
Appears in Proceedings of the 2nd USENIX Symposium on Operating Systems Design and Implementation (OSDI), Seattle, WA,

October 28-31, 1996, pp. 19-34.

A Trace-Driven Comparison of Algorithms for Parallel Prefetching and Caching

Tracy Kimbrel � Andrew Tomkins y R. Hugo Patterson z Brian Bershad� Pei Cao x

Edward W. Felten { Garth A. Gibsony Anna R. Karlin� Kai Li{

Abstract

High-performance I/O systems depend on prefetching and
caching in order to deliver good performance to applications.
These two techniques have generally been considered in iso-
lation, even though there are signi�cant interactions between
them; a block prefetched too early reduces the e�ectiveness
of the cache, while a block cached too long reduces the ef-
fectiveness of prefetching. In this paper we study the ef-
fects of several combined prefetching and caching strategies
for systems with multiple disks. Using disk-accurate trace-
driven simulation, we explore the performance characteristics
of each of the algorithms in cases in which applications pro-
vide full advance knowledge of accesses using hints. Some
of the strategies have been published with theoretical per-
formance bounds, and some are components of systems that
have been built. One is a new algorithm that combines the
desirable characteristics of the others. We �nd that when per-
formance is limited by I/O stalls, aggressive prefetching helps
to alleviate the problem; that more conservative prefetching
is appropriate when signi�cant I/O stalls are not present; and
that a single, simple strategy is capable of doing both.

1 Introduction

Recently there has been a great deal of interest in prefetch-
ing from parallel disks as a technique for improving the I/O
performance of sequential applications. In this paper, we
study prefetching and caching strategies for multiple disks
in the presence of application-provided knowledge of future
accesses. We compare the performance of four algorithms:

1. Fixed horizon is simple to implement, and has near-
optimal performance when su�cient I/O parallelism is
available, but can be suboptimal in I/O-bound situa-
tions.

�Dept. of Computer Science and Engr., University of Washington,
Seattle WA (ftracyk,bershad,karling@cs.washington.edu)

ySchool of Computer Science, Carnegie Mellon University, Pitts-
burgh PA (fandrewt, garthg@cs.cmu.edu)

zDept. of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh PA (rhp@cs.cmu.edu)

xComputer Sciences Dept., University of Wisconsin - Madison,
Madison WI (cao@cs.wisc.edu)

{Dept. of Computer Science, Princeton University, Princeton NJ
(ffelten,lig@cs.princeton.edu)

2. Aggressive is also simple to implement, is close to opti-
mal for a single disk and for well-laid-out data on mul-
tiple disks, but can be suboptimal for multiple disks
when the load on the disks is unbalanced.

3. Reverse aggressive is substantially more complex, but
is provably close to optimal for all con�gurations in a
uniform fetch-time model of disk accesses.

4. Forestall is a new algorithm, representing an attempt
to combine the desirable characteristics of the other
three algorithms.

Using trace-driven simulation on a collection of �le access
traces, we compare the performance of these algorithms as-
suming an environment in which a single process is running
and full advance knowledge is available.

1.1 Motivation

Our work is motivated by recent advances in technology that
have made magnetic disks both cheaper and smaller. As a
result, parallel disk arrays have become an attractive means
for achieving high performance from storage devices at low
cost [15, 28, 24]. Independently accessible multiple disks of-
fer the advantage of both increased bandwidth and reduced
contention on individual disk arms. However, many applica-
tions do not bene�t from this parallelism because their I/O
accesses are serial. This problem is particularly severe for
read-intensive applications. Write performance is less im-
portant as write behind strategies can mask update latency.
Read-intensive applications that stall for I/O a signi�cant
fraction of their running time include text search, 3D sci-
enti�c visualization, relational database queries, multimedia
servers and object code linkers.

Many of these applications have predictable access pat-

terns [25, 1, 18]. The ability to provide the �le system with
hints about future references has motivated research into the
design of policies that use this information to reduce I/O
overhead [25, 26, 7, 6]. The two key techniques that are en-
abled by detailed information about future accesses are deep
prefetching and better-than-LRU cache replacement.

This paper explores the tradeo� between aggressive
prefetching and optimal cache replacement. The decision to

Page 19

t t t t4 5 60 1 2 3ttt

b

d

F

b b b b

dd d d d d d

FA b C d EReferences A b C d E FReferences
FC EPrefetches C EdPrefetches

E

C C C C C

E E A

b

d

F

b b

A

F F F F F F

d

E

C

d d

E

C C C

F

(b) A better schedule.

Cache

t t tt t t t4 5 60 1 2 3 7t

Cache

A A A

Evictions F A b Evictions d A b

(a) A prefetching and caching schedule.

Figure 1: An example of prefetching and caching with advance knowledge of accesses for two disks. One disk holds blocks A,
C, E, and F, and another disk holds blocks b and d. Cache size k = 4 disks and fetch time F = 2 computation steps.

prefetch requires that a bu�er be reserved immediately, usu-
ally precipitating the replacement of cached data. This ear-
lier replacement may result in an inferior replacement choice,
which may actually increase the total number of fetches and
degrade performance. Furthermore, in the multiple disk case,
poor replacement choices can lead to load imbalance between
the disks. The algorithms we study choose di�erent points on
the spectrum between aggressive prefetching (with possibly
poorer cache replacements) and more conservative prefetch-
ing (with closer to optimal cache replacement).

The algorithms explored in this paper also di�er in the de-
gree to which they require advance knowledge. Fixed horizon

exploits global knowledge the least while reverse aggressive

exploits it the most. Using disk-accurate, trace-driven simu-
lation, this paper's results provide a measure of the potential
bene�t of using global knowledge.

1.2 Parallel prefetching and caching

Prefetching and caching are even more complicated in a sys-
tem with multiple disks, not only because it is possible to
do multiple prefetches in parallel, but also because appropri-
ate cache replacement strategies can alleviate load imbalance
among the disks. Since a disk can serve only one prefetch at
a time, a set of blocks can be prefetched in parallel only if
they reside on di�erent disks.

In order to develop intuition for why cache replacement
strategies can a�ect parallel prefetching performance, con-
sider the example shown in �gure 1. In this example, the
cache holds four blocks and the application references one
block per time unit. If the application wants to reference a
block that is not present in the cache, the application must
wait or stall until the block is present. Suppose that it takes
two time units to fetch a block from disk, and that the fetches
on each disk are serialized. Every fetch evicts some block
from the cache; the evicted block becomes unavailable at the
moment the fetch starts. The goal is to minimize the total
time spent by the application.

The application references blocks in the sequence
(A; b; C; d; E;F), and the cache initially holds blocks A, b, d,

and F . Blocks A, C, E and F are on one disk, and blocks b
and d are on the other disk. The straightforward approach is
to prefetch aggressively: always fetch the missing block that
will be referenced soonest; evict the block whose next refer-
ence is furthest in the future; but do not fetch if the evicted
block will be referenced before the fetched block. For small
caches such as in this �gure, the �xed horizon and aggressive
algorithms both behave in this way.

Figure 1(a) shows the cache block changes using this ap-
proach. The total elapsed time for the sequence is 7 time
units. Figure 1(b) shows another prefetching schedule on the
same reference pattern that is faster by one time unit. On
the �rst fetch, d is evicted rather than F , even though d is
referenced earlier. This has the advantage of o�oading one
fetch from the heavily loaded disk (the one holding A,C,E,
and F) to the otherwise idle disk (the one holding b and d).
This change allows two fetches to proceed in parallel later,
thus saving one time unit.

The example shows that the achievable I/O parallelism of
multiple disks can be a�ected by cache replacement and data
placement policies. These are the factors that are addressed
by the reverse aggressive algorithm.

1.3 Comparing approaches

The �xed horizon algorithm is based on the second Informed
Prefetching (TIP2) system of Patterson, Gibson et al. [26],
which manages allocation of cache space and I/O bandwidth
between multiple processes, only some of which are disclos-
ing some or all of their future accesses. TIP2 is designed
for the case in which su�cient I/O bandwidth exists to ser-
vice the request stream without stalling on I/O. The �xed

horizon algorithm, a restriction of TIP2 to a single hinting
process, initiates a fetch for a missing block H references
ahead of its reference, where H is the ratio between the aver-
age time it takes to read a block from disk and the minimum
time it takes to consume a block of data. Pattersonet al.

showed that under the assumption of su�cient bandwidth,
this strategy eliminates stalls while placing little stress on
system resources. However, �xed horizon will not look fur-

Page 20

ther than H references into the future for fetches to perform.
This can cause it to stall on I/O when there is insu�cient
disk bandwidth.

In contrast, the aggressive and reverse aggressive algo-
rithms are designed to take maximum advantage of any
amount of I/O parallelism. They use knowledge of future
accesses to minimize application elapsed time for both small
and large numbers of disks. Aggressive prefetches as early as
possible, provided that the prefetched block is needed by the
application sooner than the block that it will replace. When
insu�cient bandwidth is available, in particular, it becomes
more important to schedule prefetch requests to ensure that
no bandwidth is wasted.

