
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024 69

Address Scaling: Architectural Support for Fine-Grained Thread-Safe
Metadata Management

Deepanjali Mishra , Konstantinos Kanellopoulos , Ashish Panwar , Akshitha Sriraman , Vivek Seshadri ,
Onur Mutlu , and Todd C. Mowry

Abstract—In recent decades, software systems have grown sig-
nificantly in size and complexity. As a result, such systems are
more prone to bugs which can cause performance and correctness
challenges. Using run-time monitoring tools is one approach to
mitigate these challenges. However, these tools maintain metadata
for every byte of application data they monitor, which precipi-
tates performance overheads from additional metadata accesses.
We propose Address Scaling, a new hardware framework that
performs fine-grained metadata management to reduce metadata
access overheads in run-time monitoring tools. Our mechanism
is based on the observation that different run-time monitoring
tools maintain metadata at varied granularities. Our key insight
is to maintain the data and its corresponding metadata within
the same cache line, to preserve locality. Address Scaling improves
the performance of Memcheck, a dynamic monitoring tool that
detects memory-related errors, by 3.55× and 6.58× for sequential
and random memory access patterns respectively, compared to the
state-of-the-art systems that store the metadata in a memory region
that is separate from the data.

Index Terms—Virtual memory, intermediate address space,
metadata management, dynamic program monitoring tools.

I. INTRODUCTION

MODERN software systems are increasingly growing
in size and complexity, making them more prone to

software bugs that cause performance and correctness chal-
lenges [1]. To detect bugs and improve programmer productivity,
one approach is to use run-time monitoring tools to automati-
cally analyze and monitor software [2], [3], [4], [5]. These tools
monitor the code dynamically during execution and flag unsafe
scenarios.

Some popular run-time monitoring tools include Mem-
check [2] (built using Valgrind [5] framework), AddressSan-
itizer [6], and Transactional Memory [3]. Memcheck [2] and
AddressSanitizer [6] detect memory-related bugs, and Transac-
tional Memory [3] enables effectively managing locks to protect
critical sections.

Manuscript received 15 January 2024; revised 20 February 2024; accepted
3 March 2024. Date of publication 6 March 2024; date of current version 29
March 2024. (Corresponding author: Deepanjali Mishra.)

Deepanjali Mishra was with the Microsoft Research India, Bengaluru, Kar-
nataka 560001, India. She is now with Carnegie Mellon University, Pittsburgh,
PA 15213 USA (e-mail: mishradeepanjali25@gmail.com).

Konstantinos Kanellopoulos and Onur Mutlu are with ETH Zurich, 8092
Zürich, Switzerland.

Ashish Panwar and Vivek Seshadri are with the Microsoft Research India,
Bengaluru, Karnataka 560001, India.

Akshitha Sriraman and Todd C. Mowry are with Carnegie Mellon University,
Pittsburgh, PA 15213 USA.

Digital Object Identifier 10.1109/LCA.2024.3373760

Run-time monitoring tools typically track some information
about application data in a fine-grained manner, i.e., they main-
tain a few bits/bytes of information about every byte of data
used by the application. We call these additional information
bits metadata. The metadata gets 1) initialized when its cor-
responding data is allocated and accessed, and 2) updated on
every memory operation to the corresponding data byte. For
example, Memcheck [7] maintains two bits of metadata for
each application data byte. These bits indicate whether the
corresponding application data byte is addressable and contains
a valid value, i.e., is initialized.

Despite their effectiveness, the performance overhead of run-
time monitoring tools often limits their use in production sys-
tems. We find that these tools introduce slowdowns ranging from
approximately 2× to 20× for applications. The main reasons
for these overheads are due to: 1) the overhead from executing
additional instructions to monitor and update the metadata, and
2) the increased pressure on the memory subsystem due to
additional metadata accesses [8].

Prior works [1], [8], [9], [10] on enhancing dynamic moni-
toring tools’ performance have three limitations. First, despite
having hardware support, these approaches have a high overhead
for locating and accessing metadata, since it is maintained in a
separate region from the data [8]. Second, these mechanisms
exhibit high complexity to maintain consistency between data
and metadata in parallel applications. Third, some of these
mechanisms are designed for a specific monitoring application
and cannot be generalized.

