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ABSTRACT
Low-latency and low-power edgeAI is crucial for Augmented/Virtual
Reality applications. Recent advances demonstrate that hybrid mod-
els, combining convolution layers (CNN) and transformers (ViT),
often achieve a superior accuracy/performance tradeoff on various
computer vision and machine learning (ML) tasks. However, hybrid
ML models can present system challenges for latency and energy ef-
ficiency due to their diverse nature in dataflow and memory access
patterns. In this work, we leverage architecture heterogeneity from
Neural Processing Units (NPU) and Compute-In-Memory (CIM) and
explore diverse execution schemas for efficient hybrid model exe-
cutions. We introduce H4H-NAS, a two-stage Neural Architecture
Search (NAS) framework to automate the design of hybrid CNN/ViT
models for heterogeneous edge systems featuring both NPU and
CIM. We propose a two-phase incremental supernet training in
our NAS to resolve gradient conflicts between sampled subnets
caused by different block types in a hybrid model search space. Our
H4H-NAS approach is also powered by a performance estimator
built with NPU performance results measured on real silicon, and
CIM performance based on industry IPs. H4H-NAS searches hybrid
CNN-ViT models with fine granularity and achieves significant
(up to 1.34%) top-1 accuracy improvement on ImageNet-1k. More-
over, results from our algorithm/hardware co-design reveal up to
56.08% overall latency and 41.72% energy improvements by intro-
ducing heterogeneous computing over baseline solutions. Overall,
our framework guides the design of hybrid network architectures
and system architectures for NPU+CIM heterogeneous systems.
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1 INTRODUCTION
Augmented/Virtual Reality (AR/VR) are increasingly prevailing as key next-
generation human-oriented computing platforms [1]. Recent artificial intelli-
gence (AI) advances further power AR/VR applications, revolutionizing how
people communicate with each other, improving productivity and chang-
ing human interactions with the world. These applications typically run
Deep Neural Network (DNN) inferences for various tasks, such as hand/eye
tracking [20, 48], object detection [16], photorealistic avatars [64], etc.

Typically, to meet the low latency requirements of AR/VR applications
(such as hand tracking and detection) and to preserve user privacy, most
DNN inferences need to be processed locally on AR/VR devices. Moreover,
given the limited compute, memory capacity, and power budget on these
devices (AR/VR glasses) , as well as the recent emergence of smart cam-
eras [37, 53], on-device processing is heavily distributed between the main
SoC and multiple intelligent sensors. This setup allows a portion of the
processing to reside locally on intelligent sensors [12, 17].

These intelligent sensors, although limited in compute and memory
capacity due to area constraints, are required to achieve high energy ef-
ficiency in ML tasks with ultra-low latency. Meanwhile, DNN models for
these applications are becoming increasingly diverse to improve task per-
formance, even when targeting similar classes of workloads. For instance,
in computer vision (CV), ResNet [21], MobileNet-v2 [51] and vision trans-
formers (ViT) [13, 40] have vastly different basic block structures, requiring
increasingly flexible execution schemas on hardware. This diversity poses
challenges in designing general-purpose accelerators that are efficient across
various models: An accelerator heavily optimized for one generation of
models may become less efficient as new models are introduced.

Various edge AI acceleration designs have emerged to address these
challenges and meet the stringent energy/latency requirements for edge AI.
Among these, Neural Processing Units (NPUs) have shown great promise,
with the technology recently maturing into widespread adoption in com-
mercial products [2, 52]. Many state-of-the-art NPUs demonstrate high effi-
ciency in compute-intensiveworkloads. For instance, ARMEthos-U55/U65 [2,
3] are particularly efficient in handling convolution layers (CNN).

As the compute capacity increases, however, the frequent data movement
betweenmemory and processor dominates energy/latency costs. Tomitigate
this, compute-in-memory (CIM) has re-emerged to effectively reduce data
movement. In CIM, computing elements are close to (near-memory comput-
ing (NMC) [7–9, 28, 29, 45, 67]) or even merged with (in-memory computing
(IMC) [23–25, 32, 61, 65]) memory, thereby enhancing latency/energy effi-
ciency. CIM triggers the design of related AI accelerators [39, 57, 58]. Please
refer to Section 2.3 for more details.