Reverse aggressive goes beyond aggressive's use of future
knowledge by attempting to balance disk workload through
carefully selected replacement decisions. Previously, it was
shown theoretically that on any access pattern known in
advance, reverse aggressive's elapsed time is close to opti-
mal [16]. It is the only one of these algorithms with this the-
oretical performance guarantee. However, it is not a practical
algorithm. First, it is much more complex than the other al-
gorithms, and second, its decisions depend on information
farther in the future than the other algorithms. Nonethe-
less, its relative performance characteristics are of interest:
we would like to understand whether or not the theoretical
model we have de�ned actually gives insight into real system
performance. If so, the theoretically near-optimal reverse ag-

gressive can be used as a benchmark against which to com-
pare other algorithms. The performance of reverse aggressive

is our best a priori estimate of optimal performance.

The new algorithm forestall attempts to combine the best
features of the other three algorithms: the good performance
of reverse aggressive and the simplicity and implementability
of �xed horizon and aggressive. Forestall avoids stalling while
still making good (late) replacement decisions by estimating
the point at which it needs to begin prefetching in order to
prevent stalling.

1.4 Summary of results

In this paper we describe the results of a performance evalua-
tion of the di�erent policies for the d-disk integrated prefetch-
ing and caching problem. Our results from trace driven simu-
lation demonstrate the practical performance characteristics
of these algorithms. On our traces, we found that:

� All four algorithms signi�cantly outperform demand
fetching, even when advance knowledge of the access
sequence is used to make optimal replacement decisions
in conjunction with demand fetching.

� In compute-bound situations, �xed horizon and fore-

stall have the best performance (which is usually
matched by reverse aggressive's).

� In I/O-bound situations, aggressive and forestall have
the best performance (which is usually matched by re-

verse aggressive's).

� In any given situation, one of �xed horizon or aggressive
performs close to the theoretically near-optimal reverse
aggressive.

� In all situations, forestall performs close to reverse ag-

gressive.

� When data is well-laid out on the disks (e.g., striped),
disk loads are balanced even without careful replace-
ment choices. For this reason, reverse aggressive does
not signi�cantly outperform the other algorithms.

� Fixed horizon consistently places the least I/O load on
the disks, due to its conservative fetching and near-
optimal replacement choices. Reverse aggressive and
forestall are intermediate between aggressive and �xed

horizon.

� Batching of prefetch requests and disk head schedul-
ing are crucial to the performance of prefetching and
caching strategies.

� Forestall is a promising new approach that com-
bines the best features of the other three algorithms:
good performance regardless of I/O- or compute-
boundedness, simplicity, and practicality.

We have focused on a rather narrow range of the input
space: the single process, fully-hinted case. Clearly, prefetch-
ing and caching algorithms must deal e�ectively with missing
or incorrect hints, as well as multiple simultaneously execut-
ing processes. Fixed horizon, aggressive and forestall can all
be adapted to deal with these more general situations [5, 26].

1.5 Related work

Caching and prefetching have been known techniques to im-
prove storage hierarchies for many years [2, 12]. In architec-
tures, the work on caching and prefetching has focused on
bridging the performance gap between CPU and main mem-
ory [29]. Research using caching and prefetching in database
systems [9, 23, 10] showed that it is important to use appli-
cations' knowledge to perform caching and prefetching.

File caching and prefetching have become standard tech-
niques for sequential �le systems [12, 20, 14, 22, 30, 4, 13, 7,
26]. The most common prefetching approach is to perform
sequential readahead [12, 20, 21]. The limitation of this ap-
proach is that it only bene�ts applications that make sequen-
tial references to large �les. Another large body of work has
been on predicting future access patterns [11, 30, 23, 10, 13].
Recently, caching and prefetching have also been studied for
parallel �le systems [11, 18, 25].

Although much work has been done in �le caching and
prefetching, most of it has considered one or the other in
isolation. Recent studies for the single disk case showed [6, 5]
that it is important to integrate prefetching, caching and disk
scheduling together and that a properly integrated strategy
can perform much better than a naive strategy. For the multi-
disk case, a theoretical study [16] presented and analyzed
aggressive and reverse aggressive. Other parallel prefetching
strategies include one stripe lookahead prefetching on RAID

Page 21

arrays, and Patterson et al. [26]'s TIP2 system. The one
stripe lookahead bene�ts only applications that use large �les,
and would perform little prefetching for other applications.
TIP2 uses the �xed horizon algorithm we have studied here.
Patterson et al. [26] also present a cost-bene�t technique for
controlling bu�er allocations for both hinting and non-hinting
applications in a multi-process environment.

Previous studies of the algorithms considered here have
been incomparable. Di�erences in hardware, both in the pro-
cessor and the I/O system, as well as in the benchmarks used
to evaluate the algorithms, have made it di�cult to under-
stand the di�erences between them. This paper represents
the �rst direct comparison of these approaches. Using the
knowledge learned from this comparison, we have designed a
new algorithm that attempts to combine the best features of
the previous e�orts.

1.6 Organization of the paper

In the next section we describe the �rst three algorithms and
their theoretical basis. In section 3, we describe our simula-
tion framework. In section 4, we present the results of our
simulations using the �rst three algorithms. In section 5 we
describe the new algorithm forestall and present simulation
results on its performance. We present our conclusions in
section 6.

2 The algorithms

We begin by introducing the framework used to study this
problem and the terminology used in the rest of the paper.

2.1 Theoretical model

Our theoretical model consists of two levels of memory hier-
archy: a cache of K data blocks, and d (disk) storage devices.
The execution of a program makes a known request sequence

of references r1; r2; : : : rn to a set of m data blocks.

If a reference hits in the cache, it takes one time unit.
Otherwise, the missed block must be fetched from a stor-
age device. The system can either fetch a block on a miss
(demand driven) or fetch the block before it is referenced in
anticipation of a miss (prefetch). Either case takes F time
units. If the cache is full, a cache block must be evicted be-
fore the fetch is issued to make room for the requested data
block. While the fetch is in progress, neither the incoming
block nor the discarded block is available for access.

We assume that each block resides on a single disk.
Fetches to a single disk are serialized, but fetches on di�erent
disks can be executed concurrently.

When the program tries to access a block that is not in the
cache, it stalls until the block arrives in the cache. The stall
time is either F if the block is fetched on demand or F � i if
the block is prefetched i time units before the reference. The
measure of performance is the elapsed time required to serve
the entire request sequence; this is equal to the number of
references plus the total stall time.

The goal is to minimize application elapsed time, by de-
ciding when to fetch a block from a disk, which disk to fetch
from, which block to fetch, and which cache block to evict
(when the cache is full).

The time unit models the CPU time spent between two
consecutive �le references | the CPU time includes the time
to copy the accessed �le data from kernel address space to a
user address space bu�er, and the time for the application to
consume the �le data. The model simpli�es the real situation
by assuming that the CPU time between every two �le refer-
ences is the same, that all disk accesses take the same amount
of time, and that there is no CPU overhead incurred by issu-
ing an I/O request. These simpli�cations were made in order
to make the problem theoretically tractable. Our simulations
use actual CPU times collected in our traces and an accurate
simulation model of modern disk drives, and charge a driver
overhead for each request made to a disk.

2.2 Optimal prefetching rules

The following simple rules can be assumed of any optimal
strategy in the single-disk case [6]. 1

� Optimal fetching: when fetching, always fetch the miss-
ing block that will be referenced soonest;

� Optimal replacement: when fetching, always evict the
block in the cache whose next reference is furthest in
the future;

� Do no harm: never evict block A to fetch block B when
A's next reference is before B's next reference;

� First opportunity: never evict A to fetch B when the
same thing could have been done one time unit earlier.

Unfortunately, as exhibited in the example in section 1,
some of these rules no longer hold in the multiple-disk case.
It may be necessary to violate all of the rules except �rst

opportunity to produce an optimal schedule.

2.3 The �xed horizon algorithm

As described earlier, the �xed horizon algorithm is based on
the TIP2 system running a single hinting process [26].

Fixed horizon: Whenever there is a missing block at most
H references in the future, issue a fetch for that block, re-
placing the cached block whose next reference is furthest in
the future, provided that reference is further than H accesses
in the future (which will certainly hold if H < K).

Fixed horizon is consistent with the �rst three rules of
optimal prefetching for a single disk. An advantage of not
following the fourth rule is that �xed horizon needs less in-
formation about references beyond the prefetch horizon than
the other algorithms. A disadvantage is that when additional

1These rules are optimal in the sense that any schedule that does not
follow them can be transformed into one that does, with performance
at least as good.

Page 22

information is available, �xed horizon can have elapsed time
nearly twice optimal.

The prefetch horizon H is computed as the ratio of the
average time it takes to read a block from disk and the min-
imum time it takes to consume a single block of data. In the
theoretical model, H = F .

