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Abstract

In this thesis, we study two classes of problems: routing and classification. Rout-

ing problems include those that concern the tradeoff between routing table size and

short-path forwarding (Part I), and the classic Edge Disjoint Paths problem (Part

II). Both have applications in communication networks, especially in overlay net-

work, and in large and high-speed networks, such as optical networks. The third

part of this thesis concerns a type of classification problem that is motivated by a

computational biology problem, where it is desirable that a small amount of geno-

type data from each individual is sufficient to classify individuals according to their

populations of origin.

In hierarchical routing, we obtain “near-optimal” routing table size and path

stretch through a randomized hierarchical decomposition scheme in the metric

space induced by a graph. We say that a metric
�
X � d � has doubling dimension

dim
�
X � at most α if every set of diameter D can be covered by 2α sets of di-

ameter D � 2. (A doubling metric is one whose doubling dimension dim
�
X � is a

constant.) For a connected graph G, whose shortest path distances dG induce the

doubling metric
�
X � dG � , we show how to perform

�
1 � τ � -stretch routing on G for

any 0 � τ � 1 with routing tables of size at most
�
α � τ � O � α � log∆ logδ bits with only�

α � τ � O � α � log∆ entries, where ∆ is the diameter of G and δ is the maximum degree

of G. Hence, the number of routing table entries is just τ 	 O � 1 � log∆ for doubling

metrics.

The Edge Disjoint Paths (EDP) problem in undirected graphs refers to the fol-

lowing: Given a graph G with n nodes and a set T of pairs of terminals, connect

as many terminal pairs as possible using paths that are mutually edge disjoint.

This leads to a variety of classic NP-complete problems, for which approximabil-
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ity is not well understood. We show a polylogarithmic approximation algorithm

for the undirected EDP problem in general graphs with a moderate restriction on

graph connectivity: we require the global minimum cut of G to be Ω
�
log5 n � . Previ-

ously, constant or polylogarithmic approximation algorithms were known for trees

with parallel edges, expanders, grids and grid-like graphs, and, most recently, even-

degree planar graphs. These graphs either have special structure (e.g., they exclude

minors) or there are large numbers of short disjoint paths. Our algorithm extends

previous techniques in that it applies to graphs with high diameters and asymptoti-

cally large minors.

In the classification problem, we are given a set of 2N diploid individuals from

population P1 and P2 (with no admixture), and a small amount of multilocus geno-

type data from the same set of K loci for all 2N individuals, and we aim to partition

P1 and P2 perfectly. Each population Pa, where a � �
1 � 2 � , is characterized by a

set of allele frequencies at each locus. In our model, given the population of origin

of each individual, the genotypes are assumed to be generated by drawing alleles

independently at random across the K loci, each from its own distribution. For ex-

ample, each SNP (or Single Nucleotide Polymorphism) has two alleles, which we

denote with bit 1 and bit 0 respectively. In addition, each locus contains two bits

(one from each parent) that are assumed to be two random draws from the same

Bernoulli distribution.

We use pk
1 and pk

2, � k � 1 ������� � K to denote frequency of an allele mapping to bit

1 at locus k in P1 and P2, respectively. We use γ � ∑K
i � 1 � pi

1 	 pi
2 � 2

K as the dissimilarity

measure between P1 and P2. We compute the number of loci K that we need to

perform different tasks, versus N and γ, and prove several theorems. Ultimately,

we show that with probability 1 � 1 � poly
�
N � , given that K � Ω

� logN log logN
Nγ2 � and

K � Ω
� logN

γ � , we can recognize the perfect partition
�
P1 � P2 � from among all other

balanced partitions of the 2N individuals. We proved this theorem for two cases:

either we are given two random draws for each attribute along each dimension, or

only one.
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1 Introduction

This thesis concerns three problems: hierarchical routing, edge-disjoint paths, and

classification.

1.1 Hierarchical Routing and Hierarchical Decompositions

In seminal work by Kleinrock and Kamoun [1977], a hierarchical routing scheme

based on an “optimal” hierarchical clustering model of nodes in the network is

described. They further show that for a class of large distributed networks, by fol-

lowing their routing scheme, it is possible to achieve a substantial reduction in

routing table size with essentially no increase in the average path length, over all

source-destination pairs in the network.

Essentially, the family of networks upon which it is possible to apply such an

“optimal” hierarchical clustering scheme satisfies certain growth properties such

that: (a) the diameter of any cluster S of nodes chosen is bounded above by O
� � S � ν �

for some constant ν � �
0 � 1 � , and (b) the average distance between nodes in the

network is Θ
�
Nν � , where N is the size of the network.

While some recent papers by Plaxton et al. [1999]; Karger and Ruhl [2002];

Hildrum et al. [2002] on distributed object location in peer-to-peer networks used

definitions and restrictions that differ slightly from each other, the essential theme

was to reduce the “intrinsic complexity” of each problem in its own context by

bounding the growth rate of networks, as done by Kleinrock and Kamoun.

We design the piece that is missing from Kleinrock and Kamoun [1977]: a

hierarchical decomposition algorithm. We further improve their results by giving

bounds on path stretch on a per node-pair level using slightly different assumptions

on the network growth. Specifically, we capture the network growth and parameter-

1
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ize the inherent “complexity” of a metric space
�
X � d � generated by such a network

using its doubling dimension dim
�
X � : the least value α such that each ball of radius

R can be covered by at most 2α balls of radius R � 2.

We show the following result.

Theorem 1.1. Given any network G, whose shortest path distances dG induce the

doubling metric
�
X � dG � with dim

�
X � � α, and any τ � 0, there is a routing scheme

on G that achieves
�
1 � τ � -stretch, where each node stores only

� α
τ � O � α � log∆ logδ

bits of routing information, where ∆ is the diameter of G and δ is the maximum

degree of G.

Note that for any α ��� , the space � α under any of the � p norms has doubling

dimension Θ
�
α � , and hence this doubling dimension extends the standard notion

of geometric dimension. This also allows us to conclude that, in order to obtain a

near-optimal routing scheme in terms of path stretch and routing table size, all we

need is a simple restriction on how fast the network grows.

1.2 Edge-Disjoint Paths in Moderately Connected Graphs

In the second part of this thesis, we first explore approximation for the edge disjoint

paths (EDP) problem: Given a graph with n nodes and a set of terminal pairs, con-

nect as many of the specified pairs as possible using paths that are mutually edge

disjoint. EDP has a multitude of applications in areas such as VLSI design, routing

and admission control in large-scale, high-speed and optical networks. Moreover,

EDP and its variants have also been prominent topics in combinatorics and theo-

retical computer science for decades. For example, the celebrated theory of graph

minors by Robertson and Seymour [1990] gives a polynomial time algorithm for

routing all the pairs given a constant number of pairs. However, varying the num-

ber of terminal pairs leads to a variety of classic NP-complete problems, for which

approximability is an interesting problem. In a recent breakthrough, Andrews and

Zhang [2005b] showed an Ω
�
log

1
3 	 ε n � lower bound on the hardness of approxima-

tion for undirected EDP.

In this work, we show a polylogarithmic approximation algorithm for the undi-

rected EDP problem in general graphs with a moderate restriction on graph con-
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nectivity: we require that there are Ω
�
log5 n � edge disjoint paths between every

pair of vertices, i.e., the global min cut is of size Ω
�
log5 n � � If this moderately con-

nected case holds, we can route Ω
�
OPT � polylog n � pairs using disjoint paths with

congestion 1, where OPT is the maximum number of pairs that one can route edge

disjointly for the given EDP instance. Previously, constant or polylogarithmic ap-

proximation algorithms were known for trees with parallel edges, expanders, grids

and grid-like graphs, and, most recently, even-degree planar graphs by Kleinberg

[2005]. The results rely either on excluding a minor (or other structural proper-

ties) or the fact that many very short paths exist. Our algorithm extends previous

techniques; for example, our graphs can have high diameter and contain very large

minors. We are hopeful that this constraint on the global minimum cut can be re-

moved if congestion on each edge is allowed to be O
�
log log n � . Formally, we have

the following result.

Theorem 1.2. There is a polylog n-approximation algorithm for the edge disjoint

paths problem in a general graph G with minimum cut and node degree Ω
�
log5 n � .

1.3 Population Classification

In the third part of this thesis, we explore a type of classification problems in the

context of a computational biology problem. In particular, we aim to classify indi-

viduals according to their populations of origin, based on only a small amount of

their genotype data.

In seminal work by Pritchard et al. [2000], two types of clustering methods

are described for using multilocus genotype data to infer population structure and

assign individuals to populations.

(1) Distance-based Methods. These proceed by calculating a pairwise distance

matrix, whose entries give the distance between every pair of individuals.

This matrix may then be represented using some convenient graphical rep-

resentation (such as a tree or a multidimensional scaling plot) and clusters

may be identified by eye.

(2) Model-based Methods. These proceed by assuming that observations from

each cluster are random draws from some parametric model. Inference for
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the parameters corresponding to each cluster is done jointly with inference

for the cluster membership of each individual, using standard statistical

methods (for example, maximum-likelihood or Bayesian methods).

A model-based clustering method is used by Pritchard et al. [2000]. They as-

sume a model in which there are K populations, where K may be unknown, and

each population is characterized by a set of allele frequencies at each locus.

While we follow essentially the same model, assuming no admixture, we fix

K � 2. We name our method graph-based; in some sense, it is similar to Distance-

based Methods in that we assign a score to every pair of individuals that capture

the degree of dissimilarity between them; the true novelty of our approach, how-

ever, is that we construct a complete graph while assigning scores to edges, such

that in expectation, a balanced cut with the maximum score, which we denote as

the max-cut of the complete graph, will provide us the perfect partition – i.e., the

perfect partition indeed has the maximum score among all balanced partitions in

the complete graph, given a balanced input instance.

Our goal is to minimize the number of loci that we require in order to classify

the two populations, given a set of 2N diploid individuals from two populations

P1 and P2 and their genotypes from the same set of K loci. Recall that for diploid

organisms the chromosomes come in pairs. A genotype is a list of unordered pairs

of alleles, such that one comes from each of the parents.

Since each Single Nucleotide Polymorphism (SNP) has two variants (alleles),

we use bit 1 and bit 0 to denote them. Given the population of origin of each

individual, the genotypes are assumed to be generated by drawing alleles indepen-

dently from the appropriate population frequency distribution. We use pk
1 and pk

2

to denote the “success” probability (frequency of an allele mapping to bit 1) at lo-

cus k in the population of origin 1 and 2 respectively. Each locus contains two bits

that are assumed to be two random draws from the same Bernoulli distribution.

We use γ � ∑K
k � 1 � pk

1 	 pk
2 � 2

K as the measure that we optimize the number of loci we

need against. We show three results whose proof ranges from straight-forward to

sophisticated.
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1.3.1 Quartet-based Scores

In all three theorems, we assign the same score to a pair of individuals X � Y , which

measures the difference between the two individuals, hence a higher score is more

desirable for two individuals from different populations of origin. Using this score,

we can construct a complete graph where nodes are individuals and edge weight is

the score between the two individuals. Note that when we say the score for a cut,

we mean the sum of scores on all edges across the cut. In particular, we call this

score Pscore
�
X � Y � for an unordered pair of individuals

�
X � Y � :

Definition 1.1.

Pscore
�
X � Y � �

K

∑
i � 1

Pscorei �
X � Y � �

K

∑
i � 1

Pscorei

�
xi

1 xi
2

yi
1 yi

2 � �

where

Pscorei �
X � Y � � 1

2 � �
Ixi

1 � xi
2

� Iyi
1 � yi

2
� � �

Ixi
1 � yi

1
� Ixi

2 � yi
2

� ��
Ixi

1 � xi
2

� Iyi
1 � yi

2
� � �

Ixi
1 � yi

2
� Ixi

2 � yi
1

��� �

where Ix � y � 1 if x � y, and � 0 otherwise.

Note that this definition utilizes an important quartet construction involving

four bits xi
1 � xi

2 � yi
1 � yi

2, which are four independent Bernoulli random variables, such

that two bits from each pair
�
xi

1 � xi
2 � ,

�
yi

1 � yi
2 � are identically distributed.

The first theorem says that, given enough loci, all scores are correct in the

following sense.

Theorem 1.3. (Global Optimum Lemma) Let 2N be the total number of indi-

viduals. Given that K � 18ln N � γ2, with probability 1 � O
�
1 � N2 � , for all quartets

X � Y � Z1 � Z2 such that X � Y come from different populations, while Z1 � Z2 come from

the same population,

Pscore
�
X � Y � � Pscore

�
Z1 � Z2 � �

This immediately implies that, given a balanced input instance where we have

the same number of individuals from each population, the max-cut (i.e., the cut



6 � Routing, Disjoint Paths, and Classification

with the maximum score) separates the two populations perfectly. This gives us

the trivial algorithm for separating a balanced input instance into P1 and P2 and

assigning individuals correctly: simply keep the top N 2 edges in terms of Pscore

in the complete graph, and these edges correspond to a max-cut that separates P1

from P2 perfectly.

For imbalanced input instances, the perfect partition
�
P1 � P2 � has the maximum

average score, where average score for a cut is defined as the total score across

edges in the cut divided by the number of such edges.

In addition, for imbalanced instance, we only need to adjust the constant in the

bound for K, so that all edges between individuals from different populations are

above a certain threshold h while all other edges are blow threshold � � h, given that

the expected values for Pscore
�
X � Y � and Pscore

�
Z1 � Z2 � differ significantly from

one another: E
�
Pscore

�
X � Y �
� � 2Kγ while E

�
Pscore

�
Z1 � Z2 �
� � 0. By keeping

only edges above a certain threshold and by taking account of deviation, we keep

edges that define a perfect partition. Hence, this algorithm works for both input

cases.

We call this theorem a Global Optimum Lemma, since there exists an overall

desirable ordering among all edge scores in the complete graph.

The second theorem says that, given we have some pre-classified individuals

from P1 and P2, N from each origin, it requires fewer bits from a new individual

in order to put it on the correct side, since the sum of dissimilarity scores from

this new individual X to the other population is consistently higher than the sum of

scores to its own population.