With all these diverse advances in both ML algorithm/model and edge
hardware acceleration, the current design spaces for edge AI/ML systems
become exceedingly complicated. Consequently, two questions naturally
arise, which we hope to solve in this paper:

(1) Can we design a heterogeneous system with multiple hardware
acceleration features, that can generalize itself to accelerate various
models with different execution schemas, or even a single hybrid
model with different block types?

https://doi.org/10.1145/3658617.3697627
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Figure 1: End-to-end comparison of model accuracy.

(2) If such design proves to be beneficial, can we automate the co-
design of the model and the system, even if enormous heterogeneity
on both sides will complicate such co-design?

In this work, we propose a generic design that combines both NPUs and
CIMs, leveraging the architectural heterogeneity from NPUs and CIMs to
accelerate edge AI with diverse dataflows arising from our hybrid CNN/ViT
models. We also introduce an automated design workflow, with neural
architecture search (NAS) as its core, to co-design hybrid CNN/ViT models
to achieve the best accuracy/performance trade-offs for heterogeneous
architectures.

Our key contributions and novel aspects are as follows:
• We present H4H-NAS: A neural architecture search framework
to seamlessly automate the design and search of efficient Hybrid
CNN/ViT models for usage on Heterogeneous edge compute featur-
ing NPU and CIM.

• We modify the supernet training recipe in our H4H-NAS—using a
two-phase incremental training—to improve the NAS training result
of a hybrid model space.

• We build a system modeling tool in the workflow, using post-silicon
results for NPU and industry IP-based results for CIM to guide the
efficient model development process.

• We propose system-level improvements on current CIM-based de-
signs, including addingmultiple compute-units in CIMs andmultiple
macros in the system, to further improve system performance on
ML workloads.

Our workflow produces hybrid models with better accuracy than state-
of-the-art ones (Figure 1); meanwhile, our hardware accelerations achieves
up to 56.08% latency and 41.72% energy improvements compared to single-
device systems.

2 BACKGROUND
In this section, we provide backgrounds and motivations behind our meth-
ods. We discuss recent advances in AI/ML models utilizing different basic
blocks, the latest development of neural architecture search, and the het-
erogeneity in different edge accelerators, such as NPUs and CIMs. These
backgrounds motivate our approach of Algorithm/Hardware co-design for
efficient hybrid models and their acceleration using a heterogeneous system
within edge AI devices.

2.1 State-of-the-art ML Models
Various types of basic CV blocks have emerged as efficient alternatives to
traditional ones such as VGG/ResNet [21, 38].
CNN. Convolution neural networks (CNN) continue to dominate the land-
scape of CV models. Specifically, the inverted residue bottleneck block (IRB)
fromMobileNet-v2 [51] emerged as one of the most widely used basic blocks
for memory efficient, low-latency edge AI inferences. Other recent CNNs
include EfficientNet [55, 56, 62], ConvNeXt [41, 63] and YOLO [26, 59].
ViT. As a byproduct of the advancements in language models, vision trans-
formers (ViT) [13, 36, 40, 43] have recently emerged, showcasing superior

performance as model size scales up. A ViT block integrates diverse opera-
tions together, including Q/K/V generators, head-level multiplication, layer
norms, softmax, positional encoding and multilayer perceptrons (MLP).
Hybrid Models. In addition to diversity resulting from different compo-
nents within a single block, some recent models employ multiple types
of blocks in their networks. For instance, SAM [33], LeViT [19] and Alter-
Net [46, 70] combine both CNNs and ViTs.

2.2 Neural Architecture Search
Neural Architecture Search (NAS) is an efficient method that automates the
design of a vast number of DNNs to discover memory/compute-efficient
solutions for mobile deployment. Conventional NAS approaches, utiliz-
ing evolutionary search [50] or reinforcement learning [72], often require
extensive training due to the large number of models trained in a single
experiment. Recent advances in NAS have decoupled model training and
architecture search into two separate stages [69], significantly reducing
training costs. More recent NAS practices incorporate weight sharing into
the supernet training stage [4, 10], which greatly alleviates the heavy com-
putational burden of training all candidate networks from scratch.