Fixed horizon tries to fetch as late as possible without
stalling in order to make the best possible replacement de-
cision. Each fetch is issued so that it will complete just in
time for the reference. If parallelism increases to the point
that each request is made to an idle disk, this algorithm is
optimal. However, in practice, a su�cient number of disks
may not be available. In this case, �xed horizon may ini-
tiate fetches too late to avoid stalling. In fact, because it
never initiates a fetch more than H references ahead of the
missing block, �xed horizon may allow a disk to become idle
even though the future requests beyond the prefetch hori-
zon contain many missing blocks. On the other hand, if the
missing blocks in the sequence tend to be separated by many
intervening references to blocks that are present in the cache,
we'd expect �xed horizon to have performance much closer
to optimal than its worst case.

2.4 The aggressive algorithm

The (multi-disk) aggressive algorithm is based on the Cao et

al. (single-disk) aggressive algorithm [6], which is provably
near-optimal in the single-disk case.

(Multi-disk) aggressive: Whenever a disk is free, prefetch
the �rst missing block on that disk, replacing the block whose
next reference is furthest in the future, under the condition
that the next access to the evicted block is after the next
access to the block being fetched.

Aggressive is the most aggressive prefetching strategy
that is consistent with the four optimal prefetching rules de-
scribed in section 2.2. As mentioned, some of these rules are
no longer valid in the multiple disk case. This provides some
of the intuition for the following theorem.

Theorem 1 [16] For any access pattern, and any lay-

out of data on disks, the elapsed time of aggressive is at most

d(1+�1) times that of the optimal elapsed time (the minimum

possible), where d is the number of disks, and �1 is a small

constant that depends on system parameters.2

There are worst case access patterns/data layouts for

which the elapsed time of aggressive is at least d times the

minimum possible.

It is important to note that this worst case result depends
on access patterns and data layouts in which the load is heav-
ily unbalanced between the disks. If the request sequence is
balanced, aggressive has near-optimal performance.

2�1 here is F=K where F is the fetch time/compute time ratio and
K is the cache size measured in blocks. For typical system parameters
�1 is less than 0.02.

2.5 The reverse aggressive algorithm

The reverse aggressive algorithm exploits global knowledge in
order to produce a prefetching schedule that achieves near-
optimal elapsed time. It does this by balancing disk workload
through carefully selected replacement decisions.

Reverse aggressive: Construct a prefetching schedule for
the reversed sequence that replaces at most one block on each
disk in parallel as follows: Whenever a disk is free, determine
the block B not needed for the longest time on that disk. If
the next request to B is after the �rst missing block, issue
a fetch for the missing block, replacing B. Transform this
prefetching schedule back to a schedule for the original se-
quence by treating each fetch on the reverse sequence as an
eviction on the forward sequence and vice versa.

For a proof of correctness, more details on how and why
this algorithm works well, and a proof of the following theo-
rem, see [16].

Theorem 2 [16] For any request sequence, and for any

layout of the data on the disks, the elapsed time of reverse

aggressive is at most 1 + �2 times the optimal elapsed time.3

There are two key properties of reverse aggressive that
result in this theorem. First, whereas aggressive chooses evic-
tions without considering the relative loads on the disks, re-
verse aggressive greedily evicts to as many disks as possible
on the reverse sequence. In the forward direction, this trans-
lates to performing a maximal set of fetches in parallel. The
fact that these are fetches in the forward direction means that
at some point earlier in the sequence, corresponding blocks
were evicted. Thus the eviction decisions of reverse aggressive

on the forward sequence are based on the ability to prefetch
the evicted blocks later on in parallel. Second, whereas ag-

gressive can wastefully prefetch ahead on some of its disks,
reverse aggressive is greedy in the reverse direction. Con-
sequently, it is fetching blocks in the forward direction just
in time (to the extent possible) for them to be used. This
results in performing close to the best evictions possible for
those fetches.

2.6 Practical considerations

Several important features of real systems are not captured
by our theoretical model.

1. Disk response times and CPU times between I/O re-
quests are not constant.

We use average values for each and expect that vari-
ation in event times does not substantially invalidate
the algorithm's decisions. In our experimentation, this
does not appear to be a major e�ect, with one excep-
tion (see section 4.3). (The systematic e�ects of disk
scheduling on disk response time are considered sepa-
rately).

3�2 here is less than Fd=K, where F is the fetch time/compute time
ratio, d is the number of disks, and K cache size in blocks. For typical
sytem parameters, �2 is less than 0:1, and sometimes signi�cantly less.

Page 23

2. Access patterns exhibit locality of reference, and loads
are balanced across the multiple disks when data is
striped.

In practice, this allows both �xed horizon and aggres-

sive to e�ectively utilize multiple disks, and achieve
elapsed times comparable to the theoretically superior
reverse aggressive.

3. Disk accesses require signi�cant CPU overhead to form
the request, communicate with the disk, and service
the resulting interrupt(s). Thus, avoidable data fetches
may add elapsed time even if they do not cause stalls.

Because the theory assumes that fetches entail no CPU
overhead, this penalty punishes overly aggressive fetch-
ing. In practice, this e�ect favors the �xed horizon

algorithm since its late replacement decisions tend to
lead to the fewest fetches.

4. Disk response time is sensitive to the order in which
requests are serviced.

In particular, disk scheduling reduces average disk re-
sponse time as more accesses are presented and allowed
to be reordered by the disk (driver). Although �xed

horizon implicitly allows multiple outstanding requests
at each disk, aggressive and reverse aggressive were de-
�ned to submit only one request at a time, since in
the theoretical model there is no advantage to batch-
ing. Because of the signi�cance of the disk scheduling
e�ect, we modify the de�nitions of aggressive and re-

verse aggressive to submit disk requests in batches. We
have found that the performance of all three algorithms
bene�ts from the CSCAN disk scheduling algorithm.

Reverse aggressive also bene�ts from batching of requests
during its construction of its prefetching schedule (the re-
verse pass over the request sequence). This is because typi-
cal request sequences exhibit spatial locality; by batching re-
quests on the reverse pass, reverse aggressive generates miss-
ing blocks to be fetched on the forward sequence in groups
that exhibit locality of reference.

The inter-request CPU time is actually composed of two
components, a �xed amount of time to read a block out of
the cache, and a variable amount of time to process the data.
Our implementation of �xed horizon assumes the data pro-
cessing time to be zero, and uses the ratio of the average disk
response time to the time to read a block from the cache as
the prefetch horizon H. This ensures that any prefetch to an
idle disk will complete in time for the reference. Assuming an
average disk response time of 15ms (which is usually an over-
estimate in our simulations) and 243�s to read a block from
the cache (which was measured on the implemented TIP2
system) yields a value of H = 62; we used this value in all
our simulations, except where noted otherwise.

2.7 Implementations of the algorithms

In the context of the considerations of the previous section,
we summarize the implementations we compared.

Fixed horizon: Whenever there is a missing block at most
H references away, issue a fetch for that block, replacing the
block whose next reference is furthest in the future. Note that
this algorithm may at any time have up to H outstanding
references to a disk yielding opportunities for disk scheduling.

Aggressive: Whenever a disk D is free, construct a batch
of at most batch-size

4 fetches to initiate on D as follows:
As long as the �rst missing block B on disk D precedes the
block B0 whose next request is furthest in the future, add the
fetch/eviction pair B=B0 to the batch. Issue the batch.

If two or more disks are free at the same time, we consider all
their missing blocks together, in order of increasing request
index. Each next missing block is issued to the appropriate
disk (and the best possible choice of evictions is made), if the
disk's batch is not full and the do no harm rule allows it. At
some point, either the last free disk's batch becomes full or
the do no harm rule disallows issuing further requests.

Reverse aggressive: Assuming a �xed ratio F between the
time for a disk access and the inter-reference CPU time, con-
sider the reversed sequence, and use it to derive a prefetching
schedule as described in section 2.5, but construct the sched-
ule in batches as done by aggressive.

This prefetching schedule is then transformed into a schedule
of fetch/eviction pairs for the forward sequence. Associated
with each eviction is a release time, the earliest index in the
request sequence at which the block can be evicted (i.e. one
greater than the index of the last request to the block until
it is possibly fetched back into the cache at some later time.)
The eviction choices are naturally ordered by increasing re-
lease point due to the method used by reverse aggressive to
construct its schedule. Fetches may need to be re-ordered
according to increasing request index; they are then matched
to eviction choices according to these orderings.

This schedule is used to drive the disk model as follows.
Whenever a disk D is free, add the �rst up to batch-size

fetch/eviction pairs Bi=B
0

i that have been released, and for
which Bi resides on disk D, to the batch. Issue the batch.5

Notice that aggressive and �xed horizon use less looka-
head information than reverse aggressive, in that for both of
them, the \only" future information needed are the identities
of the next missing blocks (up to H missing blocks for �xed

horizon, and up to d times batch-size for aggressive), and
their positions in the sequence relative to the next references
to blocks currently in the cache.

