
Practical and Theoretical Issues in Prefetching

and Caching

Andrew Tomkins

October 7, 1997

CMU-CS-97-181

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Merrick Furst, Computer Science Department (chair)

Avrim Blum, Computer Science Department

Garth Gibson, Computer Science Department

Daniel D. Sleator, Computer Science Department

Richard J. Lipton, Princeton University Computer Science Department

c 1997 Andrew Tomkins

This research is sponsored by the Department of the Navy, O�ce of Naval Research under Contract

No. N00174-96-0002, and the Defense Advanced Research Projects Agency (DARPA), Army Research

O�ce under Contract No. DABT63-93-C-0054. Any opinions, �ndings and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do not necessarily reect the views of the

Department of Defense or the United States Government.

Abstract

This thesis has two parts, the �rst more practical, and the second more theoretical. The

�rst part considers informed prefetching and caching in which an application provides

information about its upcoming I/O accesses to the operating system, allowing the system

to prefetch data and to make informed cache replacement decisions. I compare existing

algorithms for this problem using trace-driven simulation, and use the results to develop

a new algorithm that performs better than previous approaches, again under trace-driven

simulation.

The second part considers weighted caching, a theoretical problem from the domain of

on-line algorithms. I present an algorithm with competitive ratio O(log2 k) on (k + 1)-

point spaces, the �rst poly-logarithmic ratio for this problem. I also give an almost-tight
lower bound of
(log k) for any weighted caching problem on at least k+1 points. I then
show a connection between this problem and a new on-line k-server model in which the
servers may rearrange themselves without cost during \free-time" between requests, and

describe a series of results in the free-time model.

Keywords: Operating Systems, Storage Management, Secondary Storage, Caching,
Prefetching, Trace-Driven Simulation, TIP, Algorithms, Probabalistic Algorithms, Online

Algorithms, Competitive Ratio, Weighted Caching, Metrical Task Systems, Free Time,

k-Server Problems

Contents

Acknowledgments 15

1 Introduction 17

1.1 Part I: Informed Caching and Prefetching 17

1.1.1 The Big Picture . 18

1.1.2 Systems Roadmap . 19

1.2 Part II: Weighted Caching and Free Time 21

1.2.1 The Big Picture . 21

1.2.2 Theory Roadmap . 22

I Systems 25

2 Systems Introduction 27

2.1 Motivation . 27

2.2 Overview . 30

2.3 Related Work . 33

2.3.1 Prefetching from Disk . 33

2.3.2 Database Cache Management . 35

2.3.3 I/O for MIMD Multiprocessors 37

2.3.4 Prefetching and Virtual Memory 38

2.3.5 Prefetching From Main Memory 38

2.3.6 Theoretical Treatments . 39

4 CONTENTS

3 Simulation Environment 41

3.1 Why Trace-Driven Simulation? . 41

3.1.1 Disks and Disk Drivers . 42

3.1.2 Processor Scheduling . 42

3.1.3 Bu�er Cache . 42

3.1.4 Inaccuracies in the Simulation Environment 43

3.2 Applications . 43

3.2.1 Davidson . 44

3.2.2 Xds . 44

3.2.3 Gnuld . 45

3.2.4 Postgres1 and Postgres2 . 45

3.2.5 Sphinx . 46

3.2.6 Agrep . 47

3.3 Generating the Traces . 47

3.3.1 Tracing Tool . 48

3.4 Discussion of Traces . 48

3.4.1 Davidson . 49

3.4.2 Xds . 50

3.4.3 Gnuld . 51

3.4.4 Postgres1 . 52

3.4.5 Postgres2 . 52

3.4.6 Sphinx . 53

3.4.7 Agrep . 54

3.5 The Simulator . 54

3.5.1 Tracing an I/O Through the Simulator 55

3.6 The Disk Simulator . 56

3.6.1 Features Missing from the Disk Model 57

CONTENTS 5

4 Algorithms 59

4.1 TIP2 . 60

4.1.1 System Model . 60

4.1.2 Cost-Bene�t Analysis . 61

4.1.3 TIP2 Estimators . 62

4.2 lru-sp/aggressive . 63

4.2.1 aggressive . 63

4.2.2 Reverse-aggressive . 64

4.2.3 Lru-sp . 65

4.3 A Study of Embedded SPACE Algorithms 66

4.4 Forestall . 67

4.5 Tiptoe . 71

4.5.1 The Bene�t of Deep Prefetching 72

4.5.2 The Cost of Ejecting from a Constrained Disk 74

4.6 Lru-sp/forestall . 75

4.7 A Study of Embedded Allocation Algorithms 75

4.7.1 Synthetic Workloads and Caching 75

4.7.2 Lru-sp and Rate-Based Allocation 76

4.8 Implementation Details . 78

4.8.1 Hint Tracking . 78

4.8.2 LRU Pro�ling . 79

4.8.3 Epochs . 80

4.8.4 When to Consider Prefetching . 80

4.8.5 Prefetching on Multiple Idle Disks 81

4.8.6 Writes and Dirty Bits . 81

4.8.7 Disk Queueing . 82

4.8.8 Multiple Estimators . 83

4.8.9 Multiple Trackers . 83

4.8.10 Posthint Estimation . 83

4.8.11 Dynamic Parameter Estimation 84

4.8.12 Thrashing . 85

6 CONTENTS

5 Single-Process Informed Prefetching and Caching 87

5.1 Evolution of a Joint Study . 87

5.2 Performance by Application . 88

5.2.1 High Re-Use: Davidson . 89

5.2.2 Unbalanced Accesses: Xds . 90

5.2.3 Small Sequential Reads: Agrep 90

5.2.4 Late-Arriving Hints: Sphinx . 92

5.2.5 Unhinted Accesses: Postgres1 and Postgres2 92

5.2.6 Multi-Pass: Gnuld . 94

5.3 Single-Process Issues: Batching and Re-Use 95

5.4 The Single-Process Case: Lessons Learned 98

6 Multi-Process Informed Prefetching and Caching 101

6.1 Multi-Process Metrics . 101

6.2 Two-Process Experiments . 102

6.2.1 Davidson/Xds . 103

6.2.2 Davidson/Sphinx . 104

6.2.3 Xds/Sphinx . 104

6.2.4 Xds/Postgres2 . 105

6.2.5 Sphinx/Postgres2 . 106

6.2.6 Postgres2/Gnuld . 107

6.2.7 Postgres1/Gnuld . 108

6.2.8 Davidson/Postgres2 . 109

6.2.9 Sphinx/Gnuld . 110

6.2.10 Postgres2/Postgres1 . 111

6.2.11 Postgres1/Agrep . 112

6.2.12 Summary of Graphs . 114

6.3 One I/O-Intensive Process With Background Load 115

6.3.1 Traditional Background Load . 115

6.3.2 Sequential Background Load . 119

6.4 Multi-Process Issues . 126

CONTENTS 7

6.4.1 TIP2 versus tiptoe . 126

6.4.2 Post-Consumption Hints . 127

6.5 The Multi-Process Case: Lessons Learned 129

II Theory 135

7 Theory Overview 137

7.1 Online Problems . 137

7.2 Competitive Analysis: A Metric for Online Problems 138

7.3 Sub-Classes of Online Problems . 139

7.3.1 k-Server Problems . 140

7.3.2 Metrical Task Systems . 141

7.4 Weighted Caching . 142

7.5 Free Time . 144

7.6 Related Work . 145

8 Weighted Caching 149

8.1 De�nitions and Preliminaries . 149

8.2 The Super-Increasing Algorithm . 150

8.2.1 Overview of the Super-Increasing Algorithm 150

8.2.2 Formal Description of the Super-Increasing Algorithm 152

8.2.3 Competitiveness of the Super-Increasing Algorithm 153

8.3 The Mark-And-Jump Algorithm . 157

8.4 Lower Bounds for Weighted Caching . 160

9 Free Time 163

9.1 Introduction to Free Time . 163

9.2 Free Time and Weighted Caching . 165

9.3 Deterministic Algorithms With Free Time 166

9.4 Achieving Constant Competitive Ratio 167

9.5 Hints And Free Time . 168

9.6 Bounded Free Time . 170

9.7 Free Time For Command Processing . 172

8 CONTENTS

10 Conclusion 175

10.1 Systems Conclusions . 175

10.1.1 Discussion . 176

10.1.2 Future Systems Work . 178

10.2 Theory Conclusions . 178

10.2.1 Future Theory Work . 179

10.3 Theory and Practice . 179

10.3.1 Online Versus O�ine Problems 180

10.3.2 Practical Issues and System Models 180

10.3.3 Weighted Caching and Di�erent Disk Loads 181

10.3.4 Future Connections between Theory and Practice 181

A Proof of Folklore Theorems 183

Bibliography 189

Index 199

List of Tables

3.1 Breakdown of Traces by Operation. 49

3.2 Actual Read Statistics . 49

3.3 Hint Accuracy . 50

3.4 Re-use Characteristics of Xds . 51

3.5 Histogram showing number of batches of various sizes in Sphinx trace. . 53

3.6 Re-use Characteristics of Sphinx . 54

3.7 The HP 97560 Disk Drive . 56

3.8 Average I/O Times for our simulations and demerit �gures for our simu-
lations versus Kotz's diskmodel. 57

6.1 Relative Execution Times for Pairs of Traces 103

6.2 Summary of results for two hinting processes. 113

6.3 Tiptoe versus lru-sp/forestall, two hinting processes. 114

6.4 Cache Sizes for 5% Increments of Cache Hit Rate 116

6.5 Summary of results for traditional background load. 120

6.6 Summary of results for sequential background load. 125

10 LIST OF TABLES

List of Figures

1.1 Bene�ts of Informed Prefetching and Caching 19

2.1 The Multi-Process Informed Prefetching and Caching Problem 31

3.1 Davidson Pro�le . 50

3.2 Xds Pro�le . 51

3.3 Gnuld Pro�le . 51

3.4 Postgres1 Pro�le . 52

3.5 Postgres2 Pro�le . 53

3.6 Sphinx Pro�le (subsection) . 53

3.7 Agrep Pro�le . 54

4.1 TIP2's Informed Cache Manager . 61

4.2 Lru-sp Resource Allocation Algorithm 65

4.3 Lost Opportunities . 68

4.4 Wasted E�ort . 69

4.5 Constrained Disks . 70

4.6 SPACE Algorithms Summary . 71

4.7 The Tiptoe Algorithm. 72

4.8 The Bene�t of Deep Prefetching . 73

4.9 Re-use does not correspond to consumption rate 76

4.10 Hint Tracking Algorithm . 79

5.1 Standalone Davidson, four prefetching and cache management algorithms. 89

5.2 Standalone Xds, four prefetching and cache management algorithms. . . 90

12 LIST OF FIGURES

5.3 Standalone Agrep, four prefetching and cache management algorithms. . 91

5.4 Standalone Sphinx, four prefetching and cache management algorithms. 92

5.5 Standalone Postgres1 and Postgres2, four prefetching and cache man-

agement algorithms. 93

5.6 Standalone Gnuld, four prefetching and cache management algorithms. 94

5.7 Snapshot of Davidson cache state under TIP2. 95

5.8 Snapshot of Davidson cache state under tiptoe. 96

5.9 Snapshot of Davidson cache state under tiptoe without batching. . . . 97

6.1 Experiment 1: Davidson/Xds, four prefetching and cache management
algorithms. 103

6.2 Experiment 2: Davidson/Sphinx, four prefetching and cache manage-
ment algorithms. 104

6.3 Experiment 3: Xds/Sphinx, four prefetching and cache management al-
gorithms. 105

6.4 Experiment 4: Xds/Postgres2, four prefetching and cache management
algorithms. 106

6.5 Experiment 5: Sphinx/Postgres2, four prefetching and cache manage-
ment algorithms. 107

6.6 Experiment 6: Postgres2/Gnuld, four prefetching and cache manage-
ment algorithms. 107

6.7 Experiment 7: Postgres1/Gnuld, four prefetching and cache manage-
ment algorithms. 108

6.8 Experiment 8: Davidson/Postgres2, four prefetching and cache man-

agement algorithms. 109

6.9 Experiment 9: Sphinx/Gnuld, four prefetching and cache management
algorithms. 111

6.10 Distribution of hint batch sizes for the Sphinx trace. 111

6.11 Experiment 10: Postgres2/Postgres1, four prefetching and cache man-
agement algorithms. 112

6.12 Experiment 11: Postgres1/Agrep, four prefetching and cache manage-

ment algorithms. 113

6.13 Cumulative Hit Rate of Auspex Traces as a Function of Cache Size in Blocks.116

LIST OF FIGURES 13

6.14 Single I/O-Intensive Process with Background Load Pro�led from NFS

Traces. 117

6.15 Single I/O-Intensive Process with Sequential Background Load. 121

6.16 Comparison of TIP2 and tiptoe. 127

6.17 Post-Consumption Policies . 129

14 LIST OF FIGURES

Acknowledgments

Thanks �rst to my advisor Merrick Furst, who (quite consciously) did

what few advisors do: advised me, but let me make my own decisions. He

supported my digressions into other areas of computer science, which kept

eight years of grad school exciting start to �nish. He spent hours teaching me

everything from spectral analysis of boolean functions to how an intro should

be phrased, and what shouldn't appear on a slide. Finally, he encouraged me

to incorporate a systems component into my thesis: without that opportunity

the thesis, and the associated job talk, would have been far weaker.

Next, thanks to Garth Gibson and Avrim Blum. At one level, they spent
many hours teaching me about systems and online algorithms respectively; at
another level, I had the opportunity to watch two top-notch researchers with

completely di�erent styles in action. Garth took me on as a systems novice,
late in my graduate career, and provided �nancial, moral and intellectual
support to me all the way through two papers and a thesis. Avrim spent
hours discussing online algorithms with me, and demonstrated repeatedly
that somewhere in the middle of the problem, there's a key insight: the right

formulation, or even the right picture; and the whole idea is to answer the
simplest question that solves your problem.

And thank you also to the other faculty who took time to help me along

the way. Dick Lipton got me started in online algorithms, and got me out to
Princeton for what later grew into four pleasant summers at the Matsushita
Information Technology Laboratories. Danny Sleator was always willing to
discuss competitive algorithms at any level of detail from the guts of the proof
to the strengths and weaknesses of the competitive analysis itself. Finally,

Bruce Maggs was always happy to discuss topics from network scheduling

algorithms to job search issues.

I'm very grateful to the students in Garth Gibson's Parallel Data Lab, es-
pecially Hugo Patterson. As a newcomer to systems, I've been a never-ending

source of braindead questions and \observations;" the PDL not only put up

with it like a many-headed Job, but spent inordinate amounts of time helping
me out. A problem arises, and out of the blue David Rochberg says \Well,

how about if I work day and night this weekend to create trace-collection soft-
ware and trace a set of applications so you'll have better results?" Incredible.

And Hugo more even than Garth has taught me essentially everything I know

about systems, has walked me through code, found bugs, described countless
details of applications in the test suite, and put hours into co-authoring the

Sigmetrics and OSDI papers we wrote.

On a similar note, the Carnegie Mellon University School of Computer

16 Acknowledgments

Science is unlike any other place I've seen or imagined; I have no doubt I will

miss the quality and dedication of every last sta� person, graduate student,

and faculty member. Thanks especially to Sharon Burks, and to Terri and

Patti; I don't know how it happened, but I can't say enough good things

about the place.

In addition to the technical support, I've bene�ted from a great deal of

personal support. First and foremost, Chris Colby has been the staunchest

and most considerate of friends over eight years and, at best estimate, about

two million revolutions of plastic. Bryan Loyall and I overlapped for much

of our respective thesis crises, and spiraled into and out of insanity together

| typically it began with venting about some innocuous behavior pattern,

and ended with a modi�cation to our door that nobody else found funny.
Similarly, a number of wonderful grad students, faculty, frisbee players, and
Pittsburgh icons have made my stay here better than I would ever have
guessed. And thanks especially to two groups of old friends, one from Oakton
for continued support in the face of an international diaspora, and another

from MIT who fortuitously seem to be clustering in San Jose. Finally, thanks
to Lisa Haverty for seeing me through it, providing escape when I could handle
it, and support when I couldn't.

Most importantly, my family remains the foundation of it all, one area of
support I never question.

Chapter 1

Introduction

Like a man to double business bound,

I stand in pause where I shall �rst begin

| William Shakespeare, \Hamlet"

This document has two distinct parts. In the �rst part I consider disk prefetching and
disk cache management in an operating system that allows application programs to give

information about their upcoming accesses. In the second part I present a theoretical
analysis of randomized algorithms for weighted caching, a variant of the cache manage-
ment problem, and use it to extend the traditional formal model by incorporating a
notion of \free time" between requests. At the beginning of each of these two parts I give
a full introduction motivating the particular problem, describing related work and sum-
marizing the results. The remainder of this high-level introduction represents a roadmap

and quick summary of the document.

1.1 Part I: Informed Caching and Prefetching

Traditional �lesystems wait until an application requires data, and then generate a re-
quest to the I/O subsystem. If the requested data is not present in the bu�er cache,

the I/O subsystem then generates a disk access and ejects a bu�er under the LRU re-

placement policy. Recent work on integrated prefetching and caching suggests that both
fetches and evictions can be improved using \hints" from the application about upcoming

elements of the request sequence. First, I/O stall time can be reduced by prefetching
data. Second, bu�er cache replacement decisions can combine traditional LRU infor-

mation with any available application-provided information about future requests. The
bene�ts are signi�cant in a single-disk system, but become much more dramatic with

multiple disks because hints create the potential to perform fetches on di�erent disks

18 Introduction

simultaneously. I approach the problem from this perspective with a short discussion of

the big picture, followed by a description of the chapters to follow.

The results in this part of the thesis bene�t from collaboration with Garth Gibson,

Hugo Patterson, and a number of other colleagues. I give precise acknowledgments as I

describe each piece of collaborative work.

1.1.1 The Big Picture

Storage Parallelism in the form of disk arrays [PGK88] has been advocated as a means

to address the increasing gap between processor speed and I/O bandwidth [SGM86] (the

so-called \I/O bottleneck" [PGK88, Smi85]) . But many workloads consist of streams of

computation interspersed with synchronous I/O calls. The program blocks for I/O from
disk 1, computes again when the data arrives, and then blocks for I/O from disk 2, never
bene�ting from the parallelism of the disk array.

To address this problem, existing systems for Informed Prefetching and Caching, in
which the application provides \hints" to the system about upcoming accesses, sub-
mit requests in parallel to make use of the large aggregate bandwidth of the disk array
[PGG+95, CFL94b, CFKL95b, PG94]. Figure 1.1 shows the average reduction in stall

time provided by the TIP2 system of Patterson, Gibson et al. [PGG+95], relative to
Digital's OSF/1 operating system. On a large array with applications modi�ed to provide
the necessary hints, stall is reduced by approximately a factor of 6 to 17% of its original
value under OSF/1. Patterson, Gibson et al. argued for the feasibility of hints by mod-
ifying a wide range of I/O-intensive applications to provide hints. Mowry et al. showed

that for some workloads, the compiler can be augmented to provide hints automatically
[MDK96].

So there are strong indications that applications can be written or compiled to provide

hints, and there is evidence from the work cited above that hints can provide a dramatic
reduction in application stall time. But prior to the work described in this thesis, existing
studies compared systems that make use of application hints to systems that do not.

Now that there is a strong case for hints, it is important to understand whether existing

systems are using the hints well, and if not, how they should be modi�ed. This thesis
makes two contributions that are interleaved through the upcoming chapters. First, it

provides detailed comparisons of all existing systems and several new algorithms, and
draws conclusions about the strengths and weaknesses of each. Second, it presents a new

algorithm called tiptoe that performs substantially better than all previous approaches
on some workloads, and does not perform substantially worse than any previous approach

on any workload studied.

As a �nal note, the TIP2 system provides a factor of 6 improvement relative to tradi-

tional systems, but also incurs the large cost associated with shifting paradigms. Patter-

1.1 Part I: Informed Caching and Prefetching 19

1 2 3 4 10
Number of disks

0.0

0.2

0.4

0.6

0.8

1.0

T
IP

 s
ta

ll-
tim

e
/ O

S
F

/1
 s

ta
ll-

tim
e

TIP stall-time as a fraction of OSF/1 stall-time
(average for 7 benchmarks)

Figure 1.1: Reduction in Stall Time of Informed Prefetching and Caching versus a tra-

ditional operating system. The opportunity to hide latency increases as the disk array
size increases. Over a set of benchmarks, Patterson, Gibson et al. note that 83% of ap-
plication stall has been eliminated versus OSF/1, even though OSF/1 already includes
an aggressive sequential readahead policy.

son et al. have argued convincingly that the dramatic improvement is worth the cost. In
this thesis, I compare algorithms within the new paradigm of hint-based prefetching and
cache management. Thus, I do not expect a factor of 6 di�erence between approaches, as
all the algorithms are competing under the same rules. Typically the di�erences between
algorithms are much more modest, perhaps 10%, with occasional workloads showing fac-

tors of 1.5{2 improvement for some approach. The goal is therefore to realize the factors
of 1.5{2 versus other hint-based systems whenever possible, while consistently delivering
the large improvements versus traditional systems.

1.1.2 Systems Roadmap

The systems part of this document evaluates various algorithms for informed prefetching

and caching via trace-driven simulation. I begin in Chapter 2 with a more detailed
motivation of the problem, a preliminary discussion of the results to follow, and then an

overview of related work.

Next, Chapter 3 gives details about the simulator, the trace collection mechanism,

the applications used to generate the traces, and the manner in which hints are given

to the system. The simulator is trace-driven, provides multi-threading for simultaneous

20 Introduction

playback of multiple traces, and contains an accurate internal disk simulator with support

for various layouts of data on multiple disks. The applications are taken from a suite

collected by Patterson, Gibson et al. from various application domains (databases, speech

recognition, out-of-core scienti�c computing, etc) and are used in their evaluation of the

TIP2 system. They modi�ed each application to provide hints about its upcoming

accesses wherever possible. The trace collection system1 captures these hints as they

are presented to the operating system, allowing the simulator to model both hinted

and unhinted accesses, and situations in which hints \trickle in" over time. Earlier

comparisons performed by this group and others studied the model in which all accesses

are hinted, and all hints are available at the start of the simulation | in the TIP2

application suite both of these assumptions are far from true, so I am fortunate to have

the new traces available.

Chapter 4 describes the four algorithms I compare. The �rst is the TIP2 algorithm
of Patterson et al., mentioned above. Second is another existing system from the litera-
ture: lru-sp/aggressive, by Cao et al. [CFKL95b, CFL94a]. These two systems take
di�erent approaches to prefetching within a single stream of hints. Tracy Kimbrel and

myself with a number of collaborators compared the two internal prefetching algorithms
on single hinted streams [KTP+96], and found that a hybrid of the two approaches called
forestall performed better than either. Therefore, I also consider each of these two
systems augmented to include forestall-based prefetching. The extension of lru-sp/
aggressive is straightforward and results in lru-sp/forestall. The extension of

TIP2 is nontrivial, and results in a new algorithm called tiptoe, or TIP with Temporal
Overload Estimators. I describe tiptoe and lru-sp/forestall, and their predecessors
TIP2 and lru-sp/aggressive.

In Chapter 5, I describe a study performed with Hugo Patterson and Garth Gibson
at CMU, in collaboration with another group of researchers: Tracy Kimbrel, Anna Kar-

lin and Brian Bershad at the University of Washington; Pei Cao at the University of

Wisconsin; and Kai Li and Ed Felten at Princeton. This study focuses on the case of a
single process prefetching and caching its data; the results appear in [KTP+96]. We draw
several conclusions. To summarize, TIP2 will sometimes allow the disk to idle in situa-

tions that would bene�t from more aggressive prefetching. Lru-sp/aggressive on the

other hand can sometimes prefetch too aggressively. Tiptoe and lru-sp/forestall,
which use the hybrid algorithm forestall, combine the bene�ts of fixed-horizon

and aggressive by dynamically estimating upcoming load based on whatever hints are
present and deciding how aggressively to prefetch.

Finally, in Chapter 6 I describe a study performed with Hugo Patterson and Garth

Gibson [TPG97] that considers prefetching and caching in a multiprogramming environ-

ment. We �nd that cost-benefit, as implemented in TIP2 and tiptoe, typically �nds

1I am indebted to David Rochberg for creating, post-processing and providing these traces.

1.2 Part II: Weighted Caching and Free Time 21

better resource allocations than does lru-sp, especially in situations in which process

consumption rate does not match re-use (for instance, cost-benefit would tend to

perform well if a fast process with little re-use were to run beside a slow process with

signi�cant re-use). Additionally, tiptoe performs better than TIP2 when hinted data

needs to be prefetched far in advance, or cached for distant re-use.

1.2 Part II: Weighted Caching and Free Time

The theoretical contribution of the thesis is given in Part II; the results described are

joint with Avrim Blum and Merrick Furst, and bene�t from later collaborations with

Carl Burch and Yair Bartal. Again, I present a quick \big picture" description, and then
a roadmap and summary of the theory part of the document.

1.2.1 The Big Picture

Online algorithms process a sequence of requests, making decisions about early requests
before seeing later requests. Informally, we face on-line problems routinely. For instance,
when driving on the highway, we must choose a lane. At each point in time we may stay
in our current lane or, with some e�ort, switch lanes. The central problem here is the
same as the central problem in the formal version of the problem; namely, if we switch

lanes because the other lane is moving faster, our new lane will immediately slow down
and we will have made the wrong decision because we didn't know the future. Consider
the following speci�c online problem:

The cache-management problem: Given a main memory of n elements and a
cache of k elements, service a sequence of requests in an online manner. Each cache
element may hold any element of main memory. Requests for memory elements that

reside in the cache incur no cost. Requests for elements that are not in cache must be

loaded into the cache, evicting some cached element to make room. The cost of servicing
a sequence of requests is the number of accesses to main memory.

This problem is an abstraction of a typical caching problem, phrased formally to allow
a precise theoretical evaluation of approaches. Other caching problems can be phrased

similarly; for instance, we could phrase the same problem at a di�erent level of the storage
hierarchy, caching disk blocks in main memory. We could then add the constraint that

some disk blocks lie on \local" disks with low latency, while other blocks lie on more
distant servers with higher latency. The resulting variant, called weighted caching, is the

central problem of Part II:

The weighted caching problem: Given n disk blocks, each with an associated

positive weight, and a memory capable of storing k disk blocks, service a sequence of

22 Introduction

requests in an online manner. A request for a disk block that resides in memory incurs

no cost. A request for a block that is not in memory must be fetched from disk, evicting

some cached element to make room, at cost equal to the weight of the block. The cost

of servicing a sequence of requests is the sum of the costs of servicing each request.

Weighted caching has been studied in its own right since online algorithms were �rst

introduced in [MMS88a]. We came to the problem, however, because it was central to an

extension we were considering to the traditional online model. In the standard model,

an algorithm is asked to process a request sequence. Each request is presented after the

algorithm has completed processing the previous one and the cost of the algorithm is the

cumulative time or work needed. In many natural on-line settings, however, requests may

arrive infrequently relative to the speed of the algorithm. In these situations, it makes
sense to model an algorithm as having free time, for which it is not charged, between
the servicing of one request and the arrival of the next. For instance, a classical example
on-line problem is the \servers are �re trucks" problem in which requests represent �res,
and when a request arrives some server, or �re truck, must be moved to the �re as quickly

as possible. In this example, one rightly cares much more about the time it takes to get
a �re truck to a �re once a call has been made and cares much less about any time
spent moving trucks to resting places while there are no �res to attend to. In general,
in computing situations, if the process issuing requests is substantially slower than the
process serving requests then the server is liable to have a fair amount of free time at its

disposal between demands. In these situations it makes sense for the serving algorithm
to use the free time between requests to position itself advantageously, rather than idly
waiting for the next thing to do. Our results for the weighted caching problem can be
extended to give general algorithms in the free-time model.

1.2.2 Theory Roadmap

Chapter 7 gives a more complete introduction to the �eld of online algorithms, a summary

of the results to follow, and a discussion of related work. I give a quick introduction here
that contains a subset of the information in Chapter 7. Section 10.3 of the conclusion then

discusses this work as it relates to the systems work introduced above. The remainder

of this section assumes familiarity with k-server problems and the competitive ratio. If
these terms are not familiar, the presentation in Chapter 7 includes all the necessary
de�nitions.

Chapter 8 considers weighted caching. Phrased in the language of k-servers, a weighted

caching problem is a k-server problem in which the cost to move a server from one point to
another is equal to the weight of the destination point, regardless of the source: dij = wj.

2

2Note that spaces with dij = wi, or the symmetric version with dij = 1=2(wi +wj), are all within a

small additive constant of the de�nition as given.

1.2 Part II: Weighted Caching and Free Time 23

As an example, consider a web browser that may store some �xed number of pages (for

instance, assume that all the pages are text-only, and so are roughly the same size). The

\weight" of a page is the time it takes to read the page from its web server. The task

of determining which page should be evicted when a new page is loaded is exactly a

weighted caching problem. We give an O(log2 k)-competitive randomized algorithm for

(k +1)-point spaces, and an
(log k) lower bound on the competitive ratio of any online

algorithm for any �xed weighted-cache space of k + 1 points or more. That is, the lower

bound holds for any space, not just for a single constructed space.

Next, Chapter 9 discusses free time. The precise model we consider is the following:

whenever a request arrives, the server algorithm must service it and the charge is the

standard notion of cost. However, once the request is serviced, the server algorithm may
adjust its con�guration as desired without charge. The cost of running a server algorithm

with free time is compared with the cost of running the optimal o�-line server algorithm
without free time.3 At �rst glance this comparison might seem unfair, but in fact we
show in Section 9.3 that for deterministic algorithms free time helps by at most a small
constant factor. We give an O(log2 k)-competitive algorithm for general (k + 1)-point
spaces in the free-time model by reducing the problem to a standard server problem on a

weighted cache space. We also show that the
(log k) lower bound for arbitrary weighted
cache spaces mentioned above generalizes to algorithms with free time.

We then show a number of related results, exploring the model. Unlike the stan-

dard on-line model for which there exists a general
(
q
log k= log log k) lower bound for

any space [BKRS92], Section 9.4 shows that in the free-time model there exist metric

spaces with constant competitive ratio. Section 9.5 then considers algorithms that are
given possibly erroneous hints to guide their activity during free time. Next, Section 9.6
considers bounded rather than in�nite free time for certain metric spaces. And �nally,
Section 9.7 presents an algorithm that a computer might use to pre-process potential
future commands while waiting for a user to type, taking into account that di�erent

commands will have di�erent durations and so di�erent potential savings.

As a �nal note, the results for weighted caching are no longer the most general known.

Since this work was done, results of Bartal, Blum, Burch and myself [BBBT96] give an

O(log6 k)-competitive algorithm for arbitrary (k+1)-point spaces that also gives polylog

competitive ratio for k + polylog(k)-point spaces.

3For server problems, the optimal o�-line cost with free time is 0.

24 Introduction

Part I

Systems

Chapter 2

Systems Introduction

That's a �ne idea in practice, but it will never work in theory.

| old French joke

Part I of the thesis motivates and answers the following question: If applications
provide information to the operating system about future I/O accesses, how can this
information be used, and what improvement can be attained? This chapter motivates
the work in some detail, presents an overview of my contributions, and discusses related
work.

2.1 Motivation

As described in Section 1.1.1, the most dramatic bene�ts of informed prefetching and
caching arise in the presence of storage parallelism, as provided by arrays of disks. How-

ever, most popular general-purpose operating systems are not designed to support parallel
I/O. Primitives tend to be synchronous to provide programmers with the useful invari-

ant that executing an I/O instruction guarantees that the data will be available when

the call completes. However under this abstraction, each process will have at most one
outstanding I/O.1 Since our goal is to keep many disks of an array busy simultaneously
this paradigm must be extended; a natural approach is to provide information to the

operating system about multiple future I/Os to expose the parallelism in the request

sequence.2

1Alternatively, processes can access disk parallelism through asynchronous I/O. Patterson, Gibson

et al. argue that, for the programmer, providing hints is both easier and more e�ective than providing

parallelism through AIO.
2These techniques are also e�ective for single-disk systems. Most importantly, hints about future

I/O's allow the system to make better caching decisions, reducing the number of I/O's that are necessary.

28 Systems Introduction

There have been two classes of API's proposed to allow the application to provide

information to the operating system about its upcoming accesses. The �rst is cache

management advice of the form, \Cache �le foo.data using the MRU cache replacement

scheme." This approach has been implemented by Cao et al. [Cao96, CFL94b]. The

second approach, known as disclosure, has been taken by Patterson et al., and also by

Cao et al.. A disclosure is a hint about future accesses given in the language of the

existing I/O interface. Thus, in Unix a disclosure of future accesses might be a list

of �le descriptor and byte range pairs.3 Patterson et al. suggest that disclosure has

three advantages over cache management advice. First, it is a more portable interface;

the correct cache management algorithm might be machine dependent, so code would

have to be re-written under an advice policy. Second, if the system is unable to honor

the optimal policy because of resource limitations, disclosure provides the system with
information to evaluate the e�ectiveness of other (possibly system-dependent) options.
Third, disclosure adheres more closely to software engineering principles of modularity
because it allows hints to be speci�ed at the same level and in the same language as the
I/O calls themselves.

We have noticed two additional advantages of disclosure. First, if random accesses
to a �le are disclosed, there may be opportunity for substantial re-use if the �le is not

too much larger than the cache. Our experiments include two database joins; in one
of these joins there are enough hits to an indexed inner relation to provide substantial
re-use of the inner relation data blocks. Under a disclosure policy, more data can be
cached than under random evictions. Second, some applications have access and re-use
patterns within a �le that do not �t traditional advice schemes | the �le is not read

sequentially, cyclically, strided, parallel-strided, randomly, or according to any other
simple plan. Advice schemes would classify such an access pattern as random and would
expect no caching bene�t, but there might be substantial re-use possible. We experiment
with a scienti�c visualization program that takes 2-D slices through a 3-D dataset at
arbitrary angles. The accesses are not random and, depending on the size of the dataset,
there may be substantial re-use. Disclosure will provide this re-use when possible, based

on the size of the cache; random replacement will do so much less e�ectively. For these

reasons, I have adopted disclosure as the form of communication between the application
and the system about upcoming I/O accesses.

But how di�cult is it to generate these disclosures? For code that is being written with
such a system in mind, Patterson et al. argue that it is both easier and more e�ective to

Second, hints allow the operating system to reduce average I/O time by performing more e�ective disk

scheduling. Third, hints allow the system to overlap I/O and computation | even if the application is

bursty and would ordinarily compute without any I/O for a substantial interval of time. Nonetheless,

the potential advantages grow as the array size increases.
3By providing lists of multiple accesses, system call overhead can be amortized over many I/O re-

quests.

2.1 Motivation 29

disclose future accesses than to implement application prefetching by asynchronous I/O.

Chapter 3 describes modi�cations made by Patterson et al. to a suite of I/O-intensive

applications to support disclosure. These modi�cations suggest that it is possible to

provide disclosures in a range of situations, in a relatively straightforward manner | see

Section 3.2 for details. If the software has already been written but the source code is

available, recent work by Mowry, Demke and Kreiger has shown that compilers can induce

some programs to disclose their future accesses automatically [MDK96], especially in the

realm of scienti�c computing. Section 2.3 describes these results in more detail. Finally,

although no research has yet been published about this approach, speculative execution

o�ers the opportunity to discover future reads that are not too strongly dependent on

data that has not yet arrived. When a program stalls for I/O and the CPU would

otherwise be idle, the system may continue to execute the program speculatively in a
\sandbox" [WLAG93] so as to discover future accesses without corrupting existing state.
This approach o�ers the additional advantage that source code is not required. Thus,
there is evidence to suggest that compilers or programmers can provide disclosures, and
there are preliminary approaches to generating disclosures transparently.

Patterson et al. have presented a fully operational system to perform informed prefetch-
ing and caching using an algorithm called TIP2, described in detail in their paper and
in Chapter 4 of this document. Figure 1.1 shows the reduction in stall provided by TIP2
relative to OSF1 for a variety of disk array sizes, averaged over a suite of I/O-intensive
benchmarks. The �gure demonstrates that knowledge of future accesses can result in
dramatic improvements, especially in the presence of storage parallelism. Furthermore,

Digital's OSF1 operating system already supports an aggressive readahead strategy that
will submit up to eight clusters of eight blocks (each block is eight KByte) to the driver
at once. For sequential reads OSF1 will be able to keep many disks of the disk array
busy; the fact that TIP2 performs substantially better suggests that sequential reada-
head schemes, even extremely aggressive schemes like OSF1's, are insu�cient to reliably

keep the disks busy fetching needed data.

Another system presented by Pei Cao and collaborators [Cao96] has shown a reduc-

tion of up to 50% in overall execution time on a di�erent suite of applications, also

modi�ed to give hints to an operating system designed to accept them. In this case, the
system had a single disk and the improvement was due largely to cache management.

Thus, independent groups have shown that disclosures are capable of conferring dramatic
reductions in I/O stall time.

Before the work described in this document, all results in this area followed the general
format of Figure 1.1: a system for informed prefetching and caching was shown to provide

signi�cant improvements over a system without this functionality. However, given that
application disclosures are capable of reducing I/O stall time by 83%, it is clearly of

interest to understand exactly how well various approaches to this problem perform

30 Systems Introduction

relative to one another, and to identify or create the best possible approach. This part

of the thesis makes two contributions: the �rst is to provide a detailed comparison of

approaches to the problem, and the second is to use the results of this comparison to

generate the best known algorithm for the problem.

2.2 Overview

In order to understand how well a particular system is using a sequence of disclosures,

I break the problem into two distinct pieces and study each separately. First, a system

must manage prefetching and caching within a single stream of disclosed accesses, given
a �xed set of resources. That is, if a single process runs alone on a machine and discloses
all of its accesses, which data should be prefetched at which point, and which resident

blocks should be evicted? Notationally, I will refer to this piece of the overall problem
as the Standalone Prefetching And Cache Eviction problem, or the SPACE problem for
short. Second, a system must address the allocation problem of dividing disk and cache
resources among multiple hinted and unhinted access streams. In a complete system, the
allocation algorithm partitions resources among competing processes, and the SPACE

algorithm manages prefetching within each stream, as shown in Figure 2.1.

Chapter 5 addresses the SPACE problem: prefetching and caching within a single
stream. These results were derived in a recent collaborative study with Kimbrel, Patter-
son, Cao, Gibson, Karlin, Bershad, Felten, and Li [KTP+96], which analyzes prefetching
and caching algorithms in the context of a single process disclosing all its accesses at

startup. In this domain, all resources are dedicated to the single hinted stream, so the
allocation problem does not arise, and only the SPACE problem need be solved.

We consider two existing algorithms, and based on this study, suggest a new algorithm
combining the advantages of the other two. First, the TIP2 system addresses both

the SPACE problem and the allocation problem | we extract the SPACE algorithm

and use it alone. TIP2 was designed using a system model that assumes essentially
in�nite storage parallelism, as would be delivered by a large disk array. Restricted to
the single-process fully-hinted domain, the TIP2 system model results in a conservative

prefetching algorithm that prefetches only those blocks that will be read within a small,

�xed number of accesses. This conservative approach may fail to prefetch deeply enough
into the request stream when disk parallelism is limited or when the I/O workload is

highly unbalanced across the disks of an array. The second algorithm we consider, the
aggressive algorithm of Cao et al. [CFKL95b], prefetches deeply without regard to

disk load. Aggressive will not allow the disk to go idle when there is missing data and
reasonable eviction decisions exist, but it may incur substantial computational overhead

by under-valuing caching and performing many unnecessary I/O's when there is ample

2.2 Overview 31

hinted sequence A
• • •

hinted sequence B
• • •

Buffer Cache

.....3 2419

LRU Cache

Process A

Process B

7

Figure 2.1: The Multi-Process Informed Prefetching and Caching Problem. A system

to solve this problem must solve two independent subproblems. First, it must solve the
allocation problem by partitioning resources among multiple competing processes, each
of which may be disclosing arbitrary fractions of its accesses. Second, it must solve the
SPACE problem (standalone prefetching and cache eviction), deciding when each process
should prefetch, and what it should evict given the constraints imposed by the allocation
algorithm.

disk bandwidth. To resolve the tension between over-conservative and over-aggressive
prefetching our collaboration developed a new algorithm, Forestall, whose prefetching
behavior is based on a dynamic estimate of upcoming disk load. When future disk load

is high, forestall prefetches more aggressively, but when load is low forestall does
not fetch far ahead into the request stream. This algorithm performs well in the single-
process fully-hinted domain on a variety of trace-driven simulation comparisons to the
load-oblivious approaches mentioned above. The results shown in Chapter 5 con�rm the

results of our collaborative study, but are performed in a new environment using a new

set of traces that capture additional e�ects. These traces are introduced below, and are
described in detail in Chapter 3. 4

Chapter 6 addresses the allocation problem: how should resources be allocated among

multiple, competing processes that may disclose arbitrary fractions of their accesses. Al-

4Before developing forestall, our collaboration also considered a fourth algorithm called reverse-

aggressive, due to Kimbrel and Karlin, which is guaranteed to be within a small constant factor of

optimal on every sequence for a particular system model [KK96a]. This is the only algorithm for which

such a guarantee is known. We found that reverse-aggressive performs well in all situations, but is

di�cult and expensive to implement, while forestall performs as well as reverse-aggressive and

is both simpler and cheaper to implement. For this reason, Chapter 5 focuses on forestall and does

not study reverse-aggressive. A brief description of reverse-aggressive appears in Section 4.2.2.

32 Systems Introduction

location algorithms can only be evaluated in tandem with SPACE algorithms. I consider

two existing allocation algorithms, each paired with the SPACE algorithm with which it

was initially presented, and then extend each allocation algorithm to incorporate adaptive

prefetching (as provided by forestall) according to the lessons learned in the single-

process case. First, the TIP2 system makes resource allocation decisions by weighing

the bene�t of providing resources to a consumer against the cost of taking them from a

supplier. This cost-bene�t allocation framework provides a general, extensible method for

reasoning about allocation decisions. As discussed above, TIP2's cost-bene�t allocation

algorithm was initially presented in tandem with a conservative �xed-depth prefetching

scheme. I show how to extend cost-bene�t allocation to incorporate forestall's adap-

tive single-process prefetching algorithm, resulting in a new algorithm called tiptoe, or

TIP with Temporal Overload Estimators.

The next system I consider is lru-sp, due to Cao et al. [CFL94a, Cao96], an extension
of traditional LRU replacement. In this system, bu�ers in the �le cache are tagged with

an \owner."5 When the kernel must evict a block it chooses the process that owns the
global LRU block; that process must then decide, possibly based on application-speci�c
knowledge, which of its blocks to give up. In the original system individual processes
used the aggressive algorithm to prefetch, resulting in lru-sp/aggressive. It is
straightforward to implement the forestall algorithm with lru-sp, resulting in lru-
sp/forestall. With tiptoe and lru-sp/forestall we have comparable prefetching

and caching components and dramatically di�erent allocation strategies. Chapter 6 ana-
lyzes these two informed prefetching and caching systems, contrasting them to each other
and to their predecessor systems, TIP2 and lru-sp/aggressive.

Finally, I give a quick overview of the trace-driven simulation system used to perform
these experiments. As mentioned above, Patterson et al. modi�ed a suite of six ap-
plications from various application domains (databases, speech recognition, out-of-core
scienti�c computing, etc) to disclose their accesses to the system. I use traces of the
modi�ed versions of these applications.6 The tracing tools capture and timestamp both

hints and accesses, allowing accurate modeling of the implications of late-arriving hints

and unhinted accesses. They also capture context switches, allowing an accurate mea-
surement of inter-access process compute time. I developed a disk-accurate, trace-driven
simulator based on the RaidSim simulator [Lee89], which generated the results given in

Chapters 5 and 6. Details about the simulator, the applications, and the traces are given

in Chapter 3.

I describe three primary results. First, in the single-process domain forestall

outperforms both conservative and aggressive non-adaptive techniques. Second, in the

multi-process domain cost-benefit outperforms lru-sp. And third, tiptoe combines

5The owner of a block is the last process to access that block.
6I am indebted to David Rochberg for creating, post-processing and providing these traces.

2.3 Related Work 33

these two results into a single algorithm that performs well across the board, improving

execution time on average across a series of hinted two-process experiments by 12%

relative to lru-sp/aggressive, 10% relative to lru-sp/forestall and 3% relative to

TIP2.

2.3 Related Work

The work in this dissertation is a direct extension of work by Hugo Patterson, Garth

Gibson and their collaborators on the TIP2 system [PGG+95]. My work is also closely

related, and in some cases collaborative with, work of Pei Cao, Tracy Kimbrel, Anna

Karlin and others on lru-sp, aggressive and related algorithms [KTP+96, Cao96,
CFKL95b, CFKL95a, CFL94a, CFL94b]. Upcoming chapters describe these systems in
detail, so I will not include a discussion of them here.

At a high level, the work in this thesis represents an approach to providing and using
more detailed access information in the I/O subsystem. There have been many other
approaches to this problem, centered on three topics: non-traditional cache management,

prefetching, and hints. I will discuss work from other sub�elds that touch on one or more
of these questions.

