m must be at least
one. That is, there must be at least one “3” in each row
of the matrix for the encoding to be valid.

When the GA is initialized (i.e., the first generation is
created), the matrix is generated randomly, with values
from zero to three in each cell. These values are then
changed via the crossover and mutation operations as the
optimization progresses.

Crossover operator: The crossover operation combines
two candidates from the current generation to produce
two new candidates for the next generation. The intuition
behind this step is to create new solutions that have prop-
erties from both of the original candidates (potentially
achieving the best of both). The solver uses uniform
crossover to achieve this mixing. In uniform crossover,
each “gene” has an independent 50% probability of com-
ing from either original candidate. Crossover is per-
formed at the “dataset” level — an entire row of the con-
figuration matrix is selected as a single unit. This ap-

proach was chosen because the individual values within
a row have little meaning when taken independently, and
combining at the dataset level is more likely to form a
new set of candidates with properties of the original two.

Mutation operator: The mutation operator is used to
add randomness to the search. It operates on a single
candidate at a time by changing a random location in the
configuration matrix to a new random integer in the range
of zero to three. Before a particular value is changed, it
is verified that the new value will not cause the configu-
ration to be invalid — a location with a current value of
“3” can only be changed if there is at least one other “3”
in that row. If a conflict is found, a different location is
chosen for mutation.

The GA also supports being used for “incremental” pro-
visioning, wherein additional datasets, and potentially
hardware, are added to an existing system. In this case,
the existing datasets can be held constant by omitting
them from the matrix representation, only using them
when utility is calculated. Evaluating whether an existing
dataset should be reassigned as a part of the incremental
provisioning process is left as an area of future work.

4.4 Tool effectiveness

For utility to be useful at guiding the provisioning of
storage, it must be possible to reliably find configura-
tions that have high (near optimal) utility. In the fol-
lowing experiments, we show that the solutions produced
by the solver approach the optimum and that the solver
is able to quickly find good solutions for difficult prob-
lems. Although better algorithms likely exist, these ex-
periments demonstrate that it is possible to create an ef-
fective utility-based provisioning tool.

4.4.1 Convergence toward the optimum

This experiment compares the solutions produced by the
genetic solver with the optimal solution produced by an
exhaustive search of the configuration space. To con-
strain the problem so that it can be solved by exhaustive
search, configurations may use a maximum of eight stor-
age nodes.

The utility function used for this scenario is identical to
the example presented in Section 3.3 but presented as
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Figure 4: Convergence of the genetic solver – This graph
shows how quickly the solver converges toward the optimal
storage configuration. The line is the median over 100 trials,
and the error bars indicate the 5th and 95th percentiles.

utility (costs are represented as negative utility):

Utility =Urevenue +Udataloss +Udowntime

Urevenue = $0.001 ·AVDS · IOPSWL ·

(
3.2×107 s

1 yr

)

Udataloss =−$100 M ·AFRDS

Udowntime =

(
−$10,000

hr

)
· (1−AVDS) ·

(
8766 hr
1 yr

)

For this experiment, there are two identical clients, each
with one workload, issuing I/O requests to separate
datasets. The total utility is the sum across both of the
workloads and datasets. The simulated storage nodes
have 5.5 ms average latency and 70 MB/s max streaming
bandwidth from their disk. They are assumed to have an
individual availability of 0.95 and an annual failure rate
of 1.5%.

Figure 4 shows the results for this experiment. The ex-
haustive solution produces a utility of 6.95× 107, using
an encoding of 1-of-2 declustered across 4 storage nodes,
and the two datasets are segregated onto their own set
of 4 storage nodes. This optimal utility is shown as the
dotted line near the top of the graph. The GA solver ap-
proaches this value quickly. Within five generations (500
total configurations evaluated), the median of 100 trials is
within 10% of the optimum, and the bottom 5% achieves
this level after just twelve generations (1200 total eval-
uations). Allowing for equivalent configurations, 3336
out of 7.9× 106 total configurations are within 10% of
the optimum. The utility values across the configuration
space range from −7.23×107 to 6.95×107.