3 Simulation framework

We used trace-driven simulation to evaluate the performance
of the algorithms. We believe our simulation model to be an
accurate reection of the practical performance characteris-
tics of the algorithms. The reference streams are taken from
traces of real applications' behavior; the trace information

4The batch sizes used are listed in table 6.
5The batch sizes and estimate F used by reverse aggressive are

discussed in section 4.4.

Page 24

Sector sectors tracks per

size per track cylinder

512 bytes 72 19

cylinders rotational disk cache

speed size

1962 4002 rpm 128 Kbytes

ave. access controller transfer

time (8Kbyte) interface rate

22.8ms SCSI-II 10 MB/sec

Table 1: HP 97560 characteristics.

xds elapsed times (secs)

CMU simulator UW simulator

disks F.H. Agg. F.H. Agg.

1 63.3 61.6 65.6 63.7

2 36.9 34.1 38.0 34.3

3 33.6 33.9 36.2 33.7

4 33.8 35.1 34.2 35.1

5 33.0 34.2 33.5 34.4

synth elapsed times (secs)

CMU simulator UW simulator

disks F.H. Agg. F.H. Agg.

1 213.0 168.5 201.4 155.8

2 136.3 126.9 130.9 121.7

3 118.9 149.5 118.9 150.4

4 118.9 150.4 118.9 150.1

Table 2: Comparison of the simulators on the xds and synth
traces.

we use is una�ected by prefetching and caching activity. The
accurate modelling of disk fetch times, I/O driver overhead
costs, and application process compute times in the simula-
tions is a key di�erence relative to the theoretical framework.
However, our simulators do not model serialization of DMA
transactions. 6

Two separate simulators were developed, one at Wash-
ington (UW) and one at Carnegie Mellon (CMU). The UW
simulator uses the disk drive simulation of Kotz et al. [19]
(which is based on that of Ruemmler and Wilkes [27]) to
accurately model I/O costs. This simulation models �ne ar-
chitectural details to provide a very accurate simulation of
the HP 97560 disk drive. Table 1 lists several characteristics
of the HP 97560 (taken from [27]). The CMU simulator uses
the Berkeley RaidSim [8] simulator, as modi�ed at CMU, to
simulate 0661 IBM Lightning disk drives.

The simulators were cross-validated on a common set of
traces. The CMU simulator does not implement reverse ag-

gressive. We obtained good agreement between the simula-
tors on the results for aggressive and �xed horizon for sev-
eral traces. Table 2 shows the elapsed times measured by
the simulators for the xds and synth traces described below.
Remaining di�erences between the simulators are consistent
with the di�erences in the disk models. We report here re-
sults for all algorithms obtained using the UW simulator.

In our simulations, we ignore write operations. Write
performance is less critical to I/O performance since the ap-
plication generally does not have to wait for the disk to be

6We do not expect this to have a signi�cant e�ect on the results
since the DMA time is much less than the disk access time.

trace reads distinct compute

blocks time (sec)

dinero 8867 986 103.5

cscope1 8673 1073 24.9

cscope2 20206 2462 37.1

cscope3 30200 3910 74.1

glimpse 27981 5247 38.7

ld 5881 2882 8.2

postgres-join 8896 3793 11.5

postgres-select 5044 3085 79.2

xds 10435 5392 30.8

synth 100000 2000 99.9

Table 3: Trace summary data.

written. Moreover, the impact this has on the results is small
since most of the references in our traces are reads.

We simulated disk arrays of sizes 1-8, 10, 12, and 16.
Most of our �gures show a smaller range of sizes, however.
In each case, the performance with a larger number of disks
is the same as that with the largest number of disks shown.

3.1 File access traces

We used a set of traces collected on a DECstation 5000/200.
The running time of all the applications is dominated by disk
read accesses. Each trace consists of a sequence of �le block
read requests in the order they were issued, and the sequence
of measured process compute times between read requests, of
a single execution thread. We used an I/O driver overhead
of :5ms per I/O operation, which is typical of the 5000/200.

The applications are:

cscope[1-3]: an interactive C-source examination tool writ-
ten by Joe Ste�en, searching for eight symbols (cscope1)
in a 18MB software package, searching for four text strings
(cscope2) in the same 18MB software package, and searching
for four text strings (cscope3) on a 10MB software package.
With multiple queries, cscope will read multiple �les sequen-
tially multiple times.

dinero: a cache simulator written by Mark Hill. This appli-
cation reads one �le sequentially multiple times.

glimpse: a text information retrieval system from the Uni-
versity of Arizona, searching for four keywords in a 40MB
snapshot of news articles. It builds approximate indexes for
words to allow both relatively fast search and small index
�les. The result is that the index �les are accessed repeat-
edly, whereas the data �les are accessed infrequently.

postgres-join: the Postgres relational database system de-
veloped at the University of California at Berkeley, perform-
ing a join between an indexed 32MB relation and a non-
indexed 3.2MB relation. The relations are those used in the
Wisconsin Benchmark [3]. Since the result relation is small,
most of the �le accesses are reads. Here, the index blocks are
accessed much more frequently than the data blocks.

Page 25

E
la

ps
ed

 T
im

e
(s

ec
s)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 CPU Time Driver Time Stall Time

d
e

m
a

n
d

fix
e

d
 h

o
ri
zo

n
a

g
g

re
ss

iv
e

re
ve

rs
e

 a
g

g
.

2 disks 3 disks 4 disks 5 disks 6 disks 7 disks 8 disks 10 disks 12 disks 16 disks1 disk

Figure 2: Performance on the postgres-select trace. Each group of bars represents the performance of the four algorithms
optimal demand fetching, �xed horizon, aggressive, and reverse aggressive, in left-to-right order.

postgres-select: the Postgres relational database system
executing a selection query of choosing 2% of the tuples from
an indexed 32MB relation. The selection query is part of the
Wisconsin Benchmark suite [3] and uses indexed search.

ld: the Ultrix link-editor, building the Ultrix 4.3 kernel from
about 25MB of object �les.

xds: a 3-D data visualization program, XDataSlice, gener-
ating 25 planar slice images at random orientations from a
64MB data �le.

Finally, we used a synthetic trace synth containing 50
passes through a loop of 2000 sequential blocks. Compute
times between read requests were generated according to a
Poisson distribution with a 1 ms mean.

Table 3 shows the length (number of read requests), num-
ber of distinct blocks requested, and total application com-
pute times for each of the traces.

The cache size was set to be 10MB (or K = 1280 blocks
of 8 kbytes each) for all traces except dinero and cscope1.
These traces contain references to fewer than 1280 distinct
blocks. For these traces, the cache size was reduced to 4MB
(512 blocks). We assume the cache to be empty (or to contain
some other application's data) when the traced application
starts. The entire cache is available to the traced application.

3.2 Data placement and disk head scheduling

The data was striped across the array using a one-block
stripe unit. Some of our traces represented block numbers
by (�le,o�set) pairs; for these we chose a random starting
point within a group of 8550 8kbyte blocks (which occupy
100 cylinders on the HP 97560) for each �le, corresponding
to typical �le system clustering mechanisms. The maximum
seek time within a group of 100 cylinders is 7.24ms. Thus, in
our simulations the average response time is typically lower
than the 22.8ms listed in table 1. Other traces referred to
logical �lesystem block numbers; for these traces we used the
actual block number for each access. Except where noted, we
use CSCAN disk head scheduling.

4 Results

In the following sections, we examine the behaviors of the al-
gorithms in detail. We begin by comparing the performance
of the algorithms with that of demand fetching. We then
examine the algorithms' performance on the synthetic trace,
an easily understood access pattern that illustrates the key
di�erences in behavior between the algorithms. Next we ex-
amine performance on the application traces, and explore the
e�ects on the results of changes in various simulation param-
eters.

4.1 Comparison with demand fetching

In order to make this comparison as favorable as possible to
demand fetching, we use the optimal o�ine replacement pol-
icy: whenever a block is fetched, the block in the cache whose
next reference is furthest in the future is replaced. Figure 2
shows the elapsed times of the three algorithms and of op-
timal demand fetching on the postgres-select trace for vary-
ing numbers of disks between one and sixteen. The elapsed
times are divided into three components: process compute
time, I/O driver overhead (processor) time, and the time the
processor spends idle, stalling on I/O. From this �gure we see
that (1) all three prefetching algorithms signi�cantly outper-
form optimal demand fetching, and (2) the three prefetch-
ing algorithms achieve near linear reduction in I/O overhead
until the applications become compute-bound. These two
behaviors are consistent across all the applications we have
studied.

4.2 Fundamental di�erences

The synthetic trace is used to examine the algorithms' be-
havior on a simple, known sequence in order to gain insight
into the algorithms' performance. This trace shows the rela-
tive behaviors typical of the three algorithms in exaggerated
form. Figure 3 summarizes the results for one to four disks.