2.3.1 Prefetching from Disk

In this section I discuss prefetching from disk under both informed and predictive models.
The distinction does not depend on the correctness of the hints, but on the nature of
the hints. An informed prefetching technique is given the blocks or �les and must decide
when and if to prefetch. A predictive prefetching technique includes a component to

determine the blocks or �les that should be prefetched.

Informed Prefetching

This thesis is concerned with informed prefetching, in which the application discloses the

data it will require. Though most related work addresses either cache management or
predictive prefetching, there are a few other non-predictive approaches to prefetching.

Steere and Satyanarayanan [SS95] present a general abstraction called dynamic sets

to allow parallel prefetching of objects that will be required in the near future. It is
possible, for instance, to load a web page then specify a dynamic set containing all links

on the page. The server could then prefetch the links in parallel.

34 Systems Introduction

Grimshaw and Loyot [GJ91] present ELFS, an extensible object-oriented �le system

with build-in support for prefetching and cache management. Objects can specify ap-

propriate prefetching and caching behaviors based on speci�c knowledge about access

patterns and re-use. For instance, the default system includes a type of \�le" called a

\2D matrix �le." This type of �le includes a blocked layout for quick scanning in both

row and column-major orders, and a prefetch policy to generate the next row or column

as the �rst one is being consumed. Thus, policy decisions are tied to the objects that

require them, and can be speci�ed at the level of detail appropriate for the task.

A number of researchers in mobile computing have considered the problem of prefetch-

ing data to allow disconnected operation. Kistler and Satyanarayanan of the CMU Coda

project [KS92] are concerned with providing an environment for a completely discon-
nected user. They take the informed approach that user-level tools can allow an appro-

priate cache state to be speci�ed by hand, and this data can then be fetched or kept
resident when disconnected operation is expected.

Finally, Mowry, Demke and Krieger [MDK96] present a compiler to produce executa-
bles that automatically generate prefetch requests for data that will be accessed in the
near future. The compiler is designed for scienti�c codes, and performs static analysis to
uncover many common access patterns, including complex strided accesses. A runtime
component tracks cache state to �lter out prefetches that are already in core before a

system call is generated. The technique successfully hid more than half the I/O latency
is seven of eight NAS parallel benchmarks.

Predictive Disk Prefetching

The most common incarnation of predictive prefetching is sequential readahead, ranging
from one-block lookahead as described by Smith [Smi85] and implemented in Multics

[FO71] and Unix [MJLF84] to more aggressive versions such as Digital's OSF 1 operating
system, which will prefetch up to sixty-four 8KByte blocks in advance. Similarly, there

have been e�orts to provide higher throughput by reading larger objects, as in [MK91].

But recently several researchers have addressed predictive prefetching more specula-
tively, prefetching entire �les before they are referenced, or predicting accesses across �les.

The primary advantage of this type of predictive prefetching versus informed prefetching

is that applications do not need to be modi�ed: the system makes predictions about fu-
ture accesses (usually based on past accesses) and prefetches accordingly. Gri�oen and

Appleton have presented a series of results of this avor. Initially [GA93] they considered
wide-area �le systems, in which latencies are extremely high and prefetching at the �le

level a�ords the opportunity for large savings. They later applied the same approach
to general high-latency storage [GA94, GA95]. Prediction of future �le accesses is per-

formed by a data structure called the probability graph, in which �les are nodes, and edges

2.3 Related Work 35

represent sequential (or nearly sequential) accesses or invocations. Thus, if program A

is read, and either calls or reads program B soon after, there will be an edge between A

and B. The edges are weighted according to the probability of the sequential call, over

a large trace. The graph is used to predict future �le accesses, and the predictions are

then used to initiate prefetching. They showed that cache miss rates can be reduced by

up to 40% for some workloads. In [GA96] the same authors give an implementation of

the system under SunOS.

In the domain of predictive prefetching for mobile computing, Kuenning et al. [KPR94]

analyzed trace data and suggested that the necessary cache contents could be generated

automatically using predictive approaches. Tait and Duchamp [TD91] give a predictive

mechanism called the working graph; they show that predictive prefetching using this
structure performs better than LRU and has small overhead, for the domain of low-
bandwidth connected mobile computing. Later work by Lei and Duchamp [LD97] gives

an implementation of such a prefetching scheme, here based on access trees. Their results
show a reduction in cache miss rate of up to 47%, and a reduction in application latency
of up to 40%.

Korner [Kor90] presents a predictive technique based on �le extenders that is used
primarily to perform informed cache management, although the work also includes a
prefetching component. An example rule used in the cache manager might be, if a �le
ends with \.out" then don't cache the �le. In simulations the approach is shown to

improve performance by up to 340%.

There have also been approaches to predictive prefetching in the database community.
Palmer and Zdonik [PZ91] present Fido, a cache manager that employs an associative

memory technique to predict future accesses in a particular isolated context. They showed
some early simulation results suggesting that predictive prefetching within the database
domain is a promising approach.

More recently, Curewitz, Krishnan and Vitter [CKV93] present a theoretically-grounded

approach to predictive prefetching based on the observation that a succinct representation

of a sequence of requests must capture some internal structure within the sequence. The
representation should therefore be useful for predicting future elements of the sequence.

They formalize this notion of \prefetching via data compression," and give predictors
that perform well compared to Fido's associative memory approach.

2.3.2 Database Cache Management

Stonebraker [Sto81] points out that databases often have access to detailed information
about access patterns, relative to general-purpose �le systems, and should be able to in-

corporate this information into resource management decisions. Selinger et al. [SAC+79],

36 Systems Introduction

for instance, use access knowledge within the DBMS, employing a simple model of page

re-use to estimate the cost of various alternative access paths and join orders, taking

into account both I/O and CPU costs. Stonebraker goes on to argue that some form of

\advice" should be passed from the database management system to the cache manager.

Chou et al. [CDKK85] give a general interface that allows application programs to mark

individual pages with a priority representing the application's view of the importance of

the page.

Within a database bu�er manager, which has more complete information about the

types of queries being performed, the most successful early approach to management is

the hot set bu�er pool management model of Sacco and Schkolnick [SS82], an extension

of the working set model of Denning [Den68]. The hot set model provides estimates of the
advantage a query will derive from a certain amount of bu�er cache resources, which can
then be used to drive allocation decisions.7 However the original hot set model focuses on
allocation of bu�ers among processes, rather than cache management of bu�ers within a

process. The query locality set model (QLSM) of Chou and Dewitt [CD85] also speci�es
eviction policies within a particular process.8 For instance, if data is being read cyclically
then MRU is the most appropriate policy. Around the same time, the original hot set
model was extended by its proponents to include di�erent access patterns, so that all
operations supported by IBM's System R database test-bed could be represented in the

model [SS86].

Cornell and Yu [CY89] integrate query optimization with bu�er cache management.
They phrase the problem as a 0-1 integer linear program, which they approximate to

choose query plans based on bu�er restrictions. Later, in [YC91], the same authors
present a di�erent global minimization technique based on simulated annealing for the
same problem.

These approaches use the nature of the query to make allocation decisions before the

query actually executes | I will call such information static because it does not depend
on the execution of the query. Alternatively, traditional bu�er replacement under LRU
is entirely dynamic in the sense that decisions are made solely on the basis of the bu�er

cache state, and are performed while the query executes. There have been other purely

dynamic approaches. O'Neil et al. [OOW93] extend the LRU algorithm to LRU-k, a

7The earlier working set model makes similar estimates based on the number of bu�ers a process

touched, without reference to data re-use | thus processes that moved quickly through data, without

re-use, would be given inappropriately large allocations. The same e�ect arises in general �le system

cache management, and is in fact on the most signi�cant e�ects di�erentiating the algorithms studied

in this thesis. O'Neil et al. [OOW93] describe another approach to this problem, discussed below.
8The same general line of research led to the work in this thesis. Work on TIP2 [PGG+95] addressed

both parts of the problem but was more strongly focused on allocation of resources among multiple

processes. Once the system was built, more recent work [KTP+96, TPG97] focused more speci�cally on

cache management within a process, and on integrating the two problems.

2.3 Related Work 37

dynamic algorithm that takes re-use into account. In traditional LRU, which corresponds

to LRU-1 in their model, the time since the most recent reference to a page is taken as

an estimate of the value of the page. In LRU-2, the time since the second most recent

reference is used as the estimate of value. Thus, a page that has been accessed once but

is not re-used is given small value.

Another line of research combines dynamic and static information. Most closely

related to the work described in this thesis is themarginal gains approach of Ng, Faloutsos

and Sellis [NFS91] (in fact, their approach inspired the cost-bene�t approach of TIP2).

They de�ne the marginal gain of using s bu�ers to service a particular reference as the

di�erence between the expected number of faults with s bu�ers versus s � 1 bu�ers.

For instance, in a looping reference over N items, adding one bu�er would decrease the

number of cache misses by approximately 1 every N accesses. Using these estimates,
they propose an algorithm MG-x-y that makes allocation decisions based on runtime
bu�er availability. In [FNS91] the same authors generalized the conditions in which a
query may be admitted for processing. In all these approaches, however, queries that are
not sequential or looping are considered to be random, and their estimates are created
accordingly. Chen and Roussopoulos [CR93] extend the marginal gains of other queries

based on a sampling of their re-use under the LRU policy. This idea also contributed to
the development of TIP2.

2.3.3 I/O for MIMD Multiprocessors

Work of Kotz and his collaborators focuses on prefetching for MIMD multiprocessors to
hide the latency of high-performance I/O subsystems. In the domain of high-performance
coarse-grain parallel computering several factors make prefetching more di�cult. Often
only one thread executes on a single node, so multiprogramming cannot hide the latency

of a demand fetch. The I/O loads are also unusual in that, while there is high sequentiality

within each node, multiple streams of sequential requests may be interleaved; worse yet,
optimizing the cache hit ratio may not optimize the completion time, because speeding
up the �rst node to reach a synchronization barrier may not improve performance. Kotz

and Ellis [KE90] consider prefetching with perfect knowledge of future accesses, and show

that the technique often improves the cache hit ratio and reduces overall execution time.

However in some situations prefetching actually hurts performance. In [KE91, KE93]

the same authors extend their results to prefetch predictively rather than assuming a

priori knowledge of future requests. They develop simple recognizers of traditional access

patterns and develop prefetching policies that are speci�c to the patterns. They report
that, in general, prefetching is bene�cial in their setting.

Kotz [Kot94] goes on to argue for Disk-Directed I/O , an informed prefetching tech-

nique in which high-level structure is passed to the I/O subsystems. For instance, a

38 Systems Introduction

multi-threaded application can inform the system that a series of interleaved sequential

reads is beginning.

2.3.4 Prefetching and Virtual Memory

Both prefetching and informed cache management have been incorporated into virtual

memory systems. Trivedi [Tri79] studied prefetching of virtual memory pages, referred

to as prepaging. He argued that predictive techniques are not su�cient to prefetch data

across phase transition boundaries, in which the behavior of the user changes dramati-
cally (e.g., when a user switches from word processing to compilation). Based on this
conclusion, he advocates prepaging advice given by the programmer or the compiler to the
system. Several researchers have incorporated user-level paging managers into existing

operating systems. McNamee and Armstrong [MA90] added user-level paging control to
Mach; Harty and Cheriton [HC92] extended the V++ kernel in the same way. Finally,
Krueger et al. [KLVA93] present a general toolkit and set of pro�ling tools to provide
user-level control of paging.

2.3.5 Prefetching From Main Memory

There is a large body of work on prefetching from main memory, rather than to main
memory. Smith [Smi78] showed that large-block prefetching to cache may be ine�ective,
and while prefetching is potentially e�ective, small details of the implementation can have
a signi�cant e�ect on the overall performance. Baer and Chen [BC91] describe a hardware
scheme for pre-loading a cache in the presence of sequential accesses to memory. Rogers

and Li [RL92] describe a simple hardware modi�cation and compiler support to allow
speculative loading of data into cache, which results in signi�cant reductions in average

memory latency for a series of benchmarks. Chen and Baer [CB92] suggest a combina-

tion of hardware-based cache prefetching and hardware support for non-blocking caches.
Tullsen and Eggers [TE93] showed that some architectures (in this case, a high-latency

bus-based multiprocessor) are not well-suited for prefetching. Mowry, Lam and Gupta
[MLG92], on the other hand, showed that careful software-controlled compiler-directed

prefetching for scienti�c codes provided substantial improvements in performance, reduc-
ing execution time of some benchmarks by a factor of 2. To summarize, the community

has not converged on a single e�ective solution to this problem, and while the advantages
can be substantial, the margins are tight { the more complex reasoning about prefetches

that is routine in disk prefetching work is not feasible in this domain.

2.3 Related Work 39

2.3.6 Theoretical Treatments

The �rst theoretical treatment of caching was a study by Belady in 1966 [Bel66], which in-

troduced the problem and studied many algorithms, including the MIN algorithm, which

makes optimal replacement decisions when future accesses are known. Aho, Denning and

Ullman [ADU71], and later Co�man and Denning [EGCD73], study page replacement

under particular probabilistic models of future page arrivals. In the presence of variable-

sized bu�ers there have been a number of extensions to this work, beginning with Prieve

and Fabry's VMIN algorithm [PF76], and more recently, work to derive practical versions

of VMIN, such as Choi and Ruschitzka's work on SETVMIN [CR96].

In the case of multiple processes that give hints and compete for cache resources,
Barve, Grove and Vitter [BGV95] describe a competitive approach to cache management.
If the hints are perfect and only the interleaving is unknown, they show an algorithm with
a competitive factor logarithmic in the number of processes. This means that, even if the

relative rates of the processes vary in an adversarial manner, the algorithm is guaranteed
to be within the given factor of optimal in terms of number of cache misses.

40 Systems Introduction

Chapter 3

Simulation Environment

So very di�cult a matter is it to trace and

�nd out the truth of anything by history.

| Plutarch, "Plutarch's Lives"

All the experiments described in later chapters are performed using trace-driven sim-
ulation. Section 3.1 motivates this decision and describes which e�ects are captured by
the tracing and simulation environment and which are not.

As described in Section 2.1, Patterson, Gibson et al. have developed a suite of I/O-
intensive applications to benchmark implemented systems for informed prefetching and
caching. Section 3.2 describes this suite. I make use of a set of detailed traces of these ap-

plications running on modern equipment with representative inputs; the trace-collection
environment is described in Section 3.3 and the individual traces are discussed in Sec-
tion 3.4. All of the applications have been tailored to provide hints to the existing TIP
kernel about upcoming accesses. The traces capture these application-provided hints
as they are delivered to model the e�ects of unhinted requests and late-arriving hints.

The traces also capture process compute time between successive I/O requests to allow

accurate modeling of variable periods of inter-access computation. Finally, the simulator

itself and the associated disk simulator are described in Section 3.5.

3.1 Why Trace-Driven Simulation?

The primary advantage to simulating the algorithms versus implementing them in a
real system is control. Because the environment is more tightly controlled and more

manageable than a full kernel, the algorithms can be developed, debugged and pro�led
more quickly and e�ectively. In the same amount of time the implementer can code more

algorithms, perform more experiments, and understand the results more deeply.

42 Simulation Environment

Additionally, a simulator allows control over parts of the system that are typically

�xed or di�cult to change for a particular execution environment. For instance, it is

simple in a simulated environment to modify the size of the on-disk cache, the clock

speed of the processor, the details of the disk queueing discipline, the overhead associ-

ated with submitting an I/O, and so on. This allows us, for example, to examine the

same algorithms in \future" environments estimated by extrapolating current technology

trends.

Similarly, it is possible to examine di�erent approaches to giving hints within an

application simply by re-processing the trace �le, without modifying the application

itself.

The downside, of course, is that an actual implementation may uncover factors that
did not appear in simulation. The simulator is described in detail in Section 3.5, but I
give a high-level description here to summarize which e�ects are captured and which are
not.

3.1.1 Disks and Disk Drivers

The simulator implements a number of disk scheduling disciplines. Most experiments are

performed using CSCAN scheduling, following [SCO90]. The disk simulator, described in
Section 3.6, simulates the HP97560 disk drive [RW94, KTR94]; it models head position,
and computes seek, rotate and transfer latencies in the usual manner. It also includes a
non-segmented on-disk cache, and provides a simple model of SCSI bus overhead. The
simulator has been validated against the simulator of Kotz et al. [KTR94]. Since the
traces capture disk blocks, the simulator correctly models �le layout on the disk.

3.1.2 Processor Scheduling

The simulator has an embedded round-robin CPU scheduling algorithm. However, since

our applications are strongly I/O bound they rarely compute sequentially for long enough
to cause a context switch; almost all context switching occurs when processes block for

I/O. This means that the choice of scheduling algorithm is not critical. I do not consider
prioritized schemes; if the environment were to be applied to other workloads this decision

might have to be revisited.

3.1.3 Bu�er Cache

The simulator includes a bu�er cache manager and a set of modules implementing di�er-

ent replacement policies. For the traces and the simulator, disk blocks, �le system blocks

3.2 Applications 43

and fragments are all set to 8 KByte. The bu�er cache manager does not implement the

code (mainly fault handling) to allocate multiple bu�ers to a single disk block read.

3.1.4 Inaccuracies in the Simulation Environment

The simulation environment does not model virtual memory: the trace-collection mech-

anism does not capture virtual memory paging, and the simulator does not include a

virtual memory system. Incorporating VM would require extending the trace-collection

tools and the simulator to operate at the level of memory references, which would entail

substantial modi�cations to both toolsets and would impact the size of the traces and

the time to perform a simulation. Similarly, the environment does not model memory-
mapped �les. It is an open research question how to build a system to do prefetching
and cache management for VM and mapped �les. Nonetheless, the goal of this study is
to understand informed prefetching and cache management of the disk cache, orthogonal
to issues of virtual memory, so I assume that su�cient memory exists to run our exper-
iments without excessive paging. In future work, when the algorithms are extended to

include virtual memory, the simulation environment will have to be extended similarly.

Next, the traces do not capture process compute time spent initiating I/Os. The
simulator models this time, simulating the necessary computation whenever an I/O is
submitted, but any CPU time that the traced processes spent initiating accesses is not
subtracted from the script records. This has the e�ect of slightly dilating the process

CPU time for accesses that caused disk I/O on the original system.

The current system does not capture meta-data reads. Although there are a number
of these reads, only a small fraction do not hit in the cache (i.e., one indirect block for
each 256 data blocks for sequential reads, or one quarter of a percent overhead).

The simulator does not model system call overhead. Thus, a program that reads two

extents from a single �le system block using two system calls is treated as equivalent to

a program that makes a single system call.

I also do not model the standard background processes, interrupts, and other activities

that exist on a Unix platform and occasionally require the CPU or the disk.

3.2 Applications

This section describes the benchmark suite of six I/O-intensive applications, as modi�ed
to disclose their accesses. The particular applications were chosen to represent a broad

range of problem domains. The changes made to these applications to allow them to
generate hints (i.e., all the work described in Section 3.2) were done by Hugo Patterson

44 Simulation Environment

and the other authors of [PGG+95]. The text of this section is largely drawn from that

paper.

3.2.1 Davidson

The Multi-Con�guration Hartree-Fock, MCHF, is a suite of computational-physics pro-

grams which we obtained from Vanderbilt University, where they are used for atomic-

physics calculations. Davidson [SF94] is an element of the suite that computes, by

successive re�nement, the extreme eigenvalue-eigenvector pairs of a large, sparse, real,

symmetric matrix stored on disk. In our test, the size of this matrix is 16.3 MByte.

Davidson iteratively improves its estimate of the extreme eigenpairs by computing
the extreme eigenpairs of a much smaller, derived matrix. Each iteration computes a
new derived matrix by a matrix-vector multiplication involving the large, on-disk matrix.

Thus, the algorithm repeatedly accesses the same large �le sequentially. Annotating this
code to give hints was straightforward: at the start of each iteration, Davidson discloses
the whole-�le sequential read anticipated in the next iteration.

3.2.2 Xds

XDataSlice (Xds) is an interactive scienti�c visualization tool developed at the National
Center for Supercomputer Applications at the University of Illinois [Nat89]. Among other
features, Xds lets scientists view arbitrary planar slices through their 3-dimensional data

with a false color mapping. The datasets may originate from a broad range of applications
such as airow simulations, pollution modeling, or magnetic resonance imaging, and tend
to be very large.

It is often assumed that because disks are so slow, good performance is only possible

when data is in main memory. Thus, many applications, including Xds, require that the

entire dataset reside in memory. Because memory is still expensive, the amount available
often constrains scientists who would like to work with higher resolution images and
therefore larger datasets. Informed prefetching invalidates the slow-disk assumption and

makes out-of-core computing practical, even for interactive applications. To demonstrate

this, we added an out-of-core capability to Xds.

To render a slice through an in-core dataset, Xds iteratively determines which data
point maps to the next pixel, reads the datum from memory, applies false coloring, and

writes the pixel in the output pixel array. To render a slice from an out-of-core dataset,
Xds splits this loop in two. Both to manage its internal cache, and to generate hints,Xds

�rst maps all of the pixels to data-point coordinates and stores the mapping in an array.

Having determined which data blocks will be needed to render the current slice, Xds

3.2 Applications 45

ejects unneeded blocks from its cache, gives hints to TIP, and reads the needed blocks

from disk. In the second half of the split loop, Xds reads the cached pixel mappings, reads

the corresponding data from the cached blocks, and applies the false coloring [PG94].

Our test dataset consists of 5123 32-bit oating point values requiring 512 MByte of

disk storage. The dataset is organized into 8 KByte blocks of 16x16x8 data points, and

is stored on the disk in Z-major order. Our test renders 25 random slices through the

dataset.

3.2.3 Gnuld

Gnuld version 2.5.2 is the Free Software Foundation's object code linker which supports
ECOFF, the default object �le format under OSF/1. Gnuld performs many passes over
input object �les to produce the output linked executable. In the �rst pass, Gnuld reads
each �le's primary header, a secondary header, and its symbol and string tables. Hints

for the primary header reads are easily given by replicating the loop that opens input
�les. The read of the secondary header, whose location is data dependent, is not hinted.
Its contents provide the location and size of the symbol and string tables for that �le. A
loop splitting technique similar to the technique described above for the Xds application
is used to hint the symbol and string table reads.

After verifying that it has all the data needed to produce a fully linked executable,
Gnuld makes a pass over the object �les to read and process debugging symbol infor-
mation. This involves up to nine small, non-sequential reads from each �le. Fortunately,
the previously read symbol tables determine the addresses of these accesses, so Gnuld
loops through these tables to generate hints for its second pass.

During its second pass, Gnuld constructs up to �ve shu�e lists which specify where
in the executable �le object-�le debugging information should be copied. When the
second pass completes, Gnuld �nalizes the link order of the input �les, and thus the

organization of non-debugging ECOFF segments in the executable �le. Gnuld uses this

order information and the shu�e lists to give hints for the �nal passes.

Our test links the 562 object �les of the TIP-1 kernel, an earlier version of the TIP2

kernel described here. These object �les comprise approximately 64 MByte, and produce
an 8.8 MByte kernel.

3.2.4 Postgres1 and Postgres2

Postgres version 4.2 [SR86, SRH90] is an extensible object-oriented relational database
system from the University of California at Berkeley. In our test, Postgres executes a join

of two relations. The outer relation contains 20,000 unindexed tuples (3.2 MByte) while

46 Simulation Environment

the inner relation has 200,000 tuples (32 MByte) and is indexed (5 MByte). We run two

cases. In the �rst (Postgres1), 20% of the outer relation �nds a match in the inner

relation. In the second (Postgres2), 80% �nd a match. One output tuple is written

sequentially for every tuple match.

To perform the join, Postgres reads the outer relation sequentially. For each outer

tuple, Postgres checks the inner relation's index for a matching inner tuple and, if there

is one, reads that tuple from the inner relation. From the perspective of storage, accesses

to the inner relation and its index are random, defeating sequential lookahead, and have

poor locality, defeating caching. Thus, most of these inner-relation accesses incur the full

latency of a disk read.

To disclose these inner-relation accesses, we employ a loop-splitting technique similar
to that used in Xds and Gnuld. In the pre-computation phase, Postgres reads the outer
relation (disclosing its sequential access), looks up each outer-relation tuple address in
the index (unhinted), and stores the addresses in an array. Postgres then discloses these
pre-computed block addresses to TIP. In the second pass, Postgres rereads the outer

relation without hints but skips the index lookup and instead directly reads the hinted
inner-relation tuples whose addresses are stored in the array.

3.2.5 Sphinx

Sphinx [LHR90] is a high-quality, speaker-independent, continuous-voice, speech-recog-
nition system. In our experiments, Sphinx recognizes an 18-second recording commonly

used in Sphinx regression testing.

Sphinx represents acoustics with Hidden Markov Models and uses a Viterbi beam

search to prune unpromising word combinations from its current Viterbi search graph. To
achieve higher accuracy, Sphinx uses a language model to e�ect a second level of pruning.
The language model is a table of the conditional probability of word-pairs and word-

triples. At the end of each 10 ms acoustical frame, the second-level pruner is presented
with the words likely to have ended in that frame. For each of these potential words, the

probability of it being recognized is conditioned by the probability of it occurring in a
triple with the two most recently recognized words, or occurring in a pair with the most

recently recognized where there is no entry in the language model for the current triple.
To further improve accuracy, Sphinx makes three similar passes through the search data

structure, each time restricting the language model based on the results of the previous

pass.

Sphinx (like Xds) came to us as an in-core only system. Since it was commonly

used with a dictionary containing 60,000 words, the language model was several hundred

megabytes in size. With the addition of its internal caches and search data structures,

3.3 Generating the Traces 47

virtual memory paging occurs even on a machine with 512 MByte of memory. We

modi�ed Sphinx to fetch from disk the language model's word-pairs and word-triples as

needed. This enables Sphinx to run on our 128 MByte test machine 90% as fast as on

a 512 MByte machine.

We also modi�ed Sphinx to disclose the word-pairs and word-triples needed to eval-

uate each of the potential words o�ered at the end of each frame. Because the language

model is sparsely populated, at the end of each frame there are about 100 byte ranges

that must be consulted, of which all but a few are in Sphinx's internal cache. However,

there is a high variance on the number of pairs and triples consulted and fetched, so

storage parallelism is appropriate.

3.2.6 Agrep

Agrep, a variant of grep, was written by Wu and Manber at the University of Arizona
[WM92]. It is a full-text pattern matching program that performs approximate matches.
Invoked in its simplest form, it opens the �les speci�ed on its command line one at a
time, in argument order, and reads each sequentially.

Since the arguments completely determine the �les that will be accessed, and the
access order, Agrep can issue hints for all accesses upon invocation.1 Agrep simply
loops through the argument list and informs the �le system of the �les it will read.
When searching data collections such as software header �les or mail messages, hints
from Agrep frequently specify hundreds of �les too small to bene�t from history-based
readahead, such as OBL. In such cases, informed prefetching has the advantage of being

able to prefetch across �les and not just within a single �le.

In our benchmark,Agrep searches 1349 kernel source �les occupying 1922 disk blocks

for a simple string that does not occur in any of the �les.

3.3 Generating the Traces

The suite of applications described above was run on a Digital 3000/600 workstation
containing a 175 MHz Alpha (21064) processor, 128 MByte of memory, and a single HP
C2247 1 GByte disk attached via a fast SCSI-2 adapter.

1This is not true for some of Agrep's options; our test uses the default exact matching.

48 Simulation Environment

3.3.1 Tracing Tool

We modi�ed the Digital Unix 3.2g-3 kernel2 to trace read, write, open and close system

calls, as well as hint delivery and context switches. Each tracing call logged relevant

information for the particular system call (e.g., byte range read and vnode number for

�les) as well as a standard set of boilerplate information (task ID and time in cycles)

into a statically allocated bu�er set to 20 MByte for these runs. The kernel bu�er was

then mapped to user space and printed in a human-readable form.

We post-processed the traces into a script �le capable of driving the simulator, re-

placing vnode numbers and byte ranges with logical disk blocks, and real time values

with process times. This code represented about 300 lines of Perl, and used a utility
written by Hugo Patterson to generate the \map" of a �le: the location of each �le block
in the �le's disk partition (or in other words, the mapping from �le block to disk block).

The �le maps were generated statically, rather than on-the-y; thus, we did not capture
maps for a small number of temporary �les written and destroyed by the applications.
These �les were assumed to lie at a random location on the disk, but did not account for
a signi�cant fraction of the operations.

3.4 Discussion of Traces

This section describes the traces themselves. Table 3.1 shows the balance of reads, writes
and hints for each trace. All the applications are read-dominated, though there are
some writes occurring throughout the traces. The trace-collection environment captures
system calls, so the numbers in Table 3.1 do not always capture the number of blocks

read.3 Table 3.2 corrects for this fact, and shows how much actual data is read by each
trace. Table 3.3 gives more information about the hints themselves.

Section 4.8.1 describes the hint-tracking mechanism used by all the algorithms. In the
upcoming sections I describe how hints and their corresponding reads are interspersed
through each trace, giving more individual details and presenting \pro�les" of the access

patterns. In these pro�les, hinting regions are labeled \hint" or \H" as space permits,

and regions of consumption (read or write) are labeled \consume", \con" or \C". The
pro�les are indexed by record number in the script �le.

2The modi�cations to the kernel necessary to collect and post-process these traces (everything in

Section 3.3.1, unless speci�cally noted otherwise), was done by David Rochberg.
3For instance, several systems calls in a row may access successive byte ranges in the same disk block.

Also, most applications determine end-of-�le by noting that a read returns 0 bytes; the traces do not

capture return values and therefore include an additional read call per �le.

3.4 Discussion of Traces 49

Trace Reads Writes Hints Total

Davidson 133656 1403 127429 262488

Xds 46348 0 45241 91589

Gnuld 18348 2621 14106 35075

Postgres1 8695 141 4455 13291

Postgres2 31264 522 16325 48111

Sphinx 77428 24 74700 152152

Agrep 4270 0 2921 7191

Table 3.1: Breakdown of Traces by Operation.

Trace Trace \read" records Actual blocks read Distinct Blocks Read

Davidson 133656 125491 2170

Xds 46348 45421 32622

Gnuld 18348 12482 7202

Postgres1 8695 8658 3737

Postgres2 31264 31227 5207

Sphinx 77428 30856 20716

Agrep 4270 2922 2922

Table 3.2: Actual Read Statistics: The tracing environment captures separate reads to
multiple byte ranges within the same block as distinct operations. The �rst column above
shows the number of such operations. The second column shows the number of reads
when back-to-back accesses to the same block are collapsed. The third column shows the

number of reads when all accesses to the same block are collapsed.

3.4.1 Davidson

The Davidson trace repeatedly reads a large �le (2089 8 KByte blocks) sequentially.

Hints are given before each batch of reads. This behavior is shown in Figure 3.1, which
shows the pro�le of a pre�x of the entire trace. The initial segments are longer | the
implementation hints a batch, then hints two more batches simultaneously,4 consumes

two batches, and then settles into a pattern of hinting and consuming a batch at a time.

As Table 3.1 shows, there is a full batch of hints remaining at the end of the run.5 The

4Hinting an extra batch at the beginning turned out to be the easiest way to avoid running out of

hints at the end of each batch.
5During simulation, di�erent algorithms reacted di�erently to the �nal batch of unused hints. In

order to eliminate this extraneous e�ect, the actual trace used in the simulations does not present the

50 Simulation Environment

Trace Missing Hints Bad Hints Unused Hints Consumed Hints Total Hints

Davidson 8316 0 2089 125340 127429

Xds 1057 0 0 45241 45241

Gnuld 4357 116 0 13990 14106

Postgres1 4205 71 0 4384 4455

Postgres2 15072 242 0 16083 16325

Sphinx 1895 0 0 74700 74700

Agrep 1348 0 0 2921 2921

Table 3.3: Hint Accuracy: The �rst numerical column shows missing hints. The next

three columns are a breakdown of all hints into \Bad" (no read was found corresponding

to the hint, and the hint was dropped to keep the hint sequence on track with the
access sequence), \Unused," (the hint was still waiting for a corresponding read when
the program ended), and \Consumed" (the hint matched a read). The last column gives
the total number of hints delivered.

hint/consume of a single batch at a time continues without exception through the entire
trace until the very end, where the approximately 1400 writes occur. The computation
requires 60 iterations to converge, so each piece of data is read exactly 60 times. However,
occasionally multiple pieces of data in the same block are read in di�erent system calls,

so the total number of reads in the script is slightly larger than expected. Finally, there
are 139 additional reads before the actual computation begins.

1

hint

6268

consume

10873

hint

12962

con

15187

hint

17276
� � �
256771

hint

258860
6

consume

262490

Figure 3.1: Davidson Pro�le

3.4.2 Xds

The pro�le for a subsection of the Xds trace is shown in Figure 3.2. The actual pro�le

contains 51 segments: 25 hints and consumptions for the 25 random slices rendered in the

workload, plus a short initial period of unhinted consumption. Xds touches 45,421 blocks
in the course of execution, an average of 1817 per slice; of these, 32,622 are distinct. The

very last batch of hints.

3.4 Discussion of Traces 51

Number of independent accesses 1 2 3 4 5 6

Number of blocks 22755 7575 1885 346 52 7

Table 3.4: Re-use Characteristics of Xds: There were 22755 blocks that were used only

once (no re-use), 7575 blocks that were used twice, and so on.

re-use characteristics are given in Table 3.4. As the table shows, the number of blocks

experiencing a particular level of re-use drops o� by a factor of at least three from blocks

used n times to blocks used n+ 1 times. In general, the trace exhibits very little re-use.

The entire �le is 512 MBytes, and the 25 slices in the trace touch 49.7% of the �le.

51

hint

1698

con

3389

hint

5775

consume

8205
� � �
80097

hint

81915

con

83777

hint

87225

consume

90717

Figure 3.2: Xds Pro�le

3.4.3 Gnuld

Figure 3.3 gives the pro�le for Gnuld. The early mixed section contains the small
batches of hints and reads that are given in the �rst stages of the process. Hints are then
generated for the second pass through the object �les, and then when the link order is

�xed, the �nal batch of hints is given for the �nal stages of the process.

Re-use occurs roughly as follows. There is essentially no re-use during the �rst 6177

lines, through the end of the �rst consumption. During the second, larger consumption
segment, about 5,000 new blocks are touched, along with 1,200 of the 1,700 blocks already

touched. Finally, during the third consumption segment, over about 4,300 reads, only

about 340 new blocks are touched and the rest of the reads are to already-seen blocks.
Overall, there are 12482 reads to 7202 distinct blocks.

564

mixed

5055

C

6178
6

hint

12962

consume

21129

hint

26766

consume

35077

Figure 3.3: Gnuld Pro�le

52 Simulation Environment

3.4.4 Postgres1

Figure 3.4 shows the pro�le for the Postgres1 trace, in which 20% of the outer relation

�nds a match in the inner relation. The initial hints are for the outer relation, which

is read sequentially. The �rst consumption segment is for the pre-processing phase in

which the outer relation tuples cause accesses to the inner relation's index. The results

of this phase are stored in an array then provided as hints during the hinting phase. The

�nal consumption phase re-reads the outer relation and uses the hints to access the data

of inner relation itself. Although only 20% of the outer relation �nds a match in the

inner relation, the resulting 4,000 matches touch 2688 of 4096 blocks (32 MByte) in the

inner relation as the distribution of these 4,000 matches is essentially random across the

blocks of the inner relation. The outer relation is 409 blocks, and the index for the inner
relation is 640 blocks. The outer relation blocks are read once from hints during the
�rst pass, and then again without hints during the second pass. The inner relation index
blocks are not hinted but experience substantial re-use. The inner relation data blocks
are hinted but do not experience much re-use, especially compared to the Postgres2

trace. Essentially, the outer relation blocks are used twice, the index blocks are used more
than twice (though re-use drops o� quickly | no block is used more than 14 times), and
the data blocks are used once.

107

H

516
6

consume

4653

hint

8699

consume

13293

Figure 3.4: Postgres1 Pro�le

3.4.5 Postgres2

Figure 3.5 shows the pro�le for the Postgres2 trace, in which 80% of the outer relation
matches in the inner relation. The initial hinting segment has the same length in this

trace as in the Postgres1 trace, but the remainder of the segments are relatively much
larger in Postgres2 since the search accesses many more of the 200,000 elements of

the inner relation. 16,000 of the 20,000 tuples in the outer relation �nd a match in the
inner relation; this results in reads to essentially all of the 32 MByte of inner relation

blocks. The situation has changed slightly from the Postgres1 case because there is
now more re-use of the inner relation data blocks. In fact, the average block is used 6

times in the course of the trace, and some data blocks are touched as many as 45 times.

3.4 Discussion of Traces 53

Hints in Batch 1 2 3 4 5 6 7 8 9 10 > 10

Num Batches 189 103 73 57 36 26 14 12 12 11 211

Table 3.5: Histogram showing number of batches of various sizes in Sphinx trace.

Thus, the hints to the inner relation data blocks are useful for both prefetching and cache

management.

519

consume

15519

hint

31435

consume

48113

Figure 3.5: Postgres2 Pro�le

3.4.6 Sphinx

The pro�le for a subsection of the Sphinx trace is show in Figure 3.6. The trace takes
about 154 seconds. During the �rst 52 seconds, Sphinx reads a large dictionary �le
sequentially, touching 19805 blocks exactly once per block. During the remaining 102
seconds, Sphinx performs recognition using a Viterbi beam search, reading 11051 blocks,

3308 of which are distinct. Thus, re-use is substantial during the search phase, but not
during the initial large read. Table 3.6 shows a histogram of re-use during the search
phase. The application is unique in our suite in that it sometimes provides extremely
shallow hint queues, because its accesses are highly dynamic and depend on decisions
made in the recent past. During the recognition phase the application passes hints to the

system every 10 ms disclosing the elements of the language model that will be required

during the next round. The number of accesses made during these alternating rounds

of hints and consumption has high variance, and is often quite small. Table 3.5 gives
a histogram showing how many batches of n hints Sphinx discloses to the system, for

various values of n.

130018

hint

130020

con

130022

hint

130024

con

130026

hint

130027
6

con

130028

hint

130029
6

con

130030

hint

130031
6

con

130032

hint

130036

Figure 3.6: Sphinx Pro�le (subsection)

54 Simulation Environment

Number of Accesses 1 2 3 4 5 6 7 8 9 10 > 10

Number of Blocks 942 563 503 459 193 262 212 134 14 8 18

Table 3.6: Re-use characteristics of Sphinx: The histogram shows number of blocks that

are accessed n times, for various values of n, in the search phase of the Sphinx trace.

The �rst column says that 942 blocks were accessed exactly once, and so on.

3.4.7 Agrep

The pro�le for the Agrep trace is given in Figure 3.7. In the initial hinting segment
complete hints are given for all �les on the command line; Agrep then searches sequen-
tially through these �les during the consume segment. All read system calls are for an
entire block; 2922 blocks are read, and no block is read more than once.

1

hint

2923

consume

7193

Figure 3.7: Agrep Pro�le

3.5 The Simulator

The simulator is built on top of the Berkeley RaidSim simulator [Lee89, CP90, LK91], as
modi�ed by Mark Holland [Hol94] at CMU. RaidSim can simulate various avors of RAID

disk arrays using an internal geometry-aware disk simulator to determine disk access
times. In the experiments described below, data is striped over an array of disks (from
1{10 disks), with no parity and a stripe unit of eight 8 KByte blocks (64 KByte). The

disk simulator, described below in Section 3.6, models the HP97560 disk drive[RW94].

The simulator also supports various forms of disk queueing; in our experiments all issued
accesses are CSCAN sorted in the disk queues. RaidSim was modi�ed to include a bu�er

cache module layered on top of the disk array, and modules for all the algorithms. The
simulator represents about 40000 lines of C code, about half of which represents my

additions.

Earlier work in the Parallel Data Lab had added a module to drive RaidSim from

traces instead of relying on randomly generated workloads; I drive the simulator with the

3.5 The Simulator 55

traces described above. As mentioned earlier the tracing environment includes all appli-

cation accesses, and captures process computation time before each access. RaidSim's

support for multiple threads, and integrated CPU scheduler, allows the concurrent simu-

lation of multiple separately-scripted processes. Thus, arbitrary collections of individual

processes can run side-by-side in the simulator.

3.5.1 Tracing an I/O Through the Simulator

To give an intuition for the processing of a typical read request, here is a high-level

description of the path a demand miss takes through the system. As the simulator is

designed to Manage Application Disclosures for Caching And Prefetching, I will refer to

it as MADCAP.

1. MADCAP reads the next record from a script �le, parses it, and extracts the device,
block number, size, pid, and inter-access compute time.

2. A simple hint-tracking algorithm �nds the hint corresponding to this read, if any,

and updates the application's current position in the hint sequence.

3. MADCAP looks for the block in the cache. If a block is found and the I/O has
completed, the block is returned. If a block is found but its I/O is pending, a wait
occurs. Assume instead that the requested block is not found in the cache.

4. An algorithm-speci�c getblk routine is called to allocate a bu�er for the fetch. This
may involve waiting if no bu�ers are available. The resulting block is removed from
the cache hash table and its busy ag is set. Any hints for the block about to

be evicted are marked, and any other data structures that must be updated are
noti�ed.

5. A new thread is spawned to perform the I/O. Since the demand read is synchronous,

the calling thread blocks waiting for completion. The child thread sends the request
to the disk driver, which inserts it into a queue sorted by the active disk scheduling
discipline. The child then waits for the I/O to complete.

6. The disk subsystem processes the I/O in turn, logs appropriate status, and sets the
appropriate ags in the block header.

7. When the child completes, the parent awakes, turns o� the bu�er's busy ag, and

returns the block to the hash table. Any reordering of the LRU queue, or other

tracking that the prefetching algorithm must perform, is done here. Also, future
hints for this block for marked as being in core.

8. Finally, the prefetcher is given the opportunity to issue new prefetches.

56 Simulation Environment

Capacity 1.3 GByte

Cylinders 1935

Size 5.25in

Rotational Speed 4002 RPM

Average 8 KByte Access 22.8ms

Host Interconnect SCSI-2

Interconnect Speed 10 MByte/S

Table 3.7: The HP 97560 Disk Drive

3.6 The Disk Simulator

This section describes the disk drive simulator itself. There were several options for
generating an accurate disk model. The �rst was to use the existing model from RaidSim
[Lee89], which had been modi�ed substantially by Mark Holland [Hol94]. Using this

model was unattractive because the existing code did not include an on-disk readahead
cache, and work of Ruemmler and Wilkes [RW94] has shown that disk caching can have a
signi�cant e�ect on model accuracy. In fact, their model is accurate to within a demerit of
5.7% (see below for the de�nition of this measure), but without caching the demerit grows
to 112%. Also, the existing model did not have CSCAN queueing, which is commonly
used and has been shown e�ective on modern drives [SCO90].

The next option was to incorporate an o�-the-shelf public-domain disk model. In
particular the model of Kotz et al. [KTR94] is widely used. I decided not to take this
approach because incorporating a new disk model into RaidSim, and matching the thread

interfaces, seemed like a signi�cant project.

Instead, I implemented readahead and CSCAN queueing, and then validated the
resulting system again the Kotz model. Following Kotz, I simulate the HP 97560 disk
drive. The characteristics of this drive are shown in Table 3.7. The validation was done as

follows. I ran the simulator on the suite of traces described above without CPU activity,

and logged requests as they arrived at the disk under whatever scheduling discipline was
active (typically CSCAN). The logs of disk activity included logical disk block numbers

and request lengths. I then post-processed the log �les to produce scripts that could
drive Kotz's simulator, and compared the output of their system to mine.

Ruemmler and Wilkes suggest demerit as an appropriate �gure of merit for this type
of comparison. Given two sequences of I/O operations with durations, the sequences

are sorted by request duration, and the squares of the di�erences between corresponding
durations are computed. The demerit is the square root of the average of these values,

expressed as a percentage of the mean I/O time. Graphically, this corresponds to the fol-

3.6 The Disk Simulator 57

Application Average I/O Time Demerit

Xds 6.5ms 2.85%

Gnuld 10ms 3.45%

Agrep 12.7ms 3.65%

Postgres2 17ms 2.97%

Davidson 4.7ms 3.23%

Postgres1 16.6ms 2.78%

Sphinx 5.7ms 4.5%

Average 10.5ms 3.3%

Table 3.8: Average I/O Times for our simulations and demerit �gures for our simulations

versus Kotz's diskmodel.

lowing intuition. Picture a graph of I/O time versus fraction of requests completed within

that time, so a pro�le for a particular run will begin at (0,0) and move to (max io time,1).
The demerit is the rms of the horizontal distance between two such curves, expressed as
a fraction of the average.

Table 3.8 gives the demerit �gure for my simulator versus Kotz's on each trace.

3.6.1 Features Missing from the Disk Model

The Kotz model contains several features that I do not model, including detailed SCSI
bus simulation (I model the bus as a constant-latency overhead; Kotz et al. include a

model of bus contention), read and write fences, and status messages. As none of the
applications consume data at the bus bandwidth of 10 MByte/sec, these e�ects are
minimal. However, my data layout model does not include sparing so while the relative

locations of neighboring blocks will be accurate, the actual mapping of physical to virtual
sectors will not be exact. I expect this to introduce a small amount of noise into the

results, and in fact Table 3.8 shows that the models are not identical, but are extremely
close. The average demerit percentage of 3.3% means that my model is closer to Kotz

et al.'s model than their model is to the actual drive. In conclusion, inaccuracies in the
disk model may result in small inaccuracies in the reported overall execution times, but

will not alter the conclusions.