4.4.2 Finding rare solutions

The previous experiment provided an example showing
that the solver quickly approaches the optimal solution.
This experiment will explore how well the solver is able
to find rare solutions. The ability to find rare solutions
is important because some combinations of workloads,
hardware, and utility functions have the characteristic
that there are very few configurations within a small per-
centage of the optimal solution.

For this experiment, the same storage nodes are used, but
the number of clients, datasets, and workloads are scaled
together with a 1:1:1 ratio to control the problem’s diffi-
culty. A (contrived) utility function is constructed so that
it is possible to predict the number of “desirable” con-
figurations as a fraction of the total number of possible
storage configurations. For this experiment, the defini-
tion of “desirable” is that all datasets should have at least
4 “nines” of availability. Availability is used for this ex-
periment because the data distribution is the sole deter-
minant of its value, and one dataset’s distribution does
not affect another’s availability. Performing an exhaus-
tive search with a single dataset, 464 of 2816 or 16.5%
of the possible distributions meet the 4 nines criteria. By
scaling the number of datasets in the scenario, solutions
where all datasets have 4 nines of availability can be
made an arbitrarily small fraction of the possible configu-

rations. For example, with three datasets,
(

464
2816

)3
= .4%

of the possible configurations have 4 nines for all three
workloads.

The utility function for this scenario is:

U =
1
S
·

S

∑
i=1

min(NINESDSi ,4)

S is the scale factor, corresponding to the number of
datasets. This utility function will achieve its maximum
value, four, when all datasets achieve at least 4 nines of
availability. To ensure all possible data distributions are
valid as the number of datasets are scaled, the size of the
datasets relative to the storage nodes’ capacity is chosen
to ensure the system is not capacity constrained.

Figure 5 shows how the solver performs as the number
of datasets is scaled from 5 up to 50. The graph plots
the difficulty (the reciprocal of the fraction of configura-
tions with 4 nines) of finding a 4 nines solution versus
the number of configurations the solver evaluates before
finding the first. It can be seen that exponential increases
in the rarity of “desirable” solutions result in an approxi-
mately linear growth in the number of configurations that
must be evaluated by the solver.
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Figure 5: Scalability of genetic solver – This graph shows
how the solution time changes as a function of how difficult the
problem is to solve. The x-axis is the inverse probability that a
random configuration is a valid solution ( 1

Pr[valid solution] ). The
graph shows the mean number (across 100 trials) of configu-
rations that are evaluated before finding a valid solution. The
error bars indicate the 5th and 95th percentiles.

4.4.3 Solution speed

Our provisioning tool, implemented in Perl, solves the
above “4 nines” scenarios in a few minutes. These mea-
surements were taken on a Dell PowerEdge 1855 with
dual 3.40 GHz Intel Xeon CPUs and 3 GB of RAM, run-
ning Linux kernel version 2.2.16 and Perl 5.8.8. The pro-
visioning tool used only one of the two CPUs.

Figure 6 shows the average time required to evaluate one
generation of 100 candidates for each of the problem
sizes. It divides this per-generation time into three cat-
egories, corresponding to the three main system compo-
nents (models, utility function, and genetic solver). The
majority of the runtime (and growth in runtime) is con-
sumed by the system models, suggesting that efficient
(but still accurate) models are a key to effective utility-
based provisioning. The time required to calculate the
utility value from the system metrics is too small to be
visible on the graph.

5 Case studies

The benefits of using utility as the basis for storage pro-
visioning can be seen by examining several case stud-
ies. This section uses our utility-based provisioning tool
to explore three different scenarios, highlighting several
important benefits of using utility to evaluate designs.

The simulated system components used for the case stud-
ies are described in Table 4. The same workload descrip-
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Figure 6: Speed of genetic solver – This graph shows how
the evaluation time changes as a function of the problem size.
The x-axis is the number of datasets being optimized. There
is one client and workload for each. The y-axis is the time
required to fully evaluate one generation of candidate solutions
(100 configurations). The system models consume the majority
of the processing time, and the actual evaluation of the utility
function is insignificant.

tion is used for the first two case studies, however the
third uses a workload description more appropriate to the
described application (trace processing).