The sequential accesses allow excellent performance from
the disks; average response times are between 3 and 4 ms.
In each case, �xed horizon performs 38000 fetches, 720 more

Page 26

0

5 0

100

150

200

0

5

1 0

1 5

2 0

2 5

3 0

3 5

 CPU Time Driver Time Stall Time

2 disks 3 disks 4 disks1 disk

fix
e

d
 h

o
r.

a
g

g
.

re
v.

 a
g

g
.

E
la

ps
ed

 T
im

e
(s

ec
s)

fix
e

d
 h

o
r.

a
g

g
.

re
v.

 a
g

g
.

2 disks 3 disks 4 disks1 disk

E
la

ps
ed

 T
im

e
(s

ec
s)

 CPU Time Driver Time Stall Time

Figure 3: Performance on the synth (left) and cscope1 (right) traces. Each group of bars represents the performance of the
three algorithms �xed horizon, aggressive, and reverse aggressive, in left-to-right order.

than the minimum possible 37280 performed by optimal de-
mand fetching. (The total sequence length is 100,000).

With a single disk, the synthetic application is I/O
bound. Fixed horizon's conservative prefetching strategy re-
duces I/O stalling relative to demand fetching, but not as
much as aggressive's and reverse aggressive's more aggressive
strategies. After each pass through the loop under �xed hori-

zon, the cache contains 1280 sequential blocks and the other
720 blocks in the sequence are not cached. The clustering of
the 720 missing blocks allows good disk performance; how-
ever, the clustering of the 1280 cached blocks causes �xed

horizon to leave the disk idle until the last H cached blocks
are being read. Aggressive and reverse aggressive perform
39240 and 39265 fetches, respectively, slightly more fetches
than �xed horizon's 38000, resulting in a small di�erence in
driver overhead. However, they are able to eliminate much
of the I/O stall time by prefetching distant blocks and thus
not idling the disk appreciably.

With two disks, �xed horizon is able to eliminate most
of the stall time, without increasing the total number of
fetches. Aggressive has nearly eliminated stall time com-
pletely, but at a higher driver cost due to its increased number
(41902) of fetches. Reverse aggressive is between �xed hori-

zon and aggressive in stall time; it performs 42000 fetches.
Elapsed times are similar under all three algorithms. This
case marks the transition from I/O-boundedness to compute-
boundedness.

With three disks, stall time has been eliminated com-
pletely by all three algorithms. Aggressive uses the excess I/O
bandwidth to prefetch and subsequently evict every block
for every reference. In fact, because aggressive is willing to
prefetch signi�cantly ahead on one disk relative to others,
it wastes 994 fetches, replacing a prefetched block from the
cache before it is used in order to fetch a block on a di�erent
disk that will be needed sooner. Fortunately, this e�ect does
not increase as the number of disks increases since with in-
creasing I/O bandwidth, aggressive's prefetching becomes so
successful that every fetch is to the �rst missing block in the
future. Such a block can never be replaced before it is used,
since that would violate the do-no-harm rule.

Nonetheless, the elimination of stall time by aggressive

comes at a high cost: the driver overhead for the extra fetches

pushes aggressive's elapsed time higher than the two-disk
case. In contrast, �xed horizon prefetches far enough ahead
to serve all requests without stall, but no farther. Dedicat-
ing at most H bu�ers to prefetching, �xed horizon is able to
eliminate stalling altogether without any additional fetches.
Reverse aggressive performs 37907 fetches, fewer than �xed

horizon, also eliminating stall time.

4.3 Application traces

The application traces show di�erences among the three al-
gorithms similar to those shown by the synthetic trace, but
less pronounced.

The right portion of �gure 3 shows the performance of
the three algorithms on the CPU-bound cscope1 trace. The
behavior here is similar to that for the synthetic trace: aggres-
sive eliminates stalling but issues too many fetches resulting
in a greater driver overhead.

At the I/O-bound end of the spectrum, �gure 4 shows
a detailed breakdown of the performance of the three algo-
rithms on the ld trace, from one to sixteen disks. With one
disk, all three algorithms are I/O bound and have compa-
rable performance. From two to eight disks, the more ag-
gressive prefetching of aggressive and reverse aggressive re-
sults in somewhat less stalling than �xed horizon. At ten
disks, �xed horizon's performance matches aggressive's. Be-
yond this point, the tradeo� between excessive stalling caused
by leaving disks idle, and excessive driver overhead caused by
prefetching aggressively, favors �xed horizon over aggressive.
The other traces reect similar trends, with di�erent points
of crossover: above �ve disks for postgres-select, glimpse,
and cscope2, and below �ve disks for postgres-join, dinero,
cscope1, and xds.

An exception to the generally best performance of reverse
aggressive is the cscope3 trace, shown in �gure 5. Note that
reverse aggressive's performance is much worse than aggres-

sive's with one disk. This is a case in which the di�erences
between the theoretical model and the simulation model af-
fect the performance of reverse aggressive. Recall that since
reverse aggressive is o�ine, it generates a complete schedule
based on its estimate of F . When it uses a smaller estimate
of F , each fetch is assumed to complete earlier (relative to

Page 27

E
la

ps
ed

 T
im

e
(s

ec
s)

 CPU Time Driver Time Stall Time

fix
e

d
 h

o
ri
zo

n

a
g

g
re

ss
iv

e

re
ve

rs
e

 a
g

g
.

2 disks 3 disks 4 disks 5 disks 6 disks 7 disks 8 disks 10 disks 12 disks 16 disks1 disk
0

5

1 0

1 5

2 0

2 5

Figure 4: Performance on the ld trace.

E
la

ps
ed

 T
im

e
(s

ec
s)

0

2 0

4 0

6 0

8 0

100

120
 CPU Time Driver Time Stall Time

2 disks 3 disks 4 disks 5 disks 6 disks 7 disks 8 disks1 disk

fix
e

d
 h

o
ri
zo

n

a
g

g
re

ss
iv

e

re
ve

rs
e

 a
g

g
.

Figure 5: Performance on the cscope3 trace.

the inter-reference compute time) and therefore reverse ag-

gressive generates a more aggressive prefetching schedule that
keeps the disk(s) busier. When it uses a larger estimate of
F , each fetch is assumed to take longer, and therefore reverse
aggressive must delay the scheduling of subsequent fetches in
the sequence, thus generating a more conservative prefetch-
ing schedule. In our implementation of reverse aggressive, the
single best estimate of F is used for each trace. On traces
with large variation in inter-reference compute times, any sin-
gle estimate of F will be either too small or too large for some
parts of the trace. This is the case for cscope3 { examination
of the trace reveals that the inter-reference compute times
are bursty. Runs of compute times near 1ms are interspersed
with runs of times around 7ms. Since the average fetch time
on this trace with one disk is about 8ms, the ratio of fetch
time to compute time (the \true" value of F) varies from
about 1 to about 8.

In fact, with a single disk, aggressive has the same theo-
retical performance bounds as reverse aggressive. It is not
surprising that aggressive's inherent adaptivity to varying
fetch times and compute times should give it an advantage
over reverse aggressive in this case. This e�ect is noticable,
but less pronounced, on the synth trace as well.

On the remaining traces, reverse aggressive's elapsed time
varies from 3.6% worse to 10.7% better than the superior of
�xed horizon and aggressive in any given con�guration. For
the full data, see [17].

disks demand �xed aggressive reverse

fetching horizon aggressive

1 .82 .98 .99 .98

2 .41 .90 .92 .92

3 .27 .82 .87 .85

4 .20 .72 .81 .80

5 .16 .66 .70 .69

6 .13 .58 .63 .60

7 .12 .50 .62 .50

8 .10 .45 .56 .42

10 .08 .36 .43 .35

12 .07 .30 .35 .28

16 .05 .22 .26 .21

Table 4: Disk utilization on the postgres-select trace.

Table 4 shows the utilization of the disks (averaged over
the disks when there are more than one) for demand fetching
and the three prefetching algorithms on the postgres-select
trace. For moderate numbers of disks, aggressive places the
greatest load on the disks, followed by reverse aggressive and
then �xed horizon; demand fetching places the least load on
the disks. With a very high degree of disk parallelism, reverse
aggressive's o�ine schedule places even less load on the disks
than �xed horizon's conservative strategy.

Page 28

2 disks 3 disks 4 disks 5 disks1 disk

E
la

ps
ed

 T
im

e
(s

ec
s)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0
4 8 1 6 4 0 8 0

160 320 640 1280

Figure 6: Performance of aggressive on the cscope2 trace, as a function of the batch size.

4.4 Varying parameters

The performance of the algorithms depends on a set of pa-
rameters which interact in complicated ways with the appli-
cations' access patterns and inter-reference compute times,
the layout of data on disks, the disk-scheduling discipline,
and the characteristics of the disks. In this section, we ex-
plore the behavior of the algorithms when some of these pa-
rameters are varied. For lack of space, we present general
observations and only a small portion of the data. For the
full data, see [17].