Theorem 1.4. (Local Optimum Lemma). Let K � max
� 9ln � 1 � δ �

Nγ2 � 8ln � 1 � τ �
γ � . For

any X, w.l.o.g. from P1, and its observed bit string X̃, with probability 1 � τ � δ,

given that Xi � Yi � � i are individuals randomly draw from P1 and P2 respectively, we

have

N

∑
i � 1

Pscore
�
X � Yi �X � X̃ � �

N

∑
i � 1

Pscore
�
X � Xi �X � X̃ � �

A similar statement holds for any Y from P2.
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This tells us that once we have 2N individuals, N from each population, that

are already classified properly, a new node can almost always pick the correct side

to join based on its local view: it just needs to join the side that it has a lower total

score to the N individuals on that side. Hence, we denote this theorem as a Local

Optimum Lemma.

Finally, we show a theorem says that perfect partition corresponds to the max-

cut in the complete graph, given any balanced input instance, by requiring slightly

more bits than necessary in the Local Optima Lemma, but still asymptotically fewer

(in terms of γ) than that of Global Optima Lemma.

Theorem 1.5. Given that K � Ω
� lnN

γ � and KN � Ω
� lnN log logN

γ2 � , where N � 8, with

probability 1 � 1 � poly
�
N � , we can differentiate the perfect partition from all other

balanced partitions of individuals.

1.3.2 Learning Mixtures of Product Distributions

After exploring the power of two random draws from any one dimensional distribu-

tion in the K dimensional distributions, we ponder at the possibility of achieving the

same power of clustering using a single random draw from each dimension: given

a small sample, i.e., N is small, can we learn the partition with a small amount of

attributes, if for each attribute, we are given only a single bit from its Bernoulli

distribution?

The answer is positive. We show the following theorem using an inner product

based score, which we call Rscore.

Definition 1.2. Rscore
�
X � Y � � � �x � �y � � ∑K

i � 1 xiyi.

Theorem 1.6. Given that K � Ω
� lnN

γ � and KN � Ω
� lnN log log N

γ2 � , where N � 4,

with probability 1 � 1 � poly
�
N � , for all balanced cuts in the complete graph formed

among 2N sample points, we can differentiate the perfect partition from all other

balanced partitions of the sample by finding the min-cut.

We note that Hamming distance based score will give similar claim, using max-

cut. We also note that neither Rscore nor Hamming distance based score will give

us claims similar to Global or Local Optima Lemmas as in Theorem 1.3 and 1.5.

However, for the special case that we know whether � i � pi
1 � pi

2 or vice versa, then
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a simple bit-wise score that is similar to what we define below suffices to prove a

Global Optimum Lemma; in particular suppose that we know � i � pi
1 � pi

2:

Definition 1.3. For an unordered pair of individuals
�
X � Y � , let Bscorei �

X � Y � ��
xi � yi � � � i.

Bscore
�
X � Y � �

K

∑
i � 1

Bscorei �
X � Y � �

We show that the absolute value of scores between points from the same dis-

tribution is consistently below those between points from different distributions in

Theorem 9.2.

1.3.3 Related Work

There are two streams of related work. The first stream is the recent progress in

learning from the point of view of clustering, where given samples drawn from a

mixture of well-separated Gaussians (component distributions), one aims to clas-

sify the sample according to which component distribution it comes from, as stud-

ied in Dasgupta [1999]; Dasgupta and Schulman [2000]; Arora and Kannan [2001];

Vempala and Wang [2002]; Achlioptas and McSherry [2005]; Kannan et al. [2005];

Dasgupta et al. [2005]. Under this framework, it has also been extended to more

general distributions such as log-concave distributions in Achlioptas and McSherry

[2005]; Kannan et al. [2005] and heavy-tail distributions in Dasgupta et al. [2005].

These work mostly focus on reducing the requirement on the sufficient separa-

tion conditions between any two centers P1 and P2 in the mixture from dependence

on K, the dimensions, to dependence only on the number of components in the

mixture, in order to classify most of the sample correctly. In contrast, we focus on

the case that although we only have a mixture of two product distributions, the sam-

ple size, i.e., number of individuals, is small; we prove that by acquiring enough

number of attributes along the same set of dimensions from both distributions, with

high probability, we can correctly classify every node in the sample.

The second stream of work is under the Probably Approximately Correct (PAC)

framework, where given a sample generated from some target distribution Z, the

goal is to output a distribution Z1 that is close to Z according to Kullback-Leibler
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divergence: KL
�
Z � � Z1 � , where Z is a mixture of product distributions over discrete

domains or Gaussians (Kearns et al. [1994]; Freund and Mansour [1999]; Cryan

[1999]; Cryan et al. [2002]; Mossel and Roch [2005]; Feldman et al. [2005, 2006]).

These work do not require a minimal distance between any two distributions.

To compare our results with learning mixtures of Gaussians, we first denote the

� 2-square distance between the centers of the two distributions: � �P1 � P2 � � 22 � Kγ �
∑K

i � 1
�
pk

1 � pk
2 � 2.

(1) Theorem 1.3 requires that the distance between two distributions: � �P1 �
P2 � � 2 � Ω �

�
K1 � 4 � , i.e., the separation requirement depends on the number of

dimensions of each product distribution. This is comparable to that in Das-

gupta and Schulman [2000]; Arora and Kannan [2001].

(2) Theorem 1.5 requires that d � � �P1 � P2 � � 2 � Ω
�
ln

1
2 N � , where N �

Ω �
�
K � d4 � , which is independent of the dimension of the product distribu-

tion; this is comparable to what Kannan et al. [2005], and Achlioptas and

McSherry [2005] accomplish for the continuous case.

1.4 Thesis Outline

Chapter 2 and 3 belong to Part I (Hierarchical Routing). Part II (Edge Disjoint

Paths) contains Chapter 4–6. Chapters 7–9 belong to Part III (Classification). One

can safely skip Chapter 5 while still being able to connect Chapter 4 with Chapter 6.
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Part I: Hiearchical Routing
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2 Hierarchical Routing in Doubling

Metrics

2.1 Introduction

The doubling dimension of a metric space
�
X � d � is the least value α such that

each ball of radius R can be covered by at most 2α balls of radius R � 2 Gupta

et al. [2003]. For any α � � , the space � α under any of the � p norms has doubling

dimension Θ
�
α � , and hence this doubling dimension extends the standard notion

of geometric dimension; moreover, it can be seen as a way to parameterize the

inherent “complexity” of metrics.

In this chapter, we study the problem of designing routing algorithms for net-

works whose structure is parameterized by the doubling dimension dim
�
X � � α;

we show that one can route along paths with stretch
�
1 � τ � with small routing

tables—with only O
� �

α � τ � O � α � log∆ � entries, where ∆ is the diameter of the net-

work G. Each entry stores at most O
�
logδ � bits, where δ is the maximum degree

of G, and hence for doubling metrics—where α is a constant—and any τ � 1, we

have
�
1 � τ � -stretch routing with only O

�
log∆ logδ � bits of routing information at

each node.

The idea of placing restrictions on the growth rate of networks to bound their

“intrinsic complexity” is by no means novel; it has been around for a long time

(see, e.g., Kleinrock and Kamoun [1977]), and has recently been used in several

contexts in the literature on object location in peer-to-peer networks Plaxton et al.

[1999]; Karger and Ruhl [2002]; Hildrum et al. [2002]. While these papers used

definitions and restrictions that differ slightly from each other, we note that our

results hold in those models as well. Our results extend those of Talwar [2004],

13
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whose routing schemes for metrics with dim
�
X � � α require local routing infor-

mation of � O
�
logα ∆ � bits. Formally, we have the following main result.

Theorem 2.1. Given any network G, whose shortest path distances dG induce

the doubling metric
�
X � dG � with dim

�
X � � α, and any τ � 0, there is a rout-

ing scheme on G that achieves
�
1 � τ � -stretch and where each node stores only� α

τ � O � α � log∆ log δ bits of routing information, where ∆ is the diameter of G and δ
is the maximum degree of G.

The proof of the theorem proceeds along familiar lines; we construct a set of

hierarchical decompositions (HDs) of the metric
�
X � d � , where each HD consists of

a set of successively finer partitions of X with geometrically decreasing diameters.

Each node in X maintains a table containing next hops to a small subset of clusters

in these partitions; to route a packet from s to t, we use the routing table for s to

pick some “small cluster” C in s’ table that contains t and send the packet to some

node x in C; a similar process repeats at node x � C until the packet reaches t. The

idea is to create routing tables which ensure that the distance from x to t is much

smaller than that from s to t, and hence the detour taken in going from s to t is only

τd
�
s � t � . (Details of routing schemes appear in Section 2.4 and 3.1.)

While this framework is well-known, the standard ways to construct HDs are

top-down methods which iteratively refine partitions. These methods create long-

range dependencies which require us to build O
�
logn � HDs in general; in order to

use the locality of the doubling metrics and get away with Õ
�
α � HDs, we develop

a bottom-up approach that avoids these dependencies when building HDs. The

analysis of this process uses the Lovász Local Lemma (much as in Krauthgamer

and Lee [2003]; Gupta et al. [2003]); details are given in Section 2.3.

2.1.1 Related Work

Distributed packet routing protocols have been widely studied in the theoretical

computer science community; see, e.g., Frederickson and Janardan [1988, 1989];

Awerbuch and Peleg [1992]; Peleg and Upfal [1989]; Cowen [2001]; Peleg [2000],

or the survey by Gavoille [2001] on some of the issues and techniques. Note that

these results, however, are usually for general networks, or for networks with some

topological structure. By placing restrictions on the doubling dimension, we are
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able to give results which degrade gracefully as the “complexity” of the metric in-

creases. For example, it is known that any universal routing algorithm with stretch

less than 3 requires some node to store at least Ω
�
n � routing information Gavoille

and Gengler [2001]; however, these graphs generate metrics with large dim
�
X � .

Our results thus allow one to circumvent these lower bounds for metrics of “lower

dimension”.

Packet routing in low dimensional networks has been previously studied in Tal-

war [2004], that gives algorithms that require O
�
α

� 6
τα � α �

logα � 2 ∆ � � bits of infor-

mation to be stored per node in order to achieve
�
1 � τ � -stretch routing—for con-

stant stretch τ and doubling dimension α. The resulting dependence of O
�
log2 � α ∆ �

should be contrasted with the dependence of O
�
log∆ logδ � bits of information in

our schemes. We should point out that his algorithms are based on graph decom-

position ideas with a top-down approach and do not require the LLL to construct

routing tables.

One of the papers that influence this work is that of Kleinrock and Kamoun

[1977]. They describe a general hierarchical clustering model on which our routing

schemes are based. They show that routing schemes based on a hierarchical clus-

tering model do not cause much increase in the average path length for networks

that satisfy the following two assumptions: (a) the diameter of any cluster S cho-

sen is bounded above by O
� � S � ν � for some constant ν � �

0 � 1 � , and (b) the average

distance between nodes in the network is Θ
�
nν � . In contrast, we give bounds on

the path stretch on a per node-pair level using slightly different assumptions on the

network geometry.

Other papers on object location in peer-to-peer networks Plaxton et al. [1999];

Karger and Ruhl [2002]; Hildrum et al. [2002] have also used restrictions similar

to Kleinrock and Kamoun [1977] on the growth rate of metrics; in particular, they

consider metrics where increasing the radius of any ball by a factor of 2 causes the

number of points in it to increase by at most some constant factor 2β. (Plaxton et

al. Plaxton et al. [1999] also consider the lower bound on the growth.) Here the

parameter β can be considered to be another notion of “dimension” for a metric

space. It can be shown that dim
�
X � � 4β [Gupta et al., 2003, Prop. 1.2]; hence

our results hold for such metrics as well. Our scheme is also similar in spirit to a

data-tracking scheme of Rajaraman et al. [2001], who use approximations by tree
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distributions to obtain bounds on the stretch incurred.

2.2 Definitions and Notation

Let the input metric be
�
X � d � ; this paper deals with finite metrics with at least 2

points. We use standard terminology from the theory of metric spaces; many def-

initions can be found in Deza and Laurent [1997] and Heinonen [2001]. Given

x � X and r � 0, we let B
�
x � r � denote

�
x
� � X � d

�
x � x � � � r � , i.e., the ball of

radius r around x. Given a subset S
�

X , the distance of x � X to the set S is

d
�
x � S � � min

�
d

�
x � x � � � x � � S � .

The doubling constant λX of a metric space
�
X � d � is the smallest value λ such

that every ball in X can be covered by λ balls of half the radius. The doubling

dimension of X is then defined as dim
�
X � � log2 λX ; we use the letter α to denote

dim
�
X � . A metric is called doubling when its doubling dimension is a constant.

A subset Y
�

X is an r-net of X if (1) for every x � y � Y � d �
x � y � � r and (2) X

�
�

y � Y B
�
y � r � . Such nets always exist for any r � 0, and can be found using a greedy

algorithm.

Proposition 2.1 (Gupta et al. [2003]). If all pairwise distances in a set Y
�

X are

at least r (e.g., when Y is an r-net of X), then for any point x � X and radius t, we

have that �B �
x � t ��� Y � � λ

�
log2

2t
r �

X .

Proof. Applying the definition of doubling constant of the input metric
�
X � d � ,

B
�
x � t � can be covered by λ balls of radius t � 2 centered around some vertices inside

B
�
x � t � . By applying the same definition at most � log2

2t
r 	 times, one get a cover of

B
�
x � t � with λ

�
log2

2t
r � balls of radius � r � 2. Since all pairwise distances in Y

�
X

are at least r, none of y � y � � Y can fall into the same ball of radius � r � 2; thus

each ball of radius r � 2 covers at most 1 node from Y . Thus we have �B �
x � t �
� Y � �

λ
�
log2

2t
r � .

A cluster C in the metric
�
X � d � is just a subset of points of the set X . The

diameter of the cluster C is the largest distance between points of the cluster. Each

cluster is associated with a center x � X (which may not lie in C) and the radius of

the cluster C is the smallest value r such that the cluster C is contained in B
�
x � r � .
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Definition 2.1. Given r � 0, an r-ball partition Π of
�
X � d � is a partition of X into

clusters C1 � C2 ������� , with each cluster Ci having a radius at most r.

By scaling, let us assume that the smallest inter-point distance in X is exactly 1.

Let ∆ denote the diameter of the metric
�
X � d � , and hence ∆ is also the aspect

ratio of the metric. Define ρ � 256α � 1 and h ��� logρ ∆ � . Let us define ηi �
1 � ρ � ρ2 � ����� � ρi � ρi � 1 � �

ρ � 1 � ; note that ηi � ρηi 	 1 � 1. Let us fix a ρi � 2-net

and denote with Ni for the metric
�
X � d � , for every 0 � i � h � 1.