5.1 Performance vs. availability

Provisioning and configuration decisions affect multiple
system metrics simultaneously; nearly every choice in-
volves a trade-off. By using utility, it is possible to take
a holistic view of the problem and make cost-effective
choices.

Conventional wisdom suggests that “more important”
datasets and workloads should be more available and
reliable and that the associated storage system is likely
to cost more to purchase and run. To evaluate this
hypothesis, two scenarios were compared. Each sce-
nario involved two identical workloads with correspond-
ing datasets.

The utility functions used for the two scenarios are simi-
lar to the previous examples, having a penalty of $10,000
per hour of downtime and $100 M penalty for data loss.
In this example, the cost of electricity to power the sys-
tem was also added at a cost of $0.12 per kWh, and the
purchase cost of the system (storage nodes) was amor-



Client
CPU 0.2 ms Net latency 125 μs
Net bw 119 MB/s

Dataset
Size 100 GB

Storage node
AFR 0.015 Avail 0.95
Capacity 500 GB Cost $5000
Disk bw 70 MB/s Disk latency 5.5 ms
Net bw 119 MB/s Net latency 125 μs
Power 50 W

Workload (§5.1, §5.2)
I/O size 8 kB MP level 5
Think time 1 ms Rand frac 0.5
Read frac 0.5

Workload (§5.3)
I/O size 32 kB MP level 10
Think time 1 ms Rand frac 0.0
Read frac 1.0

Table 4: Components used for case studies – This table lists
the main attributes of the components that are used as a basis for
the case study examples. The client is based on measurements
from a 2.66 GHz Pentium 4. The storage node data is based on
the data sheet specifications for a single disk drive, combined
with a 1 Gb/s network connection, processing and cache.

tized over a three year expected lifetime:

Utility =Uperf +Uavail +Urel +Upower +Ucost

Uperf = (see below)

Uavail =

(
−$10,000

hr

)
· (1−AVDS) ·

(
8766 hr
1 yr

)

Urel =−$100 M ·AFRDS

Upower =

(
−$0.12
kW·hr

)
·Power ·

(
8766 hr
1 yr

)
·

(
1 kW

1000 W

)

Ucost =

(
−Cost
3 yr

)

The two scenarios differed only in the revenue they gen-
erated. The first generated 0.1¢ per I/O while the second
only generated 0.01¢:

Uperf 0.1 = $0.001 ·AVDS · IOPSWL ·

(
3.2×107 s

1 yr

)

Uperf 0.01 = $0.0001 ·AVDS · IOPSWL ·

(
3.2×107 s

1 yr

)

Based on this revenue difference, it would be easy to
assume that the workload generating more revenue is
“more important” than the other, requiring a higher (or

at least the same) level of data protection. This assump-
tion fails to account for the compromises necessary to
achieve a particular level of availability.

Table 5 shows the results of provisioning these two sys-
tems. It shows both the metrics and costs for each part
of the utility function. The table shows the optimal con-
figuration for each scenario: 1-of-2 declustered across 6
(1/2/6) for the 0.1¢ scenario and 1-of-3 across 7 (1/3/7)
for the 0.01¢ scenario. As a point of comparison, it also
shows the results of using the other scenario’s optimal
configuration for each.

Examining the various contributions to the total utility,
it can be seen that the main trade-off between these two
scenarios is in performance versus availability. For the
scenario with the higher revenue per I/O, it is advanta-
geous to choose the data distribution with higher per-
formance at the cost of lower availability (1/2/6), be-
cause the revenue generated by the extra 209 I/Os per
second per workload more than offsets the cost incurred
by the extra downtime of this configuration. For the
lower revenue scenario, the extra throughput cannot off-
set the availability difference, causing the lower perform-
ing, more available data distribution (1/3/7) to be pre-
ferred.

It is important to remember that these configurations are
a balance of competing factors (mainly performance and
availability in this case). Taking this trade-off to an ex-
treme, such as choosing a very high performance data
distribution with no regard to availability and reliability,
results in poor utility. For example, using a 1/1/6 dis-
tribution for the 0.1¢ scenario provides only $33.7 M in
utility because the reliability and availability costs now
dominate.