While current NAS paradigms enjoy high efficiency in designing CNNs [4,
60], transformers [6, 18] and graph networks [15, 71], two fundamental prob-
lems persist when designing edge AI/ML models:
Inflexible Search Space. Although NAS enables flexible exploration over
a vast number of subnets, in most cases, it primarily adjusts “network
configurations”—such as feature map width, kernel sizes and channel num-
bers. The topology of the basic blocks is not significantly modified, which
hinders NAS from capitalizing on new block structures such as ViTs. More
recent research has investigated hybrid search spaces incorporating differ-
ent block types (CNN and ViT). However, these approaches constrain the
flexible placement of CNN and ViT blocks, thus limiting the full exploration
of hybrid model space. For example, NASViT [18] sticks to a “first CNN
then ViT” structure similar to LeViT [19].
Gradient Conflicts. During supernet training for hybrid NAS, different
sampled subnets often exhibit conflicting/misaligned gradient directions,
leading to degraded training quality [18, 42]. Please see Section 4.1 for
details of the problem and our solution.

2.3 Edge AI Computing Hardware
NPU. The neural processing unit (NPU) has emerged as a prevalent solution
for accelerating edge AI under the stringent resource constraints of edge
devices. Typically, an NPU adopts a systolic array as its core component for
efficient computation of matrix multiplications. Since its first emergence in
the 1970s [34], NPU has remained an attractive design for the latest compute-
intensive workloads, both in the cloud [27] and at the edge [2, 3, 52]. In this
work, we specifically focus on edge NPU use cases.
CIM. Traditional architectures (both Von Neumann and accelerator-based)
separate computation from storage, necessitating data movements between
memory and compute and resulting in significant energy consumption and
latency. To mitigate this, computing-in-memory (CIM) recently emerges
which brings computing elements close to memory or even merges them
with memory.

Both SRAM [5, 14, 44] and DRAM [65] has been employed for CIM.
However, their volatility leads to efficiency degradation in mostly-off sce-
narios and latency issues during initialization. To address this, non-volatile
memory such as resistive RAM (ReRAM) [23–25, 61], phase-change RAM
(PCRAM) [30–32], and magnetic RAM (MRAM) [7–9, 67] are proposed. This
paper focuses onMRAM-based NMC designs, given its potential advantages.

Recent work [11] shows that there remains a significant gap between
the macro-level and processor-level energy efficiency. The key bottleneck is
in non-trivial surrounding modules. This aligns with our modeling results
(in Section 3.2), and prevents energy efficiency to be significantly improved
by just introducing CIM.
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Figure 2: System and hardware overview.

Heterogeneous Edge Systems.NPU and CIM appear to be complementary
components in edge AI/ML acceleration, tailored to accelerating compute-
intensive and memory-intensive tasks, respectively. They might syner-
gistically work together to achieve efficient processing. However, studies
on designing heterogeneous systems consisting of both components are
still in the early stages. Existing works focusing on such heterogeneous
systems [47, 66] are highly specialized in their target workloads. This moti-
vates us to explore the possibility and benefits of designing a heterogeneous
NPU+CIM system for more general use cases.

3 PROPOSED DESIGN
Although hybrid models can achieve higher accuracy (Section 2.1), their
diverse layers often require hardware support for various execution schemas.
Additionally, different layers may impose different requirements on compute
and memory access patterns, placing varying pressure on compute units
and memory devices.

Meanwhile, previous works and our profiling results in Section 3.2 in-
dicate that the heterogeneity between NPU and CIM provides potential
solutions for hybrid model executions. NPUs excel in compute-intensive
workloads, while CIMs are highly efficient on memory-intensive executions.

In this work, we focus on co-designing hybrid models and heterogeneous
systems comprising both NPU and CIM, offering a potential solution for
efficient edge AI/ML. We have chosen the ARM Ethos-U55 NPU and digital-
based NMC MRAM CIM as representatives of the hardware components, as
we believe they are adaptable to multiple workloads. However, our methods
can also be applied to other hardware designs, such as analog-based IMCs.

3.1 Hybrid Models with CNN and ViT
Our target ML model architectures are hybrid models comprising both
CNN and ViT. We perceive CNN blocks as local information extractors in
CV applications and ViT blocks as global information comprehenders. We
anticipate that these two types of blocks, each with distinct roles, could
complement each other and enhance the overall performance, insipred by
previous insights [46].

Moreover, we aim to automate the design of such models and develop
a workflow that supports various hybrid CNN+ViT model variants. This
necessitates a flexible model search space, as outlined in Table 1, along
with several techniques to seamlessly automate the design within a NAS
framework (as will be discussed in Section 4).