58 Simulation Environment

Chapter 4

Algorithms

It was a hack like any other, only a trie dirtier.

| Henry James, \The American," 1875

This chapter describes four informed prefetching and caching algorithms, presented
in a combination of functional and temporal ordering. Before this work two systems

had been implemented: the TIP2 system of Patterson, Gibson et al. [PGG+95] and the
lru-sp/aggressive system of Cao et al. [CFKL95b] (this algorithm was embedded in
a �lesystem called ACFS, application-controlled �le system, described in Pei Cao's thesis
[Cao96]). Recall that the SPACE problem (Standalone Prefetching And Cache Eviction)
involves managing prefetching and cache eviction decisions for a single process with

full knowledge of future accesses and a �xed set of resources. The allocation problem,
the other piece of the puzzle, involves partitioning resources among multiple competing
processes that may be disclosing arbitrary fractions of their resources. TIP2 and lru-
sp/aggressive take di�erent approaches to both problems. I begin by describing these
two systems. Next, I focus on the SPACE problem, comparing the approaches taken by

these two systems, and describing collaborative work with Kimbrel, Karlin, Patterson,
Gibson, Cao, Bershad, Felten and Li [KTP+96]. TIP2 is limited in how deeply it will

prefetch ahead in to the request stream, while lru-sp/aggressive prefetches as deeply

as resources allow. Our collaboration focused on determining how deeply to prefetch
in any situation | the resulting algorithm, forestall, makes decisions based on a

dynamic estimate of disk load. Next I consider improving TIP2 and lru-sp/agg-

ressive by incorporating dynamic prefetching according to forestall's load estimate.

Extending TIP2 requires substantial groundwork, but the resulting algorithm, tiptoe
(TIP with Temporal Overload Estimators), performs better on average than the other

approaches across a wide range of experiments. Extending lru-sp/aggressive, yielding
lru-sp/forestall, is more straightforward. I present these two new algorithms and

then discuss implementation details.

60 Algorithms

4.1 TIP2

The TIP2 system of Patterson, Gibson et al. [PGG+95] presents an integrated approach

to the SPACE problem and the allocation problem. I begin with a two-paragraph sum-

mary of the approach, and then give details.

In the single-process model, TIP2 prefetches conservatively due to its system model,

which assumes large disk arrays and no disk queueing. In such a model, fetches go

directly to disk and return within some bounded time. In addition, there is a lower limit

on the rate of application consumption since, even with no inter-access computation and

no cache misses, there is non-negligible overhead in processing a cache hit (servicing the

system call, copying the data to user space, and so on). Therefore there is no advantage
to prefetching further ahead than the �xed number of accesses necessary to guarantee
that the prefetch will complete in time. TIP2's SPACE algorithm has been referred
to elsewhere as fixed-horizon, since prefetches are submitted only for missing blocks
within a �xed \prefetch horizon."

TIP2's approach to the allocation problem, cost-bene�t analysis, is a powerful and
general tool that has been successful in other domains as well | Ng, Faloutsos and
Sellis [NFS91] apply the technique to database cache management. To serve multiple
processes, each disclosing an arbitrary fraction of its accesses, the bu�er cache manager
must cache two distinct types of data. First, it must maintain a traditional LRU cache,
caching blocks that have been read recently in case unhinted accesses arrive for the same

blocks. Second, it must maintain a hinted cache, holding bu�ers for which future hints
exist. When a bu�er is needed, for a prefetch or a demand read, it must be taken from
one of these sources. Cost-bene�t analysis maintains estimators to compute the cost of
evicting each block, and the bene�t of submitting a prefetch or demand read. Whenever
the greatest bene�t is larger than the lowest cost, an I/O is initiated and a reallocation

occurs.

4.1.1 System Model

TIP2's system model assumes that all application I/O accesses request a single �le

block that can be read in a single disk access; that system parameters such as disk access
latency, Tdisk, are constants; and that there is enough disk parallelism for there never

to be any congestion (that is, there is no disk queueing) so every fetch returns in Tdisk
time. Let Tcpu be the inter-access application compute time; Thit be the time to read a
block from the cache; and Tdriver be the computational overhead of allocating a bu�er,

queueing the request at the drive, and servicing the interrupt when the disk operation

completes. Tmiss, the time to service a demand miss, is then Tmiss = Thit + Tdriver+ Tdisk:

4.1 TIP2 61

demand miss LRU cache
cost of

prefetch
benefit

hinted cache
ejection cost

hints from process A
hints from process B

shrinking

Figure 4.1: TIP2's informed cache manager schematic. Independent estimators express

di�erent strategies for reducing I/O service time. Demand misses need a bu�er imme-
diately to minimize the stall that has already started. Informed prefetching would like
a bu�er to initiate a read and avoid disk latency. To respond to these bu�er requests,

the bu�er allocator compares their estimated bene�t to the cost of taking a bu�er from
a bu�er supplier. The LRU queue caches blocks for unhinted accesses. Informed caching
holds on to the blocks that will be re-accessed soonest. The bu�er allocator takes the
least-valuable bu�er held by any supplier to ful�ll a bu�er demand when the estimated
bene�t exceeds the estimated cost.

4.1.2 Cost-Bene�t Analysis

Figure 4.1 gives an overview of TIP2's cost-bene�t cache manager. The cache manager's
goal is to allocate resources to minimize I/O service time, the time it takes a read or
write system call to complete (note that this includes computational overhead as well as
I/O stall time). The managed resources are disks and �le cache bu�ers. The consumers

of these resources are demand accesses that miss in the cache and prefetches of hinted
blocks. Bu�ers are supplied by the LRU cache and the hinted cache.

The resource manager must decide whether reallocating a bu�er from a supplier to

a consumer to initiate an I/O will reduce I/O service time. The system estimates the
bene�t of using a bu�er to initiate a disk access and the cost of taking a bu�er from a

bu�er supplier. The bu�er allocator continually compares these estimates and reallocates
bu�ers when doing so would reduce I/O service time.

For di�erent estimates to be comparable, they must be expressed in the same terms.
Patterson, Gibson et al. therefore de�ne a common currency for the expression of cost

and bene�t estimates that relates I/O service time to the employment of cache resources
over time. The unit of bu�er usage is the occupation of one bu�er for one inter-access

period, called one bu�er-access, or one unit of bu�erage. The common currency is the

62 Algorithms

magnitude of the change in I/O service time per bu�er-access.

4.1.3 TIP2 Estimators

When an application su�ers a demand miss, consumption halts until the data arrives;

therefore the bene�t for using a bu�er to service a demand miss, in terms of change in

I/O service time per bu�er-access, is in�nite:

Bene�t(demand miss) =1:

The bene�t for initiating a prefetch is much less clear. Tiptoe, described below,

devotes great e�ort to improving this estimator, so I will provide only a brief description
of TIP2's approach. Earlier I gave an intuition that, under TIP2's system model, it
is never necessary to prefetch more than a �xed number of accesses ahead into the hint
stream; I now make this notion more concrete. Even if all the blocks in a hinted sequence
are cached, consuming each block will require some application computation, Tcpu, plus

the time to read each block from the cache, Thit. In the most conservative estimate, Tcpu
may be 0 but Thit time is still required to consume each block. Under the assumption
of no disk queueing, a prefetch will always complete Tdisk time after it is submitted. If,
for instance, Thit = 1 and Tdisk = 50, a prefetch submitted 50 accesses before it is needed
will always complete in time. More generally, if P̂ = Tdisk=Thit, an application need never
submit a prefetch more than P̂ accesses in advance. P̂ is called the prefetch horizon.

The bene�t of prefetching a missing block x accesses in the future is therefore 0
whenever x � P̂ . When x < P̂ , any particular I/O may stall, but that stall may
be amortized across other requests. Patterson and Gibson present a pipeline model of
parallel I/O's, and derive the steady-state decrease in stall that results if prefetches are

submitted x accesses in advance rather than x � 1 accesses in advance. I omit the
derivation, and give the �nal equation:

Bene�t(prefetch; x) =

8>><
>>:

Tdisk x = 0
Tdisk
x(x+1)

x < P̂

0 x � P̂

:

Next, I describe the cost estimators. TIP2 pro�les the e�ectiveness of the LRU cache,
maintaining an estimate H(n) of the hit rate of a cache of n pages, for all values of n

up to the total number of bu�ers in the system. Since the actual size of the LRU cache

is usually smaller than the total number of pages, ghost bu�ers that are not associated
with a physical page are used for the remainder. Using these ghost bu�ers, the pro�ler

remembers how many hits occur at each distance into the LRU list; this information is

su�cient to compute H(n) for all n.

4.2 lru-sp/aggressive 63

Given this estimate, the cost of shrinking the LRU from n pages to n � 1 pages

depends on the change in hit rate: �H(n)
def

= H(n)�H(n� 1). If removing a page from

the LRU decreases the hit rate of unhinted accesses by 1% then the system will incur

additional stall equal to the time to reload the page (Tdisk + Tdriver) on 1% of all unhinted

accesses. So the change in I/O service time per bu�er access of shrinking the LRU by

one bu�er will be �H(n)(Tdisk + Tdriver).

However, this estimator does not capture necessary global structure in the LRU hit-

rate curve. In a looping access pattern over N elements, for instance, �H(n) is 0 for

n < N , but the cost-bene�t allocator should still try to grow the LRU to hold the

working set. Therefore, TIP2 considers the bene�t of growing the cache much larger

than its current size in determining the marginal cost, using the following estimator:

Cost(LRU eviction; n) = max
i�n
f�H(i)g(Tdisk+ Tdriver):

Finally, I present the cost estimator for evicting data from the hinted cache. This

estimator, like the estimator for bene�t of prefetch, will be revisited in the discussion of
tiptoe (Section 4.5). Under TIP2's system model, if a cached block will not be needed
for more than P̂ accesses then it can be fetched back in without stall; the increase in I/O
service time for doing so is Tdriver. If the block will be needed y accesses in the future
then evicting it will provide a bu�er for y � P̂ extra accesses (since the prefetch will

have to be submitted P̂ accesses before the block is needed). So the magnitude of the
change in I/O service time per bu�er access is Tdriver=(y � P̂). Again, I will not give the
details for evicting blocks that will be needed before the prefetch horizon; the complete
estimator is the following:

Cost(Hinted eviction; y) =

8>><
>>:

Tdriver+ Tdisk y = 1

Tdriver+
Tdisk
y�1 1 < y � P̂

Tdriver
y�P̂ y > P̂

: (4.1)

4.2 lru-sp/aggressive

The lru-sp/aggressive system maintains an explicit division between the SPACE al-

gorithm for single-process prefetching (aggressive) and the allocation algorithm (lru-
sp).

4.2.1 aggressive

Cao, Felten, Karlin and Li [CFKL95b] present the aggressive algorithm for single-

process prefetching and caching. Like TIP2, aggressive is designed with a speci�c

64 Algorithms

system model in mind. Let Tdisk be the time for a disk access to complete, and Tapp be

the inter-access time if the necessary block is in the cache (in the terminology of TIP2,

Tapp equals Thit plus Tcpu plus a fraction of Tdriver depending on how often an I/O must

be submitted). In aggressive's system model, Tdriver is 0. Let K be the number of

pages in the cache. Let best-fetch be the distance to the �rst missing block in the cache,

measured in accesses, and best-evict be the distance to the �rst access of the block that

will be needed latest (if some element of the cache will not be re-used, this distance will

be in�nite). Aggressive will evict the block best-evict accesses ahead and prefetch the

block best-fetch accesses ahead exactly when the disk is free and best-fetch < best-evict

(this inequality is referred to as the do-no-harm rule). Cao et al. show the following

theorem about this algorithm:

Theorem 1 [Cao,Felten,Karlin,Li] For any request sequence, the total execution time of

aggressive within the system model de�ned above is never more than 1 + Tdisk/(KTapp)

times the optimal.

The algorithm can be modi�ed to operate in the multi-disk domain as follows. As
above, let best-evict be the distance to the best candidate for eviction. When a particular
disk becomes free let best-fetch be the distance to the �rst missing block on that disk.
Prefetch that block, evicting the block best-evict away, whenever best-fetch < best-evict.

However, the theorem does not hold in this new domain. Kimbrel and Karlin present
reverse-aggressive, a new algorithm designed to provide theoretical guarantees in
the multi-disk domain; I describe it briey, but do not simulate it.

4.2.2 Reverse-aggressive

Our joint study found that reverse-aggressive's performance was typically as good
as the best of fixed-horizon and aggressive, but that it was di�cult to compute
the sequence of fetches and evictions, especially if hints arrive over time. Forestall,

described below, matched reverse-aggressive's performance and is much simpler to
implement; therefore, I simulate forestall and present it in detail. For completeness, I

give a brief description of reverse-aggressive| see Kimbrel and Karlin [KK96b] for
details.

Briey, reverse-aggressive constructs a prefetching schedule for the reversed se-

quence that replaces at most one block on each disk in parallel as follows: Whenever
a disk is free, determine the block B not needed for the longest time on that disk. If
the next request to B is after the �rst missing block, issue a fetch for the missing block,

replacing B. Transform this prefetching schedule back to a schedule for the original

sequence by treating each fetch on the reverse sequence as an eviction on the forward

sequence and vice versa. Kimbrel and Karlin show the following theorem:

4.2 lru-sp/aggressive 65

.....3 7 2419
A A B A B AProcess:

Kernel

1

7
2

4
9

Process A

Process B

A owns LRU Block

“Give up a block”

“Take block 1” 3

Figure 4.2: Lru-sp resource allocation algorithm. When the kernel needs a block it �nds
the process holding the global Least-Recently-Used block, in this case Process A. The
kernel then asks Process A for a block, suggesting the LRU block. Process A may either
accept the kernel's suggestion and give up block 2, or may use information not available

to the kernel to choose a di�erent block for eviction, in this case block 1. To summarize,
the kernel chooses a process, then the process chooses a block.

Theorem 2 (Kimbrel-Karlin) For any request sequence, and for any layout of the

data on the disks, the elapsed time of reverse-aggressive is at most 1 + � times the

optimal.1

4.2.3 Lru-sp

The lru-sp/aggressive system uses aggressive to address the SPACE problem and
lru-sp to address the allocation problem. Lru-sp was developed by Cao, Felten, and
Li [CFL94a, CFL94b, Cao96]; its goal is to adapt traditional LRU allocation, which

has been successful due to performance and fairness qualities, to incorporate prefetching

and informed cache management. Lru-sp uses a global LRU queue to partition cache

bu�ers among the competing processes. It then applies a SPACE algorithm within each

partition.

1� here is less than dTdisk=(kTapp), where d is the number of disks. For typical system parameters, �

is less than 0:1, and sometimes signi�cantly less.

66 Algorithms

Figure 4.2 is a schematic diagram of the lru-sp resource allocation system. When a

bu�er is required, either for a demand read or for a prefetch, lru-sp �nds the process

owning the Least Recently Used block of the entire bu�er cache2 and asks that process

if it would like to eject that block. The process may give up the LRU block itself, or

may choose to evict a di�erent block based on application-speci�c information. If all

processes give up the block suggested by the kernel then lru-sp becomes traditional

LRU. However, if a process uses application-speci�c knowledge to suggest an alternate

block for eviction then a di�culty arises: that process will again hold the global LRU

block and would be asked to give up yet another block when the kernel requires one. To

address this di�culty the kernel swaps the LRU block into the donated block's position

in the LRU queue. Finally, to prevent a malicious or foolish process from mis-using this

swapping capability to gain an unfair share of the bu�er cache, a placeholder structure
keeps track of swaps. If the donated block is re-accessed before the swapped block, the
swapped block is immediately ejected. The resulting algorithm is called lru-sp, LRU
with swapping and placeholders. Note that placeholders are used only in the presence of
incorrect hints | no placeholder is ever activated in our traces.

As a �rst approximation, lru-sp partitions the cache among processes according to
their relative rates. This is most apparent with no re-use: if process A inserts a block
into the LRU list four times per second and process B one time per second then in the

steady state, process A will have inserted 4=5 of the elements in the list. Section 4.7.2
examines the question for processes with re-use. In general, though, lru-sp should
perform well when faster processes derive more bene�t from re-use than slower processes,
but as Section 4.7.1 demonstrates, this will not always be the case.

4.3 A Study of Embedded SPACE Algorithms

At this point I have described TIP2 and lru-sp/aggressive, two full systems for

multi-process prefetching and caching. Each system contains a SPACE algorithm and
an allocation algorithm. In this section, I will discuss the embedded SPACE algorithms,
give some intuitions about their di�erences, and motivate a new SPACE algorithm that

combines the bene�ts of both earlier approaches. This work was joint between the Parallel

Data Lab (Patterson, Gibson and myself), and several other researchers at Washington
and elsewhere (Kimbrel, Karlin, Cao and others) [KTP+96].

Consider the TIP2 system described above running in a single-process fully-hinted

domain. As there are no unhinted accesses, the value of maintaining a large LRU cache

will be negligible so the entire bu�er cache will be dedicated to hinted caching. The
equations above for the bene�t of prefetching, and the cost of evicting a block from the

2The owner of a block is the last process to access the block.

4.4 Forestall 67

hinted cache, have the property that Cost(Hinted Eviction; x) > Bene�t(prefetch; x);

that is, TIP2 obeys the do-no-harm rule. Since the bene�t of prefetching a block more

than P̂ accesses in advance is 0, this will never happen. But for any reasonable-size bu�er

cache in the single-process domain, the lowest-cost block will have cost much lower than

the bene�t of prefetching a missing block P̂ � 1 accesses away. Thus, in this simple

domain, TIP2 will submit prefetches for exactly the missing blocks within the prefetch

horizon.

Our collaborative study was performed in this single-process domain; we referred to

this simpli�cation of TIP2 as fixed-horizon. Similarly, in a single-process fully-hinted

domain lru-sp/aggressive will dedicate the entire bu�er cache to a single process

running aggressive. We compared fixed-horizonwith aggressive, and determined
that each algorithm may perform substantially better than the other in particular situ-

ations.

Figure 4.3 shows an example situation in which TIP2 leaves a single disk idle and
incurs unnecessary stall whereas aggressive prefetches as deeply as the disk allows and
incurs less stall. In this example,TIP2's assumption of in�nite parallelism does not hold
and prefetches do not complete in Tdisk time. This phenomenon also occurs when there
is an ample number of disks, but the accesses are unevenly distributed over the disks.
E�ectively, only a portion of the disk array is in active use and that portion does not

provide enough parallelism to avoid stall.

On the other hand, when there is su�cient disk parallelism, prefetching too aggres-
sively may cause unnecessary disks accesses, each of which adds a CPU overhead of
Tdriver to the application's execution. Figure 4.4 shows how this phenomenon may occur.
Here, TIP2's assumption of in�nite parallelism is a reasonable approximation, whereas
aggressive's assumption that disk accesses have no computational overhead leads to

increased application CPU time.

Our study concluded that when stall is anticipated even far in the future, it is better

to prefetch aggressively. On the other hand, when there is su�cient parallelism to avoid
stall, it is better not to prefetch beyond the prefetch horizon. Based on this intuition, we
developed a new algorithm for the SPACE problem called forestall, which prefetches

dynamically based on estimates of upcoming load.

4.4 Forestall

Figure 4.5 is a graphical illustration of a scenario in which upcoming hotspots will cause

stall. Disk a represents the ideal case: missing data is well-distributed and there is always

enough time to prefetch the data without stalling. TIP2's bounded prefetching works

well for this disk. Unfortunately, accesses may come in bursts such as the requests for

68 Algorithms

Aggressive TIP2
Application Cursor, Time 1

Application Cursor, Time 2

Application Cursor

Application Cursor, Time 5

A C EB

Application Cursor, Time 4

 = Cached
Application Cursor, Time 1

Application Cursor, Time 2

Application Cursor

P̂

A C EB

Application Cursor, Time 4

Application Cursor, Time 5

Time 1

Time 2

Time 3

Time 4

Time 5

Time 1

Time 2

Time 3

Time 4

Time 5

Time 3
Time 3

 = Missing

D

D

Figure 4.3: Lost opportunities. Initially, an application has a long sequence of future accesses

cached, followed by a sequence of missing blocks. The �gure shows how TIP2 and aggressive

proceed, in �ve snapshots. At time 2, aggressive has evicted the blocks in region A in order

to prefetch distant data in region D. The blocks in region B have been consumed but there

has not yet been time to evict in favor of prefetching missing data from region E. Region C

is still cached, and will soon be consumed. Aggressive keeps the disk busy throughout the

sequence. On the other hand, TIP2 does not prefetch when there are no missing blocks within

the prefetch horizon, labelled P̂ in the �gure. At time 3, TIP2 has just begun prefetching and

most of the cached data has been consumed. Again, blocks from region A have been evicted to

prefetch for region D. The large set of good eviction decisions in region B remain in memory due

to conservative prefetching. In general, if a long sequence of accesses is cached, TIP2 allows the

disks to go idle even if subsequent prefetching cannot satisfy the later uncached accesses and

large stalls result. In contrast, aggressive takes advantage of the lull in I/O activity during

the read of the cached sequence to prefetch as many missing blocks as possible.

blocks b1, b2 and b3 in the �gure. Such a burst necessitates earlier prefetching that

TIP2 would fail to perform. Nevertheless, the burst on disk b is small enough that we
need not begin prefetching immediately; this disk is not yet constrained. Intuitively, a

disk is constrained when there is not enough time to prefetch all missing blocks by the

time they are needed (the formal de�nition is given below). On disk c, considering only
accesses c1{c4 it appears that there is enough time to prefetch all the blocks. However,

because access c5 comes so soon after c4, it is too late to avoid stalling for c5 even if
prefetching begins immediately. Access c5 constrains disk c. The best we can do is to

start prefetching now to minimize the stall for c5. Note that the access to c6 does not
change the picture. Since the disk will be fully utilized just to minimize stall for c5, there

will be no opportunity to prefetch deeply to reduce stall for any subsequent access. Thus,
there is no reason to examine a hint sequence beyond a request that constrains the disk.

On the other hand, if a disk is nearly-constrained, even a small burst of activity far in

4.4 Forestall 69

Time 1

Time 2

Time 3

Time 4

Time 1

Time 2

Time 3

Time 4

Aggressive TIP2
Application Cursor, Time 1

Application Cursor, Time 2

Time 5

Application Cursor, Time 3

Application Cursor, Time 5

Application Cursor, Time 1

Application Cursor, Time 2

Application Cursor, Time 3

Application Cursor

Application Cursor, Time 5
Time 5

Time 4Application Cursor Time 4

 = Missing = Cached
P̂

Figure 4.4: Wasted e�ort. Initially, an application on a system with high I/O bandwidth caches

a sequence of blocks in the future, but there are many intervening blocks that must be fetched.

The �gure shows how TIP2 and aggressive proceed, in �ve snapshots. Aggressive always

ejects a cached block if it can take advantage of an idle disk to prefetch a closer block. As time

proceeds, it uses the available bandwidth to prefetch more data, evicting both distant cached

data and, when available, just-consumed data. By time 5, aggressive has ushed the entire

sequence of distant cached data before it can be used. TIP2 prefetches conservatively, and

since su�cient bandwidth exists, incurs no additional stall. It leaves the majority of the distant

cached sequence in memory, saving the overhead of re-fetching those blocks. Each unnecessary

fetch incurs Tdriver computational overhead to allocate a bu�er, queue the request, and service

the interrupt when the request completes; this overhead can be substantial.

the future can constrain the disk and make it necessary to begin the entire prefetching
schedule earlier in order to avoid stall.

Informally, forestall sums the time it will take to prefetch all uncached blocks

before a given request; if this time is greater then the expected time until the request

arrives then the disk is constrained. Failing to initiate deep prefetching on the constrained
disk will increase application stall on the request causing the constraint.

Detecting constraint requires estimation of three quantities: the blocks that must be
prefetched, the time it will take to prefetch these blocks, and the time it will take the

application to consume the intervening cached blocks. Forestall determines which

blocks must be prefetched based on the following simple cache model: a hinted block will
be missing if it is not cached and it is the earliest hint for its block. Essentially, it makes

the optimistic assumption that the system will only have to prefetch each missing block
once. The estimate of Tdisk, the time to fetch a block, is the average system I/O time up

to that point in the trace. Finally, the estimate of Tapp, the time between hinted accesses,

is the average amount of computation performed by that process between hinted accesses

70 Algorithms

b3

b4

b1

t2

t1

time

b2

b2 b3b1

disk b

c5c4c3c2

disk b constrained

disk a constrained

disk c already constrained

c1

a1 a2 a3

disk c

b4a3 c5

disk a

c4c3c2

access

c1 a2a1
sequence

Figure 4.5: Constrained disks. The upper bar represents the future request sequence;

black segments represent requests to cached blocks, and all other segments represent
requests for missing blocks on one of the three disks. The three lower bars represent
schedules for each disk that satisfy all requests in time without incurring stall. Disk a

represents the ideal situation because prefetching for each block can begin one fetch time
before the block will be consumed. Disk b contains a burst of requests b1, b2 and b3,
but we do not need to begin fetching those blocks until we reach the line marked \disk b

constrained." The schedule for disk c shows that in order to service all requests without
stall, we would have to begin prefetching in the past, and therefore we will incur stall at
some point. We say that disk c is currently the only constrained disk of the three.

up to that point in the trace.

I now give a formal speci�cation of constrained disks. Let r1r2 : : : be the sequence of
hints. Let Incore(i) be a boolean variable representing our estimate, described above,
of whether request i will be in cache or will need to be prefetched. Finally, let disk(i) be

the disk holding request ri. Then, disk d is constrained by request i if and only if i is the

smallest positive integer such that ri is the �rst reference to an uncached block and

X
j�ijdisk(j)=d

Incore(j) � Tdisk > i � Tapp: (4.2)

This speci�cation of a constrained disk is very similar to that used by the forestall
algorithm as presented in our earlier collaborative study [KTP+96], but it di�ers in two

details. First, the Incore function used here only counts the �rst access to a block
as a miss instead of assuming all accesses to currently uncached blocks will have to be

4.5 Tiptoe 71

- x - - - - - - - x - x x x x -- -- -- -

First missing block(“best-fetch”) Last cached block(“best-evict”)

Application position(“cursor”) x = missing
- = cachedPrefetch Horizon()P̂

Algorithm Prefetch When

fixed-horizon best-fetch < P̂

aggressive best-fetch < best-evict

forestall
best-fetch < P̂

or

best-fetch < best-evict and Disk(best-fetch) constrained

Figure 4.6: SPACE Algorithms. Fixed-horizon is conservative, prefetching only miss-

ing blocks within the prefetch horizon. Aggressive is aggressive, prefetching whenever
a more distant block can be evicted. Forestall dynamically decides whether to prefetch
conservatively or aggressively based on an estimate on upcoming load on each disk.

prefetched. Second, I do not vary the estimate of Tdisk in a manner that corresponds to
forestall's overestimation F 0 of the ratio between Tdisk and Tapp.

Even with these simplifying assumptions, identifying a constrained disk could still be
very expensive since it could require revisiting every hint every time deep prefetching is
considered. In practice, this is not necessary; I will revisit the issue in Section 4.8.

Figure 4.6 summarizes the three SPACE algorithms: fixed-horizon, aggressive
and forestall.

4.5 Tiptoe

TIP2 and lru-sp/aggressive, the two existing systems for informed prefetching and
caching, both su�er from the shortcomings of their internal SPACE algorithms. Our

joint study showed that these shortcomings arise in practice, and showed that dynamic

disk-aware prefetching, as provided by forestall, provides an improved approach to the
SPACE problem. This motivates extending both earlier systems to incorporate dynamic

prefetching into cost-benefit and lru-sp. This section considers cost-benefit; the
next considers lru-sp.

Extending cost-benefit requires developing a new set of estimators for the bene�t

72 Algorithms

buffer
allocator

demand miss LRU cache
cost of

prefetch
benefit

hinted cache
ejection cost

hints from process A
hints from process B

shrinking

- - x x - - x - - x - x - - x -- -- -- -

(unchanged)

(unchanged)

No overload

Overload

Disk Overloaded?

Figure 4.7: The Tiptoe algorithm. Like TIP2, tiptoe uses cost-bene�t analysis to

make resource allocation decisions. However, the existing TIP2 estimators of the bene�t
of prefetching, and the cost of evicting hinted data, are modi�ed based on a calculation
of disk load. This calculation depends on the hint sequence, the state of the cache, and
rate estimates of application consumption and disk access time. For each disk, tiptoe
determines where in the hint sequence this disk will fall behind the application and cause

stall; more heavily loaded disks are then given preference. Details of this calculation are
shown in Figure 4.8.

of \deep prefetching" beyond the prefetch horizon, and for the cost of caching hinted data

that will not be referenced within the prefetch horizon. These estimators consider disk

overload at di�erent points in time, so I will refer to the resulting algorithm as tiptoe:
TIP with Temporal Overload Estimators. Figure 4.7 shows the structure of the tiptoe
algorithm.

4.5.1 The Bene�t of Deep Prefetching

TIP2's estimator for the bene�t of prefetching will never prefetch missing blocks beyond

the prefetch horizon. Our joint study showed that in some situations deeper prefetching
is necessary; historically, we began working on tiptoe based on the observation that

variations in load, such as long cached sequences followed by \hotspots" of missing data,

might require deep prefetching beyond the prefetch horizon. Tiptoe's estimator of the

4.5 Tiptoe 73

- - - - - - - - - x - x x x x -- -- -- -Sequence:

Buffer 1 Buffer 2 Buffer 3 Buffer 5Buffer 4

Buffer 1 Buffer 2 Buffer 3 Buffer 5Buffer 4

Delay 1:

Delay 0:

+1 +1
+1

+1
+1

-1

Profile 0:

Profile 1:

x = missing block
- = cached block

...

1 fetch time Constraint

Figure 4.8: The Bene�t of Deep Prefetching. For a particular disk, the �gure shows a
long sequence of cached data followed by a hotspot of missing blocks in the future. The
hotspot requires enough I/O that the disk is constrained. The row marked \Delay 0"
shows how to schedule fetches if prefetching begins immediately. The next line shows a

pro�le of how many bu�ers must be dedicated to this sequence of prefetches at each point
in time. The pro�le grows at the beginning because fetches complete but have not been
consumed, so the bu�ers must stay in memory. The next two lines show the schedule
and pro�le that results if prefetching is delayed for one timestep. The di�erence in total
area under the pro�les yields the cache resources saved by delaying prefetching for one

step | in this case, four bu�er-accesses are saved. This saving must be o�set against the
increase in stall that results from delaying prefetching. As derived in the text, if the disk
is constrained n accesses in the future, the marginal change in stall time with respect to
bu�er usage is Tdisk=n.

bene�t of prefetching must be able to identify these situations.

More speci�cally, if access rc constrains disk d, tiptoe must determine the bene�t
of allocating bu�ers for deep prefetching for that constraint. Expressing this bene�t in

the common currency requires determining the change in stall time for a given change in
bu�er usage. Figure 4.8 gives an example that shows the relation between bu�er usage

and stall time. Delaying deep prefetching one access adds one inter-access period, Tapp, of

stall, but reduces by one access the time each of the deep-prefetch bu�ers must be held.
If the constraining access is n steps in the future then, by the de�nition of constrained

disks, all intervening accesses will be serviced without stall, taking time nTapp. This

allows nTapp=Tdisk disk fetches to complete, so delaying for one access means that each of

74 Algorithms

these fetches will be consumed one access earlier, saving nTapp=Tdisk units of bu�erage.

Then the marginal change in stall with respect to bu�er usage is the change in stall (Tapp)

divided by the change in bu�erage (nTapp=Tdisk), which is Tapp=(nTapp=Tdisk) = Tdisk=n.

The complete common-currency bene�t of prefetching is then:3

Bene�t(prefetch; x) =

8>>>><
>>>>:

Tdisk x = 0
Tdisk
x(x+1)

x < P̂

0 x � P̂ ;disk(x) unconstrained
Tdisk
x

x � P̂ ;disk(x) constrained

: (4.3)

4.5.2 The Cost of Ejecting from a Constrained Disk

Ejecting a hinted block requires that the block be prefetched back at a later time. The
change in I/O service time is Tdriver to prefetch the block back plus any stall that will be
incurred on the eventual access to the ejected block. On a constrained disk, there is no

opportunity to prefetch in advance and mask the latency of the access. Thus, the access
will add a full Tdisk of stall to the application's I/O service time. If the block will be
read in x accesses then ejecting it will free the bu�er until the block must be read back
in, x accesses later. In terms of the common currency, the ejection causes Tdisk stall in
exchange for x units of bu�erage: a cost of Tdisk=x. The �nal estimator for the cost of

ejecting a block from the hinted cache, incorporating constrained disks, is:

Cost(Hinted eviction; y) =

8>>>>><
>>>>>:

Tdriver+ Tdisk y = 1

Tdriver+
Tdisk
y�1 1 < y � P̂

Tdriver
y�P̂ y > P̂ ;disk(y) unconstrained
Tdriver+Tdisk

y
y > P̂ ;disk(y) constrained

: (4.4)

These new estimators have two useful properties. The bene�t of prefetching on a

constrained disk with constraint at distance x is Tdisk=x, while the cost of evicting a block

at distance x from a constrained disk is (Tdisk+Tdriver)=x. First, note that Tdisk� Tdriver,

so these values are similar. So it is worth initiating prefetching if blocks can be found
that are more distant than the constraint being fetched for; if, however, the only available

blocks will be used before the constraint then the cost of evicting these blocks will be
too high to justify prefetching. This matches the intuition that an algorithm should not

throw out early blocks to prefetch for later blocks, if the blocks all lie on constrained

3Note that the discontinuity at x = P̂ occurs because TIP2's bene�t estimator assumes in�nite

parallelism, and therefore amortizes the bene�ts of a deeper prefetch over many disks. Tiptoe's model

is aware of disk layout, but does not model the interaction between fetches on di�erent disks, and

therefore computes the bene�t for each disk as if that disk were the primary constraint.

4.6 Lru-sp/forestall 75

disks (the do-no-harm rule). Second, the bene�t of prefetching is smaller than the cost of

eviction by a Tdriver=x term. This di�erence adds some hysteresis | the system is more

likely to keep a block in the cache than it is to load the block in the �rst place, reducing

the likelihood of thrashing the same block in and out of the cache.

4.6 Lru-sp/forestall

Tiptoe represents the incorporation of forestall, the best known SPACE algorithm,

into cost-bene�t allocation. In order to provide a meaningful comparison of allocation

algorithms, I also incorporate forestall into lru-sp. The modular nature of lru-sp
makes it straightforward to \plug in" forestall in place of aggressive.

This results in a set of four algorithms: tiptoe and lru-sp/forestall, representing
the best known SPACE algorithm incorporated into two radically di�erent approaches
to allocation, and their predecessors, TIP2 and lru-sp/aggressive. All experiments
are performed for all four of these systems.

4.7 A Study of Embedded Allocation Algorithms

I have described two allocation algorithms: cost-benefit and lru-sp. This section
gives some intuition for how each operates, and for how they should compare.

4.7.1 Synthetic Workloads and Caching

I will demonstrate through a micro-benchmark that LRU-based allocation may give

bu�ers to applications that consume data quickly but have limited re-use, rather than
to applications that consume more slowly but derive higher overall bene�t from bu�ers

because they have higher re-use. As mentioned above, to �rst approximation lru-sp

allocates bu�ers to processes according to their access rate (see Section 4.7.2 for details);

thus, lru-sp will cache data for an application that has a high data consumption rate
but low re-use. I consider the Xds trace described above running in parallel with a syn-

thetic process that repeatedly reads a 500-block �le sequentially. This arti�cial process

computes for 10 ms between each read; Xds computes for 700 microseconds between

reads on average. Figure 4.9 shows the results of varying cache size from 500 blocks to

1500 blocks.

The non-hinting process uses LRU replacement, so it attains no bene�t from fewer

than 500 bu�ers. With 499 bu�ers, for instance, each block is evicted immediately before

76 Algorithms

500 550 600 700 800 900 1000 1100 1200 1300 1400 1500

Buffer Cache Size

0

100

200

300
T

ot
al

 T
im

e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive

Figure 4.9: Xds takes bu�ers from a synthetic process with high re-use. The synthetic

process loops through 500 blocks without hints, so with fewer than 500 cache bu�ers it
achieves no re-use. Cost-benefit notices that Xds does not need bu�ers, while the
synthetic process has high re-use, and so dedicates most of the cache to the synthetic
process. Lru-sp allocates according to rate, and requires a cache of around 1300 bu�ers
before it dedicates 500 bu�ers to the synthetic process.

it will be read. With 500 cache bu�ers neither algorithm derives any caching bene�t

because some blocks are used to perform I/O's for Xds so the synthetic process never
gets a full 500 bu�ers. With 550 cache bu�ers, however, TIP2's cost-bene�t estimators
conclude that caching data for the non-hinting process is more important than prefetching
ahead for the hinting process. LRU-SP splits the bu�er cache according to the relative
rates of the processes, giving much of the cache to the hinting process even though it does
not re-use its data. The high rate of Xds relative to the non-hinting process means that

the cache must become quite large (around 1300 bu�ers) before LRU-SP will allocate
su�cient bu�ers to hold the 500 bu�er working set.

4.7.2 Lru-sp and Rate-Based Allocation

In this section I give a more concrete analysis of the allocation resulting from lru-sp. I
will show that allocation is rate-based, but also dependent on the re-use characteristics
of the processes. Finally, I will show that, given information about re-use, it is possible

to compute exactly the resulting steady-state allocation.

First, consider two processes A and B running alongside, each of which has no re-use.

Let their relative consumption rates be rA and rB, so the �rst process reads rA pages
every time the second process reads rB pages. For concreteness, let rA = 20 and rB = 10.

Then process A is placing 20 blocks into the LRU queue for every 10 of process B. We

4.7 A Study of Embedded Allocation Algorithms 77

expect that process A will own 20 out of each 30 blocks in the queue, for a total of 2/3

of the bu�ers.

Instead, consider the opposite situation in which process A reads at rate rA again,

but always touches the same block, while process B again has no re-use. In this case,

the rates are not relevant: process A will own a single block of the cache, and process B

will own the rest. So the eventual allocation depends on both rate and re-use.

Let the cache have size n, and let the access pro�le of process A, (a1; a2; : : : ; an; an+1),

be a distribution showing what fraction of A's requests go to the �rst element of the cache

(a1), the second element (a2), the last element (an), and �nally what fraction are cache

misses (an+1). So
Pn+1

i=1 ai = 1. Similarly for bi.

I assume that each request is chosen independently from the access pro�le of process
A with probability p = rA=(rA+rB), and independently from the access pro�le of process
B with probability 1 � p. Let pi be the probability that process A owns the ith element
of the LRU. Then p1 = p, since at each round process A will own the �rst element with
probability p, and process B will own the �rst element with probability 1 � p.4 For

convenience, I de�ne the following cumulative probabilities for 2 � i � n:

cAi =
i�1X
j=1

aj

cBi =
i�1X
j=1

bj

.

Assume a vector (p1; p2; : : : ; pn) gives the pi values during a particular round of exe-
cution. The recurrence for (p01; p

0
2; : : : ; p

0
n) , the vector during the next round, is:

p01 = p1

p0i = pi�1
�
p(1 � cAi) + (1� p)(1 � cBi)

�
+ pi

�
pcAi + (1� p)cBi

�
; 2 � i � n:

The last equation requires some explanation. When a request arrives, one of two

things can happen to pi: �rst, the request could be for an earlier element of the LRU,
in which case pi would remain unchanged. Second, the request could be for pi or a
later element (or a cache miss), in which case the former i� 1st element would become

the ith element, so p0i will be pi�1. The request will be for an element before i with
probability pcAi + (1� p)cBi because with probability p, process A will make the request,

4This assumes that the two processes share data and pass blocks back and forth; an alternate approach

that would introduce additional complexity would be to assume that the two processes access distinct

pools of data.

78 Algorithms

and cAi is de�ned as the cumulative probability that a request from process A occurs in

f1 : : : i � 1g. Likewise, with probability 1 � p, process B makes the request and cBi is

the appropriate cumulative probability. For convenience, let xi = pcAi + (1 � p)cBi and

yi = p(1 � cAi) + (1 � p)(1 � cBi), so the recurrence becomes:

p01 = p1

p0i = pixi + pi�1yi; 2 � i � n:

In matrix form: 0
BBBBBBB@

p01
p02
p03
...
p0n

1
CCCCCCCA
=

0
BBBBBBB@

1 0 0 � � � 0 0

y2 x2 0 � � � 0 0

0 y3 x3 � � � 0 0
...

. . .

yn xn

1
CCCCCCCA

0
BBBBBBB@

p1
p2
p3
...
pn

1
CCCCCCCA

(4.5)

Solving this equation for the steady-state probabilities requires �nding the eigenvector

corresponding to the eigenvalue 1; since the matrix is triangular, this is straightforward,
and yields:

pi = p
iY

j=2

yj

1 � xj
; 1 � i � n: (4.6)

4.8 Implementation Details

The descriptions above convey the central issues in implementing each of the four systems.
But there are many details to the implementation; I describe those details here so the

results will be reproducible.

4.8.1 Hint Tracking

In the presence of missing and incorrect hints, a tracking algorithm maintains alignment

between the request sequence and the hint sequence. All four algorithms use the same

tracking system. The system works as follows. Tracking is performed whenever a request
arrives. If the request matches the head of the hint sequence, the head is considered a

match, and removed. Otherwise, the tracker looks for the request in a �xed-size window
of the hint sequence, starting one hint past the head. In our implementation, this window

has size 2. If the request is found within this window, all hints up to the �rst match

are dropped, the �rst match is considered to be the correct match, and is dropped to

4.8 Implementation Details 79

track_hints(request)

{

count = 0; found_match = FALSE;

next_hint = hints->head;

while (count++ <= MAX_HINT_DELAY) {

if (request matches next_hint) {

found_match = TRUE;

break;

}

next_hint = next_hint->next;

}

if (found_match) {

drop count hints;

}

return;

}

Figure 4.10: Hint Tracking Algorithm. If the earliest match of a request in the hint
stream falls within a �xed window of the beginning of the hint stream, that match is
considered valid. The matching hint and any earlier hints are dropped. Otherwise the

request is assumed to be unhinted.

match the request. If the request is not found within the window, it is assumed to be an

unhinted request and no hints are dropped. Pseudo-code for this tracking procedure is
shown in Figure 4.10.

If a spurious match is found then up to three valid hints will be dropped. But,

unless a strange string of coincidences occurs, the next three hinted reads will sim-

ply be considered to be unhinted requests, and subsequently the tracking will be back
on sequence. This trivial algorithm maintained tracking properly in all cases for our

benchmarks. In the future, it will be necessary to improve this algorithm, especially
in the presence of automatically-generated hints that may be far less accurate than our

programmer-generated hints. In particular, the current algorithm will never regain track-

ing if MAX HINT DELAY bad hints arrive in a row.

4.8.2 LRU Pro�ling

TIP2 and tiptoe require an estimate of the hit rate of the LRU cache. I perform

80 Algorithms

this pro�ling using the same \segmenting" technique as Patterson et al., described in

[PGG+95]. However we implement aging di�erently. Every 1000 requests Patterson et al.

recompute a new LRU hit rate pro�le, and compute a weighted average of this new pro�le

with the existing pro�le. Thus, the pro�le at each point is simply a sum of all existing

pro�les up to that point, weighted by a decaying exponential. My implementation does

not perform aging, and simply maintains the overall hit-rate pro�le of the simulation so

far.

4.8.3 Epochs

Tiptoe must know which disks are constrained by which requests whenever it decides
whether or not to prefetch. To avoid recalculating these constraints from scratch at
each access, the implementation breaks the hint sequence into sequential pieces called
\epochs." Each epoch keeps track of the number of accesses and missing blocks within
the epoch. The contribution of the entire epoch of hints to Equation 4.2 can then be

calculated in a single step. Whenever a block is loaded or evicted, we perform a single
constant-time operation to �nd the earliest hint for that block, look up the associated
epoch, and modify the count of missing blocks within that epoch. To detect a constraint,
it is only necessary to sum the contributions of the epochs and not the hints individually.
Epochs reduce algorithmic overhead by a large constant factor. In our implementation,

the target size for epochs is 100 accesses, though the algorithm admits other implemen-
tations that place distant hints into larger epochs.

The epoch calculation will correctly determine whether epoch endpoints constrain the
disks. However, for large epochs, it is possible that an initial sequence of missing blocks
could constrain the disk but that later cached data would result in the �nal endpoint
being unconstrained. The application would stall early in the epoch then allow the disk
to idle later. This error is especially dangerous for early epochs, as the allocator is likely

to prefetch for early constraints. I address this issue by examining each hint in the �rst

few epochs. Under this scheme, assume that epochs have size n and there are h hints,
for h=n epochs. If tiptoe looks through the �rst k epochs hint-by-hint, the total cost
for calculating constraints will be O(kn) to look through the �rst k, plus O(h=n) to look

at each epoch. Minimizing kn+ h=n with respect to n gives k � hn�2 = 0 or n =
q
h=k.

Thus, if tiptoe examines the �rst two epochs, its epoch size should be the square root

of half the number of pending hints.

