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Abstract—Specialized hardware accelerators have gained traction as a
means to improve energy efficiency over inefficient von Neumann cores.
However, as specialized hardware is limited to a few applications, there is
increasing interest in programmable, non-von Neumann architectures to
improve efficiency on a wider range of programs. Reconfigurable dataflow
architectures are a promising design, but the design space is fragmented
and, in particular, existing compiler and software stacks are ad hoc and
hard to use. Without a robust, mature software ecosystem, RDAs lose
much of their advantage over specialized hardware.

This paper proposes a unifying dataflow intermediate representation
(UDIR) for reconfigurable dataflow compilers. Popular von Neumann
compiler representations are inadequate for dataflow architectures be-
cause they do not represent the dataflow control paradigm, which is
the target of many common compiler analyses and optimizations. UDIR
introduces contexts to break regions of instruction reuse in programs.
Contexts generalize prior dataflow control paradigms, representing where
in the program tokens must be synchronized. We evaluate UDIR on
four prior dataflow architectures, providing simple rewrite rules to
lower UDIR to their respective machine-specific representations, and
demonstrate a case study of using UDIR to optimize memory ordering.

I. INTRODUCTION

Von Neumann processors are fundamentally energy-inefficient,
wasting 90% or more of their energy on instruction fetch, pipeline
control, and data movement [7,9,10]. Over the past decade, architects
have turned to hardware specialization to improve energy efficiency.
Application-specific integrated circuits (ASICs) regularly improve
performance and energy by 100× vs. vN processors [3, 10, 11]. But
ASICs also increase design cost by orders of magnitude, and they are
only applicable to a narrow subset of computations. [18] Consequently,
energy efficiency remains out of reach for most programmers.

Dataflow to the rescue? Recent reconfigurable dataflow architectures
(RDAs) and coarse-grained reconfigurable arrays (CGRAs) promise
the best of both worlds: programmability and efficiency. At a high-
level, an RDA is a grid of simple processing elements (PEs) connected
by a network on-chip (NoC), which avoids the inefficiency of vN
by spatially distributing compute and communication (vs. streaming
instructions through a shared execution pipeline).

Poor compiler support hamstrings dataflow architectures. The de-
sign space of recent RDAs and CGRAs is vast; PEs can range from
simple ALUs to full-fledged cores. Thus far, their compiler and
software stacks have been ad hoc and limited in scope. Because
of widely varying designs, compile-time representations are tightly
coupled with each RDA’s particular microarchitecture. Integrating
and maintaining each software stack is expensive and impractical.
Immature compiler and software support means that RDAs lose much
of their programmability advantage vs. specialized hardware. For this
reason, dataflow architectures need a unified compiler infrastructure.

What does a unified dataflow IR look like? vN and dataflow
architectures are fundamentally different and require different IRs.
Dataflow execution is inherently parallel and lacks a program counter.
The dataflow control paradigm is to simply issue operations whenever

their inputs are available, with additional control operators to steer
tokens to the right destination [4]. In the presence of potential
races between tokens, dataflow architectures require some token
synchronization scheme to avoid issuing operations with mismatched
inputs. Token synchronization is expensive — typically, more than half
of all operations in a dataflow program. Hence, although vN IRs [13]
are sufficient for many compiler analyses (e.g., constant propagation),
a dataflow IR is needed to reason about dataflow execution.

Our solution: UDIR. We propose UDIR, a unifying dataflow interme-
diate representation for reconfigurable dataflow architectures. UDIR
represents programs as a dataflow graph (DFG), which naturally
expresses coarse-grained and instruction-level parallelism. UDIR
simplifies common compilation steps, including dependence analysis,
operation ordering, and instruction scheduling.