3.2 Heterogeneous NPU+CIM Platform
In this paper, we delve into the design of an example target system that
integrates CIM components and an NPU on the same commodity network-
on-chip (NoC) (Figure 2a). CIM and NPU share the same NoC bandwidth,
set at 4-8 GB/s. The NoC incurs a warm-up latency of tens of cycles and
CIM utilizes streaming processing over IFMP to hide its latency via pipelin-
ing. Workflow partition ensures that NPU/CIM will not occupy the NoC
bandwidth simultaneously.

To architect AI edge systems incorporating both NPU and CIM, we
begin by collecting and analyzing performance data from real-world silicon
of NPUs and SPICE-simulated industrial CIM IPs. These collected data
points offer an accurate modeling of the energy and performance of a
heterogeneous system for our framework.

NPU.We use the ARM Ethos-U55 [2] as a typical example of an NPU on
edge devices. Our test silicon, shown in Figure 2b, is fabricated andmeasured
using 7nm FinFET technology.

We test different DNN model layers—regular / depth-wise / point-wise
CNNs and fully-connected layers—using the NPU with ARM ethos-u-vela
toolchain. All experiments are performed with a batch size of 1, which
is common in edge inference applications. System metrics measured are
execution latency and energy consumption.

Figure 3 shows the throughput and energy cost of typical layers exe-
cuted on U55, both normalized by its theoretical best performance. In short,
different layer types illustrate different execution efficiencies, but they all
follow a trend of “increasing then saturating” as data sizes increase.

CIM. We acquire our CIM data on a digital-based NMC MRAM-based CIM
macro. The non-volatility of MRAM helps reduce wake-up overhead on
edge AR/VR applications. The MRAMmacro is evaluated in 7nm technology
(projected from 16nm designs) for fair comparison with the NPU. It is
implemented based on production designs [35, 54]with read optimization for
lower read energy. Each MRAM macro has 10Mb memory capacity and can
compute the 16 accumulations of 9 products between 8-bit input and 8-bit
weight. The memory and the computation peripheral occupy approximately
0.9mm2 and 0.15mm2, respectively. Figure 4 shows the overall architecture
of our MRAM CIM macro.

We focus on performance of CIM executing memory-bounded layers,
such as depthwise convolutions and fully-connected layers, as NPU per-
forms suboptimally on these workloads. We also acquire CIM performance
on pointwise convolution, as there is potential in leveraging this workload
over NPU results.

Figure 5 shows the comparative ratio of throughput and energy efficiency
between eight MRAM CIM macros and one U55 NPU. The results show that
a system with multiple CIM macros working together can potentially out-
perform the NPU on memory-bounded DNN layers in both throughput and
energy efficiency, for practical layer configurations from existing models.

4 METHODOLOGY: NEURAL ARCHITECTURE
SEARCH FOR HYBRID MODELS

Workflow Overview. We have developed a workflow–H4H–to automate
the co-design of algorithms and hardware for efficient inference with hybrid
CNN+ViT models on heterogeneous edge systems featuring NPUs and CIM.
This workflow targets CV tasks in AR/VR applications and integrates
real-world resource constraints, such as those found in intelligent cameras.

We develop our H4H-NAS based on the two-stage NAS framework —
with a first stage of supernet training (Section 4.1) and a second stage of
subnet searching (Section 4.2). Our focus is on enabling a flexible search
space of hybrid models and deploying them on heterogeneous architectures
built from industrial IPs.

Search Space.We summarize our search space in Table 1. For inverted resid-
ual bottleneck blocks (IRB), we search for the number of output channels
(width), the number of layers in a single block (depth), and the expansion
ratio of depthwise convolutions. Stride=2 only applies to the first layer in
each block. For vision transformer encoders [36], we search for the Q/K/V
dimension (width), the number of layers in a single block (depth), and the
expansion ratio of MLP. We fix the number of input channels and output
channels of a transformer block to be equal to enable unchanged residues
to bypass transformer blocks. We use (3,3)-sized kernels in all convolution
layers and 8-dimension heads in all transformers.

We construct our supernet structure using repeated “convolution + trans-
former” blocks. It is worth noting that our supernet can be flexibly reduced
to either an IRB-only model, a ViT-only model, or a "first CNN then ViT"
structure similar to LeViT [19], as shown in Figure 6. This design ensures
superior flexibility in the supernet architecture, allowing it to be reduced to
a best model pattern among various model types during subnet search.
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4.1 Two-Phase Incremental Supernet Training

Baseline: Vanilla Supernet Training. We initially examine a vanilla su-
pernet training as a baseline, which spans 360 epochs on ImageNet-1k.
Recommended by LeViT [19] and NASViT [18], we utilize the AdamW opti-
mizer when training. We employ the sandwich sampling rule [68], using an
averaged gradient over the four sampled subnets for weight updates. We set
both the dropout and drop-connect rates to be 0.2 and utilize AutoAugment.