2.2.1 Hierarchical Decompositions (HDs)

We now give a formal definition of a hierarchical decomposition (HD) which is

used throughout this paper and is the basic object of our study. As noted below,

such a decomposition can be naturally associated with a decomposition tree that is

used for our hierarchical routing schemes.

Definition 2.2. A ρ-hierarchical decomposition ΠΠΠ (ρ-HD) of the metric
�
X � d � is a

sequence of partitions Π0 ������� � Πh with h � � logρ ∆ � such that:

(1) The partition Πh has one cluster X, the entire set.

(2) (geometrically decreasing diameters) The partition Πi is an ηi-ball parti-

tion. Since inter-point distances are at least 1, it implies that Π0 � � �
x � : x �

X � ; in other words, each cluster in Π0 is a singleton vertex.

(3) (hierarchical) Πi is a refinement of Πi � 1 and each cluster in Πi is contained

within some cluster of Πi � 1.

Given such a ρ-HD ΠΠΠ � �
Πi � h

i � 0, the partition Πi is called the level-i partition

of ΠΠΠ and clusters in Πi are the level-i clusters. Note that these clusters have a

radius ηi and hence diameter � 2ηi. Furthermore, define the degree deg
�
ΠΠΠ � to be

the maximum number of level-i clusters contained in any level-
�
i � 1 � cluster in

Πi � 1, for all 0 � i � h � 1.

Hierarchical Decompositions and HSTs. A hierarchical decomposition is a lami-

nar family of sets, where given any two sets, they are either disjoint or one contains

the other. It is well known that such a family F of sets over X can be associated
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with a natural decomposition tree whose vertices are sets in F and whose leaves

are all the smallest sets in the family (which are elements of X , in this case). We

can use this to associate a so-called hierarchically well-separated tree (also called

an HST Bartal [1996]) TΠΠΠ with a hierarchical decomposition ΠΠΠ; since each edge in

TΠΠΠ connects some C � Πi and C
� � Πi 	 1 with C

� �
C, we associate a length ηi with

edge
�
C � C � � . Given such a tree TΠΠΠ, we can (and indeed do) talk about its level-i

clusters with no ambiguity; these are the same level-i clusters in the associated Π i.

Note that the degree of vertices in this tree TΠΠΠ is bounded by deg
�
ΠΠΠ � � 1.

2.2.2 Padded Probabilistic Ball-Partitions

Recall that an r-ball partition Π of
�
X � d � is a partition of X into a set of clusters

C
�

X , each contained in a ball B
�
v� r � for some v � X . B

�
x � t � is cut in the partition

Π if there is no cluster C � Π such that B
�
x � t � �

C. In general, B
�
x � t � is cut by a

set S
�

X if both S � B
�
x � t � and B

�
x � t ��� S are non-empty.

Let P be a collection of all possible partitions of X , and hence Π � P . Given a

partition Π � P and x � X , let CΠ
�
x � be the cluster of Π containing x.

Definition 2.3 (Gupta et al. [2003]). An
�
r� ε � -padded probabilistic ball-partition

of a metric
�
X � d � is a probability distribution µ over P satisfying:

(1) (bounded radius) Each Π in the support of µ is an r-ball partition.

(2) (padding) � x � X, Prµ � d �
x � X � CΠ

�
x � � � εr � � 1

2 .

(This is called a padded probabilistic decomposition in Gupta et al. [2003].)

Each cluster C in every partition Π in the support of a probabilistic ball-partition

µ has radius at most r; and for any x � X , a random r-ball partition Π drawn from

the distribution µ does not cut B
�
x � εr � (and hence B

�
x � εr � is contained in cluster

CΠ
�
x � � Π) with probability � 1 � 2.

2.3 Padded Probabilistic Hierarchical Decompositions

In this section, we define a
�
ρ � ε � -padded probabilistic hierarchical decomposition

(PPHD) of the metric
�
X � d � , on which the routing algorithm is based. A PPHD is a

probability distribution over HDs that has a “probabilistic padding” property simi-

lar to that in Definition 2.3. For any pair of nodes s, t in X and any ball containing
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both s and t with a diameter of � d
�
s � t � , the PPHD ensures that this ball is con-

tained in a single cluster of radius only slightly ( � α factor) larger than d
�
s � t � at a

suitable level with probability � 1
2 . Thus the shortest s-t path is contained entirely

in this cluster of radius not much more than d
�
s � t � . This is the general intuition for

PPHDs and the starting point for the routing algorithm.

For our applications, we refine PPHDs so that they consist of only m �
O

�
α logα � of HDs. We first give an existence proof, using the Lovász Local Lemma

(LLL), to show that such decompositions exist in Section 2.3.1. We then outline a

randomized polynomial-time algorithm to find the decompositions using Beck’s

techniques Beck [1991] in Section 2.3.2.

The existence proof for the PPHDs has the following outline. We first give

a randomized algorithm to form a single random hierarchical decomposition ΠΠΠ,

which proves the existence of PPHDs, albeit with support over an exponential num-

ber of HDs. To reduce the size to something that depends only on α, we have to use

the locality property of the metric space and the LLL. One significant complication

in the proof is that we cannot use the standard top-down decomposition schemes

to construct PPHDs, since they have long-range correlations that preclude the ap-

plication of the LLL. Our solution to this problem is to build the decomposition

trees in a bottom-up fashion and to make sure that the coarser partitions respect the

cluster boundaries made in the finer partitions.

2.3.1 Existence of PPHDs

Motivated by the routing application, we are interested in finding the following

structure, which we call a
�
ρ � ε � -padded probabilistic hierarchical decomposition.

This is a probability distribution µ over ρ-hierarchical decompositions (as defined

in Definition 2.2) so that given B
�
x � εr � with r � ρi, if we choose a random ρ-HD

ΠΠΠ from µ and examine the partition Πi in it, B
�
x � r � is cut in this partition Πi with

probability at most 1
2 .

Definition 2.4 (PPHD). A
�
ρ � ε � -padded probabilistic hierarchical decomposition

(referred to as a
�
ρ � ε � -PPHD) is a distribution µ over ρ-hierarchical decomposi-
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tions, such that for any point x � X and any value r s.t. ρi 	 1 � r � ρi,

PrΠΠΠ � µ
�
B

�
x � εr � is cut in Πi � � 1

2 �

where the random ρ-hierarchical decomposition chosen is ΠΠΠ � �
Πi � h

i � 0. The degree

of the PPHD µ is defined to be deg
�
µ � � maxΠΠΠ � µ deg

�
ΠΠΠ � .

Note that the definition of a PPHD extends both the idea of a padded proba-

bilistic ball-partition and that of HDs—we ask for a distribution over entire HDs,

instead of over ball-partitions at a certain scale r. However, having picked a random

ρ-HD ΠΠΠ � �
Πi � h

i � 0 from this distribution, we demand that balls of radius � ερi be

cut with small probability only in partition Πi that is “at the correct distance scale”.

Our main theorem of this section is the following:

Theorem 2.2. Given a metric
�
X � d � , there exists a

�
ρ � ε � -PPHD µ for

�
X � d � with

ρ � O
�
α � and ε � O

�
1 � α � . The degree deg

�
µ � of the PPHD is at most αO � α � . Fur-

thermore, there exists a distribution µm whose support is over only m � O
�
α logα �

HDs.

Since any hierarchical decomposition ΠΠΠ can be associated with a tree TΠΠΠ (as

mentioned in Section 2.2.1), the above theorem can be viewed as guaranteeing a

set of m trees such that the level-i clusters in half of these trees do not cut a given

ball of radius � ερi.

We prove Theorem 2.2 in the rest of this section. We first prove in Theorem 2.3

that one can obtain the result where the PPHD µ has support over many HDs.

We then use the Lovász Local Lemma to show that a PPHD distribution µm with

support over only a small number of HDs exists.

Padded Probabilistic Hierarchical Partitions. If we do not care about the number

of HDs in the support of a PPHD, the existence result of Theorem 2.2 has been

proved earlier Talwar [2004] with better guarantees; the proof basically follows

from the padded decompositions given in Gupta et al. [2003]. However, we now

give another proof that introduces ideas that are ultimately useful in obtaining a

PPHD distribution whose support is over a small number of HDs.
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Theorem 2.3. Given a metric
�
X � d � , there exists a

�
ρ � ε � -PPHD µ for

�
X � d � with

ρ � O
�
α � and ε � O

�
1 � α � , and with degree deg

�
µ � � αO � α � . Furthermore, one can

sample from µ in polynomial time.

Proof. We define a randomized process that builds a random hierarchical decom-

position tree in a bottom-up fashion, instead of the usual top-down way. To build a

HD ΠΠΠ, we start with
�
Π0 � � �

x � : x � X � � and perform an inductive step. At any

step, we are given a partial structure
�
Πi ������� � Π0 � where for each j � i, the clusters

in Π j 	 1 (which is an η j 	 1-ball partition) are contained within the clusters of Π j.

We then build a new partition Πi � 1, with all clusters of Πi being contained within

clusters of Πi � 1. We have to ensure that clusters of Πi � 1 are contained in balls of

radius at most ηi � 1 and that any ball of radius εr for ρi � r � ρi � 1 is cut in Πi � 1

with probability at most 1
2 . This way, we end up with a valid random HD ΠΠΠ. The

claimed probability distribution µ is the one naturally generated by this algorithm.

To create the clusters of Πi � 1, we use a decomposition procedure whose property

is summarized in the following lemma.

0. Let Y � X , p � cαΓ
Λ for constant c to be fixed later, N be a Λ � 2-net of X .

1. Pick an arbitrary “root” vertex v � N not picked before
2. Set the initial value of the “radius” L � Λ � 2
3. Flip a coin with bias p
4. If the coin comes up heads, goto Step 11
5. If the coin comes up tails, increment L by Γ
6. If L � Λ

�
1 � 1 � 4α �

7. choose a value L̂ from
�
0 � Λ � �

4α �
� u.a.r.
8. round down L̂ to the nearest multiple of Γ
9. set L � Λ

�
1 � 1 � 4α � � L̂

10. Else goto Step 3
11. Form a new cluster C

�
in Π

� �
containing all clusters in Π

� � Y with centers lie in B
�
v� L �

12. Remove the vertices in C
�
from Y

13. (Remark: C
�
has radius at most Λ � Γ)

14. If Y
�� /0 goto Step 1

15. End

Figure 2.3.1. Algorithm CUT-CLUSTERS
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Lemma 2.1. Given a metric
�
X � d � with a Γ-ball partition Π

�
of X into clusters

lying in balls of radius at most Γ � 1, and a value Λ � 8Γ, there is a randomized

algorithm to create a
�
Λ � Γ � -ball partition Π

� �
of X, where each cluster of Π

�
is

contained in some cluster of Π
� �
, and for any x � X and radius 0 � r � Λ,

Pr
�
B

�
x � r � is cut in Π

� � � � O
�
r � Γ �
Λ

α �

Proof. Note that we can assume that Γ � Λ � cα and Λ � α, since otherwise the

lemma is trivially true. Using the algorithmCUT-CLUSTERS given in Figure 2.3.1,

we create a partition of Y (and hence of X ); all distances are measured according

to the original distance function d in X .

Let us define Bx � B
�
x � r � . Note that if Bx is cut in Π

� �
due to some value of L

from v � N (for the first time), then L falls into the interval
�
d

�
v � x � � r � Γ � d �

v� x � �
r � Γ � . Indeed, if Bx is cut in Π

� �
, there are at least two clusters C

�
1 � C �2 � Π

�
such

that they both cut Bx, and B
�
v � L � contains one of their centers but not both. Since

both clusters intersect Bx, their centers c
�
1 and c

�
2 are at distance at most r � Γ from

x. If L � d
�
v� x � � r � Γ, the triangle inequality implies that B

�
v� L � cannot contain

either center. Similarly, if L � d
�
v� x � � r � Γ, B

�
v� L � contains both of them. Hence

the value of L must fall into the interval indicated above.

If a cut in Step 11-12 is made due to the appearance of a heads in Step 4, we call

such a cut a normal cut; else we call it a forced cut. We now bound the probability

that the ball Bx � B
�
x � r � is cut due to either type.

Normal cuts. Consider the first instant in time when the parameter L for some

root v � N reaches a value such that the cut obtained by taking all Π
� � Y clusters

with centers in B
�
v� L � would cut Bx. (If there is no such time, then Bx is never cut

by a normal cut.) In this case, L must also be in the range d
�
v� x ��� �

r � Γ � , and

increases with time. Now either (i) we make a normal cut before L goes outside

this range; or (ii) we make a forced cut; or (iii) L goes outside the range and we

make no cut in this range. In any case, the fate of Bx is decided; Bx is either cut

or contained in a new cluster with center v. We now upper-bound the probability

that event (i) happens. There are at most 2
�
r � Γ � � Γ coin flips made (with bias p)

when the value of L is in the correct range of width at most 2
�
r � Γ � and one of

these flips must come up heads for the cut to be made. The trivial union bound now
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shows this probability to be at most 2 � r � Γ �
Γ p � 2c � r � Γ �

Λ α.

Forced cuts. Let us look at some root v � N and bound the probability that a forced

cut is made with cutting radius L from v in some range Rx � d
�
v� x � � �

r � Γ � . Since

the cut is forced and the value of L is greater than Λ
�
1 � 1 � 4α � � 3Λ � 4, we must

have flipped a sequence of at least Λ � 4Γ successive tails; the probability of this

event is at most
�
1 � p � � Λ � 4Γ � � e 	 pΛ � 4Γ � e 	 c

4 α � (2.3.1)

Now, we choose L̂ to be a multiple of Γ uniformly in a range of width at most

Λ � 4α, and hence the probability that L falls into a range of length 2
�
r � Γ � is at

most 2
�
r � Γ � � �

Λ � 4α � . Multiplying this by (2.3.1), we obtain a bound of e 	 c
4 α �

8 � r � Γ �
Λ α on the probability that a forced cut is made around v with L in the range Rx

such that the cluster C
�
with center v in Π

� �
may cut Bx. Finally, for any x � X , Bx can

only be cut by clusters from roots v � N that are at distance at most
�
r � Γ � � Λ � 3Λ

from x; by Prop. 2.1, there are at most �B �
x � 3Λ � � N � � � 6Λ

Λ � 2 � α � �
12 � α of such

roots. Now we choose c to be large enough; the probability of Bx being cut by a

forced due to any such root is at most 12α � e 	 c
4 α � 8 � r � Γ �

Λ α � O � r � Γ �
Λ α by the

union bound.