Sacrificing availability for performance in a business sce-
nario goes against the conventional wisdom of storage
provisioning. However, by using utility to analyze po-
tential configurations, the multiple competing objectives
can be examined analytically, providing evidence to ex-
plain and justify a particular storage solution.

5.2 Storage on a budget

Even with the ability to quantify the costs and benefits of
a particular storage solution, it is not always possible for
a system administrator to acquire the optimal system due
to external constraints. For example, the “optimal” stor-
age system for a particular scenario may be too expensive
for the system administrator to purchase with his limited
budget. Presenting the administrator with this solution
does him no good if he cannot afford it. Using utility, he
has the ability to scale down this solution to find the best
option that fits within his budget.



Using the previous 0.01¢ scenario as an example, the
optimal solution uses fourteen storage nodes (seven for
each dataset) and costs $70 k. For an administrator
whose budget cannot accommodate this purchase, this
solution is unworkable. Table 6 compares this optimal
solution to two alternatives that have constraints on the
total cost of the storage hardware. The first alternative
limits the total hardware budget to $30 k, and the second
further reduces it to $20 k. Notice that these two alter-
natives use six and four storage nodes respectively (at
$5000 each) to stay within their budget. The “AP cost”
in the table reflects this cost amortized over the system’s
expected three year lifetime.

With each reduction in budget, the total system utility de-
creases as expected, but the chosen configuration at each
level still balances the relevant system metrics to maxi-
mize utility as much as possible. The reduction from the
optimum ($70 k) to $30 k results in choosing a configura-
tion that sacrifices some availability to gain performance,
resulting in only a 2% loss of overall utility. The reduc-
tion to $20 k from the optimum leads to a 10% loss of
utility, as performance is significantly impacted.

As this example illustrates, utility presents the opportu-
nity to make trade-offs even among non-optimal or in
less than ideal situations. This ability to account for ex-
ternal constraints makes utility-based tools more helpful
than those that perform only minimum cost provision-
ing by allowing solutions to be identified that conform to
real-world constraints.

5.3 Price sensitivity

Even without budgetary constraints, the price of the stor-
age hardware can impact the proper solution. Consider
the case of an academic research group whose students
process file system traces as a part of their daily work.
The trace processing application reads a trace (27 GB on

Total budget $70 k $30 k $20 k
Distribution 1/3/7 1/2/3 1/2/2
Performance $6.5 M $6.7 M $5.8 M
Availability −$329 k −$636 k −$219 k
Reliability −$0.02 −$163 −$81
Power −$736 −$316 −$210
AP cost −$23 k −$10 k −$6.6 k
Total utility $6.2 M $6.1 M $5.6 M

Table 6: Utility can be used to design for limited storage
budgets – The optimal system configuration costs a total of
$70 k, giving an amortized purchase (AP) cost of $23 k, but
the utility function can be used to choose the best configuration
that fits within other (arbitrary) budgets as well. Limiting the
budget constrains the total hardware available, and the utility
function guides the solution to make cost effective trade-offs
as the system capabilities are scaled down to meet the limited
budget.

average in this scenario) sequentially and generates a set
of summary statistics. Assuming that the students cost
$35 per hour3, that they wait for the results of a run, and
that there are 250 runs per year (approximately one for
each regular workday), the total cost incurred is:

Uperf =

(
−$35
hr

)
·

(
27 GB
run

)
·

1
BWWL

·

(
250 runs

yr

)

·

(
hr

3600 s

)
·

(
1024 MB

GB

)

=
67200
BWWL

If the traces are lost from primary storage, it is projected
to require 15 hours of administrator time (at $35 per
hour) to re-acquire and restore the traces:

Urel =

(
−$35
hr

)
· (15 hr) ·AFRDS

3This amount is the cost to the research program, not what the stu-
dents are paid, unfortunately.