Block Width Depth Exp. Ratio Stride
Conv-0 16 ∼ 32 1 - 2

MBConv-1 16 ∼ 32 1 ∼ 2 1 1
MBConv-2 32 ∼ 64 2 ∼ 6 4 ∼ 6 2
MBConv-3 32 ∼ 64 2 ∼ 6 4 ∼ 6 2

ViT-3 24 ∼ 64 0 ∼ 1 1.0 ∼ 2.0 -
MBConv-4-1 64 ∼ 96 1 ∼ 3 4 ∼ 6 2

ViT-4-1 48 ∼ 96 0 ∼ 2 1.0 ∼ 2.0 -
MBConv-4-2 64 ∼ 96 0 ∼ 3 4 ∼ 6 1

ViT-4-2 48 ∼ 96 0 ∼ 2 1.0 ∼ 2.0 -
MBConv-5-1 96 ∼ 128 3 ∼ 4 4 ∼ 6 1

ViT-5-1 64 ∼ 128 0 ∼ 2 1.0 ∼ 2.0 -
MBConv-5-2 96 ∼ 128 0 ∼ 4 4 ∼ 6 1

ViT-5-2 64 ∼ 128 0 ∼ 2 1.0 ∼ 2.0 -
MBConv-6-1 192 ∼ 224 2 ∼ 4 4 ∼ 6 2

ViT-6-1 144 ∼ 224 0 ∼ 2 1.0 ∼ 2.0 -
MBConv-6-2 192 ∼ 224 0 ∼ 4 4 ∼ 6 1

ViT-6-2 144 ∼ 224 0 ∼ 2 1.0 ∼ 2.0 -
MBConv-7 224 ∼ 240 1 ∼ 2 6 1

ViT-7 176 ∼ 240 0 ∼ 3 1.0 ∼ 2.0 -
MBPool 1792 ∼ 1984 1 6 -

Input Resolution {192, 224, 256, 288}
Table 1: H4H-NAS search space. MBConv refers to IRB [51].
ViT is from [36]. MBPool is an efficient last stage [22].

A Sub-space in Our Search Space
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Figure 6: An example of how our search space can be flexibly
reduced to basic blocks of different existing model types.

Additionally, we train a CNN-only supernet as a competitor using the
same vanilla training recipe. The CNN-only supernet removes all ViT com-
ponents from Table 1 and retains only the remaining CNN parts. In other
words, the CNN-only supernet is a subset of the original hybrid supernet.
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Gradient Conflict. Figure 8 (red and green parts) and Table 2 (row 1-2)
depict results on an NPU-only system after vanilla supernet training. Note
that the CNN-only supernet is a subset of the hybrid supernet. Thus theoret-
ically speaking, after ideal training, the best subnet in every latency/energy
bucket in the hybrid search space should perform no worse than the one
in the CNN-only search space. Consequently, all green dots in Figure 8
should lie above the red frontier, and all values in the second row in Table 2
should be no smaller than the corresponding ones in the first row. However,
it is observed that in both presented results, small-sized subnets in the
CNN-only search space outperform those in the hybrid search space. This
indicates that vanilla supernet training is non-ideal and leads to accuracy
degradation in these small subnets.

Phenomenawith similar causes have been observed in previousworks [18,
42]. A common inference is that such degradation results from the non-
alignment of gradients in different sampled subnets during training. We
further deduce that such gradient conflict/non-alignment is amplified by
the different block types in a hybrid search space based on our observations
on different supernet training.
Two-Phase Incremental Supernet Training. To address this gradient
conflict problem, we propose a new training recipe called two-phase incre-
mental supernet training. Our supernet training stage is divided into two
phases. In the first phase, we remove all the ViT blocks from the supernet
and solely train a partial supernet with all remaining CNN components (i.e.,
train a CNN-only supernet first). In the second phase, we load all the pre-
trained CNN weights from the first stage into the complete hybrid supernet
and continue the training. The underlying idea is that, during each phase,
only the blocks belonging to the same type are trained together. Therefore,
the gradient conflicts should be mitigated within each phase.