We now use the above lemma to prove Theorem 2.3. Using Π
� � Πi, Γ �

ηi � ρi �
ρ � �

ρ � 1 � � , and Λ � ηi � 1 � Γ � ρi � 1, and using N � Ni � 1 (which is a

ρi � 1 � 2 � Λ � 2 net), we create a
�
Γ � Λ � ηi � 1 � -ball partition such that for all x and

all r � ρi � 1 and ε � O
�
1 � α � , we have

Pr
�
B

�
x � εr � cut � � O � εr � Γ �

Λ α � O � ρi �
ρi � 1 α � 1

10 � 1
2 � (2.3.2)

for ρ � α and c being large enough constants. The probability distribution µ over

all decompositions ΠΠΠ thus generated satisfy the requirements of a PPHD as given

in Definition 2.4. Finally, we bound the degree deg
�
µ � of the PPHD µ; note that

each level-i cluster is centered at some v � Ni, hence the number of level-i clusters

contained in some level-
�
i � 1 � cluster is

�
2ηi � 1 � �

ρi � 2 � � O � α � � αO � α � by Prop. 2.1.

Few Hierarchical Decompositions. The above proof immediately gives us a
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PPHD µM with a support on only M � O
�
logn � log log ∆ � HDs. By sampling from

the distribution µ for M times, we get the HDs ΠΠΠ � 1 � ������� � ΠΠΠ � M � , and let the PPHD µM

be the uniform distribution on these HDs. By (2.3.2), for each j � �
1 ����� M � , point

x � X and radius r � ρi, B
�
x � εr � is not cut in the partition Π � j �

i with probability

1 � 10; hence a Chernoff bound implies that this ball is cut in the level-i partitions of

more than M � 2 of the HDs with probability less than 1 � �
n log ∆ � O � 1 � . Now taking

the trivial union bound over all possible values of the center x � X , and all the log∆
values of r which are powers of 2 shows that the µM is a

�
ρ � ε � 2 � -PPHD whp.

Even Fewer Hierarchical Decompositions. While the proof of Theorem 2.3

and the discussion above do not produce a PPHD with small support (of size

O
�
α log α � ), we have seen all the essential ideas required to prove the existence of

such a distribution µm and hence to complete the proof of Theorem 2.2. To prove

this result, we use the locality of the construction, in conjunction with the Lovász

Local Lemma (LLL). This locality property is the very reason why we built the

hierarchical decomposition bottom-up; it ensures that if any particular ball is not

cut at some low level i (the “local decisions”), it is not cut at levels higher than i

(i.e., the “non-local decisions”). Also, we choose the decomposition procedure of

Theorem 2.1 in preference to others (e.g., those in Gupta et al. [2003] and Talwar

[2004]) since they choose a single random radius for all clusters in one particular

partition Π of X , which causes correlations across the entire metric space.

Proof of Theorem 2.2: To show that there is a distribution µm over only m �
O

�
α log α � trees, we use an idea similar to that in the previous section, augmented

with some ideas from Gupta et al. [2003]. Instead of building one hierarchical de-

composition ΠΠΠ bottom-up, we build m hierarchical decompositions ΠΠΠ � 1 � ������� � ΠΠΠ � m �
simultaneously (also from the bottom up).

As before, the proof proceeds inductively; we assume that we are given level-i

partitions Π � 1 �
i ������� � Π � m �

i , where Π � j �
i is the level-i partition belonging to ΠΠΠ � j � . We

then show that we can build level-
�
i � 1 � partitions Π � 1 �

i � 1 ������� � Π � m �
i � 1 where each Π � j �

i

is a refinement of the corresponding Π � j �
i � 1, and any given ball B

�
x � εr � with ρi � r �

ρi � 1 is cut in at most m � 2 of these level-
�
i � 1 � partitions. We start off this process

with each Π � j �
0 � � �

x � : x � X � being the partition consisting of all singleton points

in X . Let J � �
1 ������� � m � . Given m level-i partitions

�
Π � j �

i � j � J , we create m level-
�
i �
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1 � partitions
�
Π � j �

i � 1 � j � J using the procedure in Lemma 2.1 independently on each

of the m decompositions; parameters are set as in the proof of Theorem 2.3, with

Λ � ρi � 1, Γ � ηi, and ε � 1 � O
�
α � . This extends the m hierarchical decompositions

to the
�
i � 1 � st level; it remains to show that the probability of balls being cut is

small.

To describe the events of interest, let us take β � ερi � 1 and define Z to be a

β-net of X . For each z � Z, define Bz to be B
�
z � 2β � , and E i � 1

z to be event that Bz

is cut in more than m � 2 of the partitions
�
Π � j �

i � 1 � m
j � 1, which we refer to as a “bad”

event (used in Section 2.3.2). We prove the claim using the Lovász Local Lemma.

Claim 2.1. Given any
�
Π � j �

i � m
j � 1, Pr

���
z � Z E i � 1

z � � 0.

Lemma 2.2 (Lovász Local Lemma). Given a set of events
�
E i � 1

z � z � Z , suppose

that each event is mutually independent of all but at most B other events. Fur-

ther suppose that, for each event E i � 1
z , Pr

�
E i � 1

z � � p. Then if ep
�
B � 1 � � 1,

Pr
� �

z � Z E i � 1
z � � 0.

Proof of Claim 2.1: First, let us calculate the probability of E i � 1
z : by changing the

constant in ε, we can make the probability that a ball Bz is cut in one level-
�
i � 1 �

partition to be at most 1 � 8. Let us denote by A j
z the event that Bz is cut in partition

Π � j �
i � 1. The expected number of partitions in which the ball is cut is at most m � 8.

Since the partitions are constructed independently, the probability for the event

E i � 1
z that Bz is cut in m � 2 partitions (which is at least four times the expectation)

is at most exp
� � 9m � 40 � ; this can be established using a standard Chernoff bound.

This, in turn, is at most
�
0 � 8 � m, which we define to be p.

Next we show that an event E i � 1
z is mutually independent of all events E i � 1

z �

such that d
�
z � z � � � 4ηi � 1. For each partition Π � j �

i � 1, each root v � Ni � 1 determines

its radius by conducting a random experiment independent of any other roots’ ex-

periments. These random experiments, and only these, determine whether events

such as A j
z occur. In turn, whether event E i � 1

z occurs is determined only by events

A1
z ������� � Am

z . For a particular j, for each z, all of the cuts that could affect Bz in

the algorithm CUT-CLUSTERS are made from roots v � Ni � 1 at distance at most

2β � Γ � Λ � 2β � ηi � 1 � 2ηi � 1 from z. Whether event A j
z occurs is determined by

the experiments corresponding to these roots alone. If d
�
z � z

� � � 4ηi � 1, then there
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is no intersection between the experiments for z and the experiments for z
�
. Since

E i � 1
z is determined by A1

z ������� � Am
z , E i � 1

z is mutually independent of the set of all

E i � 1
z � such that d

�
z � z � � � 4ηi � 1.

We apply the LLL now. Note that the number of z
� � Z within distance 4ηi � 1

of E i � 1
z for z � Z is at most �B �

z � 4ηi � 1 ��� Z � ��� 8ηi � 1
β � α � O

�
α � α � We define this

quantity to be B; ep
�
B � 1 � is at most 1 for m � O

�
α log α � and Claim 2.1 follows.�

Having proved the claim, let us now show that with nonzero probability, each

B
�
x � r � for x � X and ρi � r � ρi � 1 is not cut in at least m � 2 of the level-

�
i � 1 � par-

titions
�
Π � j �

i � 1 � j � J . Let us call this event SCi � 1. The claim shows that with nonzero

probability, each ball Bz with z � Z is not cut in at least m � 2 of the partitions�
Π � j �

i � 1 � j � J . Since each x � X is at distance at most β to some zx � Z, the triangle in-

equality implies that B
�
x � εr � � B

�
x � β � is not cut if B

�
zx � 2β � is not cut, which holds

in at least half of the partitions. Hence SCi � 1 also holds with nonzero probability.

Finally, we prove that we can choose a random set of HD’s
�
ΠΠΠ � j � � j � J such that

SCi � 1 occurs for each 1 � i � 1 � h simultaneously with nonzero probability. The

key to the proof is that we have assumed an arbitrary (worst-case) set of partitions�
Π � j �

i � m
j � 1 at level i in proving a nonzero lower bound on Pr

�
SCi � 1 � . Hence, we

can ignore any dependence among the events SCi � 1 for 1 � i � 1 � h, and simply

multiply their nonzero probabilities together to obtain a nonzero lower bound on

the probability that they all occur simultaneously.
�

2.3.2 An Algorithm for Finding the Decompositions

The above procedure can be made algorithmic using an approach based on Beck’s

algorithmic version of the LLL (see, e.g., Alon and Spencer [1992]; Beck [1991]).

The decomposition satisfies all properties of the one that is shown to exist using

LLL in Theorem 2.2, although with some changes in constant parameter values.

As in the proof of Theorem 2.2, we build m � O
�
α log α � HDs level by level in a

bottom-up fashion.

On any particular level i � 1, we begin by choosing m partitions at random.

After making the random choices, we examine the partitions and identify all of the

bad events that have occurred. We then group together bad events that may depend
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on each other, as well as “good” events that may depend on the bad events. Each

group forms a connected component in the LLL dependency graph. We show that,

with high probability, all connected components have size O
�
logν � , where ν � � Z �

is the size of the ερi � 1-net of X .

Once the groups have been identified, we need to eliminate the bad events.

Hence, for each group, we “undo” all of the random choices concerning that group,

while not modifying any choices that do not affect the group. New choices must be

made for each group so that no bad event occurs. Because the group size is small

(the number of centers v � Ni � 1 concerning the group that we choose random radius

for is also O
�
logν � ), we can find new settings for these choices using exhaustive

search in polynomial time.

One interesting complication in this proof is that the set of clusters containing

a group have different shapes in the m different partitions. In each partition, we

cut out a “hole”, and redo the choices within the hole. The boundary of the hole is

formed from the boundaries of the clusters that may influence the bad events (and

the good events) in the group. In forming the boundary, additional good events may

be added to the hole. As a consequence, it is possible that a good event inside a hole

in one partition may appear inside a different hole in another partition. Hence, when

we perform exhaustive search, these holes must be considered together. However,

our method of bounding the size of each connected component already takes into

account any merging of holes on account of shared good events, so that we never

have to redo the choices for a group of size more than O
�
logν � .

Another issue is that the subset of centers in a hole that belong to Ni � 1, the

ρi � 1 � 2-net that covers the entire metric, may not by themselves cover the hole.

(Portions of the hole may be covered by centers outside the hole.) So for each of

the m partitions, we may have to add additional net points inside the hole to obtain

a complete cover for it. We show that the size of net points in the hole increases

by only a constant factor and remains O
�
logν � , and the degree of the hierarchical

decomposition trees is at most αO � α � as before.
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2.4 The � 1 � τ � -Stretch Routing Schemes

Given a
�
ρ � ε � -PPHD µm with a support on m HDs, we can now define, for every

0 � τ � 1, a
�
1 � τ � -stretch routing scheme which uses routing tables of size at

most m
�
α � τ � O � α � log ∆ logδ bits at every node.

We consider routing schemes in two models. In a basic model, we assume that

there is no underlying routing fabric and each node can only send packets to its

direct neighbors. In a second model, we can build an overlay hierarchical routing

scheme upon an underlying routing fabric like IP that can send packets to any

specific node in the network. We specify the routing algorithm in the basic model,

but also indicate how one can circumvent certain steps of this algorithm when an

underlying routing mechanism is given.

Let us recall some of the notation defined earlier. Let
�
ΠΠΠ � j � � m

j � 1 be the m hier-

archical decompositions on which µm has positive support, and the level-i partition

corresponding to ΠΠΠ � j � be called Π � j �
i . Recall that we can associate each hierarchical

decomposition ΠΠΠ � j � with a tree Tj (as outlined in Section 2.2.1). Note that each of

these trees has a deg
�
µm � bounded by αO � α � and a height of at most h � � logρ ∆ � .

Recall that each internal vertex of the tree T j at level i corresponds to a cluster of

Π � j �
i and leaves of Tj � � j � J, correspond to vertices in X , where J � �

1 ������� � m � .

Let each internal vertex v of each tree T j label its children by numbers between 1

and deg
�
µm � ; v does not label anything with the number 0, but uses it to refer to its

parent. Note that this allows us to represent any path in a tree T j by a sequence of

at most 2h � O
�
logρ ∆ � labels.

2.4.1 The Addressing Scheme

Given a tree Tj and a vertex x � X , we assign x a local address addr j
�
x � , which con-

sists of h � � logρ ∆ � blocks, one for each level of the tree T j. Each block has a fixed

length. The ith block of the addr j
�
x � corresponds to partition Π � j �

i and contains the

label assigned to the cluster Cx containing x in Π � j �
i by Cx’s parent in Tj. Since any

such label is just a number between 1 and deg
�
µm � , where deg

�
µm � � αO � α � , we

need O
�
α logα � bits per block. In fact, one can extend this addressing scheme to

any cluster C in Tj. If C is a level-i cluster, the kth-block of addr j
�
C � contains � ’s
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for k � i; addr j
�
X � for the root cluster of Tj contains all � ’s matching all vertices

in X .

The global address addr
�
x � of point x � X is the concatenation�

addr1
�
x � ������� � addrm

�
x ��� of its local addresses addr j

�
x � for j � J. Since each clus-

ter C belongs to only one tree Tj, we define addr j �
�
C � to be a sequence of #’s of the

correct length (where # are dummy symbols matching nothing), and hence define a

global address of C as well. (This is only for simplicity; in actual implementations,

cluster addresses for Tj can be given by the tuple
�
addr j

�
C � � j � .)

Since there are O
�
α logα � bits per block, h blocks per local address, and m

local addresses per global address, substitution of the appropriate values gives the

address length A to be at most m � h � � log
�
deg

�
µm � � 	 � O

�
α logα � � � logρ ∆ � �

O
�
α logα � � O

�
α2 logα log ∆ � bits.

2.4.2 The Routing Table

For each point x � X , we maintain a routing table Routex that contains the follow-

ing information for each Tj, 1 � j � m:

(1) For each ancestor of x in Tj that corresponds to a cluster C containing x, we

maintain a table entry for C.