Our goal is to design a hardware framework that efficiently
implements diverse run-time monitoring tools with low hard-
ware complexity. To achieve this, we propose a new hardware
framework for fine-grained metadata management, which we
call Address Scaling. The key insight behind our framework is
to store the metadata corresponding to a data element in the
same cache line that holds the data. To achieve this locality,
Address Scaling introduces an intermediate address space be-
tween the virtual and physical address spaces named Scaled
Address Space, where the data and its corresponding metadata
are co-located in the same cache line. Therefore, further trans-
lation ensures that they are mapped to the same physical cache
line.

We evaluate Address Scaling by comparing it against an
approach where the data and its metadata are not co-located
in the same cache line [5]. For our evaluations, we run mi-
crobenchmarks that perform sequential and random memory
accesses with Memcheck. In both of these cases, Address
Scaling outperforms the existing approach by 3.55× and 6.58×,
respectively.

1556-6056 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on September 19,2024 at 22:14:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0575-0639
https://orcid.org/0000-0002-2375-7490
https://orcid.org/0009-0007-0621-4412
https://orcid.org/0000-0003-4780-9483
https://orcid.org/0009-0000-4388-4246
https://orcid.org/0000-0002-0075-2312
https://orcid.org/0000-0003-4076-5684
mailto:mishradeepanjali25@gmail.com

70 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024

Fig. 1. Metadata management in existing approaches [5], [6]. The dotted lines
indicates page boundaries. The white space in the virtual address space is unused
by the application. The virtual-to-physical page mapping is shown only for one
data page and one metadata page.

Fig. 2. Conceptual design of Address Scaling. The dotted lines in the virtual
address space indicate sub-cache-line boundaries. Each cache line in the scaled
address space contains a sub-cache-line and metadata associated with it.

II. ADDRESS SCALING

We design Address Scaling, a hardware framework that pro-
vides efficient fine-grained metadata management. Our frame-
work leverages the fact that modern processors access main
memory at cache line granularity. The key idea behind Address
Scaling is to store the metadata corresponding to a data element
in the same cache line that holds the data.

Overview: As shown in Fig. 1, existing systems typically
store metadata in a separate region in the virtual address space
which maps to different page frames in physical memory. Con-
sequently, a piece of data and its metadata reside, by design, in
two different cache lines.

To bring data and its corresponding metadata into the same
cache line, Address Scaling introduces an intermediate address
space between the virtual address space (VAS) and the physical
address space (PAS), called the Scaled Address Space (SAS).
Unlike existing systems, where a virtual address is directly
translated into a physical address, Address Scaling first scales
an address in VAS into an address in SAS and then translates
that into an address in PAS.

Fig. 2 shows the overview of Address Scaling. We divide the
VAS into small chunks called sub-cache-lines. The size of a sub-
cache-line is smaller than that of a cache line and determines how
much metadata is stored for each byte of data. For example, if we

Fig. 3. Example virtual address space (VAS) with different scaling factors
used for different memory regions. Gray regions denote unused memory.

want to store 16 bytes of data in each cache line of size 64B, then
the size of a sub-cache-line would be 16 bytes. Address Scaling
maps the ith sub-cache-line in the VAS to the ith cache line in
the SAS. Thus, each cache line in SAS contains a sub-cache-line
worth of data followed by a hole. This hole can be used to store
the metadata for the sub-cache-line worth of data in the cache
line. Further translations from SAS to PAS ensures that data and
metadata are mapped to the same physical cache line.

Advantages: Address Scaling addresses all the three chal-
lenges involved in run-time monitoring outlined in the previous
section. First, since the data and its associated metadata reside
in the same cache line, it is easy to locate the metadata. Second,
as the processor accesses memory at the granularity of a cache
line, accessing the data also fetches its corresponding metadata
into the L1 cache. Hence, the metadata access following the data
access will result in a cache hit. Third, ensuring atomicity across
the data and the metadata accesses now requires providing single
cache line atomicity, which can be implemented using delayed
coherence.