We have already described most of the primary e�ects
that explain what we see. These are:

� scheduling: an increase in the number of outstanding
fetches issued by a prefetching algorithm results in in-
creased latitude to reorder fetches and thus reduced
disk response times. This e�ect is strongest in I/O-
bound situations.

� out-of-order fetching: reordering of fetches can increase
stall penalties when early missing blocks are fetched
after later missing blocks. This e�ect is strongest in
CPU-bound situations where any stall penalty is costly.
When there is signi�cant stalling, this e�ect is masked
by other stalls and compensated for by the reduced
average response time.

� early replacement: as prefetching becomes more aggres-
sive, inferior replacement choices are made, leading to
more fetches and in many cases, an increase in elapsed
time.

� limited aggressiveness: the extent to which an algo-
rithm can prefetch is limited by the do no harm rule.

Disk-head scheduling

The results shown in the previous section were obtained
using CSCAN disk-head scheduling. CSCAN was used
rather than SCAN since the HP 97560 contains a reada-
head bu�er; CSCAN always scans in the same direction
that the disk reads, improving the hit rate in the readahead
bu�er. We compared the performance impact of CSCAN

disks �xed aggressive reverse

horizon aggressive

1 14.9 19.2 24.0

2 4.85 11.3 22.1

3 2.59 8.36 19.9

4 0.53 3.59 6.71

5 -0.62 -0.77 0.0

6 -0.68 -0.31 0.0

7 -2.15 -0.45 0.0

8 -0.42 -0.17 0.0

10 -0.05 0.09 0.0

12 0.0 0.11 0.0

16 0.0 0.0 0.0

Table 5: Percentage improvement of CSCAN over FCFS on
the postgres-select trace.

disk-head scheduling versus FCFS scheduling. Relative to
FCFS, CSCAN improves the performance of reverse aggres-

sive the most, up to 24%, and that of �xed horizon the least,
up to 15%. For aggressive, the greatest bene�t was 19%. Be-
cause of out-of-order fetching, CSCAN sometimes degrades
performance slightly relative to FCFS in compute-bound sit-
uations. This e�ect is strongest for �xed horizon since it
issues fetches later than they are issued by the other algo-
rithms. The maximum degradation we observed is 3.6% (for
�xed horizon with six disks on the glimpse trace).

Table 5 shows the performance bene�t of CSCAN
scheduling relative to FCFS on the postgres-select trace for
all three algorithms with 1-16 disks.

The batch size used by aggressive

Figure 6 shows the e�ect of varying aggressive's batch size
on the cscope2 trace. For each number of disks, performance
initially improves with increasing batch size due to improved
scheduling. For example, for one disk, the average fetch time
drops from 10.4ms to 8.4ms as the batch size increases from
4 to 160. Eventually, out-of-order fetching and early re-
placement become more important and performance drops
o� again. For example, for one disk the number of fetches
increases from 6771 to 9806 as the batch size increases from
160 to 1280.

Page 29

 CPU Time Driver Time Stall Time

H
 =

 1
6

H
 =

 6
4

H
 =

 2
5

6

H
 =

 1
0

2
4

H
 =

 2
0

4
8

2 disks 3 disks1 disk
0

5

1 0

1 5

2 0

2 5

3 0

3 5

E
la

ps
ed

 T
im

e
(s

ec
s)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

E
la

ps
ed

 T
im

e
(s

ec
s)

H
 =

 1
6

H
 =

 6
4

H
 =

 2
5

6

H
 =

 1
0

2
4

1 disk 2 disks 3 disks

Figure 7: Performance of �xed horizon as a function of the prefetch horizon H on the cscope1 (left) and cscope2 (right) traces.

1 disk 2 disks 3 disks 4 disks

80 40 40 16

5 disks 6 disks 7 disks > 7 disks

16 8 8 4

Table 6: Batch sizes used for aggressive.

As the number of disks increases, the variation in per-
formance with batch size diminishes, and the best batch size
shifts to a smaller value. This is because in more compute-
bound situations, out-of-order fetching and limited aggres-
siveness are the dominant factors. Because of limited aggres-
siveness, the number of fetches increases only from 11325 to
11399 as batch size increases from 160 to 1280 with 5 disks.

Although the optimal batch size decreases with the num-
ber of disks for all the traces, it varies signi�cantly from trace
to trace. For example, for the xds trace, the optimal batch
size for one to three disks was 16, and for four or more was
4. All the results for aggressive presented in section 4.3 were
obtained using the batch sizes given in table 6. The perfor-
mance of aggressive with these �xed batch sizes is on average
0.7 % worse (and at most 11% worse) than its performance
with the best batch size for the con�guration.

Prefetch horizon

The left side of �gure 7 shows the e�ect of varying �xed hori-

zon's prefetch horizonH on the cscope1 trace. We see that for
each number of disks, performance deteriorates with increas-
ing H (except on one disk, where it improves slightly until
H = 64 is reached). This is due to out-of-order fetching and
early replacement. For example, with 1 disk, earlier replace-
ments cause the number of fetches to increase from 4959 with
H = 64 to 8535 with H = 2048. Out-of-order fetching ac-
counts for all the stall time with 2 and 3 disks when H � 512;
using FCFS scheduling this stall time is eliminated.

On the more I/O bound traces such as cscope2, also
shown in �gure 7, we �nd a signi�cant initial performance
improvement with increasing H because the more aggressive
prefetching eliminates stalling. Only at very large values of
H does performance decline again.

The parameters used by reverse aggressive

We experimented with the batch size and �xed value of F
used by reverse aggressive to construct its schedule on its
reverse pass over the request sequence, as well as the batch
size used on the forward pass. Since we use reverse aggressive

only as a benchmark against which to compare the other
algorithms, the main purpose of these experiments was to
determine the optimal con�guration (choice of F and batch
sizes) for each trace, for each number of disks.

These experiments show that, as with aggressive, a
smaller (resp. larger) batch size bene�ts a more compute-
bound (resp. I/O-bound) application. Recalling that as re-

verse aggressive's estimate of F decreases, it becomes increas-
ingly aggressive, we similarly �nd that a smaller (resp. larger)
value of F bene�ts a more I/O-bound (resp. compute-bound)
application.

Processor speed and cache size

In order to assess the impact of improved CPU performance
relative to disk performance, we ran our trace-driven simu-
lations assuming a processor twice as fast. For these tests,
�xed horizon's prefetch horizon H was doubled to 124. The
results are entirely unsurprising: faster processors are more
dependent on I/O performance so that the payo� of using
multiple disks and prefetching is increased. In addition, since
a larger number of disks is needed to eliminate I/O overhead,
the point at which the tradeo�s begin to favor �xed horizon

over aggressive is shifted to a larger number of disks. This
behavior was consistent across the applications.

In order to assess the impact of cache size on performance,
we ran our trace-driven simulations with varying cache sizes:
640, 1280, and 1920 blocks. As cache size increases, the per-
formance of all the algorithms improves. In I/O-bound cases,
a larger cache improves aggressive's and reverse aggressive's
performance more than �xed horizon's since they prefetch
more aggressively. In more compute-bound cases, aggres-

sive's excessive driver overhead penalizes it even more with a
larger cache, so that �xed horizon's performance relative to
aggressive improves slightly as cache size increases. This is
illustrated in table 7, which shows the performance of �xed
horizon relative to aggressive as percentage di�erence, as a

Page 30

cache size 1 disk 2 disks 4 disks 8 disks 16 disks

640 6.0 14.7 24.8 7.3 -2.6

1280 11.3 20.2 24.5 5.7 -3.8

1920 13.8 25.0 21.7 5.7 -3.8

Table 7: Elapsed time as a function of the cache size and
number of disks of �xed horizon relative to aggressive (per-
centage di�erence) on the glimpse trace.

function of the cache size and the number of disks on the
glimpse trace.

5 A new approach

We have designed a new algorithm, forestall, attempting to
combine the best features of all three previously described
algorithms: the good performance of reverse aggressive re-
gardless of I/O-boundedness or compute-boundedness, and
the simplicity and implementability of �xed horizon and ag-

gressive. Forestall tries to avoid stalling while still making
good (late) replacement decisions by estimating the point
at which it needs to begin prefetching in order to prevent
stalling. It makes this estimate based on its current cache
state.

Returning to the theoretical model, suppose that there
is a single disk, and that at some point during the servicing
of the request sequence, the cache contains the next 2F � 1
blocks requested. (Recall that in the theoretical model, the
interreference CPU time is taken to be 1 time unit, and the
time to fetch a block from disk is F time units.) Further
suppose that the subsequent two requests are missing from
the cache. Aggressive immediately starts fetching and avoids
stalling on the missing blocks, bringing the second missing
block into the cache at time 2F { just in time to serve the re-
quest without stalling. Fixed horizon leaves its disk idle until
the cursor is within F requests of the �rst missing block; it
stalls F � 1 steps on the second missing block. In contrast,
suppose there is only one missing block at a distance of 2F�1
from the cursor. In this case, aggressive will fetch immedi-
ately and make a possibly inferior replacement choice. Fixed
horizon waits until its cursor is within F steps of the missing
block, and prefetches just early enough to avoid stalling; in
the intervening time, it may have �nished using a block that
is not needed until later in the sequence (if at all) than the
one evicted from the cache by aggressive.