(2) Moreover, for each such C, we maintain an entry for each descendant of C

in Tj reachable within � hops in tree Tj. Here � � Θ
�
logρ 1 � ετ � , with the

constants chosen such that ηi 	�� � ετ
4 ρi 	 1.

In the routing table Routex for x, each of the above entries thus corresponds to

some level-i
�

cluster C
�

in Tj. Let closex
�
C
� � be the closest point in C

�
to x. (We

assume, w.l.o.g., that ties are broken in some consistent way, so that any node y

on a shortest path from x to closex
�
C
� � has the value closey

�
C
� � � closex

�
C
� � ; in

fact, this consistency is the only property we use.) For this C
�
, Routex stores (a) the

global address addr
�
C
� � by which the table is indexed, (b) the identity of a “next

hop” neighbor y of x that stays on a shortest path from x to the closest point

closex
�
C
� � in C

�
, and (c) an extra bit 	�
��� ����
���� x

�
C
� � : if the cluster � levels above

C
�

in Tj is the cluster C, then 	�
���� ����
���� x
�
C
� � is set to be true if B

�
x � ερi � � � � is

entirely contained within cluster C and d
�
x � closex

�
C
� � � � ερi � � � , and is set to be

false otherwise. Of course, if we reach the root of T j while trying to go up �
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levels, then the bit is set to be true. Note that if there is an underlying routing

fabric like IP, we can store the IP-address of some node in C
�
(say, the closest one)

instead of (b) and (c) above.

Lemma 2.3. The number of entries in the routing table Routex of any x � X is at

most log∆ � �
α � τ � O � α � .

Proof. Let us estimate the number of entries in Routex for any x � X . There

are m trees. For each tree Tj, for all j � J, there are h � � logρ ∆ � ancestors of

x and the degree of the tree is bounded by deg
�
µm � � αO � α � . Recall that ρ and

1 � ε are both O
�
α � , and hence � � O

�
log

�
α � τ � � . Plugging these values in, we get

that the number of entries for x across m trees is at most m � h � �
deg

�
µm � � � �

O
�
α log α � � O

�
logα ∆ � � αO � α � � � log ∆ � �

α � τ � O � α � . Each entry is indexed by one

global address (of at most A � O
�
α2 log α log∆ � bits, which we do not store in

Routex since we can deduce it from addr
�
x � based on the clustering structure);

each entry indeed contains the identity of the next hop (which uses O
�
log δ � bits,

where δ is the maximum degree of G), a path length field (to be specified in Sec-

tion 3.2), and one additional 	�
���� ����
���� bit.

The forwarding algorithm makes use of two functions, NextHopx and

PrefMatchx. For a point x and a level-i
�

cluster C
�

in Tj, the function

NextHopx
�
addr

�
C
� � � returns the next hop on the path from x to closex

�
C
� � pro-

vided that the next hop does not leave the cluster C at level i
� � � that contains C

�
,

and null otherwise. (As we shall see, the packet forwarding algorithm is guaran-

teed never to encounter a null next hop.) Given points x and t in X , the function

PrefMatchx
�
t � returns an addr

�
C
� � in Routex such that in some Tj, t belongs to

the level-i cluster C
�
, 	�
��� ����
���� x

�
C
� � is true, and the value i is the smallest across

all trees. Note that both of these functions can be computed efficiently by node

x. Furthermore, it is possible to support the functions with data structures of size

comparable to that of Routex.

Note that once the points in X have been assigned addresses (for which we

have described only an off-line algorithm), the routing tables can be built up in

a completely distributed fashion. In particular, a distributed breadth-first-search

algorithm can be applied to determine whether a ball of a certain radius is cut in
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a particular decomposition, and a distributed implementation of the Bellman-Ford

algorithm can be used to establish the next-hop entries for destinations for which

the shortest paths lie within a certain cluster.

2.4.3 The Forwarding Algorithm

The idea behind the forwarding algorithm is to start a packet off from its origin

s towards an intermediate cluster C containing its destination t; the packet header

thus consists of two pieces of information
�
addr

�
t � � addr

�
C ��� , where t is the desti-

nation node for the packet and C is the intermediate cluster containing t. Initially,

the cluster can be chosen (degenerately) to be the root cluster of (say) tree T1.

Upon reaching a node x in the intermediate cluster C, a new and smaller in-

termediate cluster C
�
, also containing t, must be chosen, possibly from a different

tree; the packet header must be updated with addr
�
C
� � that remains the same until

reaching C
�
. Suppose that the new cluster C

�
containing t is at level i

�
. After select-

ing this cluster, the packet is sent off towards C
�
with the new header, following a

shortest path that stays within the cluster Ĉ at level i
� ��� that contains both x and C

�
.

This process is repeated until ultimately the packet reaches the cluster containing

only the destination t. The algorithm is presented in Figure 2.4.2.

1. Let packet header be
�
addr

�
t � � addr

�
C ��� .

2. If C contains x, the current node, then
3. find addr

�
C
� � � PrefMatchx

�
t �

4. let y � NextHopx
�
addr

�
C
� � �

5. forward packet with new header
�
addr

�
t � � addr

�
C
� ��� to y.

6. Else (now x
�� C)

7. let y � NextHopx
�
addr

�
C � �

8. forward packet with unchanged header
�
addr

�
t � � addr

�
C ��� to y.

9. End

Figure 2.4.2. The Forwarding Algorithm at Node x

Theorem 2.4. The forwarding algorithm has a stretch of at most
�
1 � τ � , where

τ � 1.
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Proof. We first show that the algorithm is indeed valid; each of the steps can be

executed and the packet eventually reaches t. Suppose that the packet has just

reached a node x in an intermediate cluster C containing t (with addr
�
C � in its

header); thus x needs to execute Step 3 to find a new cluster C
�
containing t. Clearly,

PrefMatchx
�
t � can return the root cluster Croot of any Tj, since it contains t. We

show, however, that the cluster C
�
returned by PrefMatchx

�
t � has a small diameter

and nodes along a valid shortest path from x to C
�
will forward the packet correctly

until it reaches C
�
.

Lemma 2.4. If the packet is at node x with distance to the target t being

d
�
x � t � � ερi, Step 3 must return some addr

�
C
� � such that cluster C

���
t is at level�

i � � � or lower in some Tj � with 	�
���� ����
���� x
�
C
� � being true. Furthermore, all

vertex v on all shortest paths from x to closex
�
C
� � � closev

�
C
� � has a non-null

NextHopv
�
addr

�
C
� � � .

Proof. The
�
ρ � ε � -PPHD ensures that there exists at least one tree T j such that

B
�
x � ερi � is not cut in the level-i partition Π � j �

i ; let Ĉcont � Π � j �
i be the level-i cluster

in Tj that contains B
�
x � ερi � . Let Ct � Π � j �

i 	�� be the level-
�
i � � � cluster in Tj con-

taining t. The 	�
���� ����
���� x
�
Ct � bit must be true since B

�
x � ερi � � Ĉcont in Π � j �

i and

d
�
x � closex

�
Ct � � � d

�
x � t � � ερi; thus PrefMatchx can (and may indeed) just return

addr
�
Ct � given no “better” choices. However, PrefMatchx always finds a cluster C

�
in some Tj � , at the lowest level across all trees, such that t � C

�
, and 	�
��� ����
���� x

�
C
� �

is true in Routex. Let the level of C
�

be i
�
; the value i

�
is at most

�
i � � � . Now

Let Ĉ � Π � j � �
i � � � be the cluster � levels above C

� � Π � j � �
i � in Tj � that contains both x

and C
�
. (Such Ĉ must exist at level i

� � � for addr
�
C
� � to be in Routex.) We know

that B
�
x � ερi � � � � �

Ĉ and d
�
x � closex

�
C
� � � � ερi � � � since 	�
���� ����
�� � x

�
C
� � is true

in Routex. Thus all shortest paths from x to closex
�
C
� � are entirely contained in

Ĉ. Hence, the NextHopv
�
addr

�
C
� � � pointer at any node v on one of these paths

must be non-null since all shortest paths from v to closev
�
C
� � � closex

�
C
� � are all

contained in Ĉ, the cluster � levels above C
�
in T

�
j .

It remains to bound the path stretch. Consider the case when a packet is sent

from s to t. Let C
�

be a cluster at level i � � returned by Step 3 of the forwarding

algorithm. Note that if the level i � � , then C
� � �

t � and we send the packet directly
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to t with τ � 0. Using these short distances as the base case, we now do induction

on the distance from s to t.

If C
�

is a non-trivial cluster containing t, then we go on a shortest path from

s to some vertex v � closes
�
C
� � � C

�
. Since t � C

�
, d

�
s � v � � d

�
s � t � . Because the

diameter of C
�

is at most 2ηi 	�� , d
�
v� t � � 2ηi 	�� � ερi 	 1 � d

�
s � t � . (The last in-

equality holds because if ερi 	 1 � d
�
s � t � , then PrefMatchs would have returned a

cluster at a level lower than that of C
�

by Lemma 2.4.) Hence, we can apply the

induction hypothesis to find a path from v to t of length at most
�
1 � τ � d

�
v� t � ��

1 � τ � 2ηi 	 � . The path from s to t as derived from Routes is of length at most

d
�
s � v � � �

1 � τ � d
�
v� t � � d

�
s � t � � �

1 � τ � 2ηi 	�� . The stretch of the path from s is t

is then 1 � �
1 � τ � 2ηi 	�� � d

�
s � t � . This quantity is at most 1 � τ since τ � 1 and we

have chosen constants so that ηi 	 � � τερi 	 1 � 4.
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3 Routing Table Construction Using

Bellman-Ford

3.1 Introduction

The hierarchical routing scheme we are going to describe in this section is a com-

pletion of what is lacking in Section 2.4; hence we focus primarily on the process

of building up routing tables using a distributed implementation of Bellman-Ford

algorithm for the base model that we introduce in Section 3.2. For overlay routing,

we store the IP address of an intermediate node to reach each destination in the

routing tables and the process of routing table updates are similar to that of prefix

routing, e.g., in Hildrum et al. [2002]. Although the Forwarding algorithm remains

the same as that in Section 2.4.3, we will elaborate in more details on its behavior

in Section 3.3 when it is coupled with the new routing algorithm.

Our routing scheme is similar in spirit to that of Closest Entry Routing (CER)

scheme described in KK( Kleinrock and Kamoun [1977]). They define a hierarchi-

cal routing scheme by first specifying an “optimal” underlying hierarchical clus-

tering structure that they impose on the network nodes, where the optimization

objective is to minimize the routing table length; each level-k cluster is defined

recursively as a set of level-
�
k � 1 � clusters, with the level-0 clusters being individ-

ual nodes. This leads naturally to a tree representation as shown in Figure 3.1.1,

where internal tree nodes represent clusters; Table 3.1 shows that the destination

addresses in the routing table of node A corresponds to clusters at different levels

of the decomposition tree, hence reflecting the structure of the hierarchical clus-

tering of network nodes. In KK, two nodes share common routing table entries for

all the clusters that contain both of them. KK assumes that all clusters at the same

35
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level have the same number of sub-clusters within them, and each cluster is a con-

nected component. The KK hierarchical routing procedure leads a message down a

tree path, fixing more prefix digits at each step, much as prefix routing, traversing

smaller and smaller clusters that contain the destination node until it reaches the

destination itself.

                                  
0 1 2 3

00
01 02 03 10 11 12 13

000
001 002

003

0000
0001

0002
0003

20
21

22
23 30

31
32 33

Level 3

Level 2

Level 1

Level 0
A

Figure 3.1.1. A 4-level Hierarchical Clustering Structure of Network Nodes

Level 3 0*** 1*** 2*** 3***
Level 2 00** 01** 02** 03**
Level 1 000* 001* 002* 003*
Level 0 0000 0001 0002 0003

Table 3.1. Routing Table Entries in Node A in Figure 3.1.1

The reduction of routing table size generally leads to an increase in network

path length. In order to derive bounds on the increase in the average path length,

they further assume that a shortest-path between two nodes in a cluster lies within

the cluster. They also prescribe an upper-bound of dk on the (strong) diameter of a

kth level cluster, with dk decreasing as k decreases. They show that routing schemes

based on the hierarchical clustering model cause essentially no increase in the av-

erage network path length for a family of large distributed networks. Specifically,

the networks they consider are all connected graphs upon which it is possible to

fit a hierarchical clustering whose outcome satisfies the assumptions above. In ad-

dition, (a) the resulting clusters at any level satisfy the following: the diameter
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of any cluster S chosen is bounded above by O
� � S � ν � for some constant ν � �

0 � 1 � ,
and (b) the average distance between nodes in the network is Θ

�
N ν � , where N is

the size of such a network.

In contrast, our hierarchical routing schemes give bounds on the path stretch

on a per node-pair level on certain networks that are connected graphs G, where

the natural metric
�
X � d � induced by shortest path distances between any pair of

nodes in G is a doubling metric. In addition, the main improvement our work over

that of KK is: while the KK routing scheme is based on assumptions regarding the

existence of a “good” partition of the network, the method itself does not provide

an algorithm for computing such a partition; we are able to prove the existence

of a
�
ρ � ε � -PPHD with a support on m Hierarchical Decompositions and actually

find them by following the Clustering algorithm and its constructive algorithm de-

scribed in Section 2.3. Note that while we guarantee a degree bound for the decom-

position trees across all levels, we do not require they are exactly the same.

It would be ideal if once we construct such a set of network partitions, we can

run the hierarchical routing algorithm specified in KK at each individual decom-

position tree. However, it is not possible to directly apply KK’s routing scheme or

their proof techniques for three reasons. First, while KK assumes that each cluster

subnetwork is fully connected, this is not satisfied in our decomposition. Second,

the shortest paths between two nodes in a cluster are not guaranteed to stay within

the cluster. Finally, although the maximal distance in G between vertices of Ck, for

all 0 � k � h, is bounded within the diameter of Ck, 2ηk, which is geometrically

decreasing as k decreases, it is a weak diameter bound and not necessarily satisfied

by the distance induced by the subgraph corresponding to each cluster Ck.

We thus adopt as many definitions and notation as possible from KK in this

section while inventing some new techniques for addressing the above issues in the

design and specification of a modified hierarchical routing scheme given a
�
ρ � ε � -

PPHD µm with a support on m HDs and in the analysis of the characteristics of paths

as induced by the routing tables thus created. The important property of a
�
ρ � ε � -

PPHD that we will use in defining our routing scheme is that, for ρi 	 1 � r � ρi,

there is at least one tree Tj such that B
�
s � εr � is contained in a level i cluster Ci in

the level-i partition Π � j �
i ; since a ball is a connected component, all shortest paths

from s to vertices within B
�
s � εr � must be contained within Ci in the level-i partition
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Π � j �
i .