UDIR further introduces contexts to generalize token synchro-
nization. Token synchronization is a critical dimension of dataflow
architectures that distinguishes prior architectures: some designs
enforce ordered dataflow [4, 8, 12, 17] by disallowing re-ordering
of tokens, whereas tagged dataflow [14, 15, 20] architectures allow
re-ordering to improve performance and give matching tokens a
unique tag. We identify that instruction reuse defines where token
synchronization is required, and UDIR breaks a program into regions
called contexts that group sets of instructions that will be used
together (e.g., a loop or function body). Contexts represent token
synchronization because tokens must synchronize only when they
cross a context boundary.

Summary of results. UDIR is implemented as an embedded IR in
LLVM [13]. We evaluate UDIR on applications written in C, mapping
imperative code to dataflow. We prove UDIR’s generality by lowering
it to a diverse set of four prior dataflow architectures: two ordered
dataflow and two tagged dataflow architectures, each with a different
token synchronization scheme. Moreover, we show that lowering
UDIR to machine-specific dataflow representations requires only
simple rewrite rules.

Contributions: This paper contributes the following:
• We develop UDIR, an embedded LLVM dataflow IR and compiler

framework. UDIR abstracts dataflow semantics, enabling target-
agnostic dataflow compiler optimizations for RDAs and CGRAs.

• We identify instruction reuse and token synchronization as a criti-
cal element of dataflow architectures, and propose a new context
abstraction to represent the elements of token synchronization.

• We provide simple rewrite rules from UDIR to four prior dataflow
architectures, showcasing UDIR’s generality and ease of use.

• We present a case study where UDIR enables target-agnostic
dataflow analysis by reducing redundant control flow.

II. BACKGROUND

Dataflow vs. vN HW/SW interface. In a von Neumann core, instruc-
tions semantically execute in-order, sequenced by a program counter.
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Table I: UDIR enables target-agnostic compilation for RDAs, encouraging
the development of a mature compiler ecosystem for programmable
dataflow architectures.

vN RDAs FPGAs UDIR

Frontend 3 Ad hoc HLS 3
Generic
optimization

3 7 Vendor-locked 3

Target-specific
optimization

3 Limited Vendor-locked 3

Backend 3 Platform-specific Vendor-locked 3
Performance
and efficiency

7 3 3 3

In contrast, RDAs directly expose parallelism to the programmer, only
ordering operations according to program dependencies. Dataflow
semantics enable RDAs to distribute parallel operations spatially across
an array of simple processing elements, dramatically improving energy
efficiency vs. vN designs that attempt to re-discover parallelism at
runtime via hardware [8].

Problems with traditional compiler IRs for dataflow. Existing com-
pilers, such as LLVM and GCC, are targeted at von Neumann cores.
In particular, they assume sequential execution in their intermediate
representations. By assuming sequential execution, existing IRs do
not express fine-grain dependencies (e.g., precise memory-ordering
dependencies), and instead resort to coarse-grained ordering, (e.g.,
global memory fences). Nor do they support dataflow-specific program
transformations, like spatial loop unrolling. This makes RDAs an
unsuitable backend target for existing compilers, and calls for a high-
level dataflow IR. As a dataflow IR, UDIR has support for the relaxed
program-order semantics of dataflow machines, encoding more precise
dependencies and control-flow information than a vN IR.

Prior dataflow IRs and compilers. In lieu of vN IRs, several prior
dataflow IRs have been proposed. Pegasus IR [1] notably encodes
dataflow information in a high-level IR by combining predicated-
and gated-SSA forms. Some dataflow IRs [6, 22, 23] are designed to
streamline generic optimizations (e.g. dead-code elimination) using
a graphical IR structure. However, none of these IRs aims to be a
high-level target for a wide variety of RDA designs. In particular,
they do not abstract the various token synchronization schemes seen
in prior dataflow architectures, a primary contribution of UDIR.

Other compilers for specialized architectures. Some specialized
compilers target RDA-adjacent architectures, and they have built
frameworks that feature common optimizations and target-specific
backends. Recently, HPVM [5], ÂţIR [19], and TVM [2] have
implemented high-level IRs and lowering passes for heterogeneous
machines, custom accelerator designs, and accelerators for ML,
respectively. However, these IRs do not fulfill the same purpose
as UDIR. HPVM retains the program counter from vN IRs, ÂţIR
targets RTL only, and TVM optimizes high level tensor operations.