4.8.4 When to Consider Prefetching

Because deep prefetching is only relevant over large numbers of accesses, it is not nec-
essary to compute the deep prefetching constraints at every access. Instead, we further

4.8 Implementation Details 81

reduce overhead by recomputing only every 5 accesses.

With or without epochs, the computational overhead is bounded, not by the number

of hints, but by the bene�t of prefetching. Because the bene�t of prefetching from a

constrained disk falls o� linearly with the distance to the constraint, at some point the

bene�t will be smaller than the cost of the lowest cost bu�er. There is no need ever to

examine the hints beyond this point. The exact point at which this happens depends

dynamically on the current cost of taking a bu�er from a cache supplier.

TIP2 considers issuing prefetches whenever a change in cost or bene�t calculations

creates the chance that there might now be su�cient bene�t from prefetching to merit

a bu�er. Most often, this occurs when the application consumes a hinted block which

shifts all remaining hints one access closer. In particular, it shifts a hint from beyond the
prefetch horizon to within the prefetch horizon which raises the bene�t of prefetching from
zero to some positive value. In contrast, deep prefetching according to lru-sp/aggress-
ive, tiptoe or lru-sp/forestall must be disk-aware because it takes advantage of
disk idleness to prefetch more deeply regardless of application activity. These algorithms

must also consider prefetching whenever a disk goes idle. For consistency, the simulator
adopts the policy that all algorithms consider prefetching at each request, and whenever
a disk goes idle, but that bene�ts of deep prefetching are recalculated every 5 requests.

4.8.5 Prefetching on Multiple Idle Disks

If multiple disks are idle, there may be limited resources that must be allocated among
the idle disks. For TIP2, this is not an issue since �rst, each process will only dedicate up

to P̂ blocks to prefetching, and second, the bene�t of prefetching for requests within the
prefetch horizon is su�ciently high that the allocator will not deny bu�ers to a process
wishing to prefetch. The other algorithms proceed as follows: in unspeci�ed order, each

process is given an opportunity to prefetch. The active process considers each hint in
temporal order, and decides whether to prefetch that block according to the current

prefetching algorithm.

4.8.6 Writes and Dirty Bits

The writes in the traces are all delayed writes | they set a dirty bit rather than beginning
a synchronous I/O. However, the existing TIP2 and lru-sp/aggressive systems deal
with dirty bits in di�erent ways. In TIP2, no dirty block is written back until that

block is both the lowest-cost block, and lower cost than the highest-bene�t I/O. At that

point the dirty block is written, and bidding begins again. Lru-sp/aggressive does

not explicitly suggest a policy, so I implement the following: whenever a block is about

82 Algorithms

to be evicted, its dirty bit is checked. If the block is dirty, it is written asynchronously,

and a di�erent block is found and returned.

However in all the primary experiments described below, delayed writing is turned

o� since the writeback policy has impact on the overall execution time.

4.8.7 Disk Queueing

Should the prefetcher issue just one prefetch at a time per disk, or should it issue more?

Modern disks and their low-level device drivers are capable of reordering fetches to reduce

average disk service time and increase e�ective disk bandwidth. A prefetcher can exploit

this capability by queuing multiple prefetches at the device. In general, longer queues
provide greater reordering opportunities and larger reductions in average disk service
time. Moreover, the same positioning e�ects that make disk fetch reordering e�ective
suggest that cache evictions should be sensitive to disk location. For many workloads,
especially sequential ones, proximity in the hint sequence is a good indicator of proximity

on disk. In such cases, simultaneously evicting larger numbers of neighboring blocks in
the hint sequence can reduce disk service time for the re-fetches of the evicted blocks.

A number of costs o�set these bene�ts of simultaneously issuing large numbers of
prefetches. First, large queues tie up cache bu�ers that might be better used to cache
data for re-use. Second, �lling a large queue forces earlier replacement decisions which
may itself reduce cache e�ectiveness. Lastly, very deep queues allow early prefetches to
be reordered behind many other, later prefetches which may lead to unnecessary stall.

Addressing this issue at a theoretical level requires extending the system model to

non-constant disk times, and incorporating disk geometry and layout. This is a daunting
task. Modifying the depth, order, or nature, of a prefetching schedule in a general,
extensible manner based on this kind of information seems to be an extremely di�cult
problem. I do not address this issue in full. Instead, since the advantages of sorting are

dramatic, I take the approach taken by other researchers of incorporating an independent

a priori scheme to allow multiple simultaneous prefetches to be sent to the disks at once,

without reasoning on-the-y about the explicit bene�ts of doing so.

Lru-sp/aggressive, tiptoe and lru-sp/forestall issue requests in groups of

up to 16, a technique that Cao has called batching [CFKL95b]. In my implementation
the technique works as follows. Prefetching is only initiated on idle disks. When a system
decides to prefetch on a particular disk, it continues to submit I/O's until the batch is

full or the algorithm no longer chooses to prefetch. At that point, the prefetcher issues

the batch of requests, and the disk is no longer considered idle. The prefetcher continues

to try to �ll batches for the remaining idle disks.

4.8 Implementation Details 83

TIP2, on the other hand, never prefetches more then P̂ accesses ahead into the

request stream, so it is never in danger of dedicating too many bu�ers to prefetching.

Thus, TIP2 performs no batching, and tends to have somewhat deeper queues than the

other algorithms when there is little re-use and the application is I/O bound.

4.8.8 Multiple Estimators

In TIP2 and tiptoe it is possible for multiple estimators to value the same block. For

instance, if a recently-read block also has a future hint, the LRU estimator and the hinted

cache estimator will both publish a cost of evicting the block. In this case, the value of

the block is taken to be the maximum of the values bid by the estimators. Imagine that

two processes will use the same block in the future, but the �rst one will use it earlier.
By the time the second one needs the block, even if it was evicted, it will already have
been re-read by the �rst process. This observation motivates the use of the maximum
estimator rather than, for instance, the sum.

4.8.9 Multiple Trackers

A similar problem arises for lru-sp/aggressive and lru-sp/forestall. Say pro-
cesses A and B track (have hints for) the same block x. Process A is asked to give up a
block and chooses the cached block which it will reference latest, which happens to be x.
However, process B also tracks block x and will use it earlier. Whenever this situation

arises, I simply evict the globally least-recently-used block.

4.8.10 Posthint Estimation

The next implementation issue is speci�c to TIP2 and tiptoe. When a hinted read
arrives and there is no future hint for the same data, the system must decide how long

the block should be kept in memory. In the original TIP2 system the block was added
to the tail of the LRU queue under the assumption that, since it was recently accessed, it

might be accessed again in the near future. However, if an Xds-like process is streaming
through a large amount of hinted data with minimal re-use, and another process like

Postgres2 is performing unhinted reads with strong locality5 this policy will dilute

the LRU queue with bu�ers that are never re-used (this problem is often referred to as
\pollution" of the bu�er cache). The opposite policy is to take lack of hints for a block as

a \release" of the block, and place the block on the head of the LRU queue for immediate
eviction. However under this policy a process such as Sphinx, which o�ers hints in small

5The same situation could arise within a single process.

84 Algorithms

batches just before the data is required, would be prone to ush blocks that might soon

be hinted.

The cost-bene�t framework provides a simple, elegant solution to this problem. Rather

than inserting these problematic \posthint" bu�ers into the LRU queue, the system in-

stead inserts them into a separate posthint queue which maintains an independent esti-

mate of the value of its bu�ers. If the posthint bu�ers are often re-read, as in Sphinx's

case, the allocator will choose to grow the posthint cache at the expense of the LRU

cache. On the other hand if the posthint bu�ers are never accessed but unhinted ac-

cesses demonstrate re-use, as for Postgres2 and Xds, the allocator will instead choose

to dedicate resources to the LRU cache.

In general, the cost-bene�t framework allows the system designer to identify sub-
classes of a resource that display uniform or similar patterns of behavior or re-use. The
designer can then tailor estimators to each subclass, such as posthint bu�ers or unhinted
bu�ers. Bu�ers can be members of multiple classes, and can be valued by multiple es-

timators,6 and the allocator will automatically incorporate any new estimates into the
global valuation described earlier.

4.8.11 Dynamic Parameter Estimation

Tiptoe requires a dynamic estimate of Tapp and Tdisk. Tapp is estimated at each point of

the trace to be the average inter-access process computation time up to that point. Tdisk
is estimated as the average media access time up to that point in the trace.

There are several e�ects that are not caught by these estimates. First, disk time is
taken as an average over all processes rather than a per-process average. Disk times
within our applications do not tend to vary much, but in the worst case a sequential

process might attain an average I/O time under 4 ms, while a process performing random
accesses might pay closer to 15 ms on average.

Next, there are e�ects that depend on the intended use of the estimators. Tiptoe

uses the Tapp estimator to determine how long it will take an application to consume a

cached sequence of data blocks, but the estimate as given is not valid if other processes

are sharing the CPU. Tiptoe could instead track the fraction of CPU usage enjoyed by
each process, and scale the computation time by the reciprocal of this factor, but this

alone is not su�cient because the CPU might not be saturated. If this process uses the
CPU 10% of the time, other processes use the CPU for another 10%, and the CPU is

6For instance, a block could be read as a demand miss, placed into the LRU queue, and then have

a hint arrive that says it will be read again in 300 accesses. The LRU estimator and the hinted cache

estimator will independently value the bu�er, and if either estimator assigns high cost the bu�er will

not be evicted.

4.8 Implementation Details 85

idle for the remaining 80%, then computation during consumption of cached data can

grow to use the large chunk of idle time. These two observations suggest that a more

correct estimate of process A's CPU time requires two parameters: the fraction of time

the CPU is idle (r1), and the fraction of the remaining time that the CPU is being used

by process A (r2). Given these parameters and the prior estimate of process compute

time T old
app(A), the new estimate is

Tapp(A) = T old
app(A) � (r1 + (1 � r1)r2) :

Similarly, the estimate of disk time does not take into account disk contention between

processes. If process A gets the disk for half of each time unit on average and other

processes split the other half, then the expected time to load a block should be twice the
access time. However, again, if the disk is idle for some fraction of time, then the idle

time could be given over to process A in entirety. Thus, if d1 is the fraction of the total
disk use time that the disk is being used by process A,7 and d2 is the fraction of total
time that the disk is in use, and T old

disk(A) is the average access time for process A, then
the new time should be given by

Tdisk(A) = T old
disk(A) � (d1 + (1� d1)d2) :

The existing estimates, though much simpler, seem to perform well, so I have not
implemented these more complex estimators. In the presence of larger variances and

larger multiprogramming loads, the new estimators might be necessary.

4.8.12 Thrashing

During prototyping of these four systems I often found poor performance due to thrash-
ing. At a high level, there are two types of thrashing. First, over-aggressive prefetching
could result in undervaluation of caching, causing blocks that would eventually be re-used

to be evicted in favor of data blocks that will be used earlier. If the prefetching could be
delayed without introducing extra stall, some of the blocks available for re-use could be

kept in cache, avoiding the driver overhead of submitting I/O's to re-read the blocks. In
this case, every prefetched block is read. Forestall was designed to understand and

control this type of thrashing.

This subsection is concerned with the second type of thrashing, in which blocks are

prefetched then evicted before they are read. This could occur because one process evicts
the prefetched blocks of another process, or because a single process evicts blocks fetched

on one disk during one batch to fetch data needed sooner on another disk.

I adopt the following prefetching control mechanisms:

7Note that this fraction should be computed by time, not number of accesses.

86 Algorithms

1. Prefetches that will cause another prefetched but not consumed block to be evicted

are not allowed. In the presence of incorrect hints this restriction would have to be

relaxed.

2. Prefetching is only allowed to �ll a certain fraction of the cache with data, in our

case 2/3. In TIP2 this limit is not an issue since each process only prefetches up

to 68 blocks, but for the other algorithms the limit may be attained. In particular,

with large arrays lru-sp/aggressive will attempt to read as deeply as possible

into the hint sequence.

3. The k most-recently-read blocks may not be evicted; currently the value of k is 3.

This restriction is necessary because occasionally a single hint will be given for a
block which will then be read with several system calls. If there is no future use for

the block it will be placed into the posthint queue and possibly evicted immediately
if the posthint queue has little value.

Chapter 5

Single-Process Informed Prefetching

and Caching

Cache, and cache again, deep in the ground and sea,

and where it is neither ground or sea.

| Walt Whitman, \Leaves of Grass"

This chapter compares the algorithms of Chapter 4 in the single-process domain. This
work began as a joint study [KTP+96] between myself, Hugo Patterson and Garth Gibson

at the Parallel Data Lab at CMU; Tracy Kimbrel, Anna Karlin and Brian Bershad at
the University of Washington; Pei Cao at the University of Wisconsin; and Kai Li and
Ed Felten at Princeton University.

Section 5.1 describes the di�erences between our joint study and the work below.
Then Section 5.2 presents and describes the performance of each algorithm on each of

the traces in Chapter 3. Section 5.3 examines some of the issues raised by these results
in greater detail. Finally, Section 5.4 gives a distillation of the lessons learned in the

single-process case.

5.1 Evolution of a Joint Study

Most importantly, the joint study mentioned above reached a set of conclusions which

are echoed in the results below. However, the traces used for the study did not perform
accurate modeling of unhinted accesses and hints that \trickle in" over time, while the en-
vironment described in Chapter 3 captures these e�ects. All the results below are taken in

the new environment, so the numbers and in some cases the applications themselves have

changed. Also, the joint study included another algorithm called reverse-aggressive

88 Single-Process Informed Prefetching and Caching

which I do not simulate (a brief description of reverse-aggressive, and the reasoning

behind the decision not to simulate it, appear in Section 4.2.2).

The di�erence in the traces from the joint study to the current work reects a di�er-

ence in the question being asked. Our joint study chose to focus on algorithms for the

SPACE (Standalone Prefetching And Cache Eviction) problem, as de�ned by the follow-

ing model: A single application runs alone on a dedicated system with full knowledge of

all future requests. The focus of this chapter is slightly di�erent. I study algorithms for

informed prefetching and caching in the single-process case. This often corresponds to

the SPACE problem, but the presence of unhinted accesses means that some bu�ers must

be dedicated to caching for an unhinted stream. Similarly, the presence of late-arriving

hints means that hinted re-use may not be apparent until a needed block has already
been evicted.1

In this chapter I will discuss and demonstrate the full range of SPACE algorithm
issues that we uncovered in our joint study. I will also note situations in which the
abstraction of complete foreknowledge does not hold, and will discuss the issues that
arise.

5.2 Performance by Application

There are two caveats to the numbers appearing below. First, these numbers represent the
execution times of a reasonably careful implementation of each algorithm | not highly
tuned, but coded with some attention to the impact of details such as the estimator for

consumption rate of an application, the method for breaking ties when multiple disks are
available for prefetching, and so on. In some cases, a poor implementation may visibly
alter the behavior of the algorithm; in these cases I include a detailed description to make

it clear exactly how the algorithm achieves its performance.

Second, these algorithms are complex and the graphs show only a small number of
statistics (the graphs are stacked bar charts showing total execution time broken into

algorithm computation, disk driver computation, and stall). There are interesting e�ects
below the surface when, for instance, two algorithms attain the same overall execution

time in di�erent manners | especially for traces that have high-level structure such as
Davidson or Postgres1. The graphs include visible examples of all known primary

e�ects in the single process case, but I also try to describe the behavior \under the hood"

to make it clear how the algorithms di�er. When these issues are more global than a

single trace, I defer the discussion to Section 5.3, and give forward pointers.

1For strict SPACE problems, tiptoe and lru-sp/forestall would perform identically. In the traces

below, due to unhinted requests and late-arriving hints, they do not.

5.2 Performance by Application 89

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 5.1: Standalone Davidson, four prefetching and cache management algorithms.

5.2.1 High Re-Use: Davidson

Davidson has substantially more re-use than any other application in the suite. Recall
from Section 3.4.1 that the access pattern loops over 2089 blocks 51 times. On a single
disk, there is one signi�cant e�ect. As described in Figure 4.3, TIP2 sometimes fails
to take advantage of transient disk idleness to perform deep prefetching, resulting in

a 19% increase in overall execution time. Tiptoe, lru-sp/aggressive and lru-sp/

forestall all perform similarly; in fact, lru-sp/aggressive and lru-sp/forestall
perform identically, showing that as expected the single disk is always constrained, and
tiptoe's overall execution time is within half a percent.

On larger arrays, lru-sp/aggressive prefetches too aggressively for Davidson,
and achieves little re-use; this e�ect is described in detail in Figure 4.4. This leads
to unnecessary prefetches which add substantial CPU overhead to the elapsed time. As
expected, none of the other algorithms su�ers from this problem. More speci�cally, driver
time for TIP2 remains consistent at about 26 seconds, and for lru-sp/aggressive on
2 disks is 34 seconds, on 3 disks is 53 seconds, and on 10 disks is 60 seconds.

These two e�ects, under-prefetching byTIP2 on one or two disks and over-prefetching
by lru-sp/aggressive on larger arrays, are the primary e�ects. There is one other

small e�ect. As the array gets larger, lru-sp/aggressive, tiptoe and lru-sp/fore-

stall all prefetch more than TIP2 and incur a slight increase in driver time. On 2

disks, when tip is still under-prefetching, the forestall-based algorithms incur 14%

additional driver cost. On 3 disks this drops to 7%, to about 4% out to 10 disks.

Section 5.3 gives more details about the nature of looping traces, and the inuence

of batching and prefetching policies on the cache state of an algorithm serving a looping

sequence.

90 Single-Process Informed Prefetching and Caching

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 5.2: Standalone Xds, four prefetching and cache management algorithms.

5.2.2 Unbalanced Accesses: Xds

Xds consumes data quickly with little re-use, and displays a strongly unbalanced access
pattern across array sizes that are powers of 2. On a four-disk array, for instance, there
are stretches of hundreds of accesses that only touch two disks. TIP2 does not initiate
prefetching for data more than P̂ accesses away, so for long stretches it leaves two disks
idle on a four-disk array. When the situation changes, and many reads must be serviced

from the two previously idle disks, those two disks cannot provide su�cient bandwidth to
keep up with the request stream. It is necessary to begin prefetching early on these disks
to service the hotspot without stall when it arrives. Figure 4.5 shows how forestall is
designed to recognize and remedy this situation.

Deep prefetching in tiptoe and in both of the lru-sp algorithms relieves the problem.
On the four disk array, TIP2 incurs an 18% increase in overall execution time due to
this additional stall; on eight disks, TIP2's increase is 53%.

5.2.3 Small Sequential Reads: Agrep

Agrep reads many small �les sequentially with no re-use. As the graph shows, TIP2
performs substantially better on small arrays, and worse on larger arrays. This is due

to two competing e�ects, both related to sorting of elements in the disk queues. As
described in Section 4.8, some form of sorting and batching algorithm is critical for good

performance. Agrep exhibits some of the tradeo�s. I begin with a quick description of
the relevant issues, then describe the actual e�ects.

An algorithm may submit as many simultaneous prefetches as it wishes up to the
size of the bu�er cache. The advantage of beginning more than one prefetch at a time

is that disk sorting in the driver queue allows the requests to be fetched in an order

that is more appropriate for the layout of data on the disk, and therefore has a lower

average I/O time. However there are several disadvantages. First, the bu�ers must be

5.2 Performance by Application 91

1 2 3 4 5 8 10
Number of Disks

0

5

10

15

20

25

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 5.3: Standalone Agrep, four prefetching and cache management algorithms.

allocated before the I/O begins, so each additional prefetch requires an extra bu�er that
cannot perform useful caching. For Agrep, this is not an important concern because the
application has no re-use. Second, if 100 prefetches are begun at once, it is possible that
the block that is needed next may be sorted to the very end of the queue, and the system
will stall for a hundred disk accesses before the block is brought in. In general, a system
must avoid extra stall incurred due to re-ordering of I/O's for needed blocks far into the

future. However, this second issue is not relevant for highly I/O bound situations. Every
block must be fetched, and there is relatively little computation, so overlapping I/O with
computation is less important than keeping the average I/O time down. TIP2's policy
naturally addresses this issue in a well load-balanced setting. On smaller arrays for I/O
bound applications, TIP2 may keep P̂ elements at the queues, resulting in a lower I/O

time. But as the array size grows, the P̂ elements that are outstanding at the disks will
be spread over a larger number of disks and each block may be re-ordered behind only
a small number of other blocks. Another advantage of the TIP2 policy, and in fact the
reason motivating the decision, is that the current approach is independent of data layout
and therefore the allocator need not be aware of details of the I/O subsystem design.

There are a number of other issues to do with management of bu�ers and eviction

decisions once the number of outstanding bu�ers has been chosen; Section 5.3 discusses

these issues in more depth.

In Agrep, TIP2 performs well on three and fewer disks, particularly on one disk.

The average queue depth2 is 34 on one disk, 16 on two disks, and 10 on three disks.
On one disk, for instance, the average depth of 34 makes sense because P̂ �= 68 and on

average, half the blocks in the next P̂ elements will already have been read. On two disks,
each disk has on average 34 elements within the prefetch horizon, and roughly half of

these have been fetched, yielding about 16. Thus, the queue depth for each disk shrinks
as the prefetch horizon extends. The average depth drop to 5.8 blocks on �ve disks, 4.2

2The average queue depth is sampled as each request is submitted to a disk, so does not include time

when the disk is idle.

92 Single-Process Informed Prefetching and Caching

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

200

250

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 5.4: Standalone Sphinx, four prefetching and cache management algorithms.

blocks on eight disks, and 3.8 blocks on ten disks (for sequential reads on an extremely
large array, this value does not drop to zero because the stripe unit is eight blocks).

The average queue depth for all three of the other algorithms never drops below 7.2
blocks or grows above 8.8 blocks for any array size. Thus, TIP2 achieves a much better
average I/O time on smaller arrays (32% lower for a single disk), but a worse average
I/O time for larger arrays (6% higher on �ve disks).

The same e�ect is visible to a lesser extent when Gnuld runs on a single disk.

5.2.4 Late-Arriving Hints: Sphinx

As described in Section 3.2, Sphinx is a speech recognition system that performs a
viterbi beam search over a large number of language elements. During each 10 ms round
of viterbi search, Sphinx gives hints for the nodes that will be examined during the next
round. Table 3.5 shows that 72% of the hint batches have ten or fewer hints, and 39% of
the batches have only one or two hints. Thus, Sphinx has far fewer pending hints than

any other application in the suite.

In the single-process domain, all the algorithms perform well because there is no

competing consumer interested in evicting hinted blocks that have been consumed and
have no future hints | for all array sizes, the fastest and slowest algorithms di�er by no

more than 1.3% in overall execution time. In the multi-process case, though, it becomes
critical to cache posthint blocks in case future hints arrive for them.

5.2.5 Unhinted Accesses: Postgres1 and Postgres2

In Postgres1, TIP2 performs similarly to the other algorithms, and lru-sp/agg-

ressive performs a tiny fraction better. In Postgres2, TIP2 performs substantially

5.2 Performance by Application 93

1 2 3 4 5 8 10
Number of Disks

0

20

40

60

80

100

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

200

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Postgres1 Postgres2

Figure 5.5: Standalone Postgres1 and Postgres2, four prefetching and cache man-

agement algorithms.

worse, and again lru-sp/aggressiveperforms well. To understand these results, I must
review the hinted join operation. The outer relation is unindexed; the inner is indexed.

The inner index, and the entire outer relation, can �t together in the cache. Postgres1
makes two passes through the outer relation. It begins by hinting a sequential read of the
outer relation, then reading the tuples in order and looking them up via unhinted reads
to the inner relation index. It saves the addresses of hits in the inner relation. Once
the loop completes, it hints the inner relation data reads, then once again loops through

the outer relation. It skips the inner relation index reads during this second loop as the
addresses of hits have been pre-computed, and goes directly to the inner relation data
blocks. For each hit, it writes an output tuple.

There are several opportunities for re-use, which I phrase in terms of tiptoe's caches.
During the �rst loop, the inner relation index blocks are being re-used from the LRU
cache. During the second loop, the outer relation data blocks are being re-used from

the posthint cache. And �nally, again during the second loop, inner relation data blocks

are being re-used from the hinted cache. Thus, all three of tiptoe's caches have hits.
Surprisingly, caching the outer relation data blocks is not the correct approach. A back-
of-the-envelope calculation con�rms this. There are 409 outer relation data blocks, each

of which is read once during the second loop. In Postgres2 there are about 15,000

inner relation data block reads in the second loop. So using bu�ers for posthint caching
will save 409 reads out of 15,000, allowing each bu�er to generate one cache hit. On

the other hand, there are 4096 blocks in the inner relation, and 15,000 reads. Therefore,
under optimal replacement, each bu�er will generate more than 1 cache hit.

Postgres1 performs about 4500 reads during the second loop, and touches 2688
inner relation data blocks. Thus, once again, bu�ers have the opportunity to generate

more than one cache hit.

What actually happens in tiptoe is the following. After the �rst loop, there are 409

94 Single-Process Informed Prefetching and Caching

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 5.6: Standalone Gnuld, four prefetching and cache management algorithms.

bu�ers in the posthint cache, and the remaining cache bu�ers hold inner relation index
blocks for the LRU. As the second loop begins, the LRU estimator values bu�ers more
highly until the aging catches up, so the posthint, which currently has no hits, begins to
shrink. Additionally, as consumption of hinted inner relation data begins, more bu�ers
are placed into the posthint cache, polluting the hit counts and lowering the value.

If the posthint were to remain larger at 409 blocks with no pollution, tiptoe's local
estimate would consider each segment alone, and would therefore estimate that the 50

bu�ers in the segment holding blocks 400{450 are individually generating the 409 hits.
This would assign arti�cially high value to the posthint estimator, and possibly skew the
results. However, the size of the posthint cache has shrunk substantially, so the cost of
taking even more bu�ers from the posthint becomes smaller than the cost of using bu�ers
from the hinted cache.

It remains to discuss TIP2's approach. Hinted cache re-use in Postgres is often for
very distant data | the most distant block in the hinted cache will often not be read
for more than 10,000 accesses. TIP2's hinted cache estimator (Equation 4.1) assigns low

value to these blocks; to avoid this exact problem, tiptoe's estimator (Equation 4.4)
assigns higher value to hinted cache blocks on constrained disks beyond the prefetch

horizon.

TIP2 on a single disk caches 4% fewer hinted cache blocks than the other algorithms

for Postgres1, and 16% fewer for Postgres2. On Postgres2, these lost hinted cache
opportunities cause TIP2 to go to disk 39% more often than tiptoe, and increase the

overall execution by 26% relative to tiptoe.

5.2.6 Multi-Pass: Gnuld

Gnuld makes several passes through the executable, the last two of which represent

most (86%) of the read activity. The �rst of these two �nal passes touches 6,370 blocks

5.3 Single-Process Issues: Batching and Re-Use 95

--

--

--

--

--

--

--

--

--

--

------------------------xx

xx

xx

xx

xx

xx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxx-xxx--

--xxxxxx--

Figure 5.7: Snapshot of Davidson cache state under TIP2. Each Davidson loop
touches 2089 blocks; the �gure shows the next 2089 hints (each line contains 100 hints)
rendered as a \-" if the hinted block is cached and an \x" if the block is missing. TIP2

clusters all its missing blocks together into a single, long, sequential run.

of which about 20% have been seen before. The second pass touches 4,356 blocks, of
which 79% are re-used. However, the hints for this high-reuse pass are given immediately

before the pass itself, so any blocks still in memory must be in an unhinted cache.

The di�erences between algorithms are most apparent on a single disk. First, like
Agrep, Gnuld bene�ts from deep queues. TIP2 performs more sorting and generates
a lower average I/O time on a single disk: 9% lower than the other algorithms.

As in Agrep, TIP2's caching bene�t remains signi�cant on two disks, then becomes

a disadvantage on larger arrays, for which P̂ total outstanding prefetches corresponds to
fewer elements in each disk queue than the other algorithms.

5.3 Single-Process Issues: Batching and Re-Use

This section presents a more concrete analysis of the di�erences between batching policies.
To recap, TIP2 will typically submit a request for any missing block within the next P̂

hints. The other algorithms submit up to 16 requests to a disk whenever it goes idle,

and never submit to a disk that is not idle. Davidson's looping structure makes it the

natural trace for examining this mechanism.

96 Single-Process Informed Prefetching and Caching

---xxxxxxxxxxxx-----

--xxxxxxxxxxxxxxxxx-------

--xxxxxxxxxxxxxxxxx-----------------

---xxxxxxxxxxxxxxxxx------------------------------------

----------------------------------xxxxxxxxxxxxxxxxx---

--------xxxxxxxxxxxxxxxxx---xxxxxxxxxxxx

xxxxx---xxxxxxxxxxxxxxxx

x---xxxxxxxxxxxxxxxxx-----------------------------

-------------------xxxxxxxxxxxxxxxxx--xxxxxxxxxx

xxxxxxx--xxxxxxxxxxxxxxxxx--------------------------

-------------------------------xxxxxxxxxxxxxxxxx-------------------------------xxxxxxxxxxxxxxxxx----

---xxxxxxxxxxxxxxxxx--------------------------------------

--------------xxxxxxxxxxxxxxxxx--------------------------------------xxxxxxxxxxxxxxxxx--------------

------------------------------xxxxxxxxxxxxxxxxx--xxxxxxx

xxxxxxxxxx---xxxxxxxxxxxxxxxxx--------------------------------

------------------------xxxxxxxxxxxxxxxxx--xxxxxxxxxxxxxxx

xx---------xxx

xx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xx-xxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx---------xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-------------------------

Figure 5.8: Snapshot of Davidson cache state under tiptoe. Each Davidson loop
touches 2089 blocks; the �gure shows the next 2089 hints (each line contains 100 hints)
rendered as a \-" if the hinted block is cached and an \x" if the block is missing. Tiptoe's

batching policy distributes missing blocks in clusters throughout the sequence.

To show the state of the cache I show snapshots taken during the execution of the
Davidson trace in di�erent scenarios. Every snapshot is taken immediately before pro-
cessing line 20,000 of the trace �le. The snapshots show the next 2089 hints in order |
missing elements are represented by \x"s and cached elements by \-"s. Figure 5.7 shows
a snapshot of TIP2's execution. The missing blocks are clustered together into a single

region. During each pass through the data, prefetching for these missing blocks begins P̂
elements before the beginning of the block, evicting the most recently consumed block for
each prefetch. Thus, the missing section of the trace moves back by P̂ elements during
each iteration.

In general, this type of clustering has the advantage that locality in the trace tends

to correspond to disk locality. In this case, it doesn't yield better sorting as the trace is
already sequential, but it does allow the disk to retrieve sequential blocks without having
to perform seeks. On the other hand, this layout also results in TIP2 allowing the disk

to go idle for the longest possible fraction of the sequence | if the missing blocks were

distributed through the sequence then some missing block would be within the next P̂
requests a greater fraction of the time.

Figure 5.8 shows the same situation under tiptoe. Batching in this situation always

submits a full batch of requests, evicting the most recently consumed 16 blocks. These

16 requests complete at the disk, and then the next batch is constructed. This results in

5.3 Single-Process Issues: Batching and Re-Use 97

--x--------------x--------------------x-----------

x--------------------------------x------x-------------------------x------------x-------------------x

--------------------x---------------------------x--------------------------x------------------------

----------x-------------------------x-------------------x-------------------x-----------------------

---------x--------------------------x--------------------x------------------x-----------------------

---x------------x-------------x-------------------x-------------------x-------------------x---------

-----------x-------------------x-------------x-------------------x----------------------------x-----

------x---------------------x------------x-------------x--------------------x-----------------------

-----x-----x-----------------x---------------------x--------------------x------------x--------------

------x-------------x------------x--------------------------x-------------x-------------------x-----

--------------x-------------------x-------------------x-------------------x------------x------------

--------x------------x------------x-------------x-------------------x-------------x------------x----

----------------x-------------------x-------------x-------------x--------------------x--------------

x-----------x---------x-----------xx

xx

xx

xx

xx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxx-xxxxx-xx--x------

Figure 5.9: Snapshot of Davidson cache state under tiptoe without batching. Each
Davidson loop touches 2089 blocks; the �gure shows the next 2089 hints (each line
contains 100 hints) rendered as a \-" if the hinted block is cached and an \x" if the block

is missing. With a policy of keeping 16 elements at each disk queue rather than allowing
the queues to drain until empty, a deep prefetching algorithm distributes missing blocks
uniformly throughout the sequence.

the well-distributed clusters of missing blocks in the �gure. If the disk were able to keep
up with the demands of the application, the clusters of missing blocks would cover the
entire sequence; however, the application is on average I/O bound. Thus, at some point,

there remains a stream of missing data and the application stalls.

The advantage of such a layout is that each cluster of 16 missing blocks has su�cient
locality for quick fetching | I refer to this phenomenon as \re-fetch" locality because
the algorithm evicted data that must be fetched again later in such a way as to make

the later fetch e�cient. Batching in this situation has good re-fetch locality due to the

sequentiality of the sequence. In general, however, it might be preferable to alter eviction
decisions based on the hint sequence so as to cluster evictions for re-fetching, even if the

missing blocks do not occur sequentially in the sequence. I do not address this more
general problem.

Another interesting property emerges from this layout. When tiptoe begins reading
through the section of the trace in which missing clusters are distributed nicely, the I/O

and compute demands of that portion of the sequence are exactly matched. This occurs
because the next batch is submitted only when the previous batch has completed, so

enough cached data is consumed to allow the batch to complete (and no more).

98 Single-Process Informed Prefetching and Caching

Another natural policy might be to avoid batching because it does not keep the disk

queue full | it �lls the queue and then allows it to drain. Instead, consider the policy of

keeping 16 elements sorted in the queue at all times, and submitting a new one whenever

one completes. One obvious disadvantage of such a scheme is fairness: any particular

request may be delayed for a long time before it completes. However there is a more

subtle e�ect that may be more important. Figure 5.9 shows tiptoe modi�ed to keep

batches full at all times. The resulting layout essentially distributes clusters of missing

blocks of size 1 throughout the sequence. Again, the property exists that the nicely-

distributed portion of the trace has matched I/O and computation. But the I/O now

takes substantially longer because the locality of those evenly-distributed single missing

blocks is poor compared to the clusters of missing blocks in the other schemes.

5.4 The Single-Process Case: Lessons Learned

This section contains a distillation of the results above into a number of lessons learned
in the course of the work. There are four lessons that apply to the SPACE problem

alone. That is, these lessons apply even if there are no unhinted accesses, and all hints
are available when execution begins.

Lesson 1: Leaving a constrained disk idle leads to additional stall. This e�ect is de-
scribed in detail in Figure 4.3 and the accompanying text. It, and Lesson 2, motivated
the development of forestall. The graph for Davidson is the most telling example of
this problem.

Lesson 2: Submitting an I/O requires Tdriver computational overhead. This e�ect is de-
scribed in detail in Figure 4.4, and the accompanying text. The problem arises whenever

high bandwidth and high re-use exist. Again, the e�ect is most visible in the Davidson
trace with larger array sizes.

The next two lessons are speci�c to queueing.

Lesson 3: Deeper disk queues yield lower average disk service times. All four systems are
based on a system model that assumes a constant disk service time, so modeling of queue

sorting and locality is beyond the scope of theoretical analysis. However the simulator

performs CSCAN sorting in the queues, and the disk simulator includes such non-constant
e�ects as disk geometry and on-disk readahead bu�ering. Therefore the policy used by

each prefetching algorithm to determine when exactly to submit prefetches to the disk
driver has signi�cant e�ects on the overall execution time. TIP2's policy is to submit

prefetches out to the prefetch horizon; thus, TIP2 will commonly keep P̂ bu�ers at the

disk queue. The other algorithms submit up to sixteen requests whenever the disk goes

5.4 The Single-Process Case: Lessons Learned 99

idle in order to attain the bene�ts discussed in Lesson 4, but in doing so they typically

generate shorter disk queues for small arrays. This e�ect is most visible in the Agrep

application, and to some extent in Gnuld. As discussed under those applications, as

the array size grows, TIP2's policy eventually induces shorter queues than the other

algorithms', with the split occurring around three or four disks.

Lesson 4: Eviction decisions impact locality of \re-fetched" data.

When a prefetching algorithm fetches data and evicts blocks that will be needed again, it

may attempt to select blocks for eviction so as to increase disk locality when the blocks

are read back in. This topic is discussed in more detail in Section 5.3. Briey, Cao et al.

[CFKL95b] describe a mechanism they call \batching" in which the prefetching algorithm

waits for the disk to go idle and then submits up to B requests, where the batchsize B
is a parameter of the algorithm (16 in my implementation and Cao's). Lru-sp/agg-

ressive, tiptoe and lru-sp/forestall all adopt this scheme. On cyclic datasets, the
B evicted elements are typically the most recently consumed blocks. Since neighboring
blocks in the access stream display locality on the disk, this scheme allows the blocks to

be re-fetched with low average disk service time. The batching heuristic provides good
re-fetch locality whenever there is re-use in a sequential access pattern.

100 Single-Process Informed Prefetching and Caching

Chapter 6

Multi-Process Informed Prefetching

and Caching

It is a very hard undertaking to seek to please everybody.

| Publius Syrus, \Maxim 675"

This chapter extends the evaluation of Chapter 5 into the domain of multiple processes
executing simultaneously, each disclosing an arbitrary fraction of its accesses in the course
of execution. The work described here is an extension of work presented at Sigmetrics
97 in collaboration with Hugo Patterson and Garth Gibson [TPG97].

I begin with a discussion of metrics for the multi-process case in Section 6.1. Next,

in Section 6.2 I study pairs of the applications described in Chapter 3 running simul-
taneously. Then Section 6.3 considers a similar situation in which resource contention
arises: an I/O-intensive process running in the presence of background load. Section 6.4
presents a more detailed analysis of particular issues that often arise in the multi-process
case. Finally, Section 6.5 presents a distillation of the lessons learned in the course of

performing these multi-process experiments.

6.1 Multi-Process Metrics

In the single-process case, total elapsed time is a metric with a clear, unambiguous
meaning. In the multi-process case, while it is still a useful metric, other issues intrude.

Imagine running traces of application A and application B side-by-side. One algorithm

(call it the unbalanced algorithm) might choose to dedicate all its resources to application
A until A completes, then hand all the resources to application B. Another algorithm

(call it the balanced algorithm) might split resources evenly between both applications

until they both complete.

102 Multi-Process Informed Prefetching and Caching

If the applications are I/O bound and give reasonable hints, so that the disks can be

kept busy, then total time will be I/O time, and will correspond to number of cache hits.

The unbalanced algorithm will have more cache hits since it dedicates more bu�ers to

whichever application it happens to be running.

If the applications are compute bound and give good hints then the processor will

not have to wait for I/O, so complete time will be equal to compute time. In this case,

the unbalanced algorithm will again perform better since there will be fewer I/O's, and

thus less driver overhead.

On the other hand, if the total execution time of the unbalanced algorithm is greater

than the max of compute time and I/O time (i.e., if there is both computation time that

is not overlapped with I/O, and I/O time that is not overlapped with compute) then
the balanced algorithm will have the opportunity to overlap one application's compute
with the other application's I/O, and vice versa. The tradeo� is therefore how much

additional overlap can be created, versus how much additional I/O is required due to the
split of resources between the two applications.

In summary, if one algorithm gives a better overall execution time for both appli-
cations than another algorithm does, it is important to discover the true source of the
di�erence. It is possible that the faster algorithm made better use of the resources for
each application, passed bu�ers back and forth at appropriate times, and so on. On the
other hand, it is also possible that the faster algorithm simply induced an unfair split

of resources that happened to result in a shorter time-span. Such a decision would not
necessarily be correct due to the reduction in fairness.

Table 6.1 gives the relative execution times of all pairs of processes. These values
are computed as follows. The single-process time for each application is �xed to be the
time required by that application under TIP2 on a single disk (arbitrarily). The value
in the table under Davidson/Xds, for instance, is the execution time of the faster as

a percentage of the execution time of the slower. In this case the value is 82%, since

Xds takes 82% of the time Davidson takes. Thus, if this pair were to run alongside
one another, both could run for a substantial fraction of the overall time. The rows and
columns are ordered by decreasing total time, so the application named in the column is

longer than the application named in the row.

6.2 Two-Process Experiments

To create a set of experiments that are as fair as possible I chose pairs of applications

that are most similar in overall execution time. I rejected any pair of applications in

which the faster completed more than twice as fast as the slower. This resulted in 11

experiments, which I now study in detail.

6.2 Two-Process Experiments 103

Davidson Xds Sphinx Postgres2 Gnuld Postgres1 Agrep

Davidson 100%

Xds 82% 100%

Sphinx 62% 76% 100%

Postgres2 50% 61% 81% 100%

Gnuld 34% 41% 54% 67% 100%

Postgres1 25% 31% 41% 50% 75% 100%

Agrep 13% 16% 21% 26% 39% 51% 100%

Table 6.1: Relative Execution Times for Pairs of Traces

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.1: Experiment 1: Davidson/Xds, four prefetching and cache management
algorithms.

6.2.1 Davidson/Xds

TheDavidson/Xds graph shows some computational overhead in the 8 and 10 disk cases
for lru-sp/aggressive; other than that, the primary di�erences are visible on one and

two disks, and slightly visible on three and four disks. The lru-sp-based algorithms cache
69000 blocks; the cost-benefit algorithms cache 79500 (TIP2) and 82800 (tiptoe).

Both Davidson and Xds consume data rapidly, but Xds exhibits little re-use while

Davidson exhibits strong re-use. As the disk is always constrained, both lru-sp/agg-
ressive and lru-sp/forestall prefetch aggressively. And since Xds consumes data

quickly but has less re-use thanDavidson, lru-spwill sometimes evict usefulDavidson

blocks in favor of less useful Xds blocks.

104 Multi-Process Informed Prefetching and Caching

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.2: Experiment 2: Davidson/Sphinx, four prefetching and cache management

algorithms.

6.2.2 Davidson/Sphinx

In the Davidson/Sphinx graph three primary e�ects are visible. First, lru-sp/agg-

ressive ushes the Davidson cache on larger array sizes as described in Section 5.2.1.
Second, on 2 disks lru-sp/forestall completes later than the other algorithms. The
cost-benefit algorithms cache more e�ectively for Davidson than the lru-sp algo-
rithms; tiptoe caches 7% more blocks than lru-sp/forestall, for example. Lru-

sp/aggressive outperforms lru-sp/forestall due to deeper prefetching for Sphinx,

because the number of pending hints given by the Sphinx trace is often small (we ex-
amine this fact in more detail under the Sphinx/Gnuld experiment), and the compute
time is quite large, so lru-sp/forestall believes the disks are not constrained until
a later batch of hints arrives. Finally, on a single disk the cost-benefit algorithms
perform well by caching more e�ectively for Davidson, and tiptoe outperforms TIP2
by 4% due to deep prefetching for Davidson.

6.2.3 Xds/Sphinx

The Xds/Sphinx graph shows lru-sp/aggressive and tiptoe performing 9% worse
than the other algorithms on a single disk. TIP2 and lru-sp/forestall both prefetch
less aggressively for Sphinx than for Xds, and therefore complete the Xds trace more

quickly. This results in a 15% better I/O time for these two algorithms, which results in

the di�erence visible in the graphs. The detailed reason that TIP2 and lru-sp/fore-
stall prefetch less aggressively for Sphinx, and that the I/O time increases as a result,

is the following. First consider tiptoe and lru-sp/forestall. 380 seconds into the
trace, tiptoe has completed 82000 lines of Xds, and 123000 lines of Sphinx. Lru-sp/

forestall has also completed 82000 lines of Xds, but only 112000 lines of Sphinx by

dedicating cache bu�ers unnecessarily to Xds. Before tiptoe completes Xds, Sphinx

6.2 Two-Process Experiments 105

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.3: Experiment 3: Xds/Sphinx, four prefetching and cache management algo-

rithms.

leaves its initial phase of hinted sequential reading, and begins 2000 unhinted reads.
This sequence arrives while Xds continues to execute, resulting in an e�ect I consider in
more detail in Section 6.3.1. Briey, demand misses take priority over prefetches, even
prefetches that have been promoted to be demand reads, under the assumption that

prefetches should not be re-ordered at promotion time because this may destroy locality
in the prefetch stream. Thus, when Xds performs prefetching in parallel with Sphinx's
unhinted accesses, each Sphinx access will draw the disk head away from Xds' dataset,
then as the Sphinx data is being consumed the head will return to prefetching for Xds.
The overall average I/O time jumps from 6.4 ms to 7.4 ms over the course of these 2000

accesses, resulting in the disparity visible in the graph. Tiptoe and lru-sp/aggress-
ive essentially perform too well, completing too much of the Sphinx trace before Xds
completes, and entering a phase of Sphinx in which it is di�cult to overlap two di�erent
processes.

The only other e�ects visible in this trace are familiar: lru-sp/aggressive performs
well on Sphinx due to deep prefetching on disks that do not appear to be constrained

(see Section 5.2.4), and TIP2 performs poorly on Xds for power-of-two array sizes (see
Section 5.2.2).