Design Considerations: There are five components in the
design of hardware support for Address Scaling: 1) determining
how much to scale — i.e., determining data-metadata ratio,
2) computing the scaled address, 3) semantics for accessing
metadata, 4) semantics for ensuring atomicity between data and
metadata accesses, and 5) support for different scaling factors.
We describe each of the components below.

A. How Much to Scale?

When the process encounters a load/store instruction, it
should first determine how much to scale the virtual address.
Depending on the use case, this can be determined based on
how much metadata needs to be stored for a given region of the
virtual address space. For example, the region of the address
space that stores kernel data or shared libraries may not require
any metadata.

To determine the ratio between the size of data and metadata,
we divide the virtual address space into a number of segments.
Each segment is associated with a parameter called scaling fac-
tor, which determines the size of sub-cache-line for that segment.
The scaling factor is represented using a pair of integers (d, m),
which indicates that every m bytes of metadata is associated
with every d bytes of data. Since Address Scaling stores a piece
of data and the associated metadata in the same cache line, it
requires d + m to be a factor of the cache line size. For example,
for a system using a 64-byte cache lines, a scaling factor of (6,
2) will store 48 bytes of data followed by 16 bytes of metadata
in every cache line.

B. Scaled Address Computation

In this section, we describe how we can compute the scaled
address by taking an example of Memcheck on top of our
framework. We will assume that the size of a cache line is 64

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on September 19,2024 at 22:14:53 UTC from IEEE Xplore. Restrictions apply.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024 71

bytes. An optimized version of Memcheck stores two bits of
metadata for each byte of data [7]. Therefore, Address Scaling
uses a scaling factor of (6, 2) i.e., a sub-cache-line size of 48
bytes, leaving a hole of 16 bytes, which is sufficient to store all
the metadata for the 48 bytes. When the processor receives an
access for a virtual address Xv , it computes the base address of
the scaled cache line, Xs, using the following equation:

Xs =

⌊
Xv

48

⌋
64 (1)

The offset within the virtual cache line is used to locate both
the data and the metadata within the scaled cache line. The above
notion of scaling can be generalized to different sizes of metadata
per byte.

Since computing the scaled address is on the critical path of
data and metadata access. Based on our analysis of different
monitoring tools, practical values for the sub-cache-line size for
a 64-byte cache line are 56, 48, 40, 32, 16, and 8. Similar to
(1), computing the scaled address requires integer division by
the sub-cache-line sizes. While such division is trivial for 8, 16,
and 32, for sub-cache-line sizes 56, 48, and 40, this computation
reduces to division by 7, 3, and 5. For our mechanism to perform
well, we need to build fast hardware to perform these divisions.

C. Support for Different Scaling Factors

To support varied metadata granularities, we partition the
virtual address space into regions with different scaling fac-
tors (including regions without support for Address Scaling, as
shown in Fig. 3). A few approaches to determining the scaling
factor are: 1) using the upper bits of the virtual address, this
enables the processor to quickly check the scaling factor by
simply comparing the base-bound pair of each region with the
virtual address, 2) storing it in the page table entry (PTE), and
3) a separate hardware structure. We leave the exploration of
determining the scaling factor as part of future work.

D. Application Interface

In this section, we describe how an application can utilize Ad-
dress Scaling. Let us take the example of AddressSanitizer [6]. It
maintains one byte of metadata for every 8 bytes of application
data. When AddressSanitizer tries to allocate memory using
our modified version of memory allocators such as malloc,
it indicates to the operating system (OS) that it wants to use
a specific scaling factor for that particular data structure. The
OS then allocates virtual memory for that data structure in the
corresponding region in the virtual memory which has a 8:1
scaling ratio. Subsequently, the hardware begins scaling the
virtual memory accesses to the data structure, thereby generating
space for one byte of metadata for every 8 bytes of application
data within each cache line. AddressSanitizer accesses this
metadata using new ISA instructions. We leave the semantics
of the instructions for a longer write-up.