3.2 Routing Table Construction

In this section, we focus on the process of building up routing tables once the nodes

in the network have been assigned addresses that reflect their positions in each of

the m decomposition trees. During this process, routing information is aggregated

and exchanged between special nodes in different clusters at each level. We refer

to such special nodes as exchange nodes (for routing) or entry points (for packet

forwarding) of their corresponding clusters. The algorithm for selecting exchange

nodes for each cluster is an independent issue that we do not address in this paper.

Similar to the CER hierarchical routing scheme described in KK, no routing infor-

mation describing the internal behavior of a cluster is propagated outside a cluster;

hence a cluster is regarded from outside as a single node whose distance to itself is

zero.

We use a modified version of the distributed Bellman-Ford algorithm as in

Fig 3.2.2 to perform routing updates: especially, to establish the next-hop entries

and update estimated path lengths for destination clusters in the routing tables for

the basic model. For routing updates, we are going to focus on entries for one

specific decomposition tree Tj that corresponds to ΠΠΠ � j � � �
Π � j �

i � h
i � 0.

Let s and t be two neighboring nodes (that they are connected by a chan-

nel
�
s � t � ) which belong to the same kth level cluster Ck � Π � j �

k and not to any

lower level cluster in Tj, where k � �
1 � 2 ������� � h � . Let Ck 	 1

�
s � � Ck 	 1

�
t � � Π � j �

k 	 1 re-

spectively denote the k � 1st level clusters to which s and t each belong in tree

Tj. Let Ck
�
s � t � denote the level-k cluster that contains both s and t; note that

Ck 	 1
�
s � � Ck 	 1

�
t � �

Ck
�
s � t � in Tj since Tj represents a laminar decomposition. We

use lca j �
s � t � to denote the lowest common ancestor of s and t in a particular tree

Tj; hence lca j �
s � t � � Ck

�
s � t � � Π � j �

k . For a pair of nodes s, t, lca j �
s � t � can be

determined by inspecting the common prefixes of local addresses, addr j
�
s � and

addr j
�
t � .

Recall that in node s, for any cluster Ci
�
s � in Tj that contains s at level i, for

all i � 0 ������� � h, routing table entries are kept for all clusters that are descendants of

Ci
�
s � � Π � j �

i within � levels down a decomposition tree for T j � � j. Thus each entry
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in the routing table Routes for Tj corresponds to some level-
�
i
� � cluster C

� � Π � j �
i �

in Tj, where i
� � 0 � 1 ������� � h � 1; that entry is also denoted as C

�
and indexed by

the global address addr
�
C
� � of its associated cluster C

�
, and contains the following

fields in Routes: (a) a next hop NextHops
�
addr

�
C
� � � to reach C

�
from s, (b) a path

length field HF
�
s � C � � that is the current path length at node s for reaching cluster

C
�

through NextHops
�
addr

�
C
� � � , and (c) a 	�
���� ����
�� � s

�
C
� � bit. Initially, the path

length fields for all the entries in Routes for tree Tj are set to ∞ except for the self

entries as shown in the Initialization Procedure in Fig 3.2.2.

We use Ci
�
s � C � � � Ci

�
s � � Π � j �

i to denote the level-i common ancestor of s and

C
� � Π � j �

i � such that i � i
� � 1 and Ci

�
s ��� C

�
. Note that Ch

�
s � C � � � Ch

�
s � contains

C
� � Π � j �

i � , for all i
� � h � 1, since Ch

�
s � contains the entire network. Similarly, we

use lca j �
s � C � � to denote the lowest common ancestor of s and C

� � Π � j �
i � in tree

Tj, where C
� �

lca j �
s � C � � � Ci

�
s � C � � for all i such that C

� �
Ci

�
s � . For node s and

cluster C
�
, the lca j �

s � C � � can be determined by inspecting the common prefixes of

local addresses addr j
�
s � and addr j

�
C
� � .

As a consequence of the routing table specification, routing table entries at node

s and t at all levels below k � � in Tj refer to different cluster destinations; whereas

all the other entries from level k � � up to h refer to the same cluster destinations

in Tj. The objective of the updating procedure is to compare the estimated lengths

of the paths from s or t to any common destination and to update the routing tables

to reflect the shorter paths. Whenever s receives a route update from t, for each

common destination cluster C
�
, its corresponding entry is potentially updated with

a new next hop NextHops

�
addr

�
C
� � � , the path length HF

�
s � C � � through the new

NextHops
�
addr

�
C
� � � as in Step 2-4, and the 	�
���� ����
�� � s

�
C
� � bit as in Step 5-9 of

the Route Update Procedure in Fig 3.2.2.

We have a slightly different way of setting the 	�
���� ����
���� s
�
C
� � bit from that

specified in Section 2.4.2 to maximize the chance of setting it true. However, as

before, once the 	�
���� ����
�� � s
�
C
� � bit is set to be true, a shortest path from s to C

�
is indeed guaranteed by following the next hop in Routes for an entry C

�
and that

in Routev of each subsequent nodes v along the path from s to an entry point of C
�
.

Let a common destination entry for T j in Routes and Routet correspond to a

level-
�
i
� � cluster C

� � Π � j �
i � , where i

� � k � � . We denote the level of lca j �
s � C � � in Tj

as l0; The following inequalities, i
� � 1 � l0 � i

� � � , must be satisfied for C
�

to be
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an entry in Routes. The 	�
���� ����
���� s
�
C
� � bit is set to be true so long as for “any”

of the common ancestor Ci
�
s � C � � of s and C

�
at level i, for all l0 � i � i

� � � , both

HF
�
s � C � � � ερi and B

�
s � ερi � � Ci

�
s � C � � are true. It is set to be false otherwise.

Note that when i
� � h � � , both HF

�
s � C � � � ∆ and B

�
s � ∆ � �

Ch
�
s � C � � are always

true since Ch
�
s � C � � is the entire network; hence we set 	�
��� ����
���� s

�
C
� � bit true

for all C
�
at level h ��� and above in Step 5 of the Initialization Procedure.

The reason we set 	�
���� ����
�� � s
�
C
� � bit this way is the following. Recall that

by constructing the m decomposition trees, each node s “knows” if B
�
s � ερi �

is contained Ci
�
s � � Π � j �

i in tree Tj; naturally, if B
�
s � ερi � �

Ci
�
s � � Π � j �

i , then

B
�
s � ερi � �

Cl
�
s � � Π � j �

l is true for all l � i. However, if B
�
s � ερi � �� Ci

�
s � , we do

not assume that we know information such as “whether a ball B
�
s � r � of a radius

ερi � r � ερ � i 	 1 � is contained in Ci
�
s � or not”, since that is not the type of informa-

tion that our constructive algorithm provides by default; note that if r � ερ � i 	 1 � , we

will just check if B
�
s � ερ � i 	 1 � � �

Ci 	 1
�
s � to decide if B

�
s � r � �

Ci
�
s � . Our routing

algorithm thus makes minimal assumptions about the information that is available

at each node about balls around it being contained at a certain level or not.

Another specification in terms of routing that is different from that of Sec-

tion 2.4.2 is the following. Assume we route a packet from s toward C
�
. Instead

of assuming the packet should always enter a cluster C
�

through the closest point

x � closes
�
C
� � in C

�
to s, we only require that the packet enters C

�
through a closest

entry point e0 � C
�
. Correspondingly, for node s and a level-

�
i
� � cluster C

� � Π � j �
i �

in Tj, the function NextHops

�
addr

�
C
� � � returns the next hop on the path from s

to e0 provided that the next hop does not leave the cluster C at level
�
i
� � � � that

contains C
�
, and null otherwise. Recall an entry point e0 � C

�
advertises routes for

C
�

it belongs to. Note also e0 does not need to be the closest one to s in C
�

in or-

der to achieve
�
1 � τ � -stretch routing. (This is also true for overlay routing.) As a

basic routing scheme, we keep a next hop NextHops
�
addr

�
C
� � � in Routes toward

a closest entry point e0 � C
�

for the sake of routing table consistency that we will

elaborate shortly.

For overlay routing, we keep the IP address of an arbitrary entry point e0 to

C
�

(instead of a next hop NextHops
�
addr

�
C
� � � toward e0), since IP routing will

deliver a packet from s to e0 directly given the IP address of e0 without having to

rely on hop-by-hop forwarding as in the basic model that we focus in this section.
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Initialization Procedure: initialize Routes for tree Tj at node s
1. For i � 0 � 1 ������� � h
2. HF

�
s � Ci

�
s � � � 0, and 	�
���� ����
���� s

�
Ci

�
s � � � true

3. For all other entries C
� ��

s, let i
�
= level of C

�
in tree Tj

4. HF
�
s � C � � � ∞

5. If i
� � h � � , then 	�
���� ����
���� s

�
C
� � � true

6. End

Route Update Procedure: upon receiving a route update from t such that lca j �
s � t � � Ck

1. For each common entry C
� � Π � j �

i � , which represents a level-
�
i
� � cluster in Tj, where i

� � k � �
2. If HF

�
s � C � � � d

�
x � t � � HF

�
t � C � � , then

3. HF
�
s � C � � � d

�
x � t � � HF

�
t � C � �

4. nexthop field of C
�

� t
5. If i

� � h ��� , then
6. Let l0 = level of lca j �

s � C � � in Tj and m satisfies ερm 	 1 � HF
�
s � C � � � ερm

7. for all levels i : max
�
l0 � m � � i � i

� � �
8. If B

�
s � ερm � � B

�
s � ερi � � Ci

�
s � in Tj, then

9. 	�
���� ����
�� � s
�
C
� � � true

10. Goto 1
11. End

Figure 3.2.2. DISTRIBUTED BELLMAN-FORD Algorithm for T j at Node s

Definition 3.1. We call a path an internal path in cluster C if all the nodes in that

path belong to C.

Similar to KK, we define the equilibrium condition as the situation when no

changes occur in the topology of network and the contents of HF
�
s � C � � in the

routing table reach “minimal” constant values after a certain number of updates.

Claim 3.1. The distributed Bellman-Ford algorithm guarantees that in equilibrium

condition, HF
�
s � C � � will be the length of the shortest path from s to a closest entry

point e0 of C
�
when 	�
��� ����
���� s

�
C
� � is true, i.e., HF

�
s � C � � � d

�
s � e0 � in Routes.

Proof. Let the level of C
� � Π � j �

i � in tree Tj be i
� � h � � and let the level of

lca j �
s � C � � be l0. We only set 	�
���� ����
�� � s

�
C
� � true in the routing algorithm

when for “any” of the level-i cluster Ci
�
s � � Π � j �

i , where l0 � i � i
� � � , both
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HF
�
s � C � � � ερi and B

�
s � ερi � � Ci

�
s � � Π � j �

i hold. Denote the lowest such level r,

where r � �
l0 � i � ��� � . All shortest paths from s to some entry point x

� � C
�
of distance

d
�
s � x � � � HF

�
s � C � � � ερr are thus internal to Cr

�
s � � Π � j �

r in Tj, since such paths

are contained in B
�
s � ερr � , which is a connected component entirely contained in

Cr
�
s � � Π � j �

i . Note that some x
� � C

�
must have advertised itself as an entry point to

C
�
for such paths to be established within

�
Cr

�
s � � C

� � and for C
� � Π � j �

i � to appear

in Routes. Thus C
� �

Cr
�
s � since x

� � �
C
� � Cr

�
s � � �� /0 and r � l0; we thus denote

Cr
�
s � as Cr

�
s � C � � from this point on.

In addition, every node v � Cr
�
s � C � � , including those along the shortest paths

from s to x
�
inside B

�
s � ερr � , contains a routing table entry to C

�
, since it is a descen-

dant of Cr
�
s � C � � within � levels down the decomposition tree T j. Propagation and

subsequent updating of routing information among nodes of Cr
�
s � C � � is equivalent

to finding minimum path internal to Cr
�
s � C � � from any node v � �

Cr
�
s � C � � � C

� � to

an entry point of C
�

that is closest to node v; for s, the closest entry point to C
�

is

e0.

Improvements are made sequentially at each update over the distance HF
�
u � C � �

from u to C
�
among nodes within B

�
s � ερr � , until it reaches a minimal constant value

if no changes occur in the topology of the network; hence all u � B
�
s � ερr � “knows”

how to route to C
�

with a path of bounded length. Given multiple entry points to

C
�
, the distributed Bellman-Ford algorithm guarantees that we find a shortest path

not only to some entry point x
�

of C
�
, but also to the closest, e0 of C

�
, from s

in equilibrium condition, i.e., HF
�
s � C � � � d

�
s � e0 � . The entire path stays within

B
�
s � ερr � �

Cr
�
s � C � � , where r is specified as above.

Note that when i
� � h � � , both HF

�
s � C � � � ∆ and B

�
s � ∆ � � Ch

�
s � C � � are always

true since Ch
�
s � C � � is the entire network; hence we set 	�
��� ����
���� s

�
C
� � true for all

C
�
at level h � � and above. The same argument as above applies to this case.

The reason we require a closest entry point to C
�

is primarily for route con-

vergence purpose when our protocol serves as an underlying routing scheme. For

overlay routing, we allow an entry point to be any exchange node or simply a

random node within the cluster, which is commonly assumed in peer-to-peer net-

works. Note that an exchange node of a given cluster is a node of that cluster which

is connected to one or more nodes external to that cluster as defined in KK. We will
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use exchange node and entry point interchangeably unless we specify otherwise.

The
�
1 � τ � -stretch property we are going to prove for hierarchical routing paths

does not require the entry point for a cluster C
�
to be the closest to s either – a point

that we will not elaborate on from now on.

Fact 3.1. If a shortest path from s to e0, an entry point to a level-
�
i
� � cluster C

� �
Π � j �

i � , is internal to Ci
�
s � � Π � j �

i in tree Tj, where i � i
�
, then cluster C

� �
e0 must be

a sub-cluster that is entirely contained in Ci
�
s � in Tj, i.e., C

� �
Ci

�
s � .

Proof. First observe e0 � �
Ci

�
s � � C

� � , since shortest path from s to e0 is internal to

Ci
�
s � � Π � j �

i in Tj. Since Tj represents a laminar decomposition, where a lower level

cluster is always entirely contained in a higher level cluster, e0 � Ci is sufficient to

guarantee that
�
C
� �

t � � Ci.