6.2.4 Xds/Postgres2

The graph of Xds/Postgres2 shows a signi�cant advantage to the cost-benefit

algorithms. It also shows that lru-sp/aggressive and lru-sp/forestall perform
similarly, with lru-sp/forestall performing slightly better; likewise, TIP2 and tip-
toe perform similarly with a slight advantage to tiptoe. Here the allocation algorithm

has a more signi�cant impact than the per-process prefetching algorithm. Xds has min-

imal re-use and few unhinted requests. Postgres2, on the other hand, requires only

9; 000 reads and 1; 100 demand misses with proper caching. The cost-benefit algo-

106 Multi-Process Informed Prefetching and Caching

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.4: Experiment 4: Xds/Postgres2, four prefetching and cache management

algorithms.

rithms dedicate the cache to unhinted requests in the early section of the Postgres2
trace (774/1280 bu�ers for tiptoe), and then return most of the cache to bu�ering
hinted blocks once Postgres2 completes its phase of unhinted reads to the inner re-
lation, and the estimators note that the LRU cache is no longer providing signi�cant
bene�t. Lru-sp/aggressive and lru-sp/forestall also display some thrashing, in

which one process loads a block that another process evicts. This is not the major factor
determining the results, but does represent extra load on the disks, contributing to the
stall for intermediate arrays sizes (we examine this e�ect in more detail under the graph
of Postgres2/Gnuld). With larger arrays (8 and 10 disks) this eviction of unread
data is not a substantial factor, but the lru-sp-based algorithms devote fewer bu�ers to

caching unhinted data, and therefore su�er more demand misses from the Postgres2
trace (lru-sp/forestall for instance incurs 83% more demand misses than tiptoe on
10 disks), whose latency cannot be masked by prefetching.

6.2.5 Sphinx/Postgres2

In the Sphinx/Postgres2 graph the cost-benefit algorithms again determine cor-

rectly that bu�ers should be dedicated to caching unhinted data during the early portion

of the Postgres2 trace, and then should be returned to the hinted cache for the remain-
der of execution. TIP2 outperforms tiptoe on a single disk by keeping the disk queue

more full rather than submitting a batch and then allowing it to drain (9% improvement
in average I/O time). If tiptoe is modi�ed to submit a new batch as necessary to keep

the queue at the same size used by TIP2, the performance of the two algorithms is within

1%.

6.2 Two-Process Experiments 107

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400

500

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.5: Experiment 5: Sphinx/Postgres2, four prefetching and cache management

algorithms.

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400

500

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.6: Experiment 6: Postgres2/Gnuld, four prefetching and cache management
algorithms.

6.2.6 Postgres2/Gnuld

Once again, in the Postgres2/Gnuld graph the cost-benefit algorithms perform

well in general. TIP2 and tiptoe perform almost identically for four or more disks, but
tiptoe performs better on smaller arrays (12% better on 1 disk, 10% better on 2 disks,

and 5% better on 3 disks). Tiptoe's improved hinted cache estimator results in 15%
more cache hits for the single-disk case versus TIP2, with no substantial decline in LRU

performance.

Lru-sp/forestall takes 25% more cache misses than tiptoe on a single disk, and

substantially more for intermediate array sizes (2.74 times as many on 2 disks, 61% more

on 3 disks, 58% on 4 disks). Tiptoe then incurs 18% more misses on ten disks. The
reason for these disparities is that all algorithms except TIP2 su�er in this experiment
from a thrashing problem, prefetching data, and then evicting it before it can be read.

All the algorithms have safeguards against evicting prefetched data from one process to

prefetch for another process, but when a demand read arrives, a bu�er must be generated.

108 Multi-Process Informed Prefetching and Caching

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

200

250

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.7: Experiment 7: Postgres1/Gnuld, four prefetching and cache management

algorithms.

For lru-sp algorithms, since Postgres2 performs a large number of demand reads early

in the sequence, and Gnuld processes its data more quickly, the lru-sp allocator often
asks Gnuld to provide a block for Postgres2. Since Gnuld has just been prefetching
data, the block it chooses to give up is the block it has most recently read, which results in
evicting blocks that have not yet been used by any application, and therefore in additional
driver overhead to reload the block later.

Other traces exhibit some thrashing, but not as markedly as here, as both Postgres2
and Gnuld exhibit substantial non-sequential hinted re-use. It is possible for both
processes to prefetch a distant block, consume cached data, and still have the prefetched
block be the best eviction decision.

6.2.7 Postgres1/Gnuld

There are three e�ects visible in this graph. The most signi�cant e�ect is that cost-
benefit allocation performs better than lru-sp allocation. The second e�ect is that
lru-sp/aggressive performs more fetches on larger arrays and incurs some additional

driver overhead. Finally, TIP2 and lru-sp/forestall beat tiptoe on 4 and 5 disks.

The Postgres1 trace shares the overall structure of the Postgres2 trace: the �rst
section of the trace contains unhinted accesses to the inner relation's index. The second
section contains hints for accesses to the unindexed relation, and the �nal section contains

hinted accesses to the outer relation. However, the Postgres1 trace is signi�cantly

smaller since the fraction of tuples that hit in the outer relation is 20% rather than
80%. In the Postgres1/Gnuld graph the cost-benefit algorithms again dedicate

the cache to holding unhinted reads from Postgres1 during the �rst section of the
trace.

On larger arrays, about 25% of lru-sp/aggressive's extra fetches are due to will-

6.2 Two-Process Experiments 109

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.8: Experiment 8: Davidson/Postgres2, four prefetching and cache manage-

ment algorithms.

ingness to evict data from the hinted cache in order to prefetch earlier missing blocks.

The remaining 75% are due to eviction of unread blocks from one process in order to
prefetch for the other process; these reads make up 21% of lru-sp/aggressive's I/O
and increase overall execution time by 5{12%. Finally, on 4 and 5 disks, algorithms
other than TIP2 are again displaying some thrashing for the same reasons described
under Postgres2/Gnuld.

6.2.8 Davidson/Postgres2

There are many e�ects visible in this trace. First, we consider the single disk case.

Davidson is running alongside Postgres2. The lru-sp-based algorithms incur more
demand misses (56{64% more than tiptoe) because they do not cache for Postgres2's
substantial re-use of the unhinted inner relation index blocks. This trace magni�es the
e�ect because Davidson's consumption rate is so much larger than Postgres2's, and
lru-sp-based algorithms partition the cache based roughly on consumption rate. TIP2's

performance on a single disk is worse than the other algorithms for two reasons. First,
its hinted cache estimator assigns low value to blocks that are cached for re-use outside

the prefetch horizon. That is, even on a constrained disk, TIP2's cost of evicting a block

that is 100 accesses away is Tdriver/100, as opposed to tiptoe's much larger estimate of
Tdisk/100. So TIP2 performs much less caching for Davidson, resulting in 14% more

I/O's overall than lru-sp/forestall. Second, TIP2 performs no batching, and thus
evicts blocks from the Davidson trace without clustering for later reading. This e�ect

does not arise when Davidson runs standalone because TIP2 does not evict data from
the hinted cache while consuming the cached portion of the sequence | another process

running alongside does evict data during this part of each pass. The batching algorithms,
on the other hand, evict clusters of blocks which for sequential datasets result in greater

disk locality when the blocks are read back in. This results in a 9{16% increase in average

110 Multi-Process Informed Prefetching and Caching

I/O time for TIP2 versus the other algorithms. The lru-sp-based algorithms perform

equivalently to within a �fth of a percent, as the disk is almost always constrained.

Tiptoe performs better than both algorithms by dynamically resizing the cache during

the di�erent phases of Postgres2's execution. It maintains about 700 bu�ers in the

LRU during the �rst phase, in which the inner relation index blocks see high re-use.

During this phase, the outer relation data blocks are being placed into the posthint

queue, but there is no re-use until the second phase begins. As Davidson is aggressively

reading throughout this phase, these blocks are evicted to cache Davidson data blocks.

During the second phase, in which Postgres2 reads the outer relation again and the

hinted inner relation data blocks, tiptoe does not hold outer relation blocks in the

posthint. This is the correct decision: the relative rates of the processes makes caching

for Davidson a better use for these blocks. For the remainder of the execution, the LRU
and the posthint caches are empty.

On 2 and 3 disks, both processes are still constrained; cost-benefit outperforms
lru-sp and on 2 disks tiptoe outperforms TIP2. The latter e�ect is due to deeper
prefetching on tiptoe's part, which results in 10000 more prefetches completed before
the associated read, and 2200 fewer prefetches in progress when the read arrives, com-
pared to TIP2. The lru-sp-based algorithms do not cache for Postgres2 and su�er a
substantial increase in demand misses; lru-sp/forestall for instance incurs more de-

mand misses than tiptoe by a factor of 7 on 2 disks, and a factor of 4 on 3 disks. Again,
this e�ect arises because lru-sp chooses to prefetch data for quick-running Davidson
to the detriment of Postgres2's accesses to the LRU cache.

This pair of traces has the property that running each process independently tends to
perform better than multitasking. Running each trace independently is 20% faster than
the best combined run on a single disk, 19% faster on 3 disks, and roughly similar on
5 disks. Thus, TIP2's over-valuation of the LRU cache allows it to �nish Postgres2

earlier, and then dedicate the cache entirely to Davidson, resulting in a better overall

execution time.

Lru-sp/aggressive also displays a signi�cant amount of thrashing | 21% of all

blocks must be read twice for lru-sp/aggressive, and 3% for lru-sp/forestall, on
10 disks. This thrashing occurs because these algorithms all read data as aggressively as

possible for Davidson, at the same time that demand reads are arriving for Postgres2,
which results in eviction of a substantial fraction of the newly-read blocks.

6.2.9 Sphinx/Gnuld

The most striking e�ect of the Sphinx/Gnuld graph is that performance is better on

three disks than on four or �ve. This is not due to load balancing; it is a sequentiality

e�ect. Sphinx typically gives small batches of hints. There are 113 batches containing

6.2 Two-Process Experiments 111

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400

500

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.9: Experiment 9: Sphinx/Gnuld, four prefetching and cache management

algorithms.

449 hints, then 50 other batches containing more than 64 hints, and the remainder of
the batches (41% of the total batches) follow the distribution shown in Figure 6.10. The
stripe unit of the drives in our simulator is eight blocks. Therefore, on two or three drives
we usually have su�cient hints to submit two stripes, or one full batch, to each drive.
But when we reach four or �ve disks, this is not always the case and the average I/O time

increases. Despite having plenty of I/O bandwidth, the hints are arriving late enough that
latency is important, so for instance in the case of tiptoe the average I/O time increases
by 5%, resulting in a 5% increase in total execution time. The other primary visible e�ect
is that, as described in Section 5.2.4, lru-sp/aggressive generally performs well when
the hint sequence becomes very short.

20 30 40 50 60

Length of Hint Batch

0

5

10

N
um

be
r

of
 B

at
ch

es

Figure 6.10: Distribution of hint batch sizes for the Sphinx trace.

6.2.10 Postgres2/Postgres1

The Postgres2/Postgres1 trace shows two processes with substantial numbers of de-

mand reads competing with one another. On a single disk tiptoe performs substantially

112 Multi-Process Informed Prefetching and Caching

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.11: Experiment 10: Postgres2/Postgres1, four prefetching and cache man-

agement algorithms.

better than TIP2 because once Postgres1 begins its hinted read phase, Postgres2

is still performing unhinted reads. Tiptoe's hinted cache values the hinted blocks of
the Postgres1 trace correctly with respect to the unhinted blocks still being read by
Postgres2, but TIP2 evicts blocks from Postgres1's hinted cache. This increases
the number of demand misses, and increases the amount of stall for prefetched blocks
that are still busy when the read arrives. The lru-sp-based algorithms do not allocate
su�cient resources to LRU caching once the hinted phases begin (as there are still some

unhinted reads during these phases), and lru-sp/forestall su�ers an additional 18%
demand misses compared to tiptoe on a single disk, 28% on two disks, increasing to 72%
on 10 disks. On larger arrays, the lru-sp-based algorithms again incur demand misses
whose latency cannot be masked; lru-sp/forestall does not prefetch as aggressively
when the disks are constrained, so is not as heavily inuenced as lru-sp/aggressive.

6.2.11 Postgres1/Agrep

Agrep hints all its reads, but Postgres1 contains an initial segment of unhinted reads,

and includes some unhinted reads throughout the trace. On all array sizes the cost-

benefit algorithms dedicate more of the cache to holding unhinted data and thus incur
fewer demand misses; on one and two disks this di�erence is a substantial e�ect. On two
or more disks, the additional demand misses explain the additional stall. On one disk,

however, lru-sp/aggressive takes 25 seconds longer to complete than tiptoe (21%).

8 seconds of this additional stall are explained by additional demand misses incurred
by lru-sp/aggressive. 10 more seconds are explained by hinted cache management

decisions. The lru-sp-based algorithms dedicate bu�ers to Agrep, which has low re-
use, and to Postgres1, which has higher re-use, based on their relative rates which are

quite similar. The cost-benefit algorithms on the other hand prefer to give bu�ers to

Postgres1, and increase the amount of caching of hinted data. Tiptoe caches 11%

6.2 Two-Process Experiments 113

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Figure 6.12: Experiment 11: Postgres1/Agrep, four prefetching and cache manage-

ment algorithms.

Disks TIP LRU-SP/AGG LRU-SP/Forestall

1 1.053 1.097 1.070

2 1.047 1.235 1.162

3 1.013 1.170 1.099

4 1.014 1.103 1.044

5 0.984 1.072 1.025

8 0.995 1.093 1.017

10 0.993 1.109 1.028

* 1.014 1.124 1.063

Table 6.2: Summary of results for two hinting processes. This table gives ratio of elapsed

time for an algorithm to the elapsed time for tiptoe. Numbers are the geometric mean
of the ratios for the eleven experiments. The last line, marked with a '*', is the mean
over all array sizes.

more blocks resulting in the 10 saved seconds of I/O. Finally, the remaining 7 seconds

are due to a 10% faster average I/O time for tiptoe. This in turn is due to the unhinted

reads that cause the head to move from processing a run of sequential reads from Agrep

in order to fetch a higher priority demand miss for Postgres1. If the priorities are

eliminated the I/O time is reduced by 35% for lru-sp/aggressive, but this is at the

cost of signi�cant increase in stall time for Postgres1.

114 Multi-Process Informed Prefetching and Caching

Disks 1 2 3 4 5 8 10 Totals

Exp1 1.106 1.130 1.066 1.047 1.012 1.009 1.000 1.052

Exp2 1.071 1.072 1.014 0.997 0.989 0.985 0.991 1.016

Exp3 0.911 1.008 0.984 1.000 1.008 1.012 1.017 0.991

Exp4 1.087 1.338 1.458 1.295 1.193 1.123 1.134 1.226

Exp5 1.073 1.297 1.128 1.079 1.097 1.114 1.116 1.127

Exp6 1.052 1.185 1.000 0.912 0.912 0.885 0.900 0.973

Exp7 1.060 1.235 1.193 0.971 0.902 0.959 0.978 1.036

Exp8 1.068 1.397 1.091 1.032 0.993 0.996 1.000 1.075

Exp9 1.024 1.049 1.058 1.026 1.023 0.948 1.025 1.021

Exp10 1.201 1.035 1.087 1.101 1.103 1.088 1.090 1.100

Exp11 1.142 1.120 1.077 1.068 1.091 1.075 1.096 1.095

Totals 1.070 1.163 1.099 1.044 1.026 1.015 1.029 1.063

Table 6.3: Direct comparison of tiptoe and lru-sp/forestall on all two-process
experiments and all array sizes. The totals row and column report the geometric mean.

6.2.12 Summary of Graphs

Table 6.2 shows, for each array size, the geometric mean of the factor by which tiptoe
performs better than each of the other algorithms, taken over the eleven experiments.
Next, Table 6.3 shows a head-to-head comparison of tiptoe and lru-sp/forestall.

For each experiment described above, and each array size, the table shows the ratio
of lru-sp/forestall's total execution time to tiptoe's total execution time. At the

right/bottom of each row/column the table shows the geometric mean of the values in

that row or column. The bottom row is therefore equivalent to the rightmost column
of Table 6.2. As the tables show, tiptoe outperforms lru-sp/aggressive and lru-

sp/forestall by 23% and 16% respectively on 2 disks, when computation and I/O are
most closely balanced. On other array sizes, the applications are either compute bound

or I/O bound, and the opportunity for strong di�erentiation of the allocation scheme
is smaller. Experiments 4, 5, and 10 show an aggregate improvement of at least 10%

for tiptoe over lru-sp/forestall across all array sizes, and a substantially better
improvement for intermediate array sizes. Experiments 3 and 6 show an advantage of

1% and 2.7% respectively for lru-sp/forestall.

6.3 One I/O-Intensive Process With Background Load 115

6.3 One I/O-Intensive Process With Background Load

The experiments described above represent traces of pairs of actual applications running

side by side. These experiments are central to the thesis because tiptoe uses load and

re-use information to make allocation decisions, choosing how many bu�ers a particular

process may hold at each point. There is a similar situation in which the same tension

arises: an I/O-intensive process running on a system with background load. If there is

re-use in the background load, the allocator must decide how much of the bu�er cache

should be dedicated to LRU caching for the background processes, and how much should

be given to the I/O-intensive process.

I perform two experiments modeling random and sequential re-use. In some sense,

these represent two extremes. A single process performing a cyclic access pattern is
di�cult to cache for { if fewer bu�ers are dedicated to caching than the size of the
working set then there will be no re-use. On the other hand, re-use according to the
traditional LRU hit-rate curve [HP96] is more forgiving | the allocator may dedicate
a small fraction of the working set, but still realize a large fraction of potential cache

hits. This type of re-use is typically an aggregate over a number of background processes
executing simultaneously. I consider each type of re-use in turn.

6.3.1 Traditional Background Load

Dahlin [DWAP94] records the activity of an Auspex �le server supporting 231 client

machines over a one-week period at the University of California at Berkeley.1 The traces
contain around 6.6 million requests and transfer 8.1 Gbyte of read data.

I collected the �rst 1.09 Gbyte out of 8.1 Gbytes of read requests from the trace set
and used this subset to estimate the \hit-rate" pro�le of the set. To generate the pro�le,

a cache simulation determined for each read where the most recent prior read to the same
block occurred, and augmented a counter for that depth. This results in a distribution of
re-use: 18% of all accesses are for the immediate prior accesses, 5.6% are for two accesses

in the past, 1.5% are for three accesses in the past, and so on. The pro�le can then

be used to generate traces of arbitrary duration and inter-access computation time. I
generated traces with a range of durations from �fteen to three hundred seconds, with

an expected 15 ms inter-access computation time distributed exponentially. These traces
do not provide hints, as they are meant to represent the aggregate background load of a

number of processes with small I/O demands.

Figure 6.13 shows the hit-rate pro�le for the traces. Table 6.4 shows the cache sizes at

which the hit-rate crosses 5% intervals. The graph of Figure 6.13 shows that the hit rate

1The trace covers three periods of activity: Sept 9{10, Sept 13{15, and Sept 20 { Oct 3.

116 Multi-Process Informed Prefetching and Caching

0 500 1000 1500

Cache Size

0

20

40

60

80

100

H
it

 R
at

e

Figure 6.13: Cumulative Hit Rate of Auspex Traces as a Function of Cache Size in Blocks.

18% 24% 31% 35% 40% 45% 50% 55% 60% 65% 67%

1 2 7 14 36 65 97 162 336 920 1280

Table 6.4: Cache Sizes for 5% Increments of Cache Hit Rate

climbs very steeply for small caches, but remains relatively at for larger caches. Table 6.4
shows that, in fact, the hit rate changes only 12% when the cache size increases from 162
blocks to 1280 blocks. Thus, while this particular background load exhibits substantial
re-use (67% for a full cache), most of the caching bene�ts can be attained with a much
smaller cache. Section 6.3.2 considers the opposite situation, in which dedicating too few
bu�ers to the background process will signi�cantly impact the hit rate.

The results are shown in Figure 6.14. As the �gure shows, there is no substantial
di�erence between the various algorithms for this workload. However, there are some
di�erences.

On theDavidson trace, lru-sp/aggressive and lru-sp/forestallperform iden-

tically for one disk, since the disk is always constrained. TIP2 performs 1% better than

tiptoe, and 2% better than the lru-sp algorithms. Although the di�erence in overall
execution time is small, the interaction causing the e�ect is important so I describe it

here in detail. The same e�ect also arises in the Sphinx/Xds experiment above. As
discussed in Section 4.1, TIP2 assigns low cost to evicting items from the hinted cache,

and will therefore tend to grow the LRU whenever there is any unhinted re-use. In this

situation, TIP2 will cache for the background process, and evict data from Davidson;
compared to tiptoe it incurs 1800 fewer unhinted cache misses, but 11000 fewer hits to
the hinted cache.

TIP2's decision to favor the unhinted cache also improves disk performance. Recall

that the prioritization scheme assigns high priority to demand reads, and low priority

6.3 One I/O-Intensive Process With Background Load 117

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

Davidson Sphinx

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

Xds Postgres2

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

200

250

T
ot

al
 T

im
e

Gnuld Postgres1

1 2 3 4 5 8 10
Number of Disks

0

20

40

60

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Agrep

Figure 6.14: Single I/O-Intensive Process with Background Load Pro�led from NFS
Traces.

both to prefetches, and to prefetches that have become demand reads. Thus, ifDavidson

is prefetching on a particular disk, whenever the background process wants data from

118 Multi-Process Informed Prefetching and Caching

that disk, the head will move as soon as the current transfer completes. This results in

many seeks. Extra caching by TIP2 allows more Davidson accesses to be performed

simultaneously as the background process hits in the cache, and begins another long

period of computation (15 ms on average). This e�ect results in a 21{25% improvement in

average I/O time for TIP2 versus the other algorithms on a single disk, an improvement

of 6{21% for larger arrays versus tiptoe, and a more substantial improvement with

respect to lru-sp/forestall.

The other e�ect visible in the trace is that tiptoe performs better than the other

algorithms on 2 disks. This occurs because the lru-sp algorithms dedicate cache to the

background process according to its (very slow) rate. Tiptoe dedicates more bu�ers to

LRU caching and generates 8% more unhinted hits than lru-sp/forestall. TIP2, on
the other hand, does not prefetch deeply enough for Davidson. On larger arrays, deep
prefetching is no longer required because su�cient bandwidth exists.

For Xds, the cost-benefit algorithms on a single disk dedicate more bu�ers to

caching for the background process since the I/O-intensive Xds process cannot use
bu�ers. The lru-sp algorithms on the other hand dedicate bu�ers to Xds because
it consumes data quickly. This results in 10% fewer LRU cache misses for cost-benefit
than lru-sp, and a 6% overall improvement in execution time on a single disk. The dif-
ference in LRU performance is more dramatic on larger arrays. The lru-sp algorithms

incur 18% more unhinted cache misses than tiptoe on 3 disks, 15% on 4 disks, 10% on
5 disks, 12% on 8 disks, and 12% on 10 disks. In a sense, Xds is a di�cult trace for
lru-sp because it streams through data quickly with little re-use, and therefore collects a
large fraction of the cache that would be better used by another, possibly slower, process
that exhibits re-use. On larger arrays, however, the additional cache misses have smaller

impact on overall execution time because most of the additional I/O can be overlapped
against Xds's computation. On 10 disks, for instance, execution time increases by 1%
despite 12% more cache misses.

TIP2 and tiptoe do not perform identically in this experiment. On 3 or more

disks, TIP2 outperforms tiptoe by from 1{7%. On 5 disks, an example with no load-

balancing issues, lru-sp/aggressive, lru-sp/forestall and tiptoe all complete the
Xds trace within 116�3 seconds by deep prefetching; TIP2 requires another 34 seconds
to complete Xds, but then completes the entire execution 7% faster than tiptoe.

To understand this behavior note that, ideally, the only time Xds should compute

is during I/O for the background process; this would allow maximal overlapping of I/O
and computation between the two processes. But tiptoe and the lru-sp algorithms

prefetch far enough ahead for Xds that it is always ready to compute, so Xds competes
with the background process for the processor, and �nishes quickly. In general, the

typical advantage of unbalanced execution is that the cache can be entirely dedicated to

each process in turn. Since Xds has no reuse, and the background process attains almost

6.3 One I/O-Intensive Process With Background Load 119

all its re-use with a small number of cache bu�ers, this advantage does not apply. Thus,

TIP2's slower completion of Xds results in a better overall time.

The Sphinx trace shows tiptoe executing 6% faster than lru-sp/forestall on

a single disk, and all other timings are less signi�cant. On larger arrays, lru-sp/agg-

ressive performs slightly better than the other algorithms due to Sphinx's late-arriving

hints, as described in Section 5.2.4. Lru-sp/forestall on larger arrays typically incurs

about 7% more unhinted cache misses than tiptoe, but overlaps these additional I/O's

e�ectively against Sphinx computation, yielding only small di�erences in execution time.

Postgres1 shows only a tiny advantage to cost-benefit (< 1%) on all array

sizes. Note that the decline in overall computation between 1 and 2 disks, and again

between 5 and 8 disks, occurs because I use shorter background traces to match the

overall execution time of the Postgres1 trace as disk bandwidth increases. Postgres2
on the other hand shows a small advantage to the forestall algorithms on one to
three disks, with tiptoe performing 1{2% better than lru-sp/forestall. On a single
disk, TIP2 grows the LRU cache but fails to dedicate su�cient resources to caching for
Postgres2's hinted re-use of inner relation data blocks. (Note that the Postgres1

trace does not demonstrate substantial hinted re-use, so this behavior does not occur.)
This results in 30% more total I/O's for TIP2 versus tiptoe, yielding a 22% increase in
overall execution time. Tiptoe versus lru-sp/forestall dedicates more cache bu�ers
to LRU caching of both Postgres2's unhinted accesses and the background process.
Lru-sp/forestall incurs 6% more cache misses than tiptoe on a single disk, and

9{16% on larger arrays.

Finally, the Gnuld and Agrep cases do not demonstrate interesting e�ects. Agrep
shows a 1{4% improvement for TIP2 on 1{4 disks, and smaller di�erences for larger ar-
rays. Caching behavior for both hinted and unhinted cache are similar for all algorithms.
As in the standalone case, TIP2's marginal improvement on smaller arrays is due to
deeper disk queues.

Table 6.5 shows the aggregate results of tiptoe compared to the other three algo-

rithms. As the table shows there is little overall di�erence among the algorithms; in fact,

on no array size is there more than a 3% impact due to the algorithm.

6.3.2 Sequential Background Load

Another common re-use pattern occurs when a process loops cyclically through data. In
the section I examine the performance of an I/O-intensive application in the presence of

cyclic background load.

I generated traces that cyclically access a working set of 640 blocks, or half the cache

(for the single shortest trace, the working set was reduced to 500 in order to demonstrate

120 Multi-Process Informed Prefetching and Caching

Disks TIP LRU-SP/AGG LRU-SP/Forestall

1 1.021 1.029 1.020

2 1.026 1.024 1.022

3 0.993 1.020 1.012

4 0.987 1.029 1.006

5 0.986 1.028 1.002

8 0.988 1.029 1.002

10 0.990 1.029 1.002

* 0.999 1.027 1.009

Table 6.5: Summary of results for traditional background load. This table gives the ratio

of the elapsed time for each other algorithm to the elapsed time for tiptoe. Numbers are

the geometric mean of the ratios for the seven experiments considering an I/O-intensive
process running on a machine with \traditional" background load as sampled from a
large NFS server. The last line, marked with a '*', is the mean over all array sizes.

re-use). Again, the inter-access computation of the background load is exponentially
distributed with expected value 15 ms. Traces were created for the same durations as
the traditional background pro�le described above. The results are shown in Figure 6.15;
as the �gure shows, the di�erence between cost-benefit and lru-sp is signi�cant.

I begin again by considering Davidson. On a single disk, tiptoe outperforms lru-

sp/forestall by 218%. Both of the cost-benefit algorithms require approximately
four iterations through the unhinted sequential dataset before the estimators converge
to the correct estimate and grow the LRU cache according to that estimate so the entire
dataset is cached. The bene�t of using those 640 bu�ers to cache for Davidson is
smaller than the bene�t of using them for LRU caching. We would expect this to be

the case, since each bu�er used to cache Davidson data will generate one hit per 2089
accesses, while each bu�er used to cache for LRU accesses will generate one hit per 640

accesses. On a single disk tiptoe takes 2664 misses, while lru-sp/forestall takes
19,953. TIP2 takes only 1223 misses since it naturally places a low value on caching

for hinted re-use, due to its system model, but it completes 6% slower because tiptoe

prefetches more deeply for Davidson.

On larger arrays, on the other hand, all four algorithms perform similarly. This ap-
pears counterintuitive: we expect that the lru-sp algorithms will process the Davidson

trace even more quickly when there is extra bandwidth available, but will not be able

to process the unhinted trace quickly because there are no hints. In fact, this is exactly

what happens. However, processing of the unhinted trace is so dramatically slow that

6.3 One I/O-Intensive Process With Background Load 121

1 2 3 4 5 8 10
Number of Disks

0

500

1000

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

500

1000

T
ot

al
 T

im
e

Davidson Sphinx

1 2 3 4 5 8 10
Number of Disks

0

500

1000

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

800

T
ot

al
 T

im
e

Xds Postgres2

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

200

T
ot

al
 T

im
e

Gnuld Postgres1

1 2 3 4 5 8 10
Number of Disks

0

50

100

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Agrep

Figure 6.15: Single I/O-Intensive Process with Sequential Background Load.

Davidson actually completes all 130,000 accesses while the background process com-

pletes about 5,000 accesses. Subsequently, the background process runs to completion

with the entire cache at its disposal.

The same phenomenon occurs on all larger arrays. The anomalous behavior on a

122 Multi-Process Informed Prefetching and Caching

single disk occurs for the following reason. On two or more disks, Davidson can always

prefetch multiple blocks from at least one disk because the unhinting background load

submits only a single access at a time and will restrict its accesses to one disk until it has

read an entire 8-block stripe unit. On a single disk, however, Davidson cannot prefetch

while the high-priority demand reads from the background process are being serviced.

Thus, a read completes for the background process, so Davidson begins a fetch which

must do a large seek, and 15 ms later another request arrives from the background process

at higher priority than prefetching, drawing the head back to the background process'

data space. The average I/O time for the lru-sp-based algorithms on a single disk is

therefore more than 2.5 times as large as tiptoe's average I/O time.

Sphinx demonstrates a similar pattern, with lru-sp taking 2.42 times as long to
complete on a single disk. I/O times range from TIP2's average 5.62 ms to lru-sp/
forestall's 24.55 ms. On two or more disks, lru-sp/aggressive actually outper-
forms lru-sp/forestallbecause lru-sp/forestallwill occasionally stop prefetching
| the window between two unhinted accesses for performing nearly-sequential Sphinx

prefetches is therefore not fully exploited, and lru-sp/forestall's I/O time is 10%
higher than lru-sp/aggressive's. Lru-sp/aggressive's execution time is 30% longer
than tiptoe's; lru-sp/forestall's is 40% longer. The pattern continues for larger ar-
rays: lru-sp/forestall takes 16% longer than tiptoe on 3 disks, 26% longer on 4
disks, 17% longer on 5 disks, 8% longer on 8 disks, and 6% longer on 10 disks.

The same behavior is visible on Xds. On a single disk, the overall execution time of
lru-sp/forestall is larger than that of tiptoe by a factor of 2.69, the most dramatic
di�erence of any workload presented so far. With larger arrays, there remains a larger
disparity between algorithms than in the Davidson example because Xds has little re-

use of its own, and must perform more I/O's with less sequentiality than Davidson.
Under lru-sp, the cache will be dedicated primarily to caching for Xds even though the
hints make it clear that there is little re-use. Because the lru-sp allocator is decoupled

from the prefetcher, knowledge about re-use is lost to the high-level allocation algorithm.

On larger arrays, there are two other (related) e�ects visible in the di�erences between
TIP2 and tiptoe: load-balancing, and deep prefetching. On 3 disks there are no load-

balancing e�ects, but tiptoe runs 4% faster because of 2,300 accesses that tiptoe

prefetches completely in time, but TIP2 only partially prefetches before the read arrives.
On four disks, load balancing adds to this e�ect, resulting in 24 seconds di�erence in

overall execution time and 3,800 additional accesses that TIP2 does not complete in
time. The same trends are visible on 5 and 8 disks.

Postgres2 contains much more internal structure than the other traces. Again
we see signi�cant di�erences between cost-benefit and lru-sp. Lru-sp/forestall

takes 67% longer than tiptoe on a single disk, but for larger arrays the di�erence is not

substantial.

6.3 One I/O-Intensive Process With Background Load 123

As a brief digression, this case is interesting because there is contention speci�cally for

the LRU cache: Postgres2 displays signi�cant unhinted re-use, as does the background

process. The cost-benefit architecture studied here does not maintain a per-process

LRU cache, so any bu�ers dedicated to unhinted caching will be available to all pro-

cesses. Thus, the cost-benefit pro�lers cannot dedicate LRU bu�ers to caching for

Postgres2 alone, or for the background process alone. While maintaining multiple

LRU caches might be advantageous in some situations, there would be substantial over-

head, and circumstances such as cooperating processes would not be modeled well.

On a single disk under cost-benefit, Postgres2 begins by accessing the outer

relation sequentially with hints, and the inner relation index randomly without hints.

There is no disclosed re-use to the outer relation, and there are hits to the LRU from
inner relation index blocks and from the background process. Thus, cost-benefit
grows the LRU at the expense of the posthint cache, and is able to cache the entire
working set of the background process along with the inner relation index; both together
will entirely �ll the cache. At the end of this phase, the LRU contains 1275 blocks.

During the next phase, Postgres2 discloses the accesses to the inner relation data
blocks. Postgres2 therefore begins to prefetch those blocks, and notes substantial
hinted re-use, so there is some splitting of the cache; after about 2000 accesses, the LRU
converges to 700 blocks, enough to hold the working set of the background process and
the occasional outer relation data block that has been re-read. Overall, TIP2 incurs

3085 misses, tiptoe 3118.

Lru-sp begins by splitting the cache between hinted accesses to the outer relation
with no disclosed re-use (although each block will be read exactly once during the remain-
der of the trace), unhinted accesses to the inner relation, and unhinted accesses to the

background process. Reads to the outer relation proceed most quickly, so a substantial
chunk of the cache is given to this data. By the end of the �rst phase, lru-sp/fore-
stall has incurred 2346 misses versus 1914 for tiptoe: not a signi�cant di�erence.

However in the second phase, Postgres2 consumes data at roughly twice the rate
of the background process, and therefore garners more than half the cache. The back-

ground process derives no re-use from cache bu�ers, and by the time execution completes,
lru-sp/forestall incurs 9686 misses versus 3118 for tiptoe.

On 2 disks, TIP2 outperforms tiptoe by 8% because tiptoe estimates that there is
bene�t to caching inner relation data blocks for hinted re-use, while TIP2 will essentially

grow the LRU whenever there is any bene�t to doing so. As Postgres2 is consuming
slowly, it takes tiptoe approximately three additional iterations through the background

process to estimate that bu�ers should be given to the LRU rather than the hinted cache,
resulting in 2200 additional misses. The same pattern holds for larger arrays.

The behavior of Postgres1 is similar to Postgres2, but is not as extreme because

there is less unhinted re-use of the inner relation index blocks, and less hinted re-use of

124 Multi-Process Informed Prefetching and Caching

the inner relation data blocks. On a single disk, lru-sp/forestall takes 8% longer

than tiptoe due to 6.5% fewer hinted cache hits, and as a result shows a slightly higher

average I/O time. Similarly on 2 and 3 disks, lru-sp/forestall takes 10% longer

to complete than tiptoe. On 4 disks, TIP2 performs slightly better than the other

algorithms because it completes the background process before the end of Postgres1's

second phase, and can therefore dedicate the entire cache to inner relation index blocks,

resulting in 1200 more hinted cache hits than tiptoe. On larger arrays, cost-benefit

runs from 2{4% faster than lru-sp, due to 42{50% fewer unhinted cache misses.

Turning to Gnuld, on a single disk, lru-sp/forestall runs for 14% longer than

tiptoe due to 34% more cache misses. On two or more disks, however, lru-sp/fore-

stall actually runs from 6{16% faster than tiptoe, a surprising result. The reason

is the following. Cost-benefit relies on adaptive estimators that respond quickly to
new situations. Gnuld contains about 4000 unhinted accesses, about half as many
as the background process. These unhinted accesses occur primarily in two batches of
approximately 2800 and 1400 accesses. TIP2 and tiptoe use an estimator of the LRU
cache hit-rate pro�le that places heavy con�dence on the last 1000 accesses as a good

predictor of the future hit rate. When the trace begins and the estimator is being warmed
up, an iteration of the background trace completes without any visible re-use. Once the
second iteration begins, the estimator begins to see re-use, and quickly increases the cost
of taking bu�ers from the LRU, as we would expect. However, once the batch of 2800
unhinted accesses arrives, the estimator determines that the LRU is no longer valuable
and allows bu�ers to migrate to the hinted cache. When the batch of Gnuld unhinted

accesses stops, the estimator must see an entire iteration of misses from the background
process before it begins to grow the LRU again. This process repeats during the second
Gnuld batch of unhinted accesses. Thus, on two occasions, tiptoe must incur one
working set worth of misses, totalling 1280 misses, which is approximately the number
of additional unhinted cache misses that tiptoe takes relative to lru-sp/forestall.

It is important to design an estimator that is correct in as many situations as possible,

while recognizing that it is not possible to treat every situation correctly. This is the only

experiment I have performed in which the cache pro�ling is misled by unusual application
activity, and it does not occur only because a process with phase behavior interacts badly
with the load presented by another process.

Finally, on a single disk under Agrep, lru-sp/forestall takes 30% longer to com-

plete and incurs 104% more cache misses. On larger arrays, lru-sp performs slightly
better than cost-benefit. On a single disk, Agrep takes long enough that the back-

ground process can safely perform 6 iterations through its working set. This is su�cient
for the tiptoe estimators to warm up and begin caching e�ectively. With larger arrays,

however, there is only time for two iterations through a 500-block background working

set. After the �rst iteration, there is no indication of re-use, and under tiptoe all bu�ers

6.3 One I/O-Intensive Process With Background Load 125

Disks TIP LRU-SP/AGG LRU-SP/Forestall

1 1.049 1.735 1.710

2 0.996 1.095 1.088

3 1.018 1.039 1.034

4 1.016 1.042 1.018

5 1.032 1.037 1.009

8 1.044 1.030 1.003

10 1.026 1.032 1.009

* 1.026 1.124 1.104

Table 6.6: Summary of results for sequential background load. This table gives the ratio

of the elapsed time for each other algorithm to the elapsed time for tiptoe. Numbers are

the geometric mean of the ratios for the seven experiments considering an I/O-intensive
process running on a machine with sequential background load. The last line, marked
with a '*', is the mean over all array sizes.

are considered to be part of the posthint cache. During the second iteration, tiptoe
must decide whether to evict post-consumption bu�ers from the posthint cache, which
has so far exhibited no re-use, or to evict unhinted data bu�ers from the LRU cache,
which has also exhibited no re-use. Arbitrarily, it chooses to evict from the LRU, since
it has no information about which decision is correct. During the second iteration, it no-

tices re-use and grows the LRU, but by then the trace completes with no re-use attained.
Thus, lru-sp/forestall performs from 2{6% faster on array sizes from 2 to 10.

This set of graphs represents the other extreme from the NFS-pro�led background

load described above. In that earlier model of background load, dedicating too few bu�ers
to the background process resulted in only a tiny impact on hit rate; in this model, if one

fewer bu�er than necessary is given to the background process, there will be no cache
hits.

Table 6.6 shows the aggregate results of tiptoe compared to the other three algo-
rithms. As the table shows there is a substantial di�erence between cost-benefit and

lru-sp allocation schemes: tiptoe outperforms lru-sp/forestall by 71% on average

on a single disk, and by a much smaller margin on larger arrays.

126 Multi-Process Informed Prefetching and Caching

6.4 Multi-Process Issues

In this section I examine in more detail some issues that arose in the experiments de-

scribed above. First, Section 6.4.1 compares the hinted cache estimators used by TIP2

and tiptoe. Next, Section 6.4.2 examines the e�ectiveness of the posthint cache, as a

demonstration of the power of cost-bene�t analysis.

6.4.1 TIP2 versus tiptoe

In several of the experiments described above, tiptoe's prefetching estimator allows it

to fetch more deeply and TIP2 when necessary, and consequently to reduce execution

time (see, for example, Section 5.2.1 and Section 6.2.4). This section focuses on the
corresponding estimator of the cost of evicting hinted data, for TIP2 and tiptoe. In
general, as discussed in Section 4.1, TIP2 will give cache bu�ers to any unhinting process
that will use them, even if a hinting process would like to hold the bu�ers for hinted re-
use, since TIP2 assumes that the hinted process will be able to prefetch the missing
blocks without stall. Tiptoe, on the other hand, makes a more careful estimate of the

bene�t of caching for hinted versus unhinted re-use.

It makes sense to ask whether TIP2 will always perform roughly as well as tiptoe,
to understand whether the additional complexity of the tiptoe estimator is worthwhile.
In the section, I set aside the lru-sp algorithms for the moment, and induce tension
between hinted and unhinted re-use to compare the two cost-benefit algorithms.

On traces running with synthetic unhinted background loads, as in Section 6.3, both
TIP2 and tiptoe dedicate su�cient bu�ers to caching for the unhinting process, and the
hinted cache estimator is not necessary. In this section, I consider the opposite situation
in which there is some unhinted re-use, but the bu�ers are more e�ectively used for hinted

caching.

I assume that a fast, I/O-intensive, hinting process accesses data according to a
strided pattern (every 4th block), with a working set of 1,000 blocks, and a 1 ms average

inter-access computation time. The process streams through the dataset 60 times. In

the background, a slower process reads blocks at random for the majority of accesses
(set at 90%), and reads the block it read 1,200 accesses in the past the remaining 10%.

Thus, the slower process has some re-use, but even with a large cache dedicated to it, few
accesses will hit in the cache. I consider slower processes that read 6,000, 8,000, 10,000,

12,000 and 14,000 blocks, for a single-disk array. The results are shown in Figure 6.16.

In general, tiptoe outperforms TIP2 by 34{40% over the di�erent durations of the

background process. TIP2 and tiptoe both pro�le the LRU e�ectively and estimate
the cost of taking bu�ers from the LRU. Since there is a small hit rate for large caches,

6.4 Multi-Process Issues 127

90 120 150 180 210
Duration of Unhinting Process

0

200

400

600

800

T
ot

al
 T

im
e

Figure 6.16: TIP2 and Tiptoe make allocation decisions for pairs of traces. The �rst

trace requires hinted caching; the second requires unhinted caching. The x axis shows

the duration of the unhinting process. Once the unhinting process runs for long enough
for TIP2's estimator to warm up, TIP2 dedicates bu�ers to LRU caching when the
same bu�ers could be used more bene�cially for hinted caching. Tiptoe's more e�ective
estimator of the bene�t of hinted caching successfully determines the correct allocation.

both algorithms present some small cost to the allocator. TIP2 then estimates the
cost of taking a bu�er from the hinted cache according to Equation 4.1, and gives the
bu�er a low eviction cost under the assumption that it can be read back without stall.

This assumption is violated, since TIP2's model of su�cient disk parallelism does not
hold on these traces in the single-disk case. Tiptoe's estimator notes that the disk is
constrained, and that if the block is evicted, it will need to be re-fetched, incurring stall.
Thus, tiptoe dedicates more bu�ers to hinted caching than TIP2.

With a 60-second background process, tiptoe caches the hinted working set of the
fast process, allowing that process to complete quickly, and then continues to service the

background process. TIP2 grows the LRU cache to 1200 bu�ers, and generates only
8% re-use for the fast process while the background process continues to run, reading

according to the hints, and then evicting the data despite known re-use. TIP2 performs

57% more I/O than does tiptoe on this trace. A similar pattern holds for the other
instances. With a 210-second background trace, for instance, TIP2 performs 88% more

I/O (by time) than tiptoe, and takes 34% longer to complete.

6.4.2 Post-Consumption Hints

When a hinted read arrives and there is no future hint for the same data, the system

must decide how long the block should be kept in memory. In the original TIP2 system

the block was added to the tail of the LRU queue under the assumption that, since it was

128 Multi-Process Informed Prefetching and Caching

recently accessed, it might be accessed again in the near future. However, if an Xds-like

process is streaming through a large amount of hinted data with minimal re-use, and

another process like Postgres2 is performing unhinted reads with strong locality2 this

policy will \dilute" the LRU queue with bu�ers that are never re-used. The opposite

policy is to take lack of hints for a block as a \release" of the block, and place the block on

the head of the LRU queue for immediate eviction. However under this policy a process

such as Sphinx, which o�ers hints in small batches just before the data is required, would

be prone to ush blocks that might soon be hinted.

As described in Section 4.8.10, the cost-bene�t framework provides a simple, elegant

solution to this problem. Rather than releasing these problematic \posthint" bu�ers to

the LRU queue, the system instead releases them to a separate posthint queue which
maintains an independent estimate of the value of its bu�ers. If the posthint bu�ers are
often re-read, as in Sphinx's case, the allocator will choose to grow the posthint cache
at the expense of the LRU cache. On the other hand if the posthint bu�ers are never

accessed but unhinted accesses demonstrate re-use, as in the case of Postgres2 and
Xds, the allocator will instead choose to dedicate resources to the LRU cache.