III. EVALUATION

To quantitatively evaluate the benefits of Address Scaling, we
implement our framework within Virtuoso [11], a new virtual
memory system simulator based on Intel’s Sniper [12] for the
x86 architecture. Table I shows some of the key configurations
of the simulated system. We have maintained small cache sizes

TABLE I
MAIN PARAMETERS OF OUR SIMULATED SYSTEM

Fig. 4. Execution time for running Address Scaling with Memcheck (mon-
itoring) compared to existing systems where metadata is stored elsewhere
(normalized to a baseline that does not perform monitoring). Each cache line
stores 48B data + 16B metadata; i.e., a scaling factor of (6, 2).

to stress the cache hierarchy and highlight the worst-case over-
heads of Address Scaling. We demonstrate performance using
two microbenchmarks that compute the sum of a large integer
array — one with sequential and the other with random memory
access pattern. In both these situations, the memory access is the
critical bottleneck. Since we are executing out of order, the only
critical path in the program are the memory accesses, and with
our mechanism, for every memory access we are doing metadata
checks in software, leading to a significant overhead.

A. Memcheck With Address Scaling

Address Scaling’s benefits come from eliminating cache
misses for the metadata, making metadata accesses almost free,
albeit at the cost of reduced cache space for the data. We show
that this trade-off results in significant performance improve-
ment compared to existing approaches.

We quantitatively show the benefit of our approach by com-
paring it with Memcheck. For these experiments, we run the
microbenchmarks under four settings: 1) a baseline system that
does not perform any monitoring of the application, 2) applica-
tion running with our implementation of Memcheck along with
a software mechanism that stores metadata in a separate shadow
memory region, 3) Address Scaling mechanism in the hardware
that reserves the space for metadata but does not perform any
monitoring, and 4) Address Scaling in the hardware along with
metadata operations in software that Memcheck requires.

Fig. 4 shows that Memcheck incurs very high overheads,
slowing down the application by as much as 38× (sequential
access) and 69× (random access). In contrast, the overhead
of Address Scaling is 3× and 6× lower than Memcheck, re-
spectively. Since our microbenchmarks involve only memory
accesses and metadata checks, the 10× overhead in some sense
serves as an upper bound on the potential slowdown induced by
Address Scaling. We are working on further reducing these slow-
downs by simulating those software metadata instructions using
ISA changes. Therefore, this experiment shows the promise of

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on September 19,2024 at 22:14:53 UTC from IEEE Xplore. Restrictions apply.

72 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 23, NO. 1, JANUARY-JUNE 2024

Fig. 5. Performance impact of varying the amount of data bytes in the cache
line (normalized to a 64B cacheblock size). The overhead is moderate as long
as the metadata size is less than data.

co-locating data and the corresponding metadata in the same
cache line.

B. Address Scaling Characterization

Since Address Scaling reduces the effective cache space avail-
able for an application (as it allocates a portion of each cache
line for storing metadata), it can introduce some performance
overheads. To evaluate these overheads, we capture the run-time
of our microbenchmarks by varying the amount of metadata
stored in each cache line and compare it with the baseline
system i.e., a system without any monitoring or Address Scaling.
Fig. 5 shows that the amount of metadata has a direct impact
on application run-time. However, the overhead is moderate
(<20%) as long as the size of metadata is modest i.e., when
most of the cache space is allocated to application data. Note
that we expect this to be a common case for Address Scaling
based tools.

IV. RELATED WORK

Prior works [1], [3], [4], [8], [10] primarily differ in 1) how and
where they maintain the metadata, and 2) their target monitoring
application. For example, TaintTrace [13] simply splits the vir-
tual address space into two parts, where one part is used to store
the data while the other stores the metadata. Hardbound [10]
proposes a mechanism that extends every word of memory in the
virtual address space and the registers to augment the metadata.
These mechanisms provide ISA support to locate and access
metadata.