Similar to vanilla training, during both phases we use Sandwich sampling,
AdamW, AutoAugment, and dropout and drop-connect rates of 0.2. During
the second phase, we only train the ViT blocks and batch normalizations,
and do not update the already-trained CNN weights. This partial training
not only enhances accuracy (see Section 6.2) but also reduces training costs.

4.2 Subnet Search and Performance Modeling
Once supernet training is completed, we employ evolutionary search [49]
to find the optimal subnets, considering stringent system constraints on
energy/latency.

We model subnets running on heterogeneous AI edge devices with both
NPU and CIM macros. Our system model breaks down model inferences
into fine granularity. For convolution layers, it partitions the execution of
different channels onto different devices. Similarly, for transformer layers,
the generation of Q/K/V and the execution of different heads in attention
layers can be partitioned.

The system modeling tool combines measurement results using custom
silicon and simulation results from industrial CIM IPs (Section 3.2). In
addition, latency/energy caused by the data transfer between NPU and CIM
over NoC are also modeled. As a result, we obtain accurate latency and
energy estimations for target subnets.

5 EVALUATION RESULTS
In this section, we present the results of co-designing hybrid CNN/ViT
models on the heterogeneous NPU+CIM system, followed by an ablation
study in Section 6.
Heterogeneous Systems Reduce Hybrid Model Latency. Figure 7 il-
lustrates the results of latency-constrained search for our hybrid models
in systems with different numbers of CIM macros. It highlights that intro-
ducing heterogeneity into AI edge hardware significantly reduces inference
latency. Given the same latency requirement, a system with 8 CIM macros
can support a hybrid model with a 1.341% higher top-1 accuracy compared
to an NPU-only system. Meanwhile, when acquiring models with the same
accuracy, a system with 8 CIM macros can perform inference with an aver-
age latency reduction of 21.99% and up to 56.08%.
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Figure 7: H4H-NAS results showing hybrid CNN/ViT model
top-1 accuracy under varying search latency constraints,
when using NPU with 0, 1, 4 or 8 CIM macros.

Figure 8: Top-1 accuracy searched by latency of two-phase
incremental training of hybrid models vs. vanilla training
of hybrid models vs. vanilla CNN-only models on NPU-only
systems. The right side is a zoom-in on small-sized models.

Heterogeneous Systems Save Energy.Wealso conduct energy-constrained
search for hybrid models in systems with different numbers of CIM macros.
Heterogeneous systems improve energy efficiency. Given the same energy
requirement, a system with 8 CIM macros can support hybrid models with
0.614% higher accuracy. Additionally, it achieves an average energy con-
sumption reduction of 11.80% and up to 33.13%.
Effects of Multiple CIM Macros. Compute can be parallelized on CIMs
when more than one CIM is available in the system. In Figure 7, the overall
inference latency decreases with more CIMs. However, the improvement
in energy efficiency does not scale proportionally with the introduction of
more CIMs. Intuitively, adding more macros without altering their internal
structure does not significantly change the energy efficiency of operations.

6 ABLATION STUDY
6.1 ResNet vs. MobileNet-v2 vs. Hybrid Model
To evaluate the efficacy of hybrid model architectures on heterogeneous
edge systems, we conduct searches for optimal models based on ResNet,
MobileNet-v2 (IRB), and hybrid CNN/ViT structures. As depicted in Figure 8,
the accuracy of subnets increases with more latency being afforded. Hybrid
models achieve significantly better performance than IRB-based models
given the same latency budget (similar results hold for energy—not shown).
It is also worth noting that IRB-based models strictly outperform ResNet
counterparts given all constraints. (No ResNet-based subnet exceeds a 77%
top-1 accuracy.) Similar trends also exist in systems with CIM components,
also not presented due to space constraints.
Efficient CNN/ViT Basic Block.We also study the ratio of the number
of ViT blocks over IRB in different subnets. Interestingly, H4H-NAS tends
to incorporate both CNN and ViT while maintaining a balance between
them for efficient inference. Almost all searched subnets exhibit a similar
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Figure 9: Ratio between number of ViT layers and number
of MBConv layers, in each subnet.