In general, the cost-bene�t framework allows the system designer to identify sub-
classes of a resource that display uniform or similar patterns of behavior or re-use. The

designer can then tailor estimators to each subclass, such as posthint bu�ers or unhinted
bu�ers. Bu�ers can be members of multiple classes, and can be valued by multiple es-
timators,3 and the allocator will automatically incorporate any new estimates into the
global valuation described earlier.

This section performs two experiments to study the posthint estimator alongside the
two \static" policies of always releasing post-consumption bu�ers either to the head or
to the tail of the LRU queue. The conclusion is that there are situations in which these
static policies can perform substantially worse than an adaptive posthint estimator, which

tracks the best performance of the two static policies. In the �rst experiment, a non-

hinting process with re-use is running alongside a hinting process with no re-use, much
like the Xds example described above. Post-consumption bu�ers should not be cached
since the hinting process never re-uses these bu�ers. On the other hand, the non-hinting

process needs cache bu�ers. Therefore, we would expect that releasing post-consumption

bu�ers to the tail of the LRU would be a poor policy in this case, while releasing them

to the head of the LRU to be evicted immediately should perform well. In more detail,

2The same situation could arise within a single process if the process hints a large fraction of its

accesses, but is unable to hint another set of accesses with higher re-use.
3For instance, a block could be read as a demand miss, placed into the LRU queue, and then have

a hint arrive that says it will be read again in 300 accesses. The LRU estimator and the hinted cache

estimator will independently value the bu�er, and if either estimator assigns high cost the bu�er will

not be evicted.

6.5 The Multi-Process Case: Lessons Learned 129

PH Head Tail PH Head Tail

Experiment 1 Experiment 2

0

200

400

600

T
ot

al
 T

im
e

Figure 6.17: Tiptoe performs two experiments under three di�erent policies for post-

consumption hinted data. The �rst policy, \PH,", estimates the re-use opportunities

for this type of data, and uses the estimate to make caching decisions. The second
policy, \Head," always releases post-consumption blocks to the head of the LRU. The
third policy, \Tail," always releases post-consumption blocks to the tail of the LRU. In
Experiment 1, post-consumption data will never be re-used, and under the Tail policy it
dilutes good data in the LRU and causes an increase in I/O. In Experiment 2, traditional

LRU data is not re-used but post-consumption blocks are re-used. Under the Head policy
post-consumption data is evicted before it can be re-used, resulting in a substantial
increase in I/O.

the �rst process performs 15 cycles through a 1000-block dataset without hints, and the
second process performs 1 cycle through a 15000-block dataset with hints.

In the second experiment, a non-hinting process without re-use runs alongside a loop-

ing process with posthint re-use. In this case, the non-hinting process has no use for cache
bu�ers, but the hinting process would like to retain its data for later re-use, after another
batch of hints arrives. We expect that a policy of releasing post-consumption bu�ers to
the tail of the LRU will allow the hinting process to re-read its bu�ers from cache, and

will therefore perform well, while a policy of releasing to the head of the LRU will cause

the hinting process to re-read substantial amounts of data. The �rst process accesses
15000 blocks sequentially without re-use, and the second process performs 15 iterations

of hinting and then consuming the same 1000 blocks. The results of both experiments
are shown in Figure 6.17.

6.5 The Multi-Process Case: Lessons Learned

We have distilled our experience with informed caching and prefetching into ten lessons

which these experimental results illustrate. The primary lesson is that lru-sp induces a

130 Multi-Process Informed Prefetching and Caching

partition of the bu�er cache that, to �rst order, depends on the relative access rates of

the processes, but that relative access rate is not a good predictor of caching value. In

contrast, cost-benefit partitions the cache based on estimates of the value of each piece

of data. This algorithmic di�erence is responsible for the greatest performance di�erences

in the graphs, and was the initial reason we undertook this study. Other lessons have

signi�cant impact, but often in particular situations such as when a disk is routinely

constrained or unconstrained. Throughout the discussion we refer to experiments by the

experiment numbers in Figures 6.1{6.12.

Lesson 1: Access rate is not a good predictor of caching value. The experiments reveal

two situations in which di�erences between data rates and re-use characteristics result
in lru-sp and cost-benefit �nding di�erent allocations. First, if a trace displays a
substantial fraction of unhinted reads but consumes data slowly, lru-sp will not dedicate
bu�ers to LRU caching and will su�er demand misses. Cost-benefit's LRU estimator

will detect re-use and publish a high value, reecting the advantage of using bu�ers for
LRU caching, and the cost-benefit allocator will grow the LRU cache in response.
Second, if one hinting process shows signi�cant re-use and another hinting process shows
little re-use, but their relative access rates are not similarly disproportionate, the hinted
cache of the �rst process will be larger under cost-benefit than under lru-sp. Cost-
benefit will send the post-consumption blocks of the low re-use process to the LRU

queue where estimation will show that they are not used and can be evicted with low
cost;4 it will assign a higher value to the hinted blocks of the high re-use process, so will
allow the high re-use process a larger fraction of the cache. Lru-sp will partition the
cache based on process rates, giving a large fraction to the low re-use process.

The �rst situation, in which a process exhibits a large number of unhinted reads but
does not consume data quickly, appears in sequential background experiments for Xds,

Sphinx, Agrep and Postgres2, and in two-process experiments 4, 5, 6, 7, 10, and 11

(most notably experiment 4). The Postgres1 and Postgres2 traces, which issue
large numbers of unhinted accesses, appear in all these experiments. These traces also
include a phase of unhinted accesses followed by a phase of hinted accesses so the cache

management algorithm must also be adaptive to this change in application behavior.

In experiment 4, for instance, lru-sp/aggressive su�ers a factor of 6.7 more demand
misses than tiptoe on two disks, and still shows 2.6 times as many demand reads on ten

disks even though su�cient bandwidth exists to prefetch all hinted data without stall.

Experiment 1 demonstrates the second situation described above, in which two hinting

processes compete for bu�ers but one process has more re-use and therefore uses bu�ers

4Section 6.4.2 shows that, if these post-consumption blocks exhibit di�erent re-use patterns than

unhinted demand read blocks, it is simple to integrate a separate \posthint estimator" into the cost-

benefit framework.

6.5 The Multi-Process Case: Lessons Learned 131

more e�ectively. Average computation time per operation is 0.83 ms for Davidson and

0.72 ms for Xds. However, when each process runs alone Xds re-uses only 3.5% of its

data while Davidson's re-use is 38%. On two disks, lru-sp/aggressive shows 43%

fewer hinted cache hits than tiptoe because it dedicates bu�ers to holding Xds data

blocks that will not be re-used.

Lesson 2: On unconstrained disks, hinted blocks can always be prefetched in time so

caching them is not as important as caching for unhinted accesses. The background-

load experiments involving Postgres1 and Postgres2, under either traditional or

sequential load, and Experiments 4, 5, 6, 7, 10, and 11, all show an increase in stall

for lru-sp/aggressive and, in some instances, lru-sp/forestall on larger arrays.

None of this stall results from hinted reads that have not completed; it all results from

unhinted reads, some of which could have been cached if su�cient bu�er resources had
been given to the LRU queue. In experiment 6 on ten disks, for instance, lru-sp/agg-
ressive incurs 2.2 times as many demand misses as tiptoe: 4303 versus 1851. These
misses translate directly into stall if they cannot be overlapped against computation in
another process.

Lesson 3: On constrained disks, hinted blocks that are ejected cannot be re-fetched with-

out stall so caching them is as important as caching for unhinted accesses. TIP2's hinted
cache estimator assumes disks are unconstrained and estimates that ejecting a hinted
block beyond the prefetch horizon will only add Tdriver overhead. Tiptoe modi�es this
estimator so that if the block lies on a constrained disk, the cost of ejecting the block

includes the stall to re-fetch it (see Equation 4.4). This e�ect is signi�cant in experiments
1, 2 and 8, and when Postgres1 runs under pro�led background load. In experiment
8 on a single disk, for instance, tiptoe caches 37% more data blocks for Davidson
despite TIP2's much more conservative prefetching policy because tiptoe values the
blocks more highly.

Lesson 4: Eviction decisions impact locality of \re-fetched" data. Hinted cache data

that is evicted must be fetched back later. A prefetching scheme may attempt to select
data for eviction so as to increase disk locality when the data must be read back in.
As mentioned above, a full treatment of this topic requires a theoretical model of non-

constant disk service time so a treatment within tiptoe is beyond my scope; nonetheless,

the phenomenon arises in simulations. As described in Section 4.5, Cao et al in their
presentation of aggressive [CFKL95b] describe a mechanism they call \batching" in

which the prefetching algorithm waits for the disk to go idle and then submits up to B
requests, where the batchsize B is a parameter of the algorithm. Lru-sp, tiptoe and

lru-sp/forestall all adopt this scheme in my implementation. On cyclic datasets, the
B evicted elements are typically the most recently consumed blocks. Since neighboring

blocks in the access stream display locality on the disk, this scheme allows the blocks to

132 Multi-Process Informed Prefetching and Caching

be refetched with low average disk service time. In experiment 2, for instance, TIP2's

average I/O service time is 7% larger than the other algorithms on a single disk. The

di�erence is not even larger because TIP2's conservative prefetching does not evict many

blocks from the hinted cache. However, lru-sp/aggressive's average disk service time

increases by 15% in experiment 1 when its batching mechanism is turned o� and it instead

submits its prefetches to the driver one at a time.

Lesson 5: Constraint-aware prefetching only reasons about known constraints. The

Sphinx trace typically gives small batches of hints. There are 113 batches contain-

ing 449 hints as the program reads a large dictionary �le at the beginning of the trace,

then 50 other batches containing more than 64 hints, and the remainder of the batches

(41% of the total batches) follow the distribution shown in Figure 6.10. Experiments 2

and 9 show lru-sp/aggressive exhibiting less stall than tiptoe and lru-sp/fore-
stall on various array sizes because the forestall algorithms, noting that the small
batch of hints received so far do not require prefetching, assume that future batches will
not cause the disk to become constrained. Lru-sp/aggressive, on the other hand,
begins prefetching immediately. In experiment 9 with ten disks, for instance, tiptoe

and lru-sp/forestall incur 1.55 and 2.05 times as many prefetches that have not
completed when the read arrives as lru-sp/aggressive does.

Lesson 6: Deeper disk queues yield lower average disk service times. Both TIP2 and
tiptoe are based upon a system model that assumes a constant disk service time, so
modeling of queue sorting and locality is beyond the scope of our theoretical analysis.

However our simulator performs CSCAN sorting in the queues and our disk simulator in-
cludes such non-constant e�ects as seek, rotate and transfer latencies, SCSI bus overhead
and on-disk readahead bu�ering. Therefore we exhibit e�ects resulting from the policy
used by each prefetching algorithm to determine when exactly to submit prefetches to
the disk driver. TIP2's policy is to submit prefetches out to the prefetch horizon, which

in our implementation is 68; thus, TIP2 will commonly keep 68 bu�ers at the disk queue.

The other algorithms submit up to sixteen requests whenever the disk goes idle in or-
der to attain the bene�ts discussed in Lesson 4, but in doing so they typically generate
shorter disk queues. Experiments 5, 7 and 9, and Agrep under pro�led background

load, display this e�ect. In experiment 5, for instance, TIP2's average disk service time

is 18% faster than tiptoe's on a single disk. Furthermore, experiment 9 shows that
queue depth can interact with stripe unit size to give non-intuitive results | sometimes

adding disks can actually decrease the average I/O time.

Lesson 7: Leaving a constrained disk idle leads to additional stall. This e�ect was docu-

mented in [KTP+96] for the single-process case. We discuss it in Figure 4.3, and mention

it here because it arises in the two-process case as well. Experiments 2 and 8 both show

TIP2 performing worse than tiptoe on a single disk; in experiment 2, for instance,

6.5 The Multi-Process Case: Lessons Learned 133

on a single disk TIP2 has 7% more prefetches still in progress when the corresponding

read arrives than tiptoe because tiptoe is willing to perform deep prefetches when the

disk goes idle. This e�ect alone is not responsible for all the di�erence between the two

algorithms in these experiments; Lesson 3 is the primary contributor to the disparity.

Lesson 8: Submitting an I/O requires Tdriver computational overhead. This e�ect was

also documented in the single-process case in [KTP+96]. We discuss it in Figure 4.4,

and it appears in experiments 1, 2, 5, 8 and 9 on larger array sizes. In experiment 1,

for instance, lru-sp/aggressive on ten disks incurs 52% more driver overhead than

tiptoe.

Lesson 9: Over-aggressive prefetching may result in eviction of prefetched but unread

data. Lru-sp/aggressive prefetches deeply even when no disk is constrained. If a

prefetching process is running alongside either another prefetching process or a process
with signi�cant demand reads, the prefetching process might fetch a block and then be
asked to give it up to provide a block to the other process. Experiments 1, 4, 8 and 9
display this behavior; experiment 8 is the most consistent example with lru-sp/agg-
ressive on �ve disks evicting 26% of its data before reading it. These evictions do not

increase stall; in fact, lru-sp/aggressive stalls less waiting for prefetches to complete
than any other algorithm. However, again on �ve disks, lru-sp/aggressive incurs 80%
more Tdriver overhead than tiptoe, adding 13% to the overall execution time. The other
instances within this trace, and in the other speci�ed experiments, are less signi�cant.

Lesson 10: Batching for e�cient I/O may be defeated by prioritization schemes. In Ex-
periment 3 and Davidson under both pro�led and sequential background load, priority
scheduling causes the disk head to seek back and forth between the data of two di�erent
processes, reading only short amounts of data for each process, even though one process

has deep, correct hints.

134 Multi-Process Informed Prefetching and Caching

Part II

Theory

Chapter 7

Theory Overview

But stop!{these theoretic fancies jar on serious minds

| William Wordsworth, \The Excursion"

Part II of the thesis considers a class of problems called online problems, for which

it is necessary to give the solution incrementally, committing to each part of the answer
before the next part of the problem becomes available. The online algorithms �eld has
developed a set of standard notations, techniques, folklore results and so on, that often
appear without introduction and make for dense reading. This chapter is meant to be
both a high-level description of the results to follow, and an introduction to the �eld so
the document will stand alone. Sections 7.1, 7.2, and 7.3 all contain background material.

Section 7.4 describes the particular problem I study and the results I attain. Section 7.5
describes a modi�cation to the traditional online model, and describes some results for
the new model that draw heavily on the algorithms of Section 7.4. Finally, Section 7.6
discusses related work in the �eld, with a focus on results that either led to these results,
stemmed from these results, or share techniques.

The results in this part of the thesis are all collaborative. I will describe details of the
collaboration in each chapter, but in general, Avrim Blum contributed to all the topics
described here, Merrick Furst contributed to the results of Chapter 9, and the results of

Chapter 8 were later extended (substantially) by Yair Bartal, Avrim Blum, Carl Burch

and myself [BBBT96], improving the proofs and presentation in this document.

7.1 Online Problems

Online algorithms must process a sequence of requests, making decisions about early

requests before seeing later requests. Informally, we face on-line problems routinely. For

138 Theory Overview

instance, when driving on the highway, we must choose a lane. At each point in time

we may stay in our current lane or, with some e�ort, switch lanes. The central problem

here is the same as the central problem in the formal version of the problem: if we

switch lanes because the other lane is moving faster, our new lane will immediately slow

down according to Murphy's law and we will have made the wrong decision because we

don't know the future. The goal of a good online algorithm in the metric we adopt is,

informally, to perform as well as possible whatever the future may be.

At heart, a traditional algorithm takes some input and provides an output. An online

algorithm, on the other hand, must respond to an entire sequence of requests, and the

response to any particular request must not depend on any later request. In general, an

online algorithm A for a request sequence � = �1; �2; : : : is an algorithm whose response

to �i may not depend on �j for any j > i. A's response to each element of the sequence
will be drawn from some set of possible responses dependent on the particular online
problem. The problem will also specify which responses are acceptable at each point.
Each possible response of the algorithm will have some cost associated with it. In the
driving example presented above, the elements of the sequence could be the current

speeds of tra�c in each lane, and the possible decisions of the algorithm would be to stay
put or to switch into another lane. Section 7.3 formally presents the k-server problems
and the Metrical Task Systems, two common classes of online problems that re�ne the
de�nition above; all the results in this part of the thesis concern these two classes.

7.2 Competitive Analysis: AMetric for Online Prob-

lems

In this section I describe Competitive Analysis [ST85, KMRS88], a metric developed by

Sleator and Tarjan twelve years ago that has become successful for analyzing online prob-
lems. Let OPT(�), the optimal o�ine cost of sequence �, be the lowest cost attainable

by any algorithm on sequence �, including algorithms that know the entire sequence in

advance. We say that algorithm A achieves competitive ratio r (or \is r-competitive")
if for some constant c, and all sequences �, we have: A(�) � rOPT(�) + c. Thus, an

r-competitive algorithm must always perform within a factor r of optimal, plus a �xed
additive constant.1

The competitive ratio of a problem is de�ned to be the minimum over all algorithms

for the problem of the competitive ratio of the algorithm. These de�nitions are due to
Karlin, Manasse, Rudolph and Sleator [KMRS88]. In other work, the competitive ratio

1This is sometimes referred to as weak competitiveness, distinguished from strong competitiveness in

which c = 0.

7.3 Sub-Classes of Online Problems 139

is sometimes referred to as the competitive factor , and is related to the regret ratio of

theoretical �nance.

These de�nitions can all be extended to randomized algorithms in a straightforward

manner. The cost of a randomized algorithm on a particular sequence is replaced by the

expectation over the coin ips of the algorithm of the cost on the sequence. The optimal

cost remains the same, and the competitive ratio is de�ned analogously using the expected

cost of the algorithm. We are concerned primarily with randomized algorithms.

Since the competitive ratio is de�ned as a worst-case over all sequences,2 it is often

convenient to think of an adversary responsible for choosing the worst sequence. And

since the worst sequence for one algorithm may be di�erent from the worst sequence

for another algorithm, we think of the adversary as choosing the bad sequence based on
the particular algorithm, or in other words, having access to the code of the algorithm.
There are two commonly-studied adversary models: the oblivious adversary and the
adaptive adversary. The former must commit to an entire request sequence in advance,
while the latter may view the algorithm's decision on each input before deciding on

the next element of the sequence. The de�nition of competitive ratio as given above is a
maximum over sequences, and therefore corresopnds to the oblivious adversary model. In
the deterministic case, note that the two models are equivalent | the oblivious adversary
has access to the code of the algorithm and may therefore build a sequence knowing how
the algorithm will react to each element. In the randomized case, however, the algorithm

may ip coins as it proceeds. The adversary will know when the algorithm chooses to
ip a coin, but will not know the outcome. So we view the adversary as knowing the
distribution of the algorithm's responses, but not the actual responses themselves. It
is common to study randomized algorithms in the oblivious adversary model because
the bene�t randomization provides is limited against an adaptive adversary. Ben-David

et al. [BBK+90] showed that a c-competitive randomized algorithm against an adaptive
adversary implies a c-competitive deterministic algorithm. In fact, they show that even
if the adaptive adversary is weakened so that, as it generates the next request, it must
also serve it (called the adaptive online adversary), a c-competitive randomized algorithm

implies a c2-competitive deterministic algorithm. All the results below are in the oblivious

adversary model.

7.3 Sub-Classes of Online Problems

The general de�nition of online problems given in Section 7.1 has been re�ned into a
number of speci�c classes of problems. The work in this thesis addresses two such classes:

the k-server problems (or simply server problems) and the metrical task systems.

2For competitive algorithms, Murphy's law is a correct and complete representation of reality.

140 Theory Overview

7.3.1 k-Server Problems

The k-server problems were introduced by Manasse, McGeoch and Sleator [MMS88b,

MMS90]. A server problem is de�ned by an n-vertex graph with a distance d on the

vertices. There are k servers inhabiting vertices of the graph. A request is simply a

vertex, and represents the requirement that a server be moved to that vertex. If a server

is already present there is no cost. Otherwise, a server must be moved, at cost equal

to the distance from the original location of the server to the request. The cost to an

algorithm on a sequence is the sum of the costs of all server movements required to

process the sequence. Given this cost function, the competitive ratio of an algorithm or

a problem is then de�ned as in Section 7.2.

A number of particular k-server problems have been studied in depth; I include some
quick examples here. Section 7.6 describes the source and current best-known results for
all of these problems.

Example 1: Caching

A k-server problem is characterized by the underlying metric space, and the most natural
space is the uniform space in which the distance between every pair of points is 1. This
problem corresponds to another common computer science problem: cache management.

More formally, the cache management problem is the following:

The cache-management problem: Given a main memory of n elements and a cache
of k elements, service a sequence of requests in an online manner. Each cache element

may hold any element of main memory. Requests for memory elements that reside in the

cache incur no cost. Requests for elements that are not in cache must be loaded into the
cache, evicting some cached element to make room. The cost of servicing a sequence of
requests is the number of accesses to main memory.

The correspondence between the cache management problem and the k-server prob-

lem on the uniform space is the following. The nodes of the graph correspond to the
elements of main memory, and the servers correspond to cache elements. Whenever a

server occupies a node of the graph, we consider that element to the cached. When
a request arrives for a node with no server, some server must be moved to that node,

corresponding to an eviction of the vertex currently occupied by the server and an access

to main memory (at cost 1) to load the requested element.

7.3 Sub-Classes of Online Problems 141

Example 2: Seek-Minimizing Algorithms for Multi-Head Single-Platter Disk

Drives

Consider a somewhat more complicated example in which multiple independent disk

heads travel back and forth across the surface of a disk platter. In this problem the cost

to service a particular request is the cost to move the head to the appropriate cylinder,

and we assume further that the heads move linearly between the outermost and innermost

cylinders. Let n be the number of cylinders. The corresponding metric space is given by

n equally-spaced points on a line, where the distance between two points is the distance

along the line. Servers correspond to disk heads, and moving a head from one cylinder

to another corresponds to moving a server from one point to another. Since the metric

space looks like a line of points, the problem is commonly referred to as the k-server
problem on a line.

Example 3: The Spin-Block Problem

The problem of whether to rent or buy skis for each ski trip is a recurring example in
the online community. The model is the following: on each trip the algorithm must
either rent skis for $1 or buy skis for some large �xed cost. How many times should the
algorithm rent before buying? Formally, the problem has been studied in the context
of process scheduling, in which a process waiting on a lock may spin, incurring cost

proportional to the waiting time, or block, incurring a single large context switch cost.
How long should the process spin before it should be swapped out? This is simply the
continuous version of the ski-buying problem.

7.3.2 Metrical Task Systems

Metrical task systems were initially described by Borodin, Linial and Saks [BLS87]. An

MTS is presented as a graph of k+1 points, called states, and a metric on the states. At

any point, the algorithm must be in exactly one state. A request �i is a vector of k + 1

values, �
(1)
i : : : �

(k+1)
i . Upon receiving a request, the algorithm �rst decides in which state

to service the request (say, state j). It pays the distance between its current state and
state j (typically we think of distances as being large compared to the elements of �i),

plus the cost of servicing the request in state j, �
(j)
i .

As an example of a metrical task system, consider the problem of data structure

management faced by compiler writers. A particular data structure, such as a matrix,
may be represented in memory in a number of di�erent layouts, corresponding to the

states of the task system. The metric on the states represents the cost of converting

from one layout to another. Operations performed on the matrix will have di�erent costs

142 Theory Overview

depending on the layout, or state. The elements of �i represent the cost of operation i

in each state | some operations will be cheap and some expensive for each particular

layout. As the sequence of operations arrives, the application would like to modify the

data structure dynamically to �nd an appropriate layout for the types of operations that

occur in the sequence, no matter that the sequence might be.

I now present two \folklore theorems" that have not appeared formally but that are

known in the online algorithms community; one is a useful tool restricting the nature of

sequences that need be considered in developing MTS algorithms, and the other connects

the MTS problem to the k-server problem on (k + 1)-point spaces. For completeness, I

include proofs of these results in an appendix. We say that a task vector is elementary if

it has only one non-zero element. It is �-bounded if every element lies in the range [0::�].

Theorem 3 (folklore) For any metric space and any �xed � > 0, given an r-competitive

algorithm for the metrical task system problem with �-bounded, elementary task vectors,

it is possible to construct an algorithm for the general metrical task system problem with

competitive ratio (1 + �)r.

Proof: See Appendix A

Theorem 4 Consider a metrical task system on a metric space M of k + 1 points, and

the corresponding k-server problem on a (k + 1)-point space. Given an algorithm A that

solves the MTS with competitive ratio r, and any positive �, it is possible to construct

an algorithm B for the k-server problem with competitive ratio r. Likewise, given an

algorithm B with competitive ratio r for the k-server problem, it is possible to construct

an algorithm A with competitive ratio 7r for the MTS.

Proof: See Appendix A

7.4 Weighted Caching

Chapter 8 considers weighted caching, an extension to the traditional caching problem

described above with connections to the k-server and metrical task system models.

A weighted-cache space is de�ned to be a set of n points and a real value corresponding
to each point called the weight of the point. The distance between any 2 points i and j

is de�ned to be the weight of j, regardless of the value of i: dij = wj.

For convenience, we may think of the opposite version of the problem in which the
distance from i to j is the weight of the source, rather than the weight of the destination:

dij = wi. Or equivalently, we may consider the symmetric version in which the distance

is the average of the weights of the source and destination: dij = 1=2(wi + wj). The

7.4 Weighted Caching 143

equivalence results from the following observation. Imagine a long sequence � of requests.

Each server managed by an algorithm will traverse some path through the metric space

over the course of processing �. In the original formulation of weighted cache spaces, the

algorithm will pay the weight of a point upon entering the point. In the new formulations

above, the algorithm will pay upon departing, or will pay half upon entering and half

upon departing. The sum of all costs incurred by a particular server over the course

of processing � will therefore consist of the weight of all intermediate points the server

passes through, plus the weight of either the initial point, the �nal point, or the average

of the two. Thus, the total cost to the algorithm will be equivalent under all three

measures to within a factor equal to the diameter of the space times the number of

servers, independent of the length or cost of �. Thus, since the de�nition of competitive

ratio allows a constant factor independent of �, any algorithm competitive under one
distance will also be competitive under the others.

As a practical application of weighted caching, consider a web browser that may

store some �xed number of pages (for instance, assume that image loading is turned o�
so all the pages are text-only, and therefore roughly the same size). The goal of a cache
management algorithm is to reduce the amount of time the user spends waiting for a
page to arrive. Thus, the traditional LRU page replacement policy might not be the best
policy here. If the LRU page comes from a very distant server, it might be worth keeping

it in the cache for longer in case the user requests it again.

This problem can be formulated as weighted caching in the following manner. The
\weight" of a page is the time it takes to read the page from its web server. The k

servers correspond to the k pages that may be in the cache at any given time. We adopt
the formulation dij = wj so that whenever a server moves from point i to point j (i.e.,
whenever the cache management algorithm evicts page i and loads page j) the cost to
the algorithm is the weight of page j, or the time to load the new page. The total cost

of servicing a sequence of requests under the metric will be the amount of time the user

must spend waiting for pages to arrive, as desired.

The primary result of Chapter 8 is an O(log2 k)-competitive randomized algorithm for

weighted caching on (k+1)-point spaces (also known Cat-and-Mouse problems or Pursuit-

Evasion games [BKRS92]). We also give an
(log k) lower bound on the competitive ratio
of any such algorithm for every �xed weighted-cache space, extending and simplifying

results of [KRR91].

By theorem 4, we also have an O(log2 k)-competitive algorithm for any weighted

caching task system, and an
(log k) lower bound for any weighted caching task system.

144 Theory Overview

7.5 Free Time

Next, in Chapter 9 we consider a model of free time whose internal structure is closely

related to weighted caching. In the traditional on-line model, an algorithm is asked to

process a request sequence. Each request is presented after the algorithm has completed

processing the previous one and the cost of the algorithm is the cumulative time or work

needed. In many natural on-line settings, however, requests may arrive infrequently

relative to the speed of the algorithm. In these situations, it makes sense to model an

algorithm as having free time, for which it is not charged, between the servicing of one

request and the arrival of the next. For instance, a classical example on-line problem is

the \servers are �re trucks" problem in which requests represent �res, and when a request
arrives some server, or �re truck, must be moved to the �re as quickly as possible. In
this example, one rightly cares much more about the time it takes to get a �re truck to a
�re once a call has been made and cares much less about any time spent moving trucks
to resting places while there are no �res to attend to.

Similarly, consider again our earlier example of driving on a multi-lane highway. In
some situations tra�c is tight and the traditional model is an appropriate abstraction
of the situation. However, in other situations, there are lulls in the tra�c in which
it is possible to change lanes for free. In these situations, free-time might be a better
abstraction.

In general, in computing situations, if the process issuing requests is substantially
slower than the process serving requests then the server is liable to have a fair amount
of free time at its disposal between demands. In these situations it makes sense for the
server algorithm to use the free time between requests to position itself advantageously,

rather than idly waiting for the next thing to do.

We consider the following model: whenever a request arrives, the server algorithm
must service it and the charge is the standard notion of cost. However, once the request
is serviced, the server algorithm may adjust its con�guration as desired without charge

(we also consider the situation in which the free time is bounded). The cost of running a

server algorithm with free time is compared with the cost of running the optimal o�-line
server algorithm without free time.3 At �rst glance this comparison might seem unfair,
but in fact we show that for deterministic algorithms free time helps by at most a small
constant factor.

We give an O(log2 k)-competitive algorithm for general (k + 1)-point spaces in the

free-time model by reducing the problem to a standard server problem on a weighted
cache space. We also show that the
(log k) lower bound for arbitrary weighted cache

spaces mentioned above generalizes to algorithms with free time.

3For server problems, the optimal o�-line cost with free time is 0.

7.6 Related Work 145

Unlike the standard on-line model for which there exists a general
(
q
log k= log log k)

lower bound [BKRS92], we show that there exist metric spaces in which one can achieve

a constant competitive ratio in the free-time model. (Interestingly, these are exactly

the types of spaces proven to have an
(log k) lower bound in the standard model by

[BKRS92].)

In addition, we show that even with free time, there is an
(k) lower bound on

the competitive ratio for any deterministic algorithm and any space, and thus, without

randomization, free time helps by at most a constant factor.

In the free-timemodel an algorithmmay prepare in any way it likes for future requests

although it has no knowledge about what those future requests might be. A natural vari-

ant of this model gives the server algorithm some access to information about future
requests in the form of possibly erroneous hints. Some care is needed to make a meaning-
ful de�nition of hints. We describe a natural model in which there is a free-time server

algorithm for general spaces with an O(log k+(1�p) log2 k) competitive ratio if the hints
are correct with probability p.

It is also reasonable to assume that in many cases the free time available to an on-line

algorithm is bounded. That is, only a limited amount of free work can be done between
requests. We show that, even so, in some circumstances, bounded free time provides all
the bene�ts of unlimited free time. In particular, for the k-server problem on (k+1)-point
metric spaces corresponding to unweighted graphs, free time that is only logarithmic in
the diameter of the space is su�cient to provide all the bene�ts of unlimited free time

(up to constant factors). Furthermore, even if free time is limited to be constant, the
competitive ratio increases at most logarithmically with the diameter.

Finally, we present an algorithm that a computer might use to pre-process potential

future commands while waiting for a user to type. The algorithm takes into account the
relative durations of possible future instructions.

7.6 Related Work

The general k-server problem was �rst presented by Manasse, McGeoch and Sleator

[MMS88b], who also show a lower bound of k on the competitive ratio of any deterministic
server algorithm.

The uniform space, described above in Section 7.3.1, was initially studied by Sleator
and Tarjan [ST85], who showed that LRU and FIFO are k-competitive. Randomized

approaches for the uniform space began with Fiat et al.'s marking algorithm [FKM+91],

a 2Hk-competitive algorithm where Hk
�= ln k is the kth harmonic number. They also

show a log k lower bound on the competitive ratio of any randomized algorithm for the

146 Theory Overview

uniform space. McGeoch and Sleator later improved the upper bound to Hk, matching

the lower bound.

There are several results known for weighted caching, described in Section 7.4, a nat-

ural extension of the standard caching problem that corresponds to the k-server problem

on the uniform space. The problem was �rst described by Manasse, McGeoch and Sleator

[MMS88a] as an example of an asymmetric server problem. In [RS89] Raghavan and Snir

presented their harmonic algorithm, an O(k)-competitive randomized algorithm and the

�rst competitive algorithm for the problem. Subsequently Chrobak, Karlo�, Payne and

Vishwanathan [CKPV90] gave an O(k)-competitive deterministic algorithm called the

BALANCE algorithm, and presented some hardness results involving asymmetric metric

spaces. Young [You91] studied the problem in the context of approximative primal-dual
algorithms, and generalized the result to adversaries with fewer than k servers. Sev-
eral of these authors ([MMS88b, You91]) suggested that randomized algorithms with

substantially better than linear competitive ratios might be possible; however, no algo-
rithms or lower bounds were known for randomized weighted caching (even in the case
of (k + 1) points) that were any better than the bounds for general spaces. We give an
O(log2 k)-competitive algorithm for (k + 1)-point spaces.

There are a number of other metric spaces for which deterministic algorithms have
been studied. Chrobak and Larmore [CL91] present a k-competitive deterministic algo-
rithm for any metric space that is a tree, meaning a planar embedding of a free tree.
The distance between two points is simply the arc length of the unique path connecting

the points in the tree. Chrobak, Karlo�, Payne and Vishwanathan [CKPV90] give a k-
competitive deterministic algorithm called double coverage for scheduling on the line, as
described in Section 7.3.1. Karlin, Manasse, McGeoch and Owicki [KMMO94] consider
the spin-block problem described in Section 7.3.1. They give a randomized algorithm for
the problem with competitive ratio approaching e=(e� 1) �= 1:58, an improvement upon

the traditional deterministic algorithm which has (optimal deterministic) competitive

ratio 2.

In the deterministic setting, Papadimitriou and Koutsoupias [PK94] proved a long-

standing conjecture that the work-function algorithm has competitive ratio polynomial
in k for every metric space. In fact, they showed a competitive ratio of 2k � 1, within a
factor of 2 of optimal for every space.

At this point, it became interesting to know whether randomized algorithms like the
marking algorithm for the uniform space could be developed to give sub-linear competi-

tive ratios for other spaces, especially in the task system domain as a �rst step towards

the general k-server problem.

Two types of lower bounds are known for randomized MTS algorithms. For certain

speci�c metric spaces such as the uniform space studied by Borodin, Linial and Saks

[BLS92] and the super-increasing space of Karlo�, Rabani and Ravid [KRR91] there are

7.6 Related Work 147

(log k) lower bounds on the competitive ratio of any online algorithm. We show an

(log k) lower bound for any weighted cache space. A weaker bound of
(log log k) due

to Karlo�, Rabani and Ravid [KRR91], subsequently improved to

�q

log k= log log k
�

by Blum, Karlo�, Rabani and Saks [BKRS92], applies to every metric space.

Irani and Seiden give an en=(e � 1)-competitive randomized MTS algorithm [IS95]

for any metric space. Early results on speci�c spaces have focused largely on the uniform

space: Borodin, Linial and Saks [BLS92] give a 2Hn upper bound and an Hn lower bound.

Irani and Seiden [IS95] give anHn+O(
p
log n)-competitive algorithm, matching the lower

bound to within lower-order terms. We give an O(log2 n)-competitive algorithm for any

weighted-cache task system. Finally, later work by Blum, Bartal, Burch and myself

[BBBT96] gives an O(log6 n)-competitive algorithm for any metric space.

Fiat and Ricklin [FR94] study a very di�erent problem with a similar avor, the
weighted-server problem. In their model the weights apply to the servers rather than to
the nodes of the graph, and the cost of moving a server across a distance is scaled by

the server's weight. This is a substantially harder problem than the traditional k-server
problem; in fact, Fiat and Ricklin show that for any metric space, even if the servers are
limited to only two possible weights, there is an assignment of weights to servers such
that the competitive ratio of any algorithm is at least exponential in k.

148 Theory Overview

Chapter 8

Weighted Caching

From earliest times such competitive games had been celebrated.

| L. M. Mitchell

The weighted caching problem is presented in detail, with known results, in Sec-

tions 7.4 and 7.6. I recap the necessary de�nitions here. The weighted caching problem

is a k-server problem in which the cost to move a server to a point is equal to the weight
of the point, regardless of the source: dij = wj .

This chapter gives anO(log2 k)-competitive randomized algorithm for weighted caching
on (k + 1)-point spaces (also known Cat-and-Mouse problems or Pursuit-Evasion games
[BKRS92]). We also give an
(log k) lower bound on the competitive ratio of any such
algorithm, extending and simplifying results of [KRR91].

All work described in this chapter was joint with Avrim Blum and Merrick Furst.
The techniques described here, combined with a recent result of Yair Bartal's [Bar96],
led (with substantial modi�cations and improvements) to a much more general result,
solving the problem described here not just for weighted cache spaces, but for any metric

space (with an increase from O(log2 k) to O(log6 k) in the competitive ratio). That work

was joint between Yair Bartal, Avrim Blum, and Carl Burch, and myself, and is described

in [BBBT96]. The work described here bene�ted from the presentation worked out in
[BBBT96], and in particular from Carl Burch's suggestion of a potential function for

weighted cache spaces.

8.1 De�nitions and Preliminaries

An algorithm for the k-server problem on a (k + 1)-point metric space can be viewed as

controlling the position of a hole (the point without a server) which moves whenever its

location is hit by a request.

150 Weighted Caching

We consider randomized algorithms in the oblivious adversary model. In this model,

the adversary does not know the location of the hole, but it does know the online al-

gorithm. Therefore at each point in time, the adversary knows the distribution of the

location of the hole, as induced by the algorithm, but does not know which element of

the distribution was chosen by the algorithm's coins. It will be convenient to view a

randomized algorithm as maintaining a set of probability masses, one for each point in

the space, that sum to 1 and correspond to the location of the hole. If the algorithm

wishes to move a probability mass p for a distance d (for instance, when the point at

which the probability mass is located is requested), then it pays a cost pd to do so.

Given a sequence of requests, de�ne OPT(i) to be the optimal o�-line cost of servicing

the requests and ending with the hole at point i.1 Notice that it is always the case that
jOPT(i) � OPT(j)j � dij , and that a request to point i does not change OPT(j) for

j 6= i.

8.2 The Super-Increasing Algorithm

This section gives an O(log k)-competitive randomized algorithm for a particular (k+1)-
point space called the super-increasing space. Section 8.3 uses this algorithm to develop
an O(log2 k)-competitive randomized algorithm for any (k + 1)-point weighted cache
space.

8.2.1 Overview of the Super-Increasing Algorithm

The (k + 1)-point super-increasing space is de�ned as follows.2 The points are labeled
0; 1; : : : k and for j < i, the distance dij = di = 2i�2. Point 0 is called the origin. For this
space I show the following theorem:

Theorem 5 There is an O(log k)-competitive algorithm for the super-increasing space

on (k + 1) points.

The high-level idea of the algorithm is to assume recursively that one has an ri�1-
competitive algorithm for the super-increasing space on points 0; 1; : : : ; i� 1, and to use
that to create an ri = (ri�1 + c1=c

ri�1

2)-competitive algorithm when point i is added,

for some constants c1; c2 > 1. This will su�ce to show the theorem, as the following
intuition shows. Consider the smallest positive i0 such that ri0 � logc2 k. For all i � i0

1This value is sometimes called the work function.
2This de�nition is somewhat di�erent from the super-increasing space used by [KRR91] in which

distances increase at an even faster rate.

8.2 The Super-Increasing Algorithm 151

we must have ri � ri+1 � ri + O(1=k). Therefore, the �nal ratio, rk, can be no larger

than O(log k).

Thus, the di�culty is to add a single ith point to an (i � 1)-point space with only

a tiny increase in the competitive ratio. Recall that the \hole" of a space is the single

point of the space not occupied by a server. Consider a sequence of accesses to the initial

(i� 1)-point space, followed by a single access to point i. The algorithm begins with its

hole in the (i � 1)-point space. As the adversary continues to request points from that

space, the algorithm slowly moves its probability mass (the probability of the hole being

located at any given point) towards point i, using probabilities based on the algorithm

of [KMMO94] for 3-point spaces. Finally, when point i is requested, all the probability

mass moves back to the (i� 1)-point space and the process is repeated.

To counter such an algorithm, the adversary may adopt one of two strategies. First,
it may plan to move its hole to point i immediately, and the sequence will contain a large
number of requests to the inner space that will be free for the o�ine solution. Second,
it may plan never to move its hole to point i, and may present only a short sequence of

accesses to the inner space followed by a request for point i. If the algorithm moves its
probability mass too slowly to point i then the adversary will adopt the �rst strategy;
if the algorithm moves its probability mass too quickly, the adversary will adopt the
second strategy. The algorithm must balance these two costs so the adversary will have
no obvious winning strategy.

This is the same high-level idea used in [BKRS92] for \su�ciently unbalanced" spaces.
One di�culty in this case, however, is that because distances are growing only by factors
of 2 (as opposed to factors of p(i) for a su�ciently large polynomial p as required by
[BKRS92]) we need to be particularly careful about our inductive assumptions and the
way in which the algorithm for an i-point space interacts with the algorithm for a larger

containing space.3

Let Algi denote the algorithm for the space of points f0; 1; : : : ; ig. Algi will be given a
probability mass (that may be less than 1) which it is responsible for distributing across
the points in its space. Algi will also need to handle requests by Algi+1 to either give or

receive probability mass.

In fact, the algorithm for the space f0; 1; : : : ; ig will be explicitly aware that its total
probability mass is some quantity P that may be less than 1. This value P in general will

be slowly decreasing as probability gets drawn out of the space by the parent algorithms.

Unfortunately, Algi+1, Algi+2 and so on may also pass probability back to Algi. We will

3One di�culty roughly is as follows. We would like to assume inductively that for each increment

in the o�-line cost, the algorithm for points 0; 1; : : : ; i � 1 pays only ri�1. However, the result for the

(i+1)-point space will be just an algorithm whose amortized cost per o�-line increment is ri�1+c1=c
ri�1
2 .

Therefore we need to put some sort of amortization into our assumption, and be careful to maintain it

inductively.

152 Weighted Caching

adopt the invariant that all such probability is placed at point i, and a potential function

always contains enough potential to move all probability at point i back to Algi�1 without
charge.

In order to show competitiveness, I require a formal description of the o�ine cost.

At any point in time, the o�ine cost is exactly the minimum of the OPT values. But

the OPT values never di�er from one another by more than the diameter of the space,

which is a �xed constant independent of the sequence. So it is common to adopt a

particular OPT value, or even a convex combination of the OPT values, as the \o�cial"

de�nition of o�ine cost against which the algorithm must compete. In this case, we take

OPT(0) to be the o�ine cost. Whenever point 0 is requested, Algi will incur a local cost

for rearranging probability within Algi�1 and a movement cost for moving probability
to point i. The movement cost will also contribute to a potential function with the
property that there is always enough potential to move probability back from point i to

Algi�1 without cost. Thus, whenever point 0 is requested, I will show that the o�ine
cost increases by 1 and the online cost increases by no more than ri. When point i is
requested, the o�ine cost will not increase (since OPT(0) will not increase), but the
amortized cost to the algorithm will be 0 since the change in potential will entirely cover
the cost of moving probability from point i to Algi�1.

8.2.2 Formal Description of the Super-Increasing Algorithm

De�ne r1 = 1 and ri = c log i for i > 1, for some su�ciently large constant c.

Algi for i � 2 is de�ned as follows. Let r = ri�1 and d = di. Initially, and any time
point i is requested, all of its probability mass is given to Algi�1. By de�nition of the

super-increasing space, the value of OPT(0) increases in unit increments. The �rst time
that OPT(0) is incremented by 1, Algi moves a fraction c

der=4
of its probability mass from

Algi�1 to point i, where c is a su�ciently large constant. More generally, the tth time that
OPT(0) is incremented by 1, Algi moves the following fraction of its total probability

mass from Algi�1 to point i:
4

frac moved(i; t) =
c

der=4

�
1 +

r

3d

�t�1
(8.1)

If Algi is ever asked to give probability mass to Algi+1, then it does so by reducing

all its probabilities at a uniform rate (e.g., if it has P units of probability and is asked

for P=2 probability mass, then it reduces the probability at point i by half and it asks
Algi�1 for half its probability mass). If Algi is ever given probability from Algi+1 then it

places all the mass at point i.

4If this fraction is larger than the fraction of probability remaining within Algi�1 then it simply asks

for all of Algi's probability mass.

8.2 The Super-Increasing Algorithm 153

8.2.3 Competitiveness of the Super-Increasing Algorithm

Let us assume without loss of generality that the adversary never requests a point whose

probability mass is zero. The following is a useful lemma about our rules for moving

probabilities.

Lemma 1 If OPT(i) � OPT(0) � di=2 then the super-increasing algorithm places zero

probability on any of the points j < i.

Proof: Assume inductively that the lemma is true for points i+ 1; i+ 2; : : : ; k.

First, notice that after point i is requested, OPT(i) � OPT(0) + di=2. The reason is

that if i is requested, then OPT(i) = minj 6=iOPT(j) + dij . For j > i, by our inductive
assumption and the assumption that points of probability mass 0 are not hit we have
OPT(j)+dij > OPT(0)�dj=2+dj > OPT(0)+di=2. For j < i we have OPT(j)+dij �
OPT(0)� dj + di � OPT(0) + di=2 by de�nition of the di's.