3.3 Path Characteristics

We forward packets according to the Forwarding algorithm in Figure 2.4.2. Let

s and t be two arbitrary nodes. For destination t, let C
� �

t � be the cluster whose

addr
�
C
� �

t � � is returned by the function PrefMatchs
�
t � at Step 3 of the Forwarding

algorithm. We assume, w.l.o.g., C
� �

t � � Π � j �
i � , i.e., C

� �
t � is in the level-

�
i
� � partition

Π � j �
i � , where i

� � h � � , in tree Tj. Recall that h � � logρ ∆ � . Let l0 � h be the level

of lca j �
s � C � �

t � � � Π � j �
l0

in Tj.

We say C
� �

t � � t is the cluster that has the longest valid prefix matching with t

in Routes, since the level of C
� �

t � is the lowest across all trees among clusters C
�
in

Routes such that C
���

t and 	�
��� ����
���� s
�
C
� � is true. Before we proceed, we first

give more definitions, some of which are adapted from KK.

hc
st : Length of the estimated minimum path from node s to node t as derived

from the routing information at node s. (The superscript c stands for clustered

routing.)

Exchange node ez: a node of a cluster C that is connected to one or more nodes

external to C.

Ai
�
t � : Subset of all exchange nodes (entry points) that connect a level-i cluster

Ci
�
t � � Π � j �

i in tree Tj, for all j � 1 ������� � m, with any other level-i cluster within the

same ancestor Cn
�
t � � Π � j �

n in the same tree Tj, for all n � i � � . From the above
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definitions, all entry points ez of C
� �

t � � Π � j �
i � that connect C

� �
t � to any other level-�

i
� � cluster that stays within Ci � � �

�
t � � Π � j �

i � � � in tree Tj hence belong to Ai �
�
t � .

Let e0 � Ai �
�
t � � C

� �
t � be the closest entry point for s to reach C

� �
t � � Π � j �

i � in Tj.

Ĉk
�
s � t � : For k � h � 1, Ĉk

�
s � t � � Π � j �

k is the level-k cluster in Tj, where

l0 � k � i
� � � , that is the lowest-level common cluster of s and t such that

B
�
s � ερk � � Ĉk

�
s � t � and B

�
s � ερk � contains a shortest path from s to C

� �
t � � Π � j �

i � in

Tj, where i
� � h � � ; such Ĉk

�
s � t � � Π � j �

k always exists since we know B
�
s � ερr � �

Cr
�
s � t � and HF

�
s � C � �

t � � � ερr must both hold for some l0 � r � i
� � � , given

that 	�
���� ����
�� � s
�
C
� �

t � � is true in Routes, due to the specification of the dis-

tributed Bellman-Ford algorithm. Let k be the lowest such level r. Note that

C
� �

t � �
Ĉk

�
s � t � since Tj represents a laminar decomposition and k is at least l0.

For k � h, Ĉk
�
s � t � � Ch

�
s � t � � Π � j �

h , is the root cluster X of Tj that corresponds to

the entire network G. In this case, Ĉk
�
s � t � � Ch

�
s � t � always contains all shortest

paths from s to C
� �

t � � Π � j �
i � in Tj, where i

� � h � � , given that G is a connected

graph.

hi
sez

�
t � : Length of the shortest path from node s to an exchange node ez �

Ai �
�
t � � C

� �
t � as contained in Ĉk

�
s � t � defined above. The superscript i stands for

an internal path within Ĉk
�
s � t � . At equilibrium, hi

se0

�
t � � HF

�
s � C � �

t � � � d
�
s � e0 �

since the shortest path from s to e0 is internal to Ĉk
�
s � t � , and by Claim 3.1,

HF
�
s � C � �

t � � � d
�
s � e0 � in Routes given that 	�
���� ����
���� s

�
C
� �

t � � is true in Routes

and e0 is the closest entry point to C
� �

t � for node s. Recall that HF
�
s � C � �

t � � is the

current path length filed in Routes for node s to reach C
� �

t � � Π � j �
i � via its current

NextHops

�
addr

�
C
� �

t � � � . Note when the shortest path from s to ez is not internal to

Ĉk
�
s � t � , we denote it with hi

sez
� ∞.

In order to reach t, function PrefMatchs
�
t � is called by the Forwarding al-

gorithm at node s, which looks across Routes for all trees and picks a tree

Tj that contains C
� �

t � with a closest entry point e0 � Ai �
�
t � � C

� �
t � . Node s

then stores
�
addr

�
t � � addr

�
C
� �

t � ��� in the packet header and sends the packet to

NextHops
�
addr

�
C
� �

t � � � ; the packet header remains the same while intermediate

nodes v forward the packet along a shortest path from s to e0, that is contained in

the common cluster Ĉk
�
s � t � of s and t in Tj, until it reaches e0.

The key observation we have regarding a path hc
st from s to t is the following.

The path may not be contained within the lowest common ancestor lca j �
s � t � � Π � j �

l0
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of s and t in a particular tree Tj. However, the segment from s to C
� �

t � , is contained

within Ĉk
�
s � t � in Tj, where l0 � k � i

� � � , when following a shortest path from s to

e0, which is the closest entry point to C
� �

t � . Recall Ĉk
�
s � t � is a common cluster of

s and C
� �

t � at a level higher than that of lca j �
s � t � . Conceptually, we route packets

from s to t within Ĉk
�
s � t � � Π � j �

k to avoid being stuck in lca j �
s � t � � Π � j �

l0
, which

may not contain any path (e.g., when lca j �
s � t � in Tj is disconnected) or contains

only very long paths from s to t. The shortest path from s to e0 is thus an internal

path relative to Ĉk
�
s � t � , which we denote with hi

se0
.

Finally, We define a constant φ � 4
ρ� ε that we will use throughout this section. It

is easy to verify that 2ηi 	 � � 2
ρ ��� 1 � ρ 	 1 � ε ερi � φερi. Recall that � � Θ

�
logρ 1 � ετ � and

ρ � Θ
� 1

ε � , where we choose suitable constants so that ρ2 � 1 	 φ
φ is satisfied. The

rest of this section is dedicated to the proof of the main theorem of this section,

before which we first prove two lemmas regarding the level of C
� �

t � and Ĉk
�
s � t �

given d
�
s � t � . Note that we always have k � h and i

� � h � � . We will ignore the

case when k � h until the end of this section.

Lemma 3.1. Let d
�
s � t � � �

1 � φ � ερi, where 1 � i � h. The cluster C
� �

t � � Π � j �
i � in

Tj that has the longest valid prefix matching with t with 	�
���� ����
�� � s
�
C
� �

t � � � true,

is at a level i
� � max

�
0 � i ��� � ; the common cluster Ĉk

�
s � t � � Π � j �

k as defined above

that contains the shortest path from s to C
� �

t � is at level k � i.

Proof. We first prove the lemma when i � � with the following claim.

Case i � � .
Claim 3.2. Let ερi 	 1 � d

�
s � t � � ερi for 1 � i � � . Then C

� �
t � � C0

�
t � is t itself; the

lowest common cluster Ĉk
�
s � t � such that B

�
s � ερk � � Ĉk

�
s � t � and B

�
s � ερk � contains

the shortest path from s to C0
�
t � , i.e., t itself, is at level k � i.

Proof. Node s has a routing table entry for all t such that d
�
s � t � � ερ � , since

B
�
s � d �

s � t � � �
B

�
s � ερ � � is fully contained in some level- � cluster C �

�
s � � Π � q �

� in

some tree Tj, and C
� �

t � is C0
�
t � � Π � q �

0 .

The properties of the
�
ρ � ε � -PPHD ensure that there is at least one tree T j such

that B
�
s � ερi � �

Ci
�
s � � Π � j �

i in Tj. Since d
�
s � t � � ερi, we know that t � B

�
s � ερi �

and C0
�
t � �

Ci
�
s � in Tj. The lowest common cluster Ĉk

�
s � t � such that B

�
s � ερk � �
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Ĉk
�
s � t � and B

�
s � ερk � contains the shortest path from s to C

� �
t � � C0

�
t � , i.e., t itself,

is Ci
�
s � � Π � j �

i in tree Tj and k � i.

We now prove the general case when i � � .

Case h � 1 � i � � . Let x
� � Ai 	 �

�
t � be an arbitrary entry point to some level-

�
i � � �

cluster C
�

t in some tree; hence d
�
x
� � t � � 2ηi 	 � � φερi since x

� � t � C. Applying

the triangle inequality, we have d
�
s � x � � � d

�
s � t � � d

�
t � x � � � ερi; thus all shortest

paths from s to x
�
, for all x

� � Ai 	 �
�
t � , are contained in B

�
s � ερi � .

The properties of the
�
ρ � ε � -PPHD ensure that there is at least one tree Tq

such that B
�
s � ερi � is not cut in the level-i partition Π � q �

i ; let Ci
�
s � � Π � q �

i be the

level-i cluster in Tq such that B
�
s � ερi � � Ci

�
s � . Since d

�
s � t � � �

1 � φ � ερi, we have

t � B
�
s � ερi � �

Ci
�
s � � Π � q �

i . Let Ci 	 �
�
t � � Π � q �

i 	�� be the level-
�
i � � � cluster in Tq

containing t; we know that Ci 	 �
�
t � �

Ci
�
s � , since t � �

Ci 	 �
�
t ��� Ci

�
s � � and Tq rep-

resents a laminar decomposition. Hence we have Ci
�
s � � Ci

�
t � � Ci

�
s � t � in the

level-i partition Π � q �
i in tree Tq.

The 	�
���� ����
�� � s
�
Ci 	��

�
t � � bit must be set true in Routes by the dis-

tributed Bellman-Ford algorithm in node s, since (a) B
�
s � ερi � �

Ci
�
s � t � � Π � q �

i ,

and (b) HF
�
s � Ci 	��

�
t � � � ερi in Routes for entry Ci 	 �

�
t � � Π � q �

i 	�� in tree Tq at

equilibrium, given that all shortest paths from s to an entry point x
�
, for all

x
� � Ai 	��

�
t � � Ci 	 �

�
t � , are internal to B

�
s � ερi � . Thus PrefMatchs

�
t � can (and may

indeed) just return addr
�
Ci 	��

�
t � � given no “better” choices, in which case, i

� � i � �
and k � i.

However, PrefMatchs
�
t � always finds a cluster C

� �
t � � Π � j �

i � at the lowest level

across all trees, such that t � C
� �

t � and 	�
��� ����
���� s
�
C
� �

t � � is true in Routes; hence

C
� �

t � is at level i
� � i � � .

We know that B
�
s � ερr � � Cr

�
s � t � � Π � j �

r and HF
�
s � C � �

t � � � ερr must both hold,

for some l0 � r � i
� � � , in order for 	�
���� ����
�� � s

�
C
� �

t � � bit to be true, due to the

specification of the distributed Bellman-Ford algorithm. Let k be the lowest such

r; we have k � i
� � � � i for i � � .

Case i � h. We have k � h and i
� � h � � trivially, since both holds for all possible

distances of d
�
s � t � up to ∆, which is the diameter of the network G.

Claim 3.3. When C
� �

t � � Π � j �
1 is at level 1, d

�
s � t � � ερ � .
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Proof. Prove by contradiction. Assume that d
�
s � t � � ερ � . By Claim 3.2, we have

C
� �

t � � C0
�
t � , contradicting the assumption that C

� �
t � is at level 1.

Lemma 3.2. Let C
� �

t � � Π � j �
i � be the cluster returned by function PrefMatchs

�
t � at

Step 3 in the Forwarding algorithm and its level be i
�
, where h � � � i

� � 1. Then

d
�
s � t � � �

1 � φ � ερi � � � 	 1.

Proof. Prove by contradiction. Assume that d
�
s � t � � �

1 � φ � ερi � � � 	 1. By

lemma 3.1, the cluster C
� �

t � �

t that has the longest valid prefix matching with

t with the 	�
���� ����
���� s
�
C
� �

t � � bit set true in Routes is at level at most i
� � 1, thus

contradicting the assumption that C
� �

t � is at level i
�
.

We next prove the following lemma regarding the level of C
� �

t � given the level

of Ĉk
�
s � t � .

Lemma 3.3. Let a level-k cluster Ĉk
�
s � t � � Π � j �

k in tree Tj, where h � 1 � k � � ,
be the lowest-level common cluster of s and t such that a shortest path from s to

C
� �

t � � Π � j �
i � is contained in B

�
s � ερk � � Ĉk

�
s � t � � Π � j �

k . Then C
� �

t � � Π � j �
i � is at either

level k � � or level k � � � 1.

Proof. Be definition of Ĉk
�
s � t � , we know that l0 � k � i

� � � and l0 � i
� � 1, where

l0 is the level of lca j �
s � C � �

t � � . Thus k � � � i
� � k � 1. The lowest level that C

� �
t �

can be is at k � � , and we argue that C
� �

t � can not be at a level higher than k � � � 1.

Let e0 be a closest entry point to C
� �

t � for s, such that e0 � Ai �
�
t � � C

� �
t �

and the shortest path from s to e0 is internal to B
�
s � ερk � �

Ĉk
�
s � t � � Π � j �

k ; hence

d
�
s � e0 � � ερk. Since C

� �
t � is at least one level below Ĉk

�
s � t � in Tj and e0 � t � C

� �
t � ,

we have d
�
e0 � t � � 2ηk 	 1. Note that C

� �
t � �

Ĉk
�
s � t � by Fact 3.1. Applying the tri-

angle inequality, we have d
�
s � t � � d

�
s � e0 � � d

�
e0 � t � � ερk � 2ηk 	 1.

Now we examine the distance of d
�
s � y � � for all y

� � Ak 	 � � 1
�
t � . Given that

d
�
t � y � � � 2ηk 	 � � 1, we apply the triangle inequality and obtain:

d
�
s � y � � � d

�
s � t � � d

�
t � y

� �
� d

�
s � e0 � � d

�
e0 � t � � d

�
t � y � �

� ερk � 2ηk 	 1 � 2ηk 	�� � 1

� ερk � 1 �
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where � � 2 and ρ � Θ
� 1

ε � .