III. UNIFIED DATAFLOW IR

The unifying dataflow IR (UDIR) is an intermediate representation
and compiler infrastructure for reconfigurable dataflow architectures.
The UDIR compiler framework supports programs written in se-
quential languages, like C, leveraging the LLVM infrastructure for
generic optimizations (e.g. constant folding). UDIR abstracts dataflow
semantics needed across prior RDAs, including control flow, token
synchronization, and memory ordering, and it can be easily lowered
to prior dataflow ISAs via simple rewrite rules.

Table II: UDIR’s instruction set.

Category Operator(s)

Arithmetic +, −, ×, ÷, <<, 6=, etc.
Memory load, store
Control flow select, steer, merge, order
Stream Affine iterators; e.g., 1,2 . . .N
Token synchronization enter, exit

A. UDIR’s common infrastructure

UDIR enables common, target-agnostic compiler optimizations for
RDAs. Prior RDA compilers tightly couple their ISA and the hardware,
leaving little room for common and reusable optimizations. Instead of
optimizing low-level microarchitectural features straight away, UDIR
represents high-level dataflow semantics in a dataflow graph (DFG),
as shown in Fig. 1.

UDIR’s DFG is constructed from the generated LLVM IR of a
program. Doing so enables UDIR to leverage LLVM’s existing infras-
tructure for dependence analysis and optimize DFG operations. It uses
LLVM’s memory and arithmetic instructions, along with additional
dataflow-specific instructions for control and token synchronization.
UDIR represents control flow via steer operators, which forward
or drop an input data token based on a boolean input token, and
merge/order operators shown in Table II. Merge instructions forward
one of two input tokens, based on a boolean decider. Order instructions
simply forward tokens from one input once a token is received on both
inputs, e.g., to order a store after two earlier loads. Currently, UDIR
supports standard if-else and loop based control flow. Arbitrary
indirection, such as longjmp, is the subject of ongoing research.

UDIR streamlines compilation of new RDAs. RDA designers can
leverage UDIR’s infrastructure to produce optimized DFGs without
having to reason about dataflow semantics from scratch or from a
vN representation. As described in Sec. III-C, compiler developers
can lower to specific dataflow ISAs by rewriting UDIR’s high-level
primitives into machine-specific mechanisms or operations.

B. Abstracting token synchronization via contexts

A distinguishing feature of dataflow ISAs is the token-
synchronization scheme in the presence of instruction reuse. Any
dataflow ISA needs to understand where to synchronize, what to
synchronize, and how to synchronize.

Key insight: Where synchronization is needed remains common across
all dataflow ISAs. We identify that token synchronization is needed
wherever there is instruction reuse, i.e, at the boundaries of reentrant
code blocks. These points are where mis-matched, racing tokens may
arrive and potentially cause incorrect execution. In the example code
shown in Fig. 1, the outer loop (“Reentrant Block 1”) and inner loop
(“Reentrant Block 2”) are the two reentrant blocks.

UDIR identifies and marks boundaries around reentrant code blocks
and assigns them unique, static identifiers, called context ids. We define
a context as the unique invocation of a reentrant code block — note
that while contexts are dynamic, every context has a unique, static
context id. In particular, each unique callpoint of a reentrant code
block has a unique context id; this is essential to distinguish between
invocations of a reentrant block from different call points within the
same parent context.

At the context boundary, UDIR inserts instructions called enter and
exit, which pass data through unmodified. The significance of enter
and exit is that these operators demark where token synchronization
is required. They are replaced with machine-specific synchronization
mechanisms during lowering, as described below.
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Figure 1: UDIR Compilation Flow

Synchronizing tokens. UDIR first identifies the values that cross the
context boundary. For a function call, these values are readily identified
by standard compilers, like LLVM, as the function arguments and
return value(s). For loops, the values are loop live-ins, loop-carried
dependencies, and loop live-outs.