Sasaki et al. [1] propose a mechanism called Califorms with
the aim of providing byte-granular memory safety. They achieve
this by storing metadata in unused memory spaces within the
cache line. While this approach is effective, it necessitates
disruptive modifications to the cache hierarchy. In contrast,
Address Scaling stores metadata at an offset from the data
within the cache line, maintaining consistency throughout the
cache hierarchy. Additionally, Address Scaling aims to support
use-cases beyond memory safety.

V. FUTURE WORK

While we evaluated Memcheck [2] to demonstrate the poten-
tial benefits of Address Scaling, the goal of our framework is to
enable a variety of runtime monitoring tools. To better demon-
strate this, we will implement AddressSanitizer (ASan) [6]

on top of our Address Scaling framework, and compare it to
hardware-assisted ASan [14].

Address Scaling as a framework can enable several new
use-cases to improve system reliability, security, and memory
optimizations. We describe one such use-case below.

Heterogenous ECC: Modern processors maintain ECC bits
alongside cache blocks in their on-chip caches. However, not all
cache blocks may require the same level of ECC. For example,
cache blocks that are accessed multiple times often contain
critical data and may require a more robust ECC than cache
blocks that are accessed less frequently. Hence, depending on
the desired level of reliability the software needs to maintain
varying amounts of metadata. Therefore, ECC serves as a perfect
use-case for our proposed framework. Our approach to ECC can
also protect sensitive data against RowHammer style attacks. For
example, embedding a 64-bit MAC with a cache line containing
56 bytes of data enables quick verification of the data integrity
in the cache line.

ACKNOWLEDGMENT

The authors would like to thank Ian Glen Neal for the brain-
storming sessions.

REFERENCES

[1] H. Sasaki, M. A. Arroyo, M. T. I. Ziad, K. Bhat, K. Sinha, and S.
Sethumadhavan, “Practical byte-granular memory blacklisting using cal-
iforms,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture,
2019, pp. 558–571.

[2] J. Seward and N. Nethercote, “Using Valgrind to detect undefined value
errors with bit-precision,” in Proc. USENIX Annu. Tech. Conf., Gen. Track,
2005, pp. 17–30.

[3] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. 20th Annu. Int. Symp.
Comput. Architecture, 1993, pp. 289–300.

[4] S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Watchdog: Hardware
for safe and secure manual memory management and full memory safety,”
ACM SIGARCH Comput. Architecture News, vol. 40, no. 3, pp. 189–200,
2012.

[5] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” ACM SIGPLAN Notices, vol. 42, no. 6,
pp. 89–100, 2007.

[6] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “AddressSan-
itizer: A fast address sanity checker,” in Proc. USENIX Annu. Tech. Conf.,
2012, pp. 309–318.

[7] N. Nethercote and J. Seward, “How to shadow every byte of memory used
by a program,” in Proc. 3rd Int. Conf. Virtual Execution Environ., 2007,
pp. 65–74.

[8] V. Nagarajan and R. Gupta, “Architectural support for shadow memory
in multiprocessors,” in Proc. ACM SIGPLAN/SIGOPS Int. Conf. Virtual
Execution Environ., 2009, pp. 1–10.

[9] V. Seshadri et al., “Page overlays: An enhanced virtual memory framework
to enable fine-grained memory management,” ACM SIGARCH Comput.
Architecture News, vol. 43, pp. 79–91, 2015.

[10] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic, “HardBound:
Architectural support for spatial safety of the C programming language,”
ACM SIGOPS Operating Syst. Rev., vol. 42, no. 2, pp. 103–114, 2008.

[11] K. Kanellopoulos, K. Sgouras, and O. Mutlu, “Virtuoso: An open-source,
comprehensive and modular simulation framework for virtual memory
research,” arXiv.

[12] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2011,
pp. 1–12.

[13] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “TaintTrace: Efficient flow
tracing with dynamic binary rewriting,” in Proc. IEEE 11th Symp. Comput.
Commun., 2006, pp. 749–754.

[14] S. Kostya, S. Evgenii, S. Aleksey, T. Vlad, and V. Dmitry, “HWASAN:
An AArch64-specific compiler-based tool,” 2018.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on September 19,2024 at 22:14:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