Forestall behaves as does aggressive in the �rst case, and
as does �xed horizon in the second. For each i, i � 1, let di
denote the distance from the cursor to the ith missing block
in the request sequence. For any i � 1, if iF > di, process-
ing will surely stall on the ith missing block or some earlier
missing block. It will take iF time units to fetch the �rst
i missing blocks, and at most the next di requests can be
served concurrently. Forestall initiates a prefetch according
to the optimal fetching and optimal replacement rules when-
ever iF � di is true for some i and the do no harm rule allows
it.

Practical considerations

As do the other algorithms, forestall requires modi�cations in
order to account for di�erences between the theoretical model
and real systems. Requests need to be issued in batches in
order to reduce average disk access times. The ratio F of
disk response time to interaccess time is not constant and
must be estimated. In our implementation, we estimate F
by tracking recent disk response times and compute times:
F is dynamically computed on a per-disk basis as the ratio
between the sum of the most recent 100 disk access times and
the most recent 100 interreference CPU times.

Just as we needed the prefetch horizon H to be an overes-
timate of F for �xed horizon to have adequate performance,
forestall's performance depends on overestimating F in cer-
tain situations as well. We denote by F

0 the overestimate
of F used by forestall. We evaluated forestall's performance
with di�erent values of the parameter F 0. We found that
the best choice of F 0 depended on the per-trace average disk
access times. For those traces for which the average disk ac-
cess time was small, in the 3-4ms range, it was best to take
F

0 = F . For those traces for which the average disk access
time was larger, it was best to take F 0 = 4F . This is not hard
to explain. Traces with disk access times in the 3-4ms range
must contain a great deal of sequential access, so that most
requests hit in the disk's readahead cache and are served by
the CSCAN scheduler in the order in which they are received.
When this happens, it is not necessary to prefetch aggres-
sively. When the disk access times are large, the access pat-
tern is more complicated, and disk access times more varied.
Forestall's mechanism for deciding when to prefetch bene�ts
from overestimating the potential to stall. This smooths out
the variations and avoids stalling due to the reordering of
requests by CSCAN. Our implementation of forestall adapts
to the observed disk access times, using the small value of F 0

for small disk access times (less than 5ms on average), and
the larger value of F 0 for larger disk access times. Finally,
because of the reordering of requests by CSCAN, we found
it necessary to add �xed horizon's rule to issue a fetch when-
ever the cursor is within H requests of a missing block. This
avoids stalling on reordered requests in situations in which
the iF 0

� di rule delays fetching until the cursor is very near
the �rst missing block.

Rather than using complete lookahead information in our
implementation of forestall, we check the value of the expres-
sion iF �di only for those missing blocks within distance 2K
of the cursor, where K is the cache size. We have not ex-
perimented with di�erent values of this parameter, nor with
variations of the history length 100 used to track fetch times
and application process compute times.

Forestall's dependence on batch-size is similar to aggres-

sive's. We used for forestall the batch sizes given in table 6.

To compare static vs. dynamic estimation of forestall's
parameter F 0, we compared the performance of forestall using
�xed values of 1, 2, 4, 8, 15, 30, and 60 for F 0 to its perfor-
mance using the dynamic estimation just described. Because
actual average inter-reference compute times in our traces
vary greatly (from 1.3ms for postgres-join to 15.7ms for the
postgres-select), no single value can work well for all traces.

Page 31

E
la

ps
ed

 T
im

e
(s

ec
s)

E
la

ps
ed

 T
im

e
(s

ec
s)

 CPU Time Driver Time Stall Time

fix
e

d
 h

o
ri
zo

n

a
g

g
re

ss
iv

e

fo
re

st
a

ll

fix
e

d
 h

o
ri
zo

n

a
g

g
re

ss
iv

e

fo
re

st
a

ll

2 disks 3 disks 4 disks 5 disks 6 disks1 disk2 disks 3 disks 4 disks1 disk
0

5 0

100

150

200

250

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 CPU Time Driver Time Stall Time

Figure 8: Performance on the synth (left) and xds (right) traces. Each group of bars represents the performance of the three
algorithms �xed horizon, aggressive, and forestall, in left-to-right order.

 CPU Time Driver Time Stall Time

fix
e

d
 h

o
ri
zo

n

a
g

g
re

ss
iv

e

fo
re

st
a

ll

2 disks 3 disks 4 disks 5 disks 6 disks 7 disks 8 disks 10 disks 12 disks 16 disks1 disk

E
la

ps
ed

 T
im

e
(s

ec
s)

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

Figure 9: Performance on the cscope2 trace.

The values with the least maximum degradation relative to
the dynamic algorithm, over all traces and disk array sizes,
are 30 and 60; performance is at most 6.8% worse than the
dynamic estimation (on the j2 trace with 2-6 disks). We
exclude the synth trace from this calculation, since its arti�-
cially low disk response times demand a very low value of F 0.
For each trace, there is a �xed choice of F that works well
across all disk array sizes. This best choice varies from 1 for
the dinero trace to 60 for the glimpse trace. The maximum
degradation relative to the dynamic estimation allowing this
much exibility is 1.4% (for the ld trace with 7 disks and
F

0 = 30). Finally, if we choose the best �xed value for each
trace and each disk array size, the maximum degradation rel-
ative to the dynamic estimation is 1.2% for the cscope1 trace
with one disk and F 0 = 2; for all other traces and array sizes,
as well as all other array sizes for this trace, the degradation
is less than .5%.

These results indicate that choosing the right parameters
between workloads is more important than choosing the right
parameter within a particular workload. Furthermore, fore-
stall's performance even with a single �xed parameter over all
workloads and array sizes is always within 7% of optimal, and
is almost always within 4% of optimal. This suggests that the
advantages of forestall are due to its estimation of and adap-
tivity to upcoming disk load rather than the dynamic nature
of its fetch-time and compute-time estimates.

5.1 Performance of forestall

Figure 8 shows the performance of the three practical algo-
rithms, �xed horizon, aggressive and forestall, on the syn-
thetic trace and xds. Forestall behaves exactly as expected.
In the I/O bound situations, it prefetches aggressively enough
to perform as well as or even better than aggressive. In the
CPU-bound situations, it becomes more conservative in its
prefetching, and has a lower driver overhead, matching the
performance of �xed horizon.

Figures 9 and 10 show the performance of the three al-
gorithms on the cscope2 and glimpse traces. Once again,
forestall has the best performance of the three practical algo-
rithms. On all remaining traces, over all con�gurations, fore-
stall's performance was between 2% worse and 5.8% better
than the best of aggressive and �xed horizon in that con�gu-
ration. For the full data, see [17].

Table 8 shows the utilization of the disks by forestall on
the postgres-select trace. Its utilization falls between those
of aggressive and �xed horizon, as expected. Moreover, in
I/O-bound situations, it places a load on the disks similar to
aggressive's; in compute-bound situations, it places a lower
load on the disks, similar to that of �xed horizon.

Page 32

E
la

ps
ed

 T
im

e
(s

ec
s) CPU Time Driver Time Stall Time

2 disks 3 disks 4 disks 5 disks 6 disks 7 disks 8 disks 10 disks 12 disks 16 disks1 disk

fix
e

d
 h

o
ri
zo

n

a
g

g
re

ss
iv

e

fo
re

st
a

ll

0

2 0

4 0

6 0

8 0

100

120

Figure 10: Performance on the glimpse trace.

disks 1 2 3 4 5 6

util. .99 .92 .87 .81 .68 .63

disks 7 8 10 12 16

util. .62 .54 .39 .30 .32

Table 8: Utilization of disks by forestall on the postgres-select
trace.

6 Conclusions

This paper presents the results of a trace-driven simulation
study of integrated prefetching and caching algorithms on a
single read-only access sequence, assuming that all accesses
are known in advance. We studied four algorithms: aggres-

sive, �xed horizon, reverse aggressive, and forestall. We found
that the theoretically near-optimal reverse aggressive usually
has the best performance of the four algorithms, but that,
perhaps surprisingly, it was never much better than the best
of the other algorithms. This shows that carefully choosing
replacements is not necessary to balance the load across the
disks when the data is well laid out. We found that each of ag-
gressive and �xed horizon performs well under the conditions
for which it was designed, and in any given situation, one or
the other performs similarly to reverse aggressive. Clearly,
aggressive and �xed horizon are much more practical algo-
rithms than reverse aggressive. These observations led us to
the hybrid approach of forestall, which prefetches more ag-
gressively in I/O-bound situations and more conservatively in
compute-bound situations, resulting in nearly the best per-
formance of the four in all con�gurations.