Now, by our rules for moving probability mass, we have that if OPT(i) � OPT(0)�
di=2 then the total fraction of the probability mass initially given to Algi�1 that has been
moved over to point i is at least:

di�1X
s=0

�
c

dier=4

�
1 +

r

3di

�s�
=

c

dier=4

2
64
�
1 + r

3di

�di � 1�
1 + r

3di

�
� 1

3
75

=
3c

rer=4

"�
1 +

r

3di

�di
� 1

#

� 1: (for su�ciently large c)

The above lemma is needed for two reasons. First, it is important that if the values

of OPT(j) for j < i are constrained by OPT(i), meaning that the adversary can hit

them with impunity without increasing the OPT(j) values, then the algorithm should
not have its hole there. Second, it is important that for any j � 0, for all i � j, all the
algorithms Algi agree on the value of OPT(j) in order for the induction to go through.

This is formalized in the following lemma.

Lemma 2 During the course of the algorithm, for all 0 � j < i, OPT(j) < OPT(i)+di.

That is, OPT(j) is never constrained by OPT(i) for i > j.

Proof: Using our assumption that the adversary never requests a point that has zero

probability, if point j is requested then by Lemma 1 we have: OPT(i) > OPT(0)�di=2 �
OPT(j)� dj � di=2 � OPT(j)� di.

154 Weighted Caching

With these two lemmas in place, I can restate and prove the main theorem of this

section.

Theorem 5 There is an O(log k)-competitive algorithm for the super-increasing space

on (k + 1) points.

Proof:

As described above, a potential function will amortize the cost of moving probability

from point i to Algi�1. Let pi be the probability mass at point i. The potential function

for Algi, i > 1, is de�ned as

�i = �i�1 + 2pidi:

The potential �0 of a 1-point space is 0, and the potential �1 of a 2-point space is p1d1.
�k, the potential for the entire space, is given by

�k = p1d1 +
kX

i=2

2pidi � 2dk:

De�ne Camort(Algi) to be the amortized cost to Algi, or the actual cost incurred by moving
probability both within Algi�1 and to or from point i, plus any change in potential. Let
Pr[Algi] be the probability mass within Algi. We will inductively prove the following
property:

Property 1 Whenever any point j 6= 0 is requested, the amortized cost to Algi is 0.

Whenever point 0 is requested, so OPT(0) increases by 1, the amortized cost to Algi is

no more than Pr[Algi] � ri.

For the base case, Alg1 simply moves all its probability mass back and forth between
points 0 and 1. If the algorithm has p probability at point 0, and point 0 is requested,

the algorithm must pay pd1 = p=2. The change in potential is pd1 = p=2, so the total
cost to Alg1 is p. The o�ine cost increases by exactly 1 whenever OPT(0) is requested,

and so we can take r1 = 1, which is constant and therefore acceptable.

For the recursive case, I begin with a few de�nitions. The current phase of Algi is the
set of requests following the most recent request to point i (or the entire sequence so far

if point i has not yet been requested). Thus, a phase consists of a sequence of requests to
Algi�1 followed by a single request to point i, with possible intervening requests to points
j > i. Note that, until the phase ends, probability will leave for point i according to

Equation 8.1, and will leave for points j > i when enclosing algorithms draw probability
out of the entire i-point space, but no probability will enter Algi�1. This is because all
probability passed back to Algi from Algi+1 is deposited at point i, and never enters
Algi�1 until the end of Algi's phase. If we ignore any probabiliy that leaves Algi, we can

8.2 The Super-Increasing Algorithm 155

write the total fraction of probability that has left Algi�1 for point i after the t
th request

of the phase:

total frac moved(i; t) =
tX

j=1

frac moved(i; j)

=
tX

j=1

c

der=4

�
1 +

r

3d

�j�1

=
3c

rer=4

"�
1 +

r

3d

�t
� 1

#

Next, we take into account that some probability may have left Algi altogether, but
that no probability from outside Algi may have entered Algi�1 during this phase. We use
this fact to upper bound the actual probability (rather than the fraction of probability)
moving from Algi�1 to point i during the t

th request of the phase. Let Pr[Algi�1; t] be the
probability mass of Algi�1 after servicing the t

th request of the phase, and �Pr[Algi�1; t]
be the amount of probability that moves from Algi�1 to point i during the t

th request of
the phase. Then:

�Pr[Algi�1; t] � Pr[Algi; t]frac moved(i; t) (8.2)

Next, we bound Pr[Algi�1; t]. Since a fraction of the current probability mass of Algi
departs Algi�1 at each round, the current split of probability between Algi�1 and point i
is not inuenced by mass drawn out from Algi. This is because mass is drawn out from
each piece according to the mass of that piece. If no probability has been deposited at
point i by Algi+1 then after t requests to point 0, the fraction of Pr[Algi; t] residing at
Algi�1 will be total frac moved(i; t). If Pr[Algi] has increased since the start of the phase
by mass arriving at point i from Algi+1, then during a particular request more probability

may leave Algi�1, and the actual probability (rather than the fraction) at Algi�1 may
actually be smaller:

Pr[Algi�1; t] � Pr[Algi; t](1� total frac moved(i; t)) (8.3)

The amortized cost to Algi in servicing the tth request to point 0 during a phase has
three components: the local cost within Algi�1, the movement cost of moving probability

to point i, and the change in �i. I consider each in turn. First, let Cactual(Algi�1; t)
be the local cost to Algi�1, the actual (non-amortized) cost incurred by Algi�1 in ser-
vicing a request to point 0. Since the amortized cost by induction is Camort(Algi�1; t) =
Cactual(Algi�1; t)+��i�1 � r Pr[Algi�1; t], we can write the actual cost as Cactual(Algi�1; t) �
r Pr[Algi�1; t]���i�1. Second, the movement cost will be exactly d�Pr[Algi�1; t]. Third,

156 Weighted Caching

we consider the change to �i: the 2dipi term will increase by 2d�Pr[Algi�1; t] as more

probability arrives at point i, and the �i�1 term will increase by ��i�1.

We can now complete the analysis:

Camort(Algi; t) = (local cost within Algi�1) + (movement cost to point i) + (��i)

�
local costz }| {

Pr[Algi�1; t]r ���i�1 +

movement costz }| {
d�Pr[Algi�1; t] +

��iz }| {
2d�Pr[Algi�1; t] + ��i�1

� Pr[Algi; t](1� total frac moved(i; t))r + dPr[Algi; t]frac moved(i; t) +

2dPr[Algi; t]frac moved(i; t)

� Pr[Algi; t](1� total frac moved(i; t))r + 3dPr[Algi; t]
c

der=4

�
1 +

r

3d

�t�1

� Pr[Algi; t]r� Pr[Algi; t]r
3c

rer=4

"�
1 +

r

3d

�t
� 1

#
+

3c

er=4

�
1 +

r

3d

�t�1

� Pr[Algi; t]r+ Pr[Algi; t]
3c

er=4

= Pr[Algi; t]
�
r +

3c

er=4

�
= Pr[Algi; t]ri

Globally, the derivation above, including the idea expressed in Equation 8.2, assumes

that the nested algorithms work as follows. When point 0 is requested, �rst Algk draws
as much probability as it chooses from Algk�1. The probability mass at points within
Algk�1 decreases, which results in a decrease in �k�1, but we allow this decrease to take
place without o�setting it against anything. Of course, the global potential increases,
because all that probability ends up occupying a more expensive point (a point with

a larger d value), but the increase to the potential is paid for by the movement of

Algk, and does not require a more careful accounting of the internal potentials. Once

this operation completes, Algk�1 rearranges itself by drawing probability from Algk�2
to point k � 1, using the movement to pay for an increase in �k�1. Thus, the local

cost to Algi�1 is scaled by the resulting probability Pr[Algi�1; t] rather than the initial

probability Pr[Algi�1; t� 1].

It remains to show that accesses to points other than point 0 have amortized cost 0.
Again, let i > 0 be some other point. The actual cost incurred by Algi in servicing a hit

to point i is pidi to move all the probability to point i � 1. The change in potential is

��i = �2pidi + ��i�1 where the only change to the potential in Algi�1 is due to the

arrival of pi units of probability at point i � 1: ��i�1 = 2pidi�1. The overall cost is

8.3 The Mark-And-Jump Algorithm 157

therefore:

Camort(Algi) =

actual costz}|{
pidi +

��iz }| {
�2pidi + 2pidi�1

= pidi � 2pidi + 2pi(di=2)

= 0

This shows that Property 1 is maintained, and therefore completes the proof of The-

orem 5.

We now use this algorithm as a black box in developing the general algorithm for
(k + 1)-point metric spaces.

8.3 The Mark-And-Jump Algorithm

In this section we present theMark-And-Jump Algorithm for (k+1)-point weighted cache
spaces. We show a competitive ratio of O(log2 k).

Let M = fm1;m2; : : : ;mk+1g be a weighted cache metric space and let wi be the

weight of the ith point. We adopt the formulation that dij = wi, so when the hole is at
mi and the adversary requests mi, the algorithm will pay wi to service the request.

We breakM into a number of levels Lj as follows. Lj = fmij2j�3 � wi < 2j�2g. Each
level can be treated as a uniform space, since the cost to service a miss at any point is
within a factor of two of any other point in the level.

The Mark-And-Jump algorithm will use the algorithm of Section 8.2 for the super-
increasing space as a black box. We will call that algorithm S. Intuitively, each point

of the super-increasing space used by Swill correspond to a level of the actual space M .
Our algorithm will make requests to Swhenever certain conditions are met in M , and
will then move the hole between levels whenever Smoves its hole between points.

Our algorithm will also use the Marking Algorithm of [FKM+91]; for completeness

I de�ne the algorithm here. The k servers begin on marked points 1 : : : k. Whenever a

point is requested, it is marked. Whenever k+1 points are marked, all marks except the
most recent one are erased. If the requested point has no server then a server is chosen

uniformly from the servers occupying unmarked vertices.

The Mark-And-Jump algorithm begins with the hole at level 1. It schedules on each

level using the Marking Algorithm, although of course it does not pay at levels that do not

contain the hole. Once an entire level (say Lj) is marked, the algorithm issues a request

158 Weighted Caching

for point j to S. We maintain the invariant that if S's hole is at point i then the hole

of the Mark-And-Jump algorithm is in level Li. If Smoves its hole, the Mark-And-Jump

algorithm will do likewise.

More formally, all points of M begin unmarked. When a request arrives for a vertex

in Lj, we �rst mark the vertex. If some point of the level is not yet marked (i.e., this

request did not mark the entire level) then if the vertex has a server we return, and

otherwise we move a server uniformly from those servers located at unmarked vertices of

Lj , and then return.

If all points of Lj are now marked, we remove all but the most recent of those marks.

We then submit a request for point j to S and if the hole is at Lj we move the hole to

a uniformly chosen unmarked vertex of the level chosen by S. This guarantees that the
requested vertex has a server. We show the following theorem:

Theorem 6 The Mark-And-Jump algorithm is O(log2 k)-competitive.

Proof:

Since the number of points at each level is bounded by k, the Marking Algorithm is

O(log k)-competitive against any adversary that keeps its hole at that level. Intuitively,
at each level Li we incur a log jLij-factor loss, and our total cost at each level incurs a
log(number of levels)-factor loss from the algorithm for the super-increasing space.

Let � = �1�2 : : : be a sequence of requests inM being serviced by the Mark-And-Jump
algorithm. Since � is �xed, there is a �xed sequence � = �1�2 : : : of requests to S, where,
for instance, �1 is a request for point j such that level Lj is marked before any other
level.

First we relate the cost to the optimal o�-line algorithms for M under � , and for the
super-increasing space under �:

Lemma 3 OPT(�) � 4OPT(�)

Proof: Given an o�-line strategy for sequence � we will �nd an o�-line strategy for
sequence � whose cost is at most 4 times larger. For simplicity, we may assume that the
o�-line strategy for � is lazy; that is, it moves a server only when its hole is requested.

If the algorithm servicing � begins at a point in level Li, we begin at point i of the

super-increasing space. We assume further that all distances within level Li are exactly
di = 2i�2; this will change the optimal o�-line cost by at most a factor of 2. Thus, we
may assume that the o�-line strategy for � always places the hole at the point of a level
that will be requested last. Once its hole is hit, all elements of the level are marked so

a request is generated in �. If the algorithm for � moves its hole to level Lj , we move

our hole to point j. If j = i we pay twice as much as the strategy for � because we must
move away and return; otherwise we pay the same amount. Continuing in this way, the

8.3 The Mark-And-Jump Algorithm 159

o�-line cost for � is no more than twice the cost for servicing � with cost di at each level,

which is no more than twice the cost for servicing � as given; thus, OPT(�) � 4OPT(�).

Next, we relate the online costs of Sand the Mark-And-Jump algorithm. LetMark-And-Jump

be the Mark-And-Jump algorithm for M .

Lemma 4 Mark-And-Jump(�) � (Hk + 1)S(�) + c

Proof:

The super-increasing algorithm as given will move probability from Algi�1 to point
i when point 0 is hit. This means that a server could move from point k � 1 to point
k as a result of a request to point 0. We assume a lazy version of the algorithm that
remembers the actual location of the hole in the standard version of the algorithm, but
waits to actually move the server until the hole is hit. Clearly, the cost incurred by the

lazy version will be no greater than the cost incurred by the original. In the lazy version,
we observe that if the hole of Mark-And-Jump is in level Li for part of a phase of Li

then it must be in Li for the entire phase, as the hole moves between levels only as a
result of requests to S, which occur only at the end of a phase. Since the algorithm is
lazy, if the hole is in Li and a phase of the Marking Algorithm ends for Lj, the hole will

not move from Li as a result of the request generated by Lj .

Next we note that if the hole is in Li then the corresponding hole of Smust be at point
i, so when the phase of Li completes, Swill pay at least di. The analysis of the Marking
Algorithm from [FKM+91] makes it clear that the expected cost to the algorithm over

the course of a phase is bounded by the cost to move Hk servers, with no amortization
(the proof of [FKM+91] uses amortization in the lower bound on the cost to the o�ine
algorithm, but we require only a bound on the online algorithm's cost here). Each phase
of the marking algorithm that actually incurs cost (because the hole is at that level during

the phase) can therefore be associated with the request to Sat the end of the phase, and

the cost incurred by the Marking Algorithm is bounded by Hk times the cost incurred
by Sto service the request. If the �nal phase of the sequence does not complete, there

will be no request to Swith which it is associated, which introduces a constant additional
additive cost of as much as c = Hkdmax, independent of �. Therefore, the cost incurred

by moving servers within a level is bounded from above by HkS(�) + c. Likewise, the

cost incurred to move servers between levels is no more than the cost incurred by S, since
each point within a level has weight no greater than the weight of the associated point
of S. Thus, the total cost to Mark-And-Jump is no greater than HkS(�) + c for costs

within a level, plus S(�) for costs between levels, for a total of (Hk + 1)S(�) + c.

160 Weighted Caching

To complete the proof of the theorem, Theorem 5 shows that S(�) � O(log k)OPT(�).

Therefore, we may string together the two previous lemmas as follows:

Mark-And-Jump(�) � (log k + 1)S(�) + c

� (log k + 1)O(log k)OPT(seq) + c+ c1

� O(log2 k)OPT(�):

Corollary 7 There is an O(log2 n)-competitive algorithm for the MTS problem on any

weighted-cache space.

8.4 Lower Bounds for Weighted Caching

Theorem 8 The competitive ratio of the k-server problem on any (k+1)-point weighted-
cache space is
(log k).

Proof: Let us �rst assume that the metric space satis�es the following conditions. The
points are labeled 0; 1; : : : ; k, and the distance is dij = maxfwi; wjg. Clearly, distances
in this space are within a factor of 2 of distances in the traditional version given by
dij = 1=2(wi + wj).

Furthermore, we assume that each wi is a power of 2 and that the wi's are non-
decreasing. Once again, this changes the distances by no more than a factor of 2. We
de�ne w0 to equal w1, which does not change the distance at all.

The adversary's (randomized) strategy is simply at each time step to request point i
with probability 1=(�wi) where � =

Pk
i=0 1=wi. Notice that the expected cost per request

of any on-line algorithm is at least 1=�: if the algorithm is currently at point i, then
the probability it is hit is 1=(�wi) and if hit it must pay at least wi to move. Thus, to

prove the lower bound we just need to describe an o�-line strategy whose average cost

per request is O(1=(� log k)).

Consider a long sequence of requests. Partition the sequence into intervals of length
1
2
�wk ln k. For each interval, the probability that there is no request to point k inside

that interval is (1 � 1=(�wk))
1

2
�wk lnk � e�

1

2
lnk = 1=

p
k.

Let us \shade in" those good intervals to represent that we know what to do then:
namely, the o�-line algorithm will move to point k at the start of the interval, wait out

the 1
2
�wk ln k requests, and then move back to the origin, paying cost only O(wk). Now

consider the unshaded intervals. If wk = 2twk�1 (where t may equal 0) we split each

8.4 Lower Bounds for Weighted Caching 161

unshaded interval into 2t equal parts, and we think of each part as an interval of length
1
2
�wk�1 ln k. For each of these intervals, consider the good event G that it contains no

request to point k�1. Notice that this is the same random process as before, except that

we are conditioning on the event that there was at least one request to point k inside

the original interval. However, this only increases the probability of our desired event

G. (More generally, the probability there is no request to point i in some interval I is

only increased if we condition on the event that there were requests to points i1; i2; : : : in

intervals I1; I2; : : : � I.) Therefore, again there is at least a 1=
p
k chance of each interval

being \good" for point k�1. As before, we shade in the good intervals, split the unshaded
intervals as necessary, and recurse. After we complete this entire process, the expected

fraction of the entire request sequence that remains unshaded is (1�1=
p
k)k = �(e�

p
k).

Our �nal algorithm is in shaded intervals to move to the associated point and pay only
O(1=(� log k)) on average per request, and for the remaining requests to simply shuttle
between the origin and its nearest neighbor, paying O(w1) per request. We note that
since

Pk
i=0 1=wi = �, we must have w1 � (k+1)=�, so we are paying at most a factor of k

more than the on-line algorithm on the unshaded regions. Because only a small fraction

of points are unshaded, our overall average cost per request remainsO(1=(� log k)), which
is a factor of
(log k) less than any on-line algorithm.

Corollary 9 An on-line algorithm for any weighted caching task system has competitive

ratio
(log n).

162 Weighted Caching

Chapter 9

Free Time

Idle hands do the devil's work

| Traditional

In this chapter we describe the free-time model and show its connection to weighted

caching. The results in this chapter are all joint with Avrim Blum and Merrick Furst.

9.1 Introduction to Free Time

In the traditional model of on-line computation, an algorithm is asked to process a
sequence of requests. Each request is presented after the algorithm has completed pro-

cessing the previous one and the cost of the algorithm is the cumulative time or work
needed. In many natural on-line settings, however, requests may arrive infrequently in
relation to the speed of the algorithm. In these situations, it makes sense to model an

algorithm as having free time, for which it is not charged, between the servicing of one
request and the arrival of the next. For instance, in the typical \servers are �re trucks"

example, one rightly cares much more about the time it takes to get a �re truck to a �re
once a call has been made and cares much less about any time spent moving trucks to

resting places while there are no �res to attend to. In general, in computing situations, if
the process issuing requests is substantially slower than the process serving requests then

the server is liable to have a fair amount of free time at its disposal between demands.

In these situations it makes sense for the serving algorithm to use the free time between

requests to position itself advantageously, rather than idly waiting for the next thing to

do.

We consider the following model: whenever a request arrives, the server algorithm

must service it and the charge is the standard notion of cost. However, once the request

164 Free Time

is serviced, the server algorithm may adjust its con�guration as desired without charge

(in Section 9.6 we consider the situation in which the free time is bounded). The cost

of running a server algorithm with free time is compared with the cost of running the

optimal o�-line server algorithm without free time.1

In the last section we gave an O(log2 k)-competitive randomized algorithm for (k+1)-

point weighted-cache spaces. We will now present an O(log2 k)-competitive algorithm for

general (k+1)-point spaces in the free-timemodel by reducing the problem to a standard

server problem on a weighted cache space. We also show that the
(log k) lower bound

for arbitrary weighted cache spaces mentioned above generalizes to algorithms with free

time.

Unlike the standard on-line model for which there exists a general
(
q
log k= log log k)

lower bound [BKRS92], we show that there exist metric spaces in which one can achieve
a constant competitive ratio in the free-time model. (Interestingly, these are exactly
the types of spaces proven to have an
(log k) lower bound in the standard model by

[BKRS92].)

In addition, we show that even with free time, there is an
(k) lower bound on
the competitive ratio for any deterministic algorithm and any space, and thus, without
randomization, free time helps by at most a constant factor.

In the free-timemodel an algorithmmay prepare in any way it likes for future requests

although it has no knowledge about what those future requests might be. A natural vari-
ant of this model gives the server algorithm some access to information about future
requests in the form of possibly erroneous hints. Some care is needed to make a meaning-
ful de�nition of hints. We describe a natural model in which there is a free-time server
algorithm for general spaces with an O(log k+(1�p) log2 k) competitive ratio if the hints

are correct with probability p.

It is also reasonable to assume that in many cases the free time available to an on-line
algorithm is bounded. That is, only a limited amount of free work can be done between

requests. We show that, even so, in some circumstances, bounded free time provides all

the bene�ts of unlimited free time. In particular, for the k-server problem on (k+1)-point

metric spaces corresponding to unweighted graphs, free time that is only logarithmic in

the diameter of the space is su�cient to provide all the bene�ts of unlimited free time
(up to constant factors). Furthermore, even if free time is limited to be constant, the

competitive ratio increases at most logarithmically with the diameter.

In the �nal sections of the paper we present an algorithm that a computer might use
to preprocess potential future commands while waiting for a user to type. The algorithm

takes into account the relative durations of possible future instructions.

1For server problems, the optimal o�-line cost with free time is 0.

9.2 Free Time and Weighted Caching 165

9.2 Free Time and Weighted Caching

The k-server problem with free time is de�ned as follows. An algorithm for this problem is

presented with elements from a sequence of requests just as in the traditional model. But

after a request has been serviced, the algorithm may perform any set of server movements

without cost, before the next request is presented.

In this section, we begin by giving a straightforward reduction from general (k + 1)-

point metric spaces with free time to weighted caching without free time. We then

explore the model by presenting a series of extensions to other domains, answering some

questions, and phrasing some open problems.

Theorem 10 For any metric space on (k + 1) points with free time, Mark-And-Jump

yields an O(log2 k)-competitive algorithm. For any approximate star space on (k + 1)
points with free time, no algorithm can have competitive ratio better than
(log k).

Proof: First we show the upper bound. For any metric space, we associate with each
point j a value wj = mini dij. Since we have only (k + 1) points, there is only one hole.
Whenever the adversary requests a point j that is the location of the hole, the algorithm

will move the server from the nearest point i (at cost wj | we adopt the variant of
weighted caching in which dij = wj) and will then move the hole to a more desirable
location during free time.2 Thus, any algorithm for the induced weighted cache space
can be applied with no additional cost to the original space with free time. We must also
show that the optimal o�-line cost for a request sequence in the weighted cache space is
no greater than the cost to the o�-line adversary in the original space. But this follows

immediately because distances in the original space are at least as great as distances in
the weighted cache space, and the o�-line adversary is not allowed to use free time.

Second we show the lower bound. The proof of Section 8.4 presents a particular
sequence. The o�-line cost in the free time model is identical to the o�-line cost in the

original model. So we must show that the calculation of expected cost to the algorithm
(over the randomly chosen sequences) is still valid when the algorithm is augmented with

free time. This is clear because after the free time �nishes, there will be some distribution

over the points of the space describing the position of the hole, and the proof of the lower

bound holds for any such distribution (we are using the fact that, during free time, the

algorithm has not seen the next request.) This completes the theorem.

2Note that this reduction does not require symmetry in the original space.

166 Free Time

9.3 Deterministic Algorithms With Free Time

In this section we show that deterministic algorithms with free time cannot perform

substantially better than their counterparts in the traditional model. Speci�cally, we

show that for any metric space on at least (k+1) points, no deterministic server algorithm

with free time can be better than (k + 1)=2-competitive. In light of results of [PK94],

who show that the Work Function algorithm for the standard k-server problem is 2k�1-
competitive, free time provides at best a small improvement.

Theorem 11 For any metric space on at least (k+1) points, no deterministic algorithm

for the k-server problem with free time can be better than (k + 1)=2-competitive.

Proof: Recall that OPTi is the optimal cost of servicing the requests and ending with
the hole at point i. Fix (k+1) points in the metric space, and let di be the distance from

point i to its nearest neighbor. The adversary strategy is simply to request wherever
the on-line algorithm's hole is currently located. Thus, if the hole is at point i, then
the algorithm pays cost at least di. On the other hand, OPT(i) increases by at most
2di because the o�-line algorithm could always move its hole from point i to its nearest
neighbor and back, at cost 2di. So, if we identify the o�-line cost with the average of
the OPT values, then the ratio of the algorithm's cost to the o�-line cost is at least

di=(2di=(k + 1)) = (k + 1)=2.

In fact, there exists a (natural) metric space in which one can achieve a deterministic
ratio of (k + 1)=2 with free time, in contrast to the lower bound of k [MMS90] in the
standard model.

Theorem 12 For the metric space of (k+1) equally spaced points on the line, there is a

deterministic k-server algorithm with free time that achieves competitive ratio (k+1)=2.

Proof: Label the points in the space as 0; 1; : : : ; k and assume the o�-line algorithm

begins with its hole at point 0. OPT(i) is always odd when i is odd and even when i is

even. The on-line algorithm places its hole at some point i such that OPT(i) is a local
minimum: i.e., OPT(i) < min(OPT(i � 1);OPT(i + 1)). When the on-line algorithm's
hole is requested, the algorithm pays cost 1 to move it to an adjacent location, and then

in its free time it moves to another local minimum. On the other hand, OPT(i) increases

by 2 since it must increase (because it is a local minimum) and cannot change parity.
Therefore, the average increase in the OPT values is at least 2=(k + 1).

9.4 Achieving Constant Competitive Ratio 167

9.4 Achieving Constant Competitive Ratio

We have proven above that there is an
(log k) lower bound on the competitive ratio of

an on-line algorithm with free time for any approximate star space. In this section we

show that there exist spaces for which the competitive ratio with free time is constant,

and without free time is
(log k).

De�nition 1 For function f(), the f-dumbbell space on n points (assume n is a power

of 2) is de�ned as follows. If n = 2 then it consists simply of two at distance 1 apart.

Otherwise, it consists of two f-dumbbell spaces M0;M1 each on n=2 points, separated

from each other by distance f(n). That is, every point in M0 is distance f(n) from every

point in M1.

Theorem 13 For f(n) = 2n, the (k + 1)-point f-dumbbell space has randomized com-

petitive ratio at most ck+1 = 2 � 1=(k + 1) in the free-time model.

The base case k = 1 is clear, so assume inductively that there is a c(k+1)=2-competitive
algorithm for the (k+1)=2-point space. The general algorithm is essentially the same as

that in [BKRS92], with appropriate use of free time.

As noted in [BKRS92], we may assume that on any sequence of requests causing the
o�-line cost of the (k + 1)=2 point space to increase by s, the on-line cost is at most
c(k+1)=2 � (s + dinternal), where dinternal is the diameter of that space. For i = 1; 2, let
OPT(Mi) denote the optimal o�-line cost of servicing the requests so far and ending
with the hole in space Mi. Let us say that initially the hole is in space M0, so initially
OPT(M0) = 0 and OPT(M1) = f(k + 1).

The algorithm's strategy is simply this. Let d = f(k + 1). If the value of OPT(Mi)

increases by s = d=(k + 1)2, then move s=d probability mass from Mi to M1�i. (If

there is already zero probability mass on Mi then do nothing). So, at any point in
time, the amount of probability mass on one of the spaces Mi is one of the values
f0; s=d; 2s=d; : : : ; 1 � s=d; 1g. We may do our movement between the two spaces in

our free time, so we do not have to pay for it. Our movement schedule ensures that if

OPT(Mi) = OPT(M1�i) + d then we have zero probability on space Mi. Therefore, we
may assume that OPT(Mi) is never constrained by OPT(M1�i).

To calculate our cost on a sequence of requests, we can partition the sequence into
intervals in two ways. Partition P0 is a partition of the sequence into intervals that cause

OPT(M0) to increase by s, and P1 is a partition into intervals that cause OPT(M1) to
increase by s. Let us pair up our cost incurred in space M0 inside an interval of P0 in

which our probability mass on M0 decreases from p to p � s=d with our cost incurred

in space M1 in an interval of P1 in which our probability mass on M0 increases from

168 Free Time

p � s=d to p. (Our total cost on unpaired intervals is �nite.) In such a pair of intervals,

the average o�-line cost increases by s and our total cost is at most:

pc(k+1)=2(s+ dinternal) + (1� p+ s=d)c(k+1)=2(s+ dinternal)

= c(k+1)=2(1 + s=d)(s + dinternal)

= s(ck+1 �
1

k + 1
)(1 +

s

d
+
dinternal

s
+
dinternal

d
)

� sck+1

by our choices of dinternal � s� d.

9.5 Hints And Free Time

One of the advantages of the free time setting is that it allows a more meaningful incor-
poration of \hints" about the future into the competitive model. It is well-known that in
the standard model an adversary can modify a sequence so that a �nite window into the
future will not help an algorithm. But in the presence of unlimited free time, a window
showing the next request will allow an algorithm to incur no cost. Thus, it is natural to

consider hints that have some probability of error.

We now present two models of next-request hints with errors. In the �rst model,
the adversary chooses a �xed request sequence. After presenting an element of the
sequence, the adversary gives a \hint" that with probability p is the next element, and
with probability 1 � p is arbitrary. We refer to this model as the \adversarial request
sequence" model.

In the second model the adversary chooses a sequence of hints and presents the

appropriate hint at each round. With probability p the actual request is the hint, and
with probability 1 � p the actual request is arbitrary. We refer to this model as the

\adversarial hint sequence" model.

We begin by analyzing the uniform metric space with free time and hints for these
models.

Theorem 14 In the adversarial request sequence model with hint probability p, there is

a (1 + (1 � p) log k)-competitive algorithm for the k-server problem on the (k + 1)-point
uniform space. On the other hand, for p 6= 1, there remains an
(log k) lower bound for

the adversarial hint sequence model.

Proof: Let the points of the space be labeled 0; : : : ; k. We consider �rst the adversarial

hint sequence model. The adversary chooses two streams, a hint stream whose requests

9.5 Hints And Free Time 169

are all for point 0, and a request stream whose elements are chosen uniformly from

0; : : : ; k. At each step the adversary passes the algorithm a hint from the hint stream.

Then with probability p the true request is the hint, and with probability 1� p the true

request is the corresponding element from the request stream. The o�-line algorithm will

always keep its hole away from point 0, and the hints provide no additional information

to the algorithm. Thus, the analysis of [FKM+91] (or Theorem 8) shows an
(log k)

lower bound on the performance of the algorithm.

Now we consider the adversarial request sequence model. We modify the marking

algorithm of [FKM+91] to take advantage of hints. Recall that at each request to an

unmarked vertex, the marking algorithm �rst marks the vertex and then if no server is

present, moves a random unmarked server (chosen uniformly) to the vertex. Once all
vertices are marked, the phase ends and all vertices are again unmarked. We modify the
algorithm as follows. If the hint is for a marked vertex, we do nothing. Otherwise we
move a server to the hint so as to guarantee that the location of the hole is uniformly
distributed across the unmarked vertices that are not the hint. (One way to do this is
simply to move the server from the previous hint if it so happens that there is no server

already at the current hint.) If there is only 1 remaining unmarked vertex, we do not use
the hint.

Consider the cost to our algorithm for a single phase. For the ith request of the phase
to an unmarked vertex, where 1 � i � k, with probability p we pay nothing and with

probability 1� p we pay 1=(k + 1� i). Finally, for the (k +1)st request to an unmarked
vertex we pay 1. So, the cost to our algorithm is

1 + (1� p)
kX

i=1

1=(k + 1� i) � 1 + (1� p) log k:

So for p < 1 � 1= log k our cost decreases linearly in the probability that the hints are

correct. For hints with a greater probability of correctness, however, the cost remains 1

per phase.

Now consider the case of general (k+1)-point metric spaces with hints and free time.

The strategy used above can be applied directly to the \Mark" portion of the \Mark
and Jump" algorithm discussed in Section 8.3. Thus, hints allow for competitive ratio

O(log k + (1� p) log2 k) for general spaces.

Corollary 15 There is an algorithm with competitive ratio O(log k + (1 � p) log2 k) for
general (k+1)-point spaces in the adversarial request sequence model with hint probability

p.

170 Free Time

9.6 Bounded Free Time

In this section, we extend our results for unlimited free time to a model in which a limited

amount of free time is available after each request. More formally, if an algorithm has

free time F , the algorithm may perform operations with total cost less than or equal to

F between requests, without charge.

We restrict our attention to algorithms that are lazy in the sense that they move the

hole only when the adversary hits the hole; we do not know whether a loss of generality

is involved in this claim (no loss of generality is involved for the traditional model |

see [MMS90]). All algorithms given in this paper are lazy, or can be converted to lazy

algorithms in a straightforward manner.

Finally, we restrict our attention to metric spaces whose points are nodes of an un-
weighted graph, and whose distances are given by the shortest path between the points.
Let D be the diameter of the space. We show the following theorem:

Theorem 16

1. Any server algorithm with unlimited free time and competitive ratio r can be con-

verted to an algorithm with constant free time and competitive ratio r logD.

2. Any server algorithm with unlimited free time can be converted to an algorithm with

logD free time and the same competitive ratio (to within a constant).

Proof:

Before proving the theorem, we require one lemma:

Lemma 5 With free time F it is possible to traverse a path of length L with cost bounded

by (4=F) log(L=F).

Proof: We show that after n steps it is possible to be randomly located among the
�rst nF steps of the path. Clearly this is true for n = 1. Assume true for some n, we will
prove it true for n+1. If we are located uniformly at random at one of nF locations along

the path, break these locations into n batches of F points each. For points in batch i,

with probability i=(n+1) we jump forward F steps, and with the remaining probability

we remain in place.

Assume that p = 1=nF is the probability that we begin at each of the �rst nF points.

The new probability of being at a point in batch 1 is

�
1 � 1

n+ 1

�
p =

n

n+ 1
� 1

nF
=

1

(n+ 1)F
;

9.6 Bounded Free Time 171

which is the correct value. For batch n+ 1, the �nal probability of being at a particular

point is pn=(n+1) = 1=((n+1)F), again the correct value. For batch i where 2 � i � n,

the �nal probability of landing at a point in batch i is given by the probability of starting

at that point and remaining there, plus the probability of starting one batch earlier and

jumping to the current batch:

p

�
1� i

n+ 1

�
+ p

i� 1

n + 1
= p

�
n+ 1 � i

n+ 1
+

i� 1

n+ 1

�
=

pn

n+ 1
=

1

(n+ 1)F
:

Thus in L=F steps it is possible to be located at a random location between 1 and

L. After the �rst step, the adversary can hit the algorithm with probability no greater

than 1=F . After the second step, the probability is no greater than 1=(2F), then 1=(3F)
and so on. We assume that if the algorithm is hit, it serves the request then moves the
server back to its original location, with cost 2. Thus the total cost to the algorithm to
this point is bounded by:

Total Cost � 2

1

F
+

1

2F
+

1

3F
+ � � �+ 1

(L=F)F

!

=
2

F

1

2
+
1

3
+ � � �+ 1

(L=F)

!

� 2
log(L=F)

F
:

The probability can now be coalesced to the last point by following the same procedure

in reverse, with additional cost bounded by (2=F) log(L=F). The total cost is therefore
bounded by (4=F) log(L=F), which completes the lemma.

We can now prove the theorem.

Proof of Theorem:

For the �rst part of the theorem, let F = 1 in the lemma, giving cost 4 log L for a
path of length L. With free time, the original algorithm must pay at least 1, and our

new algorithm will pay no more than 4 log L. Thus the total cost to our algorithm will
be no more than 4 logD greater than the cost to the original algorithm, which gives the

�rst claim of the theorem.

For the second claim, we set F = logD. In order for our algorithm to traverse a
path of length D it must pay at most (4= logD)(log(D= logD)) � 4. This completes the

theorem.

172 Free Time

9.7 Free Time For Command Processing

In this section we incorporate free time into a simple model of command processing.

Typically competitive analysis is applied to sequences that are computer generated at a

small timescale; for instance, deciding what to cache [MMS90, FKM+91], moving disk

heads to serve requests for disk blocks [CKPV90], or deciding whether a process should

spin or block [KMMO94]. Here, we consider the problem of interacting with a user. In

our model, a user presents a request which the algorithm must service, waits for some

amount of time, then presents the next request. The amount of free time between requests

is limited but unknown to the algorithm. Unlike in the previous sections, we compare

the algorithm to an o�-line algorithm who knows what the command will be and has

access to the free time; the o�-line optimal strategy is therefore to use all the free time

processing the next command.

We focus on a simple situation. The user may choose from two possible commands,

CA and CB. Processing command CA takes time A, and processing command CB takes
time B. We assume that A > B; as a concrete example, CA might be the command
\latex �le.tex" and CB might be \ls." We will �rst present the optimal strategy when
the amount of free time is known to the algorithm, and then extend to the case in which
the amount of free time is not known.

Assume there are t units of free time, where t < B. The algorithm must choose to
spend a units of time processing CA and b units of time working on CB such that a+b = t.

If CA is chosen the algorithm's cost is A � a and the o�-line cost is A� t. Likewise, if
CB is chosen, the algorithm's cost is B� b and the o�-line cost is B� t. The competitive
ratio is therefore:

C.R. = max

(
A� a

A� t
;
B � b

B � t

)
:

Setting these factors equal, we see that the appropriate split of time between a and b

is given by
a

b
=

B � t

A� t
:

This gives the optimal strategy for the algorithm if the free time is known in advance.
One way to view this is that if A � B then one should put most of one's e�ort into

preprocessing B since that is where one can make the most impact.

We assume next that the algorithm does not know how much free time there will be.

As each additional unit of time becomes available, the algorithm must decide how to

split the single unit between CA and CB. During the ith unit of free time let ai be the
amount of time spent working on CA and bi be the amount of time spend working on

CB, ai + bi = 1. From the result above, it is clear than as t! B, the algorithm should

eventually spend all its free time working on CB as the adversary will be able to service

9.7 Free Time For Command Processing 173

CB with no cost. But earlier, the algorithm will be obligated to spend some time working

on CA in order to maintain the optimal competitive ratio. This motivates the following

question: for how long can the algorithm perform optimally?

Assuming that the algorithm has performed optimally for t units of free time, it must

be the case that Pt
i=1 aiPt
i=1 bi

=
B � t

A� t
:

If t! B the algorithm must spend all of the next unit of time working on CB, which

will result in a new ratio ofPt
i=1 ai

1 +
Pt

i=1 bi
=

t(B � t)

�t2 + t(A� 2) +A+B
: (9.1)

This ratio should be (B � (t+ 1))=(A � (t+ 1)), so in order to determine when the

algorithm is no longer capable of \keeping up" with the changing ratio a=b, we �nd t

such that equation 9.1 is equal to this new ratio.

Solving, and using the simpli�cation A+B + 1 � A+B, we see that

t =
A+B �

q
A(A+B)

2
:

For B � A, we can make the approximation
q
A(A+B) � A, which gives t = B=2.

Thus, for large A, we can remain optimal until our free time reaches half the time to

compute the smallest command. For larger B, however, we can do substantially better.

Assume that for some constant �, we have B = A�. Then
q
A(A�B) =

q
A2(1� �) =

A
p
1� � � A(1 � �=2 � �2=8), which results in t = (A + B � A(1 � �=2 � �2=8))=2 =

(B + A�=2 + A�2=8)=2 = (B + B=2 + B�=8)=2 � 3B=4. Thus, when B grows to be
a constant fraction of A, we can remain optimal until our free time approaches three
quarters of the total time to compute CB.

174 Free Time

Chapter 10

Conclusion

And so ends my catechism.

| William Shakespeare, \Henry IV, Part I"

This thesis has two technical parts. Part I considers systems for disk prefetching and

disk cache management in the presence of information about upcoming application I/O.
Part II considers online algorithms, which must respond to each request in a sequence
without knowing what the next request will be. Speci�cally, I consider an extension
to the traditional cache management problem called weighted caching, in which certain
pieces of cached data are more expensive to re-load than others; I also study an extension
to the traditional online model in which the algorithm responding to requests has free

time between �nishing one request and receiving the next, during which it can prepare
without charge.

10.1 Systems Conclusions

This section contains a summary of the results of the systems part of the thesis. The
technical data is presented in two chapters representing standalone processes (chapter 5),

and multiple processes running simultaneously (chapter 6). In each case I presented trace-
driven simulations from actual and synthetic data, and then distilled these experiments

into a small number of \lessons learned" in the course of doing the work. To conclude, I

gather these lessons together and present them here with some high-level discussion.

I begin with four lessons that are particularly evident in the single-process case.

The �rst two summarize our conclusion that forestall's dynamic estimates of disk
load perform well under both heavy and light load. Static approaches, such as TIP2's

conservative prefetching or aggressive's aggressive prefetching, tend to perform well

176 Conclusion

in some situations, but poorly in others. The �nal two lessons summarize locality issues

resulting from queueing and eviction respectively. These four lessons are described in

detail in Section 5.4.

Lesson 1: Leaving a constrained disk idle leads to additional stall.

Lesson 2: Submitting an I/O requires Tdriver computational overhead.

Lesson 3: Deeper disk queues yield lower average disk service times.

Lesson 4: Eviction decisions impact locality of \re-fetched" data.

The next six lessons occur primarily in multi-process situations. The �rst is the single
most important conclusion of Chapter 6: lru-sp's rate-based allocation scheme does not
necessarily put bu�ers where they are most useful. The next two lessons show that the

appropriate division of resources between hinted and unhinted streams is di�erent for
constrained versus unconstrained disks. And the �nal three lessons concern short hint
queues, thrashing, and prioritization schemes respectively. All these lessons are described
in detail in Section 6.5

Lesson 5: Access rate is not a good predictor of caching value.

Lesson 6: On unconstrained disks, hinted blocks can always be prefetched in time so

caching them is not as important as caching for unhinted accesses.

Lesson 7: On constrained disks, hinted blocks that are ejected cannot be re-fetched with-

out stall so caching them is as important as caching for unhinted accesses.

Lesson 8: Constraint-aware prefetching only reasons about known constraints.

Lesson 9: Over-aggressive prefetching may result in eviction of prefetched but unread

data.

Lesson 10: Batching for e�cient I/O may be defeated by prioritization schemes.

10.1.1 Discussion

At the highest level, there is a single principle that implies many of the lessons above:
performance always improved when we incorporated application knowledge more deeply

into the prefetching and allocation decisions. For example:

10.1 Systems Conclusions 177

� Chapter 5 shows that prefetching policies that statically fetch blocks either con-

servatively or aggressively without regard to the particular application and envi-

ronment do not perform as well as dynamic policies that adapt to the situation.

Lesson 1 shows that being conservative all the time may result in additional stall,

while Lesson 2 shows that being too aggressive may result in additional overhead

from unnecessary I/O's.

� As Lesson 5 shows, allocation policies that dedicate a fraction of the cache to a

particular purpose independent of the degree of re-use do not perform as well as

policies that allocate the cache dynamically based on application re-use patterns.

For instance, unless a process is moving extremely slowly, lru-sp will give a sig-

ni�cant fraction of the cache to that process whether or not it can use the space.
Cost-benefit, on the other hand, will give the process a much larger share of the

cache if it demonstrates that more bu�ers will improve latency, and a much smaller
fraction if the process shows no re-use.

� Lessons 6 and 7 show that prefetching and cache management policies must be
aware of the I/O load presented by the application | as the load grows, the policy
must be able to switch modes from aggressive caching to aggressive prefetching.

The remaining lessons can all be summarized by a similar high-level principle: perfor-
mance improvements result from experimentally identifying and addressing inaccuracies
in the system model. In some cases, the correct approach may be to improve the system

model (for instance, extending aggressive to forestall requires incorporating a no-
tion of Tdriver). In other cases, however, such an extension may not be feasible and it may
be necessary to address the problem elsewhere. For instance, disk queueing algorithms
such as CSCAN do not incorporate an accurate model of disk geometry, but nonetheless
address the problem of non-constant disk access times e�ectively.

� Lessons 3, 4, and 10 all follow from the observation that disk access time is not con-

stant. Most immediately, Lesson 3 shows that deeper disk queues tend to improve

disk access times. Lesson 4, regarding re-fetch locality, shows that even eviction

decisions must take disk access times into consideration. And Lesson 10 shows that

queueing bene�ts may be impacted by I/O priorities.

The current approaches (queueing, batching, and not promoting prefetches that

become demand reads to a higher priority level) are e�ective for all the applications
in the suite. It is possible, however, that future work will uncover the need for a

more complex model of disk geometry in the system model.

� Lesson 8 concerns hints that trickle in over time. As the hint queue drains, algo-

rithms may under-estimate the I/O load on a disk because upcoming constraints
have not yet been made visible.

178 Conclusion

� Lesson 9 concerns bu�ers that are evicted before being read. However, in some

situations the behavior is appropriate | a set of blocks might have been prefetched

correctly, but due to changing system conditions, those blocks should now be evicted

and re-fetched before they are read. As described in Section 4.8.12, there are a

number of safeguards in the existing system to protect against unnecessary early

eviction.