Thus all shortest paths from s to y
�
, for all y

� � Ak 	 � � 1
�
t � , are contained in

B
�
s � ερk � 1 � . The properties of the

�
ρ � ε � -PPHD ensure that there is at least one tree

Tj � such that B
�
s � ερ � k � 1 � � � Ck � 1

�
s � � Π � j � �

k � 1. Let Ck 	�� � 1
�
t � � Π � j � �

k 	�� � 1 be the level-�
k � � � 1 � cluster that contains t in Tj � . Given that t � B

�
s � ερk � 1 � �

Ck � 1
�
s � , we

know that Ck 	�� � 1
�
t � � Ck � 1

�
s � � Π � j � �

k � 1 since t � �
Ck 	 � � 1

�
t � � Ck � 1

�
s � � �� /0 and Tj �

represents a laminar decomposition. Thus Ck 	 � � 1
�
t � � Π � j � �

k 	�� � 1 must appear in s’

routing table with 	�
���� ����
�� � s
�
Ck 	 � � 1

�
t � � set true, since Ck 	 � � 1

�
t � �

Ck � 1
�
s � is

within � levels below Ck � 1
�
s � in Tj � and all shortest paths from s to Ck 	�� � 1

�
t � are

contained in B
�
s � ερk � 1 � � Ck � 1

�
s � in Tj � .

Thus the level i
�

of C
� �

t � must satisfy k � � � i
� � k � � � 1 for C

� �
t � � Π � j �

i � to

be returned by PrefMatchs
�
t � .

Fact 3.2. When k � h and Ĉk
�
s � t � � Π � j �

k is Ch
�
s � t � � Π � j �

h , which is the entire

network G, we know that C
� �

t � � Π � j �
i � is at level i

� � h ��� � k � � .

The next lemma shows the path characteristics from s to t up till entry point e0

of C
� �

t � � Π � j �
i � .

Lemma 3.4. All messages to be forwarded or sent from node s to node t will

follow the same shortest path up to the closest entry point e0 of C
� �

t � � Π � j �
i � to s.

The shortest path from s to e0 is internal to Ĉk
�
s � t � � Π � j �

k in Tj; it has a length of

hi
se0

that satisfies:

hi
se0

� minez � Ai � � t ��� C � � t �
�
hi

sez
� � (3.3.1)

where i
�

is the level of C
� �

t � � Π � j �
i � and k � i

� � � , and Ĉk
�
s � t � � Π � j �

k , Ai �
�
t � , and

hi
sez

are as defined above, and hi
sez

� ∞ when the shortest path from s to ez is not

contained in Ĉk
�
s � t � . At equilibrium, hi

se0
� HF

�
s � C � �

t � � � d
�
s � e0 � . Finally, all ver-

tices v on the shortest path from s to e0 have a non-null NextHopv
�
addr

�
C
� �

t � � �
and share the same closest entry point e0 to cluster C

� �
t � .

Proof. By the definition of Ĉk
�
s � t � , for k � h � 1, we know that Ĉk

�
s � t � � Π � j �

k is

the level-k cluster, where l0 � k � i
� � � , in tree Tj, that is the lowest-level common

cluster of s and t such that B
�
s � ερk � �

Ĉk
�
s � t � � Π � j �

k and B
�
s � ερk � contains a
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shortest path from s to C
� �

t � � Π � j �
i � in Tj; specifically, B

�
s � ερk � contains a shortest

paths from s to e0, and d
�
s � e0 � � ερk. By Fact 3.1, we have C

� �
t � � Ĉk

�
s � t � . When

k � h, Ĉk
�
s � t � � Ch

�
s � t � � Π � j �

h is the root cluster X and naturally contains all

shortest paths from s to C
� �

t � � Ch
�
s � t � , given that G is a connected graph.

All the nodes in Ĉk
�
s � t � � Π � j �

k contain one entry for C
� �

t � � Π � j �
i � in their rout-

ing tables, since k � i
� � � and C

� �
t � �

Ĉk
�
s � t � is a cluster within � levels below

Ĉk
�
s � t � � Π � j �

k in tree Tj. Propagation and subsequent updating of routing infor-

mation among nodes of Ĉk
�
s � t � � Π � j �

k in Tj is equivalent to finding the minimum

path internal to Ĉk
�
s � t � from any node u � �

Ĉk
�
s � t � � C

� �
t � � to an entry point of

C
� �

t � that is closest to node u; for s, the closest entry point to C
� �

t � is e0 such that

hi
se0

� minez � Ai � � t � � C � � t �
�
hi

sez
� . Hence, at equilibrium, e0 is on the minimal path from

s to C
� �

t � and hi
se0

� HF
�
s � C � �

t � � represents the length of such minimal path.

All shortest paths of length d
�
s � e0 � from s to e0 are internal to Ĉk

�
s � t � ; when

k � h � 1, it is within B
�
s � ερk � �

Ĉk
�
s � t � � Π � j �

k . Hence, at equilibrium, within

B
�
s � ερk � � Ĉk

�
s � t � � Π � j �

k for k � h � 1, or within Ĉk
�
s � t � � X for k � h, a shortest

path of length hi
se0

� d
�
s � e0 � is formed between s and e0 among nodes within a con-

nected component, that share a common entry for C
� �

t � �
Ĉk

�
s � t � in their routing

tables. Thus we have HF
�
s � C � �

t � � � hi
se0

� d
�
s � e0 � .

For any node v on one of these shortest paths from s to e0, s and v must share

the same closest entry point e0 to C
� �

t � at equilibrium, due to the execution of

the distributed Bellman-Ford algorithm; furthermore, intermediate nodes v will be

able to route the packet toward C
� �

t � � Π � j �
i � in Ĉk

�
s � t � consistently since they each

contain an entry for C
� �

t � � Π � j �
i � with a non-null NextHopv

�
addr

�
C
� �

t � � � field,

given that these paths stay within Ĉk
�
s � t � � Π � j �

k , where k � i
� � � . The Forwarding

algorithm will forward messages from node s destined to node t along the shortest

path thus formed to first reach C
� �

t � in tree Tj.

The process of finding the next entry point repeats by the time the packet

reaches e0, an entry point to C
� �

t � � Π � j �
i � in tree Tj, until the packet reaches its

destination t. For example, e0 selects a new tree Tl that contains the next clus-

ter C
� � �

t � � Π � l �
i � � with a longer prefix matching with t than C

� �
t � , and updates the

packet header with C
� � �

t � accordingly. Note that C
� � �

t � and C
� �

t � may belong to

two different trees; hence while intermediate nodes between one entry point and
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another never switch trees, upon reaching an entry point, it is free to switch. The

next lemma states the upper bound on the level i
� �

of C
� � �

t � � Π � l �
i � � , and the level of

the common cluster Ĉk
�
x � t � � Π � l �

k that contains a shortest path from x to C
� � �

t � in

B
�
x � ερk � � Ĉk

�
x � t � � Π � l �

k . If x is t itself, we are done with forwarding.

Lemma 3.5. Let 1 � i
� � h ��� be the level of C

� �
t � � Π � j �

i � . Once the packet from s

reaches an entry point x in Ai �
�
t ��� C

� �
t � , including e0, x will find a new level-

�
i
� � �

cluster C
� � �

t � � Π � l �
i � � at level i

� � � max
�
0 � i � � 2 � in some tree Tl , and the common

cluster Ĉk
�
x � t � � Π � l �

k as defined above is at a level k � i
� � 2 � � .

Proof. We have d
�
x � t � � 2ηi � � φερi � � � , since x � Ai �

�
t � � C

� �
t � is an entry point to

some level-
�
i
� � cluster C

� �
t � � Π � j �

i � containing t. We have d
�
x � t � � �

1 � φ � ερi � 	 2 � �
so long as ρ2 � 1 	 φ

φ , which can be satisfied when suitable constants are chosen

for � � Θ
�
logρ 1 � ετ � and ρ � Θ

� 1
ε � . Lemma 3.1 tells us that k

� � i
� � 2 � � and

C
� � �

t � � Π � l �
i � � � is at level � max

�
0 � i

� � 2 � .

We are now ready for the main theorem that summarizes the path properties.

Theorem 3.1. Follow the Forwarding algorithm in Section 2.4.3, for all k � h,

the path from s to t as derived from the routing information at node s satisfies the

recursive equation below, hc
st � hi

se0
� hc

e0t , where the shortest path hi
se0

from s to e0

is contained in Ĉk
�
s � t � and its properties are as specified in Lemma 3.4. Secondly,

the lookup path has a stretch of at most
�
1 � τ � . Finally, the algorithm switches

trees for at most max
�
0 � k � � � 1 � times. When d

�
s � t � � �

1 � φ � ερn, where n � h,

we have k � n; otherwise, k � h.

Proof. The proof of the theorem is by induction on k, which is the level of the

lowest common cluster Ĉk
�
s � t � of s and C

� �
t � such that a shortest path from s to

C
� �

t � is contained in (a) B
�
s � ερk � � Ĉk

�
s � t � for k � h � 1, or in (b) Ĉk

�
s � t � � Ch

�
s � t �

for k � h. Recall i
�
is the level of C

� �
t � � Π � j �

i � , and e0 � Ai �
�
t ��� C

� �
t � is the closest

entry point to C
� �

t � for node s within Ĉk
�
s � t � � Π � j �

k .

Base Case: k � � � 1.

We first prove the following claim.

Claim 3.4. If Ĉk
�
s � t � is at level k � � � 1, then C

� �
t � � C0

�
t � and d

�
s � t � � ερ � 	 1.
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Proof. By the definition of Ĉk
�
s � t � , we know B

�
s � ερk � �

Ĉk
�
s � t � � Π � j �

k in Tj and

d
�
s � e0 � � ερk, where e0 � C

� �
t � is the closest entry point to C

� �
t � for node s. Thus

d
�
s � e0 � � ερ � 	 1 for k � � � 1. Since C

� �
t � � Π � j �

i � is a descendant of Ĉk
�
s � t � � Π � j �

k

in Tj, it must be at a level lower than k; hence d
�
e0 � t � � 2η � 	 2 � 2ρ ��� 1

ρ 	 1 � 4ρ � 	 2,

since e0 � t � C
� �

t � , and C
� �

t � is at level i
� � � � 2.

Applying the triangle inequality, we have d
�
s � t � � d

�
s � e0 � � d

�
e0 � t � � ερ � 	 1 �

4ρ � 	 2 � ερ � . Thus by Claim 3.2, we have C
� �

t � � C0
�
t � , which is t itself; further-

more, e0 � t and d
�
s � t � � d

�
s � e0 � � ερ � 	 1.

The above claim shows that Ĉk
�
s � t � � Π � j �

k in tree Tj contains a shortest path

from s to C
� �

t � � C0
�
t � � Π � j �

0 , and t is the closest entry point to C0
�
t � , which is

t itself. Thus hc
e0t � hc

tt � 0, since a node’s distance to itself is zero. It remains to

show that hc
st � hi

se0
� hi

st ; recall hi
st refers to the shortest path from s to t as included

in Ĉk
�
s � t � . This is true since the routing table of every node v in Ĉk

�
s � t � � Π � j �

k for

k � � � 1 contains an entry for C0
�
t � � t, and a shortest path from s to t is contained

in B
�
s � ερk � �

Ĉk
�
s � t � in tree Tj; hence at equilibrium, the clustered path between

s and t as derived from Routes is the shortest path from s to t, and it is internal

to Ĉk
�
s � t � , i.e., hc

st � HF
�
s � C0

�
t � � � hi

st � d
�
s � t � , where k � � � 1. The stretch is

exactly 1 since hc
st

d � s � t � � hi
st

d � s � t � � 1. The forwarding algorithm does not switch tree at

all.

Case k � � . By Lemma 3.3, C
� �

t � is at level 0 or 1. When C
� �

t � is at level k � � � 0,

the proof is the same as that in the base case.

When C
� �

t � is at level k � � � 1 � 1, we have d
�
s � t � � ερ � by Claim 3.3. All

messages to be forwarded or sent from node s to node t will first follow the same

shortest path of length hi
se0

� d
�
s � e0 � , that is internal to Ĉ�

�
s � t � , up to the closest

entry point e0 of C
� �

t � , as specified in Lemma 3.4.

Upon reaching e0, Lemma 3.5 can be applied to show that hc
e0t , the clustered

path from e0 to t, is entirely contained in a level-
�
k
� � cluster Ĉk �

�
e0 � t � in some tree

Tj � , where k
� � i

� � 2 � � � � � 1; thus as proved in the base case, hc
e0t � hi

e0t �
d

�
e0 � t � . The clustered path from s to t as derived from Routes indeed satisfies

hc
st � hi

se0
� hc

e0t , where hi
se0

� d
�
s � e0 � and hc

e0t � d
�
e0 � t � .

Hence we obtain the bound on the entire path: hc
st � d

�
s � e0 � � d

�
e0 � t � �

d
�
s � t � � 2d

�
e0 � t � , where d

�
s � e0 � � d

�
s � t � � d

�
e0 � t � by triangle inequality. And the



52 � Routing, Disjoint Paths, and Classification

path stretch is: hc
st

d � s � t � � 1 � 2d � e0 � t �
d � s � t � � 1 � 2 � ρ � 1 �

ερ� � 1 � τ, where � � 1 � �
logρ 4 � ετ � .

The algorithm switches trees at most once.

Case k � � � 1. First we assume that the theorem is true up to k � 1, let us show

that it is true for k.

Let Ĉk
�
s � t � � Π � j �

k be the kth level cluster that contains a shortest path from s to

C
� �

t � � Π � j �
i � in Tj. According to Lemma 3.4, all messages to be forwarded or sent

from node s to node t will first follow the same shortest path of length hi
se0

, that

is internal to Ĉk
�
s � t � , up to the closest entry point e0 of C

� �
t � . By Lemma 3.3, we

know that C
� �

t � is at level k � � or k � � � 1 when k � h � 1. When k � h, C
� �

t � is

at level h � � � k ��� .
Upon reaching e0, Step 3 of the forwarding algorithm is applied to find C

� � �
t � ,

that has the longest valid matching with t in e0’s routing table. Since C
� �

t � is at

level k � � or k � � � 1, Lemma 3.5 shows the lowest common cluster Ĉk �
�
e0 � t � of

e0 and t, such that B
�
e0 � ερk � � �

Ĉk �
�
e0 � t � and B

�
e0 � ερk � � contains a shortest path

from e0 to C
� � �

t � , is at level k
� � i

� � 2 � � � k � 1. Thus hc
e0t is known from the

induction hypothesis and hc
st � hi

se0
� hc

e0t .

Now we proceed to prove the bound on the stretch for level k. Let C
� �

t � be at

level β � � , where