Fig. 1 depicts contexts as yellow background, with red boxes
showing the enter and exit points. i, j, and w are the live-ins that
enter through inner loop context boundary (CID 2) and i alone enters
through the outer loop context boundary (CID 1). i is also a live-out
and exits through the outer loop context boundary (CID 2).

UDIR’s contexts now define the minimal regions of token syn-
chronization, demarking the instructions and tokens that require
synchronization. How token synchronization is accomplished can
vary vastly across architectures; e.g., TTDA uses a tag allocator to
dynamically manage tags, WaveScalar increments tags monolithically,
and RipTide has no tags as it enforces strict ordering among tokens.

C. Lowering UDIR to prior RDAs

UDIR can be lowered to prior RDAs with vastly different architec-
tures and token synchronization schemes via simple rewrite rules.

Riptide [8] turns enter to carry or invariant, depending on
whether the corresponding enter has a self edge. carry and invariant
block the creation of new contexts until an inner context completes.
Riptide simply deletes exits, since there is only one live context.

TTDA [14] turns enter(s) at a context boundary into one
get-context and change-tag(s) operators. get-context calls the
tag manager, which allocates a new tag from a global free list. The new
tag is fanned out to all change-tags at the context boundary. exit
is replaced with a pair of extract-tag and change-tag operators,
which record and then restore the tag of the parent context.

Revel [21] combines an ordered-dataflow and systolic dataflow
architecture, with support for streaming loads and stores. The lowering
pass first analyzes UDIR’s DFG to identify affine loads and stores
and turns them into streams. It then turns outer-loop enters to
carry and invariant operators, like Riptide. Since the systolic array
is statically scheduled, the innermost loop’s enters are fused to a
transfer operator, which is a barrier that forwards tokens only when
all have arrived. Finally, Revel deletes exits for outer loops, like
RipTide, and inserts transfers for exits from the innermost loop.

WaveScalar [20] turns enter to wave-advance, which increments
the tag of the input token. WaveScalar requires tags to increase
monotonically, and must sequentialize execution to avoid tag conflicts.
As a consequence, WaveScalar must carry all live tokens through
wave-advance across every context, boundary adding a large number
of wave-advance operators. Finally, WaveScalar deletes exits.

IV. METHODOLOGY

We evaluate UDIR on a suite of five commonly used kernels:
BFS, DFS, DCONV, DMM and DMV. We use a high-level functional
dataflow simulator to run the compiled dataflow graphs for each of four
dataflow ISAs: Riptide, Revel, TTDA, WaveScalar. We model each
target architecture at a high level, performing tag matching as described
in each design, except for Revel the outer loops run on a vanilla
ordered-dataflow architecture instead of Triggered Instructions [16].
We assume infinite buffering for input tokens. Each instruction is
allowed to fire at most once per cycle. Our memory has a single
port and 8 banks. All instructions finish in one cycle except loads
and stores (bank conflicts), and TTDA’s get-context instruction is
modeled as four cycles to account for tag allocation overhead.

V. EVALUATION

A. UDIR can target a wide range of dataflow architectures

UDIR allows us to compile our test suite to most of our target
architectures. BFS and DFS both fail to compile for our Revel-esque
target because they have conditional stores in their innermost loop,
which are incompatible with Revel’s systolic array. Without UDIR,
there is no unified compilation support for these architectures. Some,
like WaveScalar, did provide compilers which could ingest C, but
others, like TTDA, didn’t. TTDA targeted the functional language Id.
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Figure 2: Performance and program size for five benchmarks on four
different dataflow architectures. UDIR compiles these programs from C,
leveraging LLVM and then lowers to each design via simple rewrite rules.
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Fig. 2 shows the execution time and program size for compiling
each benchmark from C to the different dataflow architectures. The
significance of these results is that UDIR can correctly target very
different dataflow architectures from a common, high-level dataflow
representation. However, the results also enable comparison of
different architectures. The cost of dynamic tag allocation is evident
from TTDA’s poor performance vs. the other architectures. Similarly,
WaveScalar must sequentialize execution to guarantee monolithically
increasing tags. Both TTDA and WaveScalar can achieve higher
parallelism than RipTide or Revel; this potential advantage is not
revealed in our simple simulations because all operations execute in
one or a few cycles. However, by injecting variable latency, we see
that TTDA and WaveScalar can perform significantly better than the
ordered dataflow architectures (RipTide and Revel) because it can
execute ready operations out-of-order.