This study leaves several important issues unresolved.
The performance of the algorithms depends on a set of pa-
rameters which interact in a complicated way with the appli-
cations' access patterns and inter-reference compute times,
the layout of data on disks, the disk-scheduling discipline,
and the characteristics of the disks. At this time, we have
no analytical basis for dynamically determining aggressive's
batch size, �xed horizon's prefetch horizon H, reverse ag-

gressive's batch sizes and estimate of F , or forestall's batch
size and estimate F 0 of F . It is a challenging open problem
to fully understand the interaction between the algorithmic
parameters and the speci�c application and system charac-

teristics.

Another direction for future research is the treatment of
writes, both theoretically and experimentally.

We have not considered the e�ects of incomplete or inac-
curate hints and we have not dealt with the question of how
to allocate bu�ers among competing processes. While the
three practical prefetching algorithms can easily be adapted
to deal with these situations ([5, 26]), we expect di�erences
in their performance. Aggressive prefetching increases both
disk utilization and cache utilization. Therefore, disks are
more likely to be busy when unhinted accesses occur. More-
over, an aggressively prefetching process might consume too
large a fraction of the cache relative to a nonhinting process.
Since �xed horizon places the least load on the disks and the
cache, it is likely to be least a�ected by unhinted accesses and
to have the smallest impact on other executing processes.

Lastly, this work rea�rms that the operating system can
e�ectively take advantage of hints. An important research
direction is to determine how applications can easily provide
such hints.

Acknowledgements

Tracy Kimbrel and Anna Karlin wish to thank Martin Tompa
for his continued encouragement and advice. We could not
have managed the production of this document without the
help of Dylan McNamee. Karin Petersen, our paper shep-
herd, was of great help in improving the quality of presenta-
tion.

This research is supported in part by NSF grant numbers
ECD-8907068, CCR-9301186, GER-9450075, CCR-9632769,
in part by DARPA Contract numbers DABT63-94-C-0049,
DABT63-93-C-0054, in part by generous contributions from
the member companies of the Parallel Data Consortium, and
in part by Intel Corporation and Digital Equipment Corpo-
ration. Tracy Kimbrel is supported by an Intel Foundation
Graduate Fellowship. Brian Bershad is supported by an NSF
Presidential Faculty Fellowship. Ed Felten is supported by
an NSF National Young Investigator Award. The views and
conclusions contained in this document are those of the au-

Page 33

thors and should not be interpreted as representing the o�-
cial policies, either expressed or implied, of any supporting
organization or the U.S. Government.

References

[1] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon,

J. Hollingsworth, J. Saltz and A. Sussman. Tuning the Per-

formance of I/O-Intensive Parallel Applications. Proceedings

of the Fourth Annual Workshop on I/O in Parallel and Dis-

tributed Systems, pages 15{27, May, 1996.

[2] L.A. Belady. A Study of Replacement Algorithms for Vir-

tual Storage Computers. IBM Systems Journal, 5(2):78{101,

1966.

[3] Jim Gray. The Benchmark Handbook. Morgan-Kaufman, San

Mateo, CA. 1991.

[4] Pei Cao, Edward Felten, and Kai Li. Application-Controlled

File Caching Policies. In USENIX Summer 1994 Technical

Conference, pages 171{182, June 1994.

[5] Pei Cao, Edward W. Felten, Anna Karlin, and Kai Li. Im-

plementation and Performance of Integrated Application-

Controlled Caching, Prefetching and Disk Scheduling. Tech-

nical Report TR-CS95-493, Princeton University, 1995.

[6] Pei Cao, Edward W. Felten, Anna Karlin, and Kai Li. A

study of Integrated Prefetching and Caching Strategies. In

Proceedings of the ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems, pages , May

1995.

[7] Pei Cao, Edward W. Felten, and Kai Li. Implementation

and Performance of Application-Controlled File Caching. In

Proceedings of the First USENIX Symposium on Operating

Systems Design and Implementation (OSDI), pages 165{178,

November 1994.

[8] P.M. Chen and D.A. Patterson. Maximizing Performance in a

Striped Disk Array. In Proceedings of the 17th Annual Sym-

posium on Computer Architecture, pages 322{331, May 1990.

[9] H.T. Chou and D.J. DeWitt. An Evaluation of Bu�er Man-

agement Strategies for Relational Database Systems. In Pro-

ceedings of the 19th International Conference on Very Large

Data Bases, pages 127{141, Dublin, Ireland, 1993.

[10] Kenneth M. Curewitz, P. Krishnan, and Je�rey S. Vitter.

Practical Prefetching via Data Compression. In Proceedings

of the 1993 ACM Conference on Management of Data (SIG-

MOD), pages 257{266, Washington, DC, May 1993.

[11] Carla Schlatter Ellis and David Kotz. Prefetching in File

System for MIMDMultiprocessors. In Proceedings of the 1989

International Conference on Parallel Processing, pages 306{

314, August 1989.

[12] R.J. Feiertag and E.I. Organisk. The Multics Input/Ouput

System. In Proceedings of the 3rd Symposium on Operating

Systems Principles, pages 35{41, 1971.

[13] Jim Gri�oen and Randy Appleton. Reducing File System

Latency using a Predictive Approach. In USENIX Summer

1994 Technical Conference, pages 197{208, June 1994.

[14] John H. Howard, Michael Kazar, Sherri G. Menees, David A.

Nichols, M. Satyanarayanan, Robert N. Sidebotham, and

Michael J. West. Scale and Performance in a Distributed File

System. ACM Transactions on Computer Systems, 6(1):51{

81, February 1988.

[15] M. Kim. Synchronized Disk Interleaving. IEEE Transactions

on Computers, 35(11):978{988, 1986.

[16] Tracy Kimbrel and Anna R. Karlin. Near-optimal Parallel

Prefetching and Caching. In Proceedings of the 1996 IEEE

Symposium on Foundations of Computer Science, October

1996.

[17] Tracy Kimbrel, Andrew Tomkins, R. Hugo Patterson, Brian

Bershad, Pei Cao, Edward W. Felten, Garth A. Gibson, Anna

R. Karlin, and Kai Li. A Trace-Driven Comparison of Algo-

rithms for Parallel Prefetching and Caching. Technical Report

UW-CSE-96-09-01, University of Washington, 1996.

[18] David Kotz and Carla Schlatter Ellis. Practical Prefetching

Techniques for Multiprocessor File Systems. Journal of Dis-

tributed and Parallel Databases, 1(1):33{51, January 1993.

[19] David Kotz, Song Bac Toh, and SriramRadhakrishnan. A De-

tailed Simulation Model of the HP 97560 Disk Drive. Techni-

cal Report PCS-TR94-220, Department of Computer Science,

Datmouth College, July 1994.

[20] Marshall K. McKusick, William N. Joy, Samuel J. Le�er, and

Robert S. Fabry. A Fast File System for UNIX. ACM Trans-

actions on Computer Systems, 2(3):181{197, August 1984.

[21] L. W. McVoy and S. R. Kleiman. Extent-like Performance

from a UNIX File System. In Proceedings of the 1991 Winter

USENIX Conference, pages 33{43, 1991.

[22] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout.

Caching in the Sprite File System. ACM Transactions on

Computer Systems, 6(1):134{154, February 1988.

[23] Mark Palmer and Stanley B. Zdonik. Fido: A Cache

That Learns to Fetch. In Proceedings of the 17th Interna-

tional Conference on Very Large Data Bases, pages 255{264,

September 1991.

[24] D.A. Patterson, G. Gibson, and R.H. Katz. A Case for Re-

dundant Arrays for Inexpensive Disks (RAID). In Proceedings

of ACM SIGMOD Conference, pages 109{116, June 1988.

[25] R. Hugo Patterson and Garth A. Gibson. Exposing I/O Con-

currency with Informed Prefetching. In Proceedings of the

Third International Conference on Parallel and Distributed

Information Systems, pages 7{16, September 1994.

[26] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and

J. Zelenka. Informed Prefetching and Caching. In Proceed-

ings of the 15th Symposium on Operating Systems Principles,

pages 79-95, December 1995.

[27] Chris Ruemmler and John Wilkes. An Introduction to Disk

Drive Modelling. In IEEE Computer, 27(3):17-28, March

1994.

[28] K. Salem and H. Garcia-Molina. Disk Striping. In the 2nd

IEEE Conference on Data Engineering, pages 336{342, Feb.

1986.

[29] Alan J. Smith. Second Bibliography on Cache Memories.

Computer Architecture News, 19(4):154{182, June 1991.

[30] C. Tait and D. Duchamp. Service Interface and Replica

Management Algorithm for Mobile File System Clients. In

Proceedings of Parallel and Distributed Information Systems,

pages 190{196. IEEE, 1991.

Page 34