10.1.2 Future Systems Work

Over a period of about a year, the Parallel Data Lab at CMU, and groups elsewhere

(especially at the University of Washington in Seattle), have been evaluating algorithms
for the informed prefetching and caching problem. Part I contains two kinds of results.

First, I compare various algorithms in single-process and multi-process environments,
and draw conclusions about their relative performance. Second, I study the particular
implementation details of the stronger algorithms and suggest which elements are likely
to be important and which do not contribute signi�cantly, which particular forms of the
algorithms are most e�ective, and so on. This work was designed to explore and prune
the space of possible implementations, and the next step will be to generate and test a

kernel-level version of the best algorithm. Thus, the largest piece of future work is part
of a long-range plan into which this work �ts.

Next, the simulator is general and extensible, and would be an appropriate tool for
other explorations in this area. For instance, as discussed in Section 2.3, there are several
approaches to generating hints automatically, ranging from compiler-based approaches
to speculative execution. One of the issues in automatic hint generation is dealing with
incorrect hints. There would be signi�cant bene�ts to evaluating tracking algorithms for

this problem via simulation rather than implementation, especially since the search space
for possible algorithms is so wide. Implementing such algorithms on top of the existing
code would be straightforward. Similarly, the simulator represents a general-purpose

tool for studying di�erent aspects of cache management, and could easily be extended to
examine weighted variants of the problem, networked data sources, algorithms that are

aware of disk non-linearities, and so on.

10.2 Theory Conclusions

The theory part of the thesis makes two main contributions. The �rst, presented in
Chapter 8, is an analysis of the weighted caching problem for metrical task systems, or

for k-server problems on (k+1)-point spaces. We give randomized algorithms and lower

bounds that are nearly tight, establishing that the competitive ratio for the problem is

10.3 Theory and Practice 179

between
(log k) and O(log2 k). The second contribution, presented in Chapter 9, is an

extension to the traditional online model to allow free time between servicing a request

and receiving the next request, in which work may be performed without cost. We give

a number of results in this model. Most importantly, we show that any algorithm with

free time may be converted to a weighted caching problem without free time, and that

therefore the results of Chapter 8 give a randomized O(log2 k)-competitive algorithm for

any metric space with free time. A complete summary of the results of this chapter

appears in Section 9.1.

10.2.1 Future Theory Work

Results of Bartal, Blum, Burch and myself [BBBT96] give a polylog-competitive algo-
rithm for metrical task systems on any metric space, extending our results for weighted-
cache spaces with a slight increase in the competitive factor (from O(log2 k) to O(log6 k)).
This essentially closes the door on extensions to other metrical task system spaces. How-
ever, there is an interesting orthogonal direction for extensions: weighted caching with

multiple holes. Our results apply to metrical task systems on weighted-cache spaces, or,
according to Theorem 4, the k-server problem for (k + 1)-point weighted-cache spaces.
The results of [BBBT96] can be applied to generate an algorithm with polylog com-
petitive factor for spaces with polylog(n) holes. Beyond this, (even, say, for a space of
k +
p
k � 2k points) the question is open. Discussions with Yair Bartal, Amos Fiat,

Avrim Blum, Adi Rosen and Neal Young suggest that the problem of weighed caching
with only two weights can be solved in general (i.e., there is a algorithm competitive in
the number of servers k, independent of the size of the space n), though as yet I do not
believe anybody has written up the result. Unfortunately, as new weights are added the
competitive ratio increases geometrically so this does not give a good bound for more
general weighted caching spaces. The Marking Algorithm of [FKM+91] is shown to be

competitive for unweighted caching with an arbitrary number of holes, but the techniques

of that paper do not appear to generalize in a straightforward manner. However, in the
same way that techniques from weighted caching extended in the metrical task system
domain to techniques for arbitrary spaces, it seems reasonable to believe that weighted

caching in the k-server domain is a logical place to focus e�orts.

10.3 Theory and Practice

I chose to present the systems and theory parts of the thesis as two distinct pieces to
avoid the temptation to create connections where they don't really exist. The two pieces

of work were performed as standalone research. Nonetheless, there are similarities in the

180 Conclusion

two parts, along with some subtle di�erences. This section discusses how the two parts

compare, and then o�ers some thoughts on bridging the gap in the future.

10.3.1 Online Versus O�ine Problems

Both parts of the thesis are concerned with cache management. The high-level di�erence

is that the systems part deals with what the theory part would refer to as the o�ine

problem, in which the sequence of future accesses is known to the algorithm (this sequence

is simply the disclosures generated by the application). However, although the systems

problem is o�ine by nature, there are online issues that arise. First, tiptoe in the

presence of multiple processes may be given complete and correct disclosures for each,

but it will not know the interleaving of the requests. In fact, this exact model has
been studied under competitive analysis by Barve, Grove and Vitter et al. [BGV95].
Furthermore, even for a single process, there are again online elements of the problem.
For instance, if the hints trickle in over time, as in the Sphinx trace, the system might
only see a �nite window into the future | it is a folklore online algorithms result that
no �nite window will improve the competitive ratio (the result relies on the worse-case

nature of the competitive model). If, on the other hand, we are given all the hints but
they are incorrect with a certain probability, we can imagine a model such as the hinting
model of Section 9.5, in which an algorithm must decide how much to rely on hints that
might be erroneous.

Finally, there are also useful results that can be proven for o�ine problems in a �xed
analytical model. While the general o�ine k-server problem is not known to have a
poly-time solution, the weighted-caching problem can be solved using a network-ow

algorithm. However, once we begin to seek an algorithm with provable properties to
solve the problem tiptoe is solving, we encounter the second major di�erence between
the systems and theory parts of the thesis.

10.3.2 Practical Issues and System Models

To recap, the �rst major di�erence is that tiptoe has knowledge about future accesses,

while the Mark-And-Jump algorithm does not. The second major di�erence is the tra-
ditional di�erence between practical systems problems and their analytical counterparts:
there are many critical details in the systems problem that are not reected in the ana-

lytical model.

Building an o�ine algorithm based on the k-server model has a aw: servers are

charged for motion, so essentially the metric is amount of time spent doing I/O. This

metric may be appropriate for some problems, but is not appropriate for tiptoe's do-
main: we wish to uncover opportunities for latency hiding via prefetching, and a total

10.3 Theory and Practice 181

I/O metric will not allow us to do so. As described in Section 4.1.1, a more appropriate

metric is the increase in I/O service time (i.e., the increase in stall, plus the increase in

other overhead incurred by the I/O subsystem). A model to address this di�culty using

the competitive framework is given by Cao, Karlin et al. [CFKL95b], and by Kimbrel and

Karlin in the multi-disk case [KK96b]. Their model counts I/O stall time rather than

simply I/O time, but still does not take into account other components of I/O service

time (e.g., Tdriver). It is not known whether their results can be extended to a model

with positive Tdriver. The discussion of tiptoe does not include a theoretical analysis be-

cause my personal experience suggested that an accurate analytical model would require

a great deal of e�ort to create.

In fact, much of the work of developing tiptoe focused on understanding the impact
of disk non-linearities, queueing, re-fetch locality, and so on; the standard theoretical
models all assume constant disk access times. Similarly, it took signi�cant e�ort to
generate an e�ective set of estimators of the consumption rate of a process, the average
I/O rate of a process, and so on; these are usually assumed to be parameters in the

theoretical model. So to summarize, a simple analytical model may give useful insights
into algorithms for the problem, but it is dangerous to assume that performance proofs
within the model will also hold in the real world.

10.3.3 Weighted Caching and Di�erent Disk Loads

The third major di�erence between the systems and theory parts of the thesis is the
precise problem being studied. Tiptoe does not address weighted caching precisely,

although there are connections. When we began the systems work, we believed that two
important extensions to TIP2 would be required, and we expected that the approaches
taken in each case would be similar. The �rst problem was to incorporate disk layout
information, and to favor an overloaded disk over a lightly-loaded one. Tiptoe addresses
this problem by maintaining per-disk estimates of overload. The second problem was to
model disks with di�erent characteristics, either slow disks and fast disks, or local disks

versus servers, or servers with di�erent levels of background load. This problem is more

similar to weighted caching, and it is not straightforward to extend tiptoe to address it.
David Rochberg is currently working on Remote TIP, a project evaluating architectures

for using disclosures to improve I/O performance from networked �le servers.

10.3.4 Future Connections between Theory and Practice

When I began this thesis, I hoped that it would be possible to incorporate algorithms

for weighted caching into the system model described in Chapter 3. I hoped there would

be crosstalk between the theoretical results and the practical algorithms. It still seems

182 Conclusion

that there is substantial promise for this approach, whether the algorithms are the types

of randomized algorithms described here or their simpler deterministic counterparts such

as the BALANCE algorithm described by Chrobak et al. [CKPV90]. However, within

the scope of this thesis, it has not been possible to perform such an experiment.

Appendix A

Proof of Folklore Theorems

Theorem 3

For any metric space and any �xed � > 0, given an r-competitive algorithm for the

metrical task system problem with �-bounded, elementary task vectors, it is possible to

construct an algorithm for the general metrical task system problem with competitive

ratio (1 + �)r.

Proof:

Let � be a sequence of arbitrary (not necessarily �-bounded elementary) task vec-
tors. First, we will show how to construct a subsequence of elementary task vectors for

each single task vector of �, and will concatenate the resulting subsequences into a new
sequence of elementary task vectors � . Next, we will show how the behavior of an r-
competitive algorithm A for sequences of elementary task vectors, operating on sequence
� , can be used to induce a new algorithm B for the original sequence �. Finally, we will
show that B(�) � (1 + �)A(�) and OPT(�) � OPT(�).

An individual task vector v of � can be converted into a subsequence of elementary
task vectors of � as follows. Let v = (�1; �2; : : : ; �n) be an arbitrary task vector, and let
� be some small value to be determined later.

while some �i > 0 do f
/* begin next stripe */
for j 1 to n

if (�j > 0) f

output task (

j�1z }| {
0; : : : ; 0;min(�j; �); 0 : : :0)

�j max(0; �j � �)

184 Proof of Folklore Theorems

g
g

This construction shows how to create � from �. Algorithm B on � works as follows.

It begins by initializing a copy of algorithm A, and maintains the invariant that the state

of B after processing some vector v is the state of A after processing the subsequence

of elementary task vectors corresponding to v. When B is presented with v, it creates

a subsequence of elementary task vectors according to the construction above, and then

passes the resulting vectors to algorithm A one at a time. A begins in some state s0,

and then passes through some set of states S in the course of processing the elementary

task vectors, and ends in some �nal state s2. Each of these states will have some cost
in the original vector v = (�1; �2; : : : ; �n); let state s1 be the state of S with lowest cost:
s1 = argmins2Sf�jg. Algorithm B begins in state s0, immediately jumps to state s1 to
process v, and �nally jumps to state s2 to remain in correspondence with A.

Having de�ned � and algorithm B, we must show that B(�) � (1 + �)A(�) and
OPT(�) � OPT(�). The �rst requires a proof, the other is trivial.

The �rst inequality states B(�) � (1 + �)A(�). Consider some v = (�1; �2; : : : ; �n), a
task vector of �. According to the construction above, � will contain a subsequence of
elementary task vectors corresponding to v; we call this subsequence V . The construction
breaks the subsequence into a number of logical units called \stripes," each stripe con-
sisting of up to n elementary task vectors, and no two vectors in a stripe having non-zero

values for the same state. We denote the stripes Stripe1, Stripe2,. . . .

In the course of processing V , say that algorithm A changes state k times, paying
distance di on the ith state change. De�ne n1 = b�s1=�c. During processing of Stripej
for j � n1, A must either move, paying some distance, or must pay cost � by the
de�nition of s1. The total cost to algorithm A over V may therefore be lower bounded
by Cost(A;V) � Pk

j=1 dj + (n1 � k)�. Let dmin be the smallest distance in the space,

and choose � < �dmin=2. Additionally, choose � < ��j=2 for all j, so n1� > �s1(1 � �=2):

Finally, let � � � to guarantee that the resulting task vectors are �-bounded. Then

Cost(A;V) � (1� �=2)
kX

j=1

dj + �kdmin=2 + (n1 � k)�

� (1� �=2)
kX

j=1

dj + n1�

� (1� �=2)
kX

j=1

dj + (1 � �=2)�s1

185

Finally, note that A must travel from s0 via s1 to s2, so by the triangle inequality the

total distance must be at least ds0;s1 + ds1;s2. So we can write the �nal lower bound on

the cost of algorithm A as follows:

Cost(A;V) � (1 � �=2)(ds0 ;s1 + ds1;s2 + �s1):

Recall that B begins servicing v in s0, jumps to s1 to service the vector, and �nally

jumps to s2. So the cost to B for servicing v is given by Cost(B; v) = ds0;s1 + �s1 + ds1;s2 .

Thus,

(1 + �)Cost(A;V) � Cost(B; v);

B(�) � (1 + �)A(�):

The second inequality we must show states: OPT(�) � OPT(�). We will �x an
optimal solution for � and use it to construct a solution for � with the same cost. If the

optimal solution for � jumps to state j to serve �i, the solution for � will jump to state
j to serve the subsequence of elementary vectors in � corresponding to �i. This solution
for � will incur the same movement costs and task vector costs as the optimal algorithm
for �, by the construction of � .

Finally, by the assumption of competitiveness, we know that A(�) � rOPT(�) + c,
since � consists of �-bounded, elementary task vectors.

Thus, we conclude:

B(�) � (1 + �)A(�)

� (1 + �)(rOPT(�) + c)

� (1 + �)rOPT(�) + (1 + �)c

Theorem 4

Consider a metrical task system on a metric space M of k + 1 points, and the corre-

sponding k-server problem on a (k+1)-point space. Given an algorithm A that solves the

MTS with competitive ratio r, it is possible to construct an algorithm B for the k-server

problem with competitive ratio r. Likewise, given an algorithm B with competitive ratio r

for the k-server problem, it is possible to construct an algorithm A with competitive ratio

7r for the MTS.

Proof:

186 Proof of Folklore Theorems

We now use Theorem 3 to complete the proof of Theorem 4. Given an algorithm A

for the MTS, it is trivial to create an algorithm B for the k-server problem: whenever a

request for point i arrives at the k-server algorithm, it simply creates a task vector with

value 0 for all states j 6= i and value 1 for state i. Algorithm B then moves its hole to

the new state of algorithm A. Let � be the induced sequence of task vectors presented

to algorithm A and � be the original sequence of points sent to algorithm B.

Consider some optimal o�ine solution for � . It is possible to construct a solution to �

in the MTS domain by always moving to the state corresponding to the hole of OPT(�).

This solution to � will never pay local costs, and will pay movement costs equal to the

movement costs of OPT(�), so we have OPT(�) � OPT(�).

Algorithm B will incur exactly the same cost as algorithm A: B(�) = A(�). By the
competitiveness of A, we have A(�) � OPT(�) + c1. And from the previous paragraph
we have OPT(�) � OPT(�). Therefore we conclude

B(�) = A(�) � rOPT(�) + c1 � rOPT(�) + c1:

It remains to show the other direction. We assume we have an algorithm B for the
k-server problem, and use it to create an algorithm A for the MTS. For each point j let
wj be the distance to j's nearest neighbor: wj

def
= mini6=jfdijg; and let wmax = maxjfwjg

and wmin = minjfwjg. Let � be an �wmin-bounded sequence of task vectors, where the
value of � is to be determined later. Let local(j) be a per-point real variable initialized
to 0. From � we construct � according to the following pseudo-code:

foreach �i = v = (v1; : : : ; vk+1) f
for j 1 to (k + 1) f

increment local(j) by vj
if (local(j) > wj) f

issue a request for point j

set local(j) to 0
g

g
g

We break B's total cost on � into two pieces, the local and movement costs. Any costs
that result frommovement between states are considered to be part ofmovement cost(�),

and all remaining costs (those associated with servicing a task in a particular state) are

part of local cost(�). Finally for convenience, de�ne c1 = (1 + �)wmax.

Lemma 6 local cost(�) � (1 + �)movement cost(�) + c1

187

Proof:

At any point algorithm B moves to some new state j, algorithm A does likewise.

Algorithm A may incur local cost until local(j) � wj, at which point a request will be

generated for point j to algorithm B, and algorithm A will move to another state. Since

task vectors are �wmin-bounded, the local cost is no more than wj + �wmin � wj(1 + �),

and the cost of moving from state j is at least wj. Over the entire sequence �, this will be

true for all states algorithm A enters except the last one, which may incur an additional

(1 + �)wj local cost with no o�setting movement. The total local cost is therefore no

more than (1 + �)movement cost(�) + c1, which completes the lemma.

Lemma 7 A(�) � (2 + �)B(�) + c1

Proof:

By Lemma 6, we have

A(�) = local cost(�) +movement cost(�) � (2 + �)movement cost(�) + c1:

Noting that the movement costs of A and B are equivalent, and that this value is exactly

B(�), we have

A(�) � (2 + �)movement cost(�) + c1 = (2 + �)B(�) + c1:

This completes the relation between online cost in the MTS and k-server domains.

We now consider the o�ine cost.

Lemma 8 OPT(�) � 3OPT(�)

Proof:

We construct a solution for � , which we will call OPT0(�) or simply OPT0, from some
optimal solution to �, OPT(�). OPT0 behaves as follows. Its hole tracks the state of

OPT(�) with the sole exception that, when a request arrives in � for the hole of OPT0,
OPT(�) may not move, but OPT0 moves the hole to its nearest neighbor, serves the

request, and moves the hole back before the next request arrives. We must show that

the cost incurred by OPT0 is not much more than the cost incurred by OPT(�).

Each unit of cost incurred by OPT(�) will be tripled and deposited at some point of

the space so as to completely cover the costs of OPT0 (more speci�cally, movement costs

188 Proof of Folklore Theorems

will be tripled, but local costs will be doubled). This will complete the lemma. The rules

for depositing cost are the following. Whenever OPT(�) incurs local cost, twice that

cost is deposited on the point of the metric space in which it was incurred. Whenever

OPT(�) moves, one unit of the movement cost is used to pay for the corresponding move

in OPT0, and the other two units are deposited at the destination.

Whenever a request �i 2 � arrives for point j, the current hole of OPT0, the hole is
moved to the nearest neighbor and back. There are two cases:

1. If OPT(�) entered state j most recently after the prior request to point j in � then

the movement will have deposited twice the cost to move to state j from some other

state | this will be enough to cover the cost in OPT0 of moving to the nearest

neighbor and back.

2. If OPT(�) entered state j most recently on or before the prior request to point j in

� then by de�nition the local cost to OPT(�) will be at least wj. Therefore twice
that amount will have been deposited at point j, which is enough to move to the
nearest neighbor and back.

This shows that, if the costs incurred by OPT(�) are tripled, they outweigh the costs
incurred by OPT0.

We have shown the following sequence of inequalities:

A(�) � (2 + �)B(�) + c1

B(�) � rOPT(�) + c2

OPT(�) � 3OPT(�)

We can chain these inequalities together as follows:

A(�) � (2 + �)B(�) + c1

� (2 + �)(rOPT(�) + c2) + c1

� (2 + �)(3rOPT(�) + c2) + (1 + �)c1

� 3r(2 + �)OPT(�) + c3

Finally, by Theorem 3, we have an algorithm for the original non-�-bounded task

sequence with competitive ratio no greater than 3r(2 + �)(1 + �) < 7r for appropriate

choice of �.

Bibliography

[ADU71] Alfred V. Aho, Peter J. Denning, and Je�rey D. Ullman. Principles of

optimal page replacement. Journal of the ACM, 18(1):80{93, January 1971.
(p 39)

[Bar96] Yair Bartal. Probabalistic approximation of metric spaces and its algorith-
mic applications. In Proceedings of the 37th Annual IEEE Symposium on

Foundations of Computer Science, pages 183{193, October, 1996. (p 149)

[BBBT96] Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog(n)-
competitive algorithm for metrical task systems. In submitted, 1996. (pp 23,

137, 147, 149, 179)

[BBK+90] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the
power of randomization in online algorithms. In ACM Symposium on Theory

of Computing, pages 379{386, 1990. (p 139)

[BC91] J. L. Baer and T. F. Chen. An e�ective on-chip preloading scheme to reduce
data access penalty. Supercomputing '91, 1991. (p 38)

[Bel66] L.A. Belady. A study of replacement algorithms for virtual storage comput-

ers. IBM Systems Journal, 5:78{101, 1966. (p 39)

[BGV95] Rakesh Barve, Edward F. Grove, and Je�rey Scott Vitter. Application-

controlled paging for a shared cache. In 36th Annual Symposium on Founda-

tions of Computer Science, pages 204{213, Milwaukee, Wisconsin, October
23{25 1995. IEEE. (pp 39, 180)

[BKRS92] A. Blum, H.J. Karlo�, Y. Rabani, and M. Saks. A decomposition theorem
and bounds for randomized server problems. In Proceedings of the 33rd

Annual IEEE Symposium on Foundations of Computer Science, pages 197{

207, 1992. (pp 23, 143, 145, 147, 149, 151, 164, 167)

190 BIBLIOGRAPHY

[BLS87] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical

task systems. In 19th ACM Symposium on Theory of Computing, pages 373{

382, 1987. (p 141)

[BLS92] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical

task systems. JACM, 39(4):745{763, 1992. (pp 146, 147)

[Cao96] Pei Cao. Application-Controlled File Caching and Prefetching. PhD thesis,

Princeton University, 1996. (pp 28, 29, 32, 33, 59, 65)

[CB92] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-

blocking and prefetching caches. In Proceedings of the 5th International

Conference on Architectural Support for Programming Languages and Oper-

ating Systems, pages 51{61, October 1992. (p 38)

[CD85] H.T. Chou and D.J. DeWitt. An evaluation of bu�er management strategies

for relational database systems. In Proceedings of the 11th International

Conference on Very Large Data Bases, pages 127{141, 1985. (p 36)

[CDKK85] H.-T. Chou, David J. Dewitt, Randy H. Katz, and Anthony C. Klug. Design

and implementation of the wisconsin storage system, January 1985. (p 36)

[CFKL95a] P. Cao, E.W. Felten, A. Karlin, and K. Li. Implementation and performance
of integrated application-controlled caching, prefetching and disk scheduling.

Technical Report TR-CS95-493, Princeton University, 1995. (p 33)

[CFKL95b] P. Cao, E.W. Felten, A. Karlin, and K. Li. A study of integrated prefetching
and caching strategies. In Proceedings of the ACM SIGMETRICS, May,

1995. (pp 18, 20, 30, 33, 59, 63, 82, 99, 131, 181)

[CFL94a] P. Cao, E.W. Felten, and K. Li. Application-controlled �le caching policies.

In 1994 Usenix Summer Technical Conference, pages 171{182, June, 1994.

(pp 20, 32, 33, 65)

[CFL94b] P. Cao, E.W. Felten, and K. Li. Implementation and performance of
application-controlled �le caching. In Proceedings of the First USENIX Sym-

posium on Operating Systems Design and Implementation, Monterey, CA,

pages 165{178, November, 1994. (pp 18, 28, 33, 65)

[CKPV90] M. Chrobak, H. Karlo�, T. Payne, and S. Vishwanathan. New results on
server problems. In First Annual ACM-SIAM Symposium On Discrete Al-

gorithms, pages 290{300, 1990. (pp 146, 172, 182)

BIBLIOGRAPHY 191

[CKV93] K. Curewitz, P. Krishnan, and J.S. Vitter. Practical prefetching via data

compression. In Proceedings of the 1993 ACM Conference on Management

of Data (SIGMOD), pages 257{266, May, 1993. (p 35)

[CL91] Marek Chrobak and Lawrence Larmore. An optimal on-line algorithm for k

servers on trees. SIAM J. Computing, 20(1):144{148, 1991. (p 146)

[CP90] Peter M. Chen and David A. Patterson. Maximizing performance in a striped

disk array. In Proceedings of the 17th Annual International Symposium on

Computer Architecture, pages 322{331. IEEE Computer Society Press, May

1990. (p 54)

[CR93] C. Chen and N. Roussopoulos. Adaptive database bu�er allocation using
query feedback. In Proc. of the 19th VLDB Conference, Dublin, Ireland,
1993. (p 37)

[CR96] Andrew Choi and Manfred Ruschitzka. Optimal management of dynamic
bu�er caches. Performance Evaluation, 26:239{262, 1996. (p 39)

[CY89] D. W. Cornell and P. S. Yu. Integration of bu�er management and query

optimization in relational database environment. In Proc. of the 15th Int.

Conf. on Very Large Data Bases, pages 247{255, Amsterdam, August 1989.
(p 36)

[Den68] Peter J. Denning. The working set model for program behavior. Communi-
cations of the ACM, 11(5):323{333, May 1968. (p 36)

[DWAP94] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative caching:

Using remote client memory to improve �le system performance. In Proceed-

ings of the First Symposium on Operating Systems Design and Implementa-

tion, pages 267{280, Nov 1994. (p 115)

[EGCD73] Jr. Edward G. Co�man and Peter J. Denning. Operating Systems Theory.
Prentice Hall, 1973. (p 39)

[FKM+91] A. Fiat, R.M. Karp, M. Luby L. A. McGeoch, D.D. Sleator, and N.E. Young.

Competitive paging algorithms. Journal of Algorithms, 12:685{699, 1991.

(pp 145, 157, 159, 169, 172, 179)

[FNS91] Christos Faloutsos, Raymond Ng, and Timos Sellis. Predictive load con-
trol for exibile bu�er allocation. In Proceedings of the 17th International

Conference on Very Large Data Bases, pages 265{274, 1991. (p 37)

192 BIBLIOGRAPHY

[FO71] R. J. Feiertag and E. I. Organisk. The Multics Input/Output system. In

Proc. of the 3rd Symp. on Operating System Principles, pages 35{41, 1971.

(p 34)

[FR94] Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server

problem. Theoretical Computer Science, 130:85{99, 1994. (p 147)

[GA93] James Gri�oen and Randy Appleton. Automatic prefetching in a WAN.

In Proc. of the IEEE Workshop on Advances in Parallel and Distributed

Systems, pages 8{12, October 1993. (p 34)

[GA94] J. Gri�oen and R. Appleton. Reducing �le system latency using a predictive

approach. In USENIX Summer 1994 Technical Conference, pages 197{208,
June, 1994. (p 34)

[GA95] J. Gri�oen and R. Appleton. Performance measurements of automatic
prefetching. In Proc. of the ISCA International Conference on Parallel and

Distributed Computing Systems, September 1995. (p 34)

[GA96] J. Gri�oen and R. Appleton. The design, implementation, and evaluation
of a predictive caching �le system. Technical Report CS-264-96, Kentucky

University, June 1996. (p 35)

[GJ91] A.S. Grimshaw and E.C. Loyot Jr. ELFS: Object-oriented extensible �le
systems. Technical Report Computer Science Technical Report No. TR-91-
14, University of Virginia, 1991. (p 34)

[HC92] Kieran Harty and David R. Cheriton. Application-controlled physical mem-
ory using external page-cache management. In The Fifth International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, pages 187{197, October 1992. (p 38)

[Hol94] Mark Holland. On-Line Data Reconstruction in Redundant Disk Arrays.

PhD thesis, School of Computer Science, Carnegie Mellon University, 1994.

(pp 54, 56)

[HP96] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 1996. (p 115)

[IS95] S. Irani and S. Seiden. Randomized algorithms for metrical task systems. In
Workshop on Algorithms and Data Structures, 1995. (p 147)

[KE90] David Kotz and Carla Schlatter Ellis. Prefetching in �le systems for MIMD

multiprocessors. IEEE Transactions on Parallel and Distributed Systems,

1(2):218{230, April 1990. (p 37)

BIBLIOGRAPHY 193

[KE91] David Kotz and Carla Schlatter Ellis. Practical prefetching techniques for

parallel �le systems. In First Intl. Conf. on Parallel and Distributed Infor-

mation Systems, pages 182{189, Miami Beach, Florida, December 4{6 1991.

(p 37)

[KE93] David Kotz and Carla Schlatter Ellis. Practical prefetching techniques for

multiprocessor �le systems. Journal of Distributed and Parallel Databases,

1(1):33{51, January, 1993. (p 37)

[KK96a] T. Kimbrel and A. Karlin. Integrated parallel prefetching and caching. Tech-

nical Report UW-CSE-96-01-10, University of Washington, 1996. (p 31)

[KK96b] T. Kimbrel and A. Karlin. Near-optimal parallel prefetching and caching.
In Proceedings of the 1996 IEEE Symposium on Foundations of Computer

Science, October, 1996. (pp 64, 181)

[KLVA93] Keith Krueger, David Loftesness, Amin Vahdat, and Tom Anderson. Tools
for the development of application-speci�c virtual memory management. In
OOPSLA 1993 Conference Proceedings, pages 48{64, October 1993. (p 38)

[KMMO94] A.R. Karlin, M.S. Manasse, L.A. McGeoch, and S. Owicki. Competitive
randomized algorithms for nonuniform problems. Algorithmica, 11:542{571,
1994. (pp 146, 151, 172)

[KMRS88] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive
snoopy caching. Algorithmica, 3(1):79{119, 1988. (p 138)

[Kor90] Kim Korner. Intelligent caching for remote �le service. In Proceedings of the

10th Intl. Conf. on Distributed Computing Systems, pages 220{226, 1990.

(p 35)

[Kot94] D. Kotz. Disk-directed I/O for MIMD multiprocessors. In Proc. of the 1st

USENIX Symp. on Operating Systems Design and Implementation, Mon-

terey, CA, pages 61{74, November 1994. (p 37)

[KPR94] G. Kuenning, G. Popek, and P. Reiher. An analysis of trace data for predic-

tive �le caching in mobile computing. In Proc. of the Summer 1994 USENIX

conference, June, 1994. (p 35)

[KRR91] H.J. Karlo�, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-

server algorithms. In Proceedings of the 23rd Annual ACM Symposium on

Theory of Computing, 1991. (pp 143, 146, 147, 149, 150)

194 BIBLIOGRAPHY

[KS92] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda

�le system. ACM Transactions on Computer Systems, 6(1):1{25, February

1992. (p 34)

[KTP+96] T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad, P. Cao, E.W. Felten,

G. Gibson, A. Karlin, and K. Li. A trace-driven comparison of algorithms for

parallel prefetching and caching. In Proceedings of the Second Symposium on

Operating Systems Design and Implementation, pages 19{34, 1996. (pp 20,

30, 33, 36, 59, 66, 70, 87, 132, 133)

[KTR94] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A detailed simu-

lation model of the hp 97650 disk drive. Technical Report PCS-TR94-220,
Dartmouth University, July 18, 1994. (pp 42, 56)

[LD97] Hui Lei and Dan Duchamp. An analytical approach to �le prefetching. In
1997 USENIX Annual Technical Conference, Anaheim CA, January 1997.
(p 35)

[Lee89] Edward K. Lee. The performance of parity placements in disk arrays. IEEE
Transactions on Computers, 42(6):651{664, June 1989. (pp 32, 54, 56)

[LHR90] Kai-Fu Lee, Hsiao-Wuen Hon, and Raj Reddy. An overview of the SPHINX
speech recognition system. IEEE Transactions on Acoustics, Speech and

Signal Processing, (USA), 38(1):35{45, Jan, 1990. (p 46)

[LK91] Edward K. Lee and Randy H. Katz. Performance consequences of parity
placement in disk arrays. In ASPLOS4, pages 190{199. ACM, 1991. (p 54)

[MA90] Dylan McNamee and Katherine Armstrong. Extending the Mach external

pager interface to accomodate user-level page replacement policies. In Proc.

of the USENIX Association Mach Workshop, pages 17{29, 1990. (p 38)

[MDK96] T. Mowry, A. Demke, and O. Krieger. Automatic compiler-inserted I/O

prefetching for out-of-core applications. In Proceedings of the Second Sym-

posium on Operating Systems Design and Implementation, 1996. (pp 18,

29, 34)

[MJLF84] M. K. McKusick, W. J. Joy, S. J. Le�er, and R. S. Fabry. A fast �le system
for Unix. ACM Trans. on Computer Systems, 2(3):181{197, August 1984.

(p 34)

[MK91] L. W. McVoy and S. R. Kleiman. Extent-like performance from a UNIX �le

system. In Proc. of 1991 Winter USENIX, pages 33{43, 1991. (p 34)

BIBLIOGRAPHY 195

[MLG92] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation

of a compiler algorithm for prefetching. In The Fifth International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, pages 62{73, October 1992. (p 38)

[MMS88a] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms

for on-line problems. In Proceedings of the 20th Annual ACM Symposium

on Theory of Computing, pages 322{333, 1988. (pp 22, 146)

[MMS88b] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms

for server problems. Technical Report CMU-CS-88-197, Carnegie Mellon

University, 1988. (pp 140, 145, 146)

[MMS90] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms
for server problems. Journal of Algorithms, 11:208{230, 1990. (pp 140, 166,

170, 172)

[Nat89] National Center for Supercomputing Applications. XDataSlice for the X
window system. Technical Report http://www.nsca.uiuc.edu/, University of
Illinois at Urbana-Champaign, 1989. (p 44)

[NFS91] Raymond Ng, Christos Faloutsos, and Timos Sellis. Flexible bu�er allocation

based on marginal gains. In Proc. of the 1991 ACM Conf. on Management

of Data (SIGMOD), pages 387{396, 1991. (pp 37, 60)

[OOW93] Elizabeth J. O'Neil, Patrick E. O'Neil, and Gerhard Weikum. The LRU-K
page replacement algorithm for database disk bu�ering. In Proc. of the 1993
ACM SIGMOD Conference on Management of Data, pages 297{306, May
1993. (p 36)

[PF76] B.G. Prieve and R.S. Fabry. VMIN | an optimal variable-space page re-

placement algorithm. Communications of the ACM, 19(5):295{297, 1976.

(p 39)

[PG94] R. Hugo Patterson and Garth Gibson. Exposing I/O concurrency with in-

formed prefetching. In Proceedings of the Third International Conference on

Parallel and Distributed Information Systems, pages 7{16, September 1994.
Unpublished version in lab. (pp 18, 45)

[PGG+95] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and
Jim Zelenka. Informed prefetching and caching. In Proceedings of the 15th

Symposium on Operating Systems Principles, pages 79{95, December, 1995.

(pp 18, 33, 36, 44, 59, 60, 80)

196 BIBLIOGRAPHY

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redun-

dant arrays of inexpensive disks (RAID). In International Conference on

Management of Data (SIGMOD), pages 109{116, June 1988. (p 18)

[PK94] Christos Papadimitriou and Elias Koutsoupias. The work function algorithm

is competitive. In STOC 94, pages 507{511, May, 1994. (pp 146, 166)

[PZ91] Mark Palmer and Stanley B. Zdonik. FIDO: A cache that learns to fetch. In

Proceedings of the 17th International Conference on Very Large Data Bases,

pages 255{264, September, 1991. (p 35)

[RL92] Anne Rogers and Kai Li. Software support for speculative loads. In Proceed-

ings of the 5th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 38{50, October 1992.
(p 38)

[RS89] P. Raghavan and M. Snir. Memory versus randomization in online algo-
rithms. In Proc. ICALP, 1989. (p 146)

[RW94] Chris Ruemmler and John Wilkes. An introduction to disk drive modelling.
IEEE Computer, 27(3):17{28, March, 1994. (pp 42, 54, 56)

[SAC+79] P. Gri�ths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management

system. In Proc. of the 1979 ACM SIGMOD, pages 23{34, Boston, MA,
1979. (p 35)

[SCO90] Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling revis-
ited. In Proc. of USENIX Winter 1990 Technical Conference, pages 313{324,

1990. (pp 42, 56)

[SF94] A. Stathopoulos and C. F. Fischer. A Davidson program for �nding a few
selected extreme eigenpairs of a large, sparse, real, symmetric matrix. Com-

puter Physics Communications, 79:268{290, 1994. (p 44)

[SGM86] K. Salem and H. Garcia-Molina. Disk striping. In Proc. of the 2nd IEEE

Int. Conf. on Data Engineering, 1986. (p 18)

[Smi78] Alan J. Smith. Sequential program prefetching in memory hierarchies. IEEE

Computer, 11(12):7{21, December 1978. (p 38)

[Smi85] A.J. Smith. Disk cache | miss ratio analysis and design considerations.

ACM Trans. on Computer Systems, 3(3):161{203, August 1985. (pp 18,

34)

BIBLIOGRAPHY 197

[SR86] M. Stonebraker and L.A. Rowe. The design of POSTGRES. In Proceedings

of the ACM SIGMOD 1986 International Conference on Management of

Data, Washington, DC, pages 28{30, 1986. (p 45)

[SRH90] M. Stonebraker, L.A. Rowe, and M. Horohama. The implementation of

POSTGRES. IEEE Transactions on Knowledge and Data Engineering,

2(1):125{142, March, 1990. (p 45)

[SS82] G. M. Sacco and M. Schkolnick. A mechanism for managing the bu�er pool

in a relational database using the hot set model. In Proc. of the 8th Int.

Conf. on Very Large Data Bases, pages 257{262, September 1982. (p 36)

[SS86] G. M. Sacco and M. Schkolnick. Bu�er management in relational database
systems. ACM Transactions on Database Systems, 11(4):474{498, December
1986. (p 36)

[SS95] D. Steere and M. Satyanarayanan. Using Dynamic Sets to overcome high
I/O latencies during search. In Proc. of the 5th Workshop on Hot Topics

in Operating Systems, Orcas Island, WA, pages 136{140, May 4{5, 1995.
(p 33)

[ST85] D. D. Sleator and R. E. Tarjan. Amortized e�ciency of list update and
paging rules. Communications of the ACM, 28(2):202{208, 1985. (pp 138,

145)

[Sto81] Michael Stonebraker. Operating system support for database management.
Communications of the ACM, 24(7):412{418, July 1981. (p 35)

[TD91] C. Tait and D. Duchamp. Detection and exploitation of �le working sets.

In Proc. Eleventh Intl. Conf. on Distributed Computing Systems, pages 2{9,
IEEE, 1991. (p 35)

[TE93] Dean M. Tullsen and Susan J. Eggers. Limitations of cache prefetching
on a bus-based multiprocessor. In Proceedings of the 20th International

Symposium on Computer Architecture, pages 278{288, May 1993. (p 38)

[TPG97] A. Tomkins, R.H. Patterson, and G. Gibson. Informed multi-process

prefetching and caching. In Proceedings of the ACM SIGMETRICS, pages
100{114, 1997. (pp 20, 36, 101)

[Tri79] K.S. Trivedi. An analysis of prepaging. Computing, 22:191{210, 1979.

(p 38)

198 BIBLIOGRAPHY

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.

E�cient software-based fault isolation. In Proc. of the 1993 ACM SIGOPS,

pages 203{216, 1993. (p 29)

[WM92] S. Wu and U. Manber. AGREP | a fast approximate pattern-matching

tool. In Proc. of the 1992 Winter USENIX Conference, San Francisco, CA,

pages 20{24, Jan, 1992. (p 47)

[YC91] Philip S. Yu and Douglas W. Cornell. Optimal bu�er allocation in a multi-

query environment, 1991. (p 36)

[You91] Neal E. Young. On-line caching as cache size varies. In Second Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 241{250, 1991. (p 146)

Index

�-bounded, 181

access patterns, 26, 32

access rate, 128

access trees, 33
ACFS, 57
adversary, 137

adaptive, 137

oblivious, 137
advice, 26, 33
aggressive, 61
Agrep, 45
Aho, 36

algorithms, 57
online, 19

allocation problem, 28
Appleton, 32
applications, 41

Armstrong, 36

background load, 113

Baer, 36

BALANCE algorithm, 144
Bartal, 135, 145

Barve, 36

batching, 93
Belady, 36

Ben-David, 137
Bershad, 18, 57

Blum, 135, 144, 145
Borodin, 139, 144, 145

bu�er-access, 59
bu�erage, 59

Burch, 135, 145

Cao, 18, 31, 57

Chen, 35, 36

Cheriton, 36

Choi, 36

Chou, 33, 34

Chrobak, 144
Coda, 32

Co�man, 36

common currency, 59

competitive analysis, 136
competitive factor, see competitive ratio

conclusions, 173

conservative prefetching, 29

Cornell, 34

cost-bene�t, 30, 58, 59
CSCAN, 54

Curewitz, 33

cyclic access, 26

Dahlin, 113

database, 43

Davidson, 42

demerit, 54

Demke, 32

Denning, 34, 36

Dewitt, 34

disclosure, 26

disclosures

generating, 26
disk arrays, 16

disk queueing, 80

Disk-Directed I/O, 35

double coverage, 144

200 INDEX

Duchamp, 33

dynamic sets, 31

Eggers, 36

elementary task vectors, 181

ELFS, 31

Ellis, 35

epochs, 78

estimators, 58, 60

tiptoe, 70

Fabry, 36
Faloutsos, 34
Felten, 18, 57
Fiat, 143, 145

Fido, 33
forestall, 29, 67
free time, 142, 161

and weighted caching, 163
bounded, 168

deterministic algorithms, 164
for command processing, 170
with hints, 166

Furst, 135

Gibson, 16, 31, 57, 58
Gnuld, 43
grep, 45
Gri�oen, 32
Grimshaw, 31

Grove, 36

Gupta, 36

harmonic algorithm, 144

Harty, 36

hint tracking, 76

hints, 15, 16

arriving over time, 18
compiler-generated, 27
tracking, 76

with free time, 166

hole, 147

Holland, 53

hot set, 34

I/O

asynchronous, 25

service time, 59

synchronous, 25

I/O bottleneck, 16

Incore, 68

introduction, 15

systems, 25

theory, 135
Irani, 145

k-server problems, 138
Karlin, 18, 31, 57, 136, 144

Karlo�, 144
Kimbrel, 18, 31, 57

Kistler, 32
Korner, 33

Kotz, 35
Koutsoupias, 144

Krieger, 32
Krishnan, 33

Krueger, 36
Kuenning, 33

Lam, 36
Larmore, 144

Lei, 33

lessons

conclusions, 173

multi-process, 127
single-process, 96

Li, 18, 36, 57

Linial, 139, 144, 145

linker, 43
lower bounds, 158

Loyot, 31
LRU pro�ling, 77

LRU-k, 34

INDEX 201

lru-sp, 63

lru-sp/aggressive, 61

lru-sp/forestall, 73

Manasse, 136, 143, 144

marginal gains, 34

mark-and-jump algorithm, 155

marking algorithm, 143

McGeoch, 143, 144

MCHF, 42

McNamee, 36

metrical task systems, 139
MIN, 36
Mowry, 16, 32, 36
MRU, 26, 34
multi-process, 99

metrics, 99
multiprocessors, 35

NAS benchmarks, 32

Ng, 34

O'Neil, 34
online algorithms, 19, 135
online problems, 135

overhead
computational, for I/O's, 29
system call, 26

Owicki, 144

Palmer, 33
Papadimitriou, 144
parallel I/O, see parallelism

parallelism

data, 16

storage, 16

Patterson, 16, 31, 57, 58
Payne, 144

Postgres, 43
posthint cache, 81, 125

prepaging, 35

Prieve, 36

primal-dual algorithms, 144

probability graph, 32

QLSM, 34

queueing, see disk queueing

Rabani, 144, 145

Raghavan, 144

RaidSim, 53

rate-based allocation, 74

Ravid, 144

re-fetch locality, 129

readahead, 27
related work

systems, 31
theory, 143

results
Agrep, 88

Davidson, 87
Gnuld, 92

Postgres, 90
Sphinx, 90

Xds, 88
reverse-aggressive, 29, 62

Ricklin, 145
Rogers, 36

Roussopoulos, 35
Rudolph, 136

Ruemmler, 53

Ruschitzka, 36

Sacco, 34

Saks, 139, 144, 145
sandbox, see specultaive execution

Satyanarayanan, 31, 32

scheduling, 40

Schkolnick, 34

Seiden, 145

Selinger, 33

Sellis, 34

sequential access, 26

202 INDEX

SETVMIN, 36

simulator, 39, 52

disk, 53

single-process, 85

ski-buying, 139

Sleator, 136, 143, 144

Smith, 32, 36

Snir, 144

SPACE problem, 28

speculative execution, 27

speech, 44

speech recognition, 44
Sphinx, 44
spin-block problem, 139, 144
Steere, 31
Stonebraker, 33

strided access, 26
super-increasing algorithm, 148
super-increasing space, 148
System R, 34

Tait, 33
Tarjan, 143
task systems, 139

temporal overload estimators, 30
test suite, 41
thrashing, 83
TIP2, 58

system model, 58

tiptoe, 30, 69

trace-driven simulation, 39
traces, 45

Agrep, 52

Davidson, 48

Gnuld, 49
Postgres1, 49

Postgres2, 50
Sphinx, 50

Xds, 48
traditional �lesystems, 15

Trivedi, 35

Tullsen, 36

Ullman, 36

V++, 36

Vishwanathan, 144

Vitter, 33, 36

VMIN, 36

web browser, 141

weighted caching, 19, 140, 147

and free time, 163

weighted-cache space, 140
weighted-server problem, 145
Wilkes, 53
work function, 148

working graph, 33
working set, 34
writes, 79

Xds, 42

Young, 144
Yu, 34

Zdonik, 33