B. UDIR enables target-agnostic dataflow optimization

In a vN processor, loads and stores are always ordered (as there is a
total program ordering), meaning that work must be done at runtime to
discover non-aliased memory accesses. Dataflow architectures do not
enforce a total program ordering, so the programmer must ensure the
existence of ordering edges between memory accesses according
to the source language’s memory model. This enables RDAs to
encode memory ordering more precisely than vN machines, which can
improve performance without complex hardware to track load-store
aliasing. As a baseline, UDIR enforces ordering between all memory
accesses in the original program order. We show that by relaxing this
ordering, we can improve performance on multiple RDA targets.
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Figure 3: Case study of memory-ordering optimization on DMM. UDIR
enables target-agnostic dataflow optimizations on the dataflow graph,
which can then be lowered to any machine-specific representation.

We target the simplest case of memory ordering: when two memory
accesses do not alias, e.g., when the restrict keyword is used in C.
To construct the memory-ordering graph, we call LLVM’s memory-
alias interface. If the result is a strict no-alias, then we remove the
ordering edge between memory accesses. This often simplifies the
DFG and improves performance. Simplifying the DFG can also enable
mapping of more complex programs to some architectures. With full
memory-ordering, DMM cannot be lowered to our Revel-esque target
since the inner-loop memory accesses cannot be promoted to streams.
However, after optimization, the simpler DFG is lowered successfully.

For Riptide, WaveScalar, and TTDA, we see 1.17x, 1x and
1.51x speedups respectively. This optimization does not improve
WaveScalar’s performance because of the nature of WaveScalar tags.
WaveScalar serializes the UDIR DFG because it needs to maintain
monotonically increasing tags. Thus, after the optimization, DMM
outer loops are serialized due to tag handling rather than memory
ordering. In Riptide, outer loop iterations need only wait for preceding

outer loop iterations to begin in order to maintain ordering, meaning
multiple outer loop contexts can exist simultaneously. Because of this,
removing the memory ordering constraint allows for more parallelism
to be exploited. TTDA imposes the fewest constraints in that not only
different outer loop contexts can exist simultaneously but they can
also execute out of program order, giving it the largest performance
uplift from this optimization. We also see a program size reduction
of ≈15 instructions in each (0.66x, 0.77x, 0.75x) due to the roughly
constant number of control flow instructions pruned.

This case study shows how UDIR enables target-agnostic dataflow
optimizations. UDIR leverages existing LLVM memory-alias analysis
to enable dataflow-specific relaxation of memory ordering.

VI. CONCLUSION

Modular compilation is critical for development of new and
maintenance of old compiler infrastructures. To this end, UDIR
significantly streamlines compilation flows for reconfigurable dataflow
architectures. UDIR’s context abstraction captures the differentiating
feature of dataflow architectures, enabling target-agnostic compilation
and simple lowering passes to new dataflow machines.
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no. 2SI, p. 82âĂŞ91, may 1990. [Online]. Available: https:
//doi.org/10.1145/325096.325117

[16] A. Parashar et al., “Triggered instructions: a control paradigm for spatially-
programmed architectures,” ACM SIGARCH Computer Architecture News,
vol. 41, no. 3, 2013.

[17] R. Prabhakar et al., “Plasticine: A reconfigurable architecture for parallel
patterns,” in ISCA 44, 2017.

[18] M. Satyanarayanan et al., “The role of edge offload for hardware-
accelerated mobile devices,” in HotMobile, 2021.
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