Model & Recipe Min_net Max_net
CNN-only 71.691 78.802

Hybrid: Vanilla 71.346 (−0.345) 79.914 (+1.112)
Hybrid: TPI-unfreeze 72.140 (+0.449) 79.248 (+0.446)
Hybrid TPI-freeze 72.201 (+0.510) 79.782 (+0.980)

Table 2: Top-1 accuracy of minimum and maximum sub-
nets after different training recipes. TPI refers to two-phase
incremental training. Freeze/unfreeze refers to whether to
prevent/proceed the weight updates on CNNs in the second
TPI phase. Parentheses numbers are accuracy improvements.

proportion of 2–5 ViT combined with 10 IRB, as indicated by the region
between the red lines in Figure 9. This phenomenon indicates that maybe
repeated blocks with a fixed proportion of both IRB and ViT are preferred.

This finding favors an alternating structure over single-type models
or LeViT structures, aligning with recent hand-crafted hybrid architec-
tures [46]. IRB abstracts neighboring information in a feature map into
tokens, while ViT translates the token embeddings in a global environment
using attention layers. Therefore, hybrid architectures often offer better
accuracy/performance trade-offs.

6.2 Two-Phase Incremental Supernet Training
Two-phase vs. Vanilla. To assess our two-phase incremental (TPI) training,
we compare the training quality of the CNN-only supernet, vanilla training
on the hybrid models, and our TPI training on the hybrid models. The results
are presented in Table 2 and Figure 8.

Vanilla training suffers from gradient conflicts. Our TPI training, on
the other hand, resolves such gradient conflicts and produces small-sized
subnets that perform no worse than those in the CNN-only baseline. This
can be observed in Figure 8 and the “min_net” column in Table 2, where
TPI training results in better-performing subnets than the CNN-only base-
line. Furthermore, TPI training preserves the efficacy of hybrid space in
medium/large-sized subnets. See the saturation curve in Figure 8 and the
“max_net” column in Table 2.
CNN Freezing.We also compare whether to update the weights of already-
trained CNN parts in the second phase of supernet training, corresponding
to the freeze/unfreeze strategy in Table 2 (rows 3-4). The results show
that freezing the CNN parts and only training the ViT parts can bring
up to 0.53% accuracy improvements. One potential explanation for this
observation is that freezing the CNN parts and only updating the ViT parts
prevents the training of global information comprehenders (transformers)
from interferingwith the already-trained local information extractors (CNN).
Moreover, the two-phase training with CNN-freezing only adds 42% GPU
work overhead than single-phase training of a hybrid supernet, which is
acceptable since such training is only required once.

6.3 Increased Parallelism inside a CIM Macro
In Section 5, we demonstrated that using multiple CIM macros improves
inference latency over a state-of-the-art single-macro system. Here, we
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Figure 11: Energy-constrained H4H-NAS for a single-macro
system with different numbers of compute units.

further explore the benefits of introducing multiple compute units within a
single CIM macro. Figure 10 illustrates an example of a single CIM macro
with four compute units inside.

This design is promising for two reasons. Firstly, it provides another
level of parallelism in computation. Secondly, it allows for the merging and
transfer of repeated input data into the CIM macro. The input feature map
(IFMP) controller reorganizes the dataflow required for computation. For
example, depthwise convolutions can benefit from input deduplication if ad-
jacent output elements are computed simultaneously, where the theoretical
read reduction can reach 2/3 for (3,3)-kernels. Additionally, each compute
unit only costs 14% area overhead, and IFMP controller is even < 0.1%.

We integrate our multi-CU design into H4H-NAS. Figure 11 shows
energy-constrained searches on single-macro systems with different num-
bers of compute units. Under same accuracy, a single-macro system with 4
compute units reduces energy consumption by an average of 19.11% and
up to 41.72% compared to NPU-only systems. Additionally, it achieves an
average reduction of 9.34% compared to an NPU+CIM system with one
compute unit per macro.

7 CONCLUSION
This paper presents H4H-NAS, a NAS-oriented framework that automates
the design of efficient hybrid CNN+ViT models for heterogeneous edge
systems equipped with both NPU and CIM. The framework achieves up to
a 1.34% improvement in top-1 accuracy, along with up to 56.08% latency
reduction and 41.72% energy savings. Key techniques include a highly flexi-
ble hybrid model search space, a two-phase incremental supernet training
for hybrid models, a reliable performance profiler for heterogeneous sys-
tems, and system enhancements through increased CIM parallelism. Our
framework is adaptable to future edge devices and provides insights into
both ML model design and edge system optimization.
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