Metric values 0.1¢ per I/O 0.01¢ per I/O
Distribution 1/2/6 1/3/7 1/2/6 (opt) 1/3/7 1/2/6 1/3/7 (opt)
Performance 1250 IO/s 1041 IO/s $76.3 M $65.4 M $7.6 M $6.5 M
Availability 1.5 nines 2.4 nines −$2.8 M −$329 k −$2.8 M −$329 k
Reliability 2.0×10−6 afr 1.1×10−10 afr −$407 −$0.02 −$407 −$0.02
Power 600 W 700 W −$631 −$756 −$631 −$756
Purchase cost $60,000 $70,000 −$20 k −$23 k −$20 k −$23 k
Total utility $73.4 M $65.1 M $4.7 M $6.2 M

Table 5: Effect of workload importance on provisioning decisions – A workload that generates more revenue per I/O should
not necessarily have a higher level of data protection. This table compares two scenarios that differ only in the average revenue
generated per completed I/O. The “more valuable” dataset’s optimal data distribution is less available than that of the “less valuable”
dataset because the cost of the additional downtime is more than offset by the additional performance of a less available data
distribution. The data distributions in the table are written as: m/n/l.



Expensive
(opt)

Cheap
(same)

Cheap
(opt)

Distribution 1/2/2 1/2/2 1/3/3
Performance −$874 −$874 −$862
Availability −$1534 −$1534 −$77
Reliability −$0 −$0 −$0
Power −$105 −$105 −$158
AP cost −$6667 −$1333 −$2000
Total utility −$9180/yr −$3846/yr −$3097/yr

Table 7: The price of the storage hardware affects the opti-
mal storage configuration – The optimal configuration using
“expensive” ($10 k each) storage nodes is two-way mirroring.
However, if the cost of the storage nodes is reduced to $2000,
it is now advantageous to maintain an additional replica of the
data to increase availability. This additional storage node re-
sults in an almost 20% decrease in expected annual costs for
the storage system.

If the traces are unavailable, the administrator and one
student will be occupied troubleshooting and fixing the
problem:

Uavail =

(
−$70
hr

)
· (1−AVDS) ·

(
8766 hr
1 yr

)

The storage system must be powered, and the purchase
cost will be spread across a three year lifetime:

Upower =

(
−$0.12
kW·hr

)
·Power ·

(
8766 hr
1 yr

)
·

(
1 kW
1000 W

)

Ucost =

(
−Cost
3 yr

)

Provisioning this system using storage nodes as de-
scribed in Table 4 but using a total cost of $10 k per node
($3.3 k annualized) leads to a solution using two storage
nodes and 2-way mirroring. The first column of Table 7
shows a breakdown of the costs using these “expensive”
storage nodes. If the cost of a storage node is reduced
to $2 k each ($667 annualized), the total costs obviously
decrease due to the lower acquisition cost (second col-
umn of Table 7). More interestingly, the optimal con-
figuration for the system also changes because it is now
cost effective to purchase an additional storage node. By
comparing the last two columns in the table, the addi-
tional annualized cost of the third storage node ($667)
is more than offset by the increase in availability that it
can contribute ($1457). In fact, this new configuration
provides almost a 20% reduction in annual costs.

6 Conclusion

Producing cost-effective storage solutions requires bal-
ancing the costs of providing storage with the benefits
that the system will provide. Choosing a proper storage
configuration requires balancing many competing sys-
tem metrics in the context where the system will be de-
ployed. Using utility, it is possible to bring these costs
and benefits into the same framework, allowing an auto-
mated tool to identify cost-effective solutions that meet
identified constraints.

This paper illustrates the value of utility-based provision-
ing with three case studies. The first case study shows
an example where trade-offs exist between metrics, such
as performance and availability, and utility provides a
method to navigate them. The second shows that util-
ity functions are flexible enough to be used in the pres-
ence of external constraints, such as a limited budget.
The third shows that provisioning a storage system is not
just limited to finding the “minimum cost” solution that
meets a set of requirements, because the system cost can
have a impact on the solution.

This investigation shows the potential for using utility
to guide static storage provisioning. By analyzing util-
ity over time, there is also the potential to provide guid-
ance for automated, online tuning as well. For example,
a modified version of our provisioning tool could be used
to generate new candidate configurations, evaluate long-
term expected utility, and decide whether the change is
advantageous and how fast to migrate or re-encode the
data. Exploring such on-line use of utility is an interest-
ing area for continuing work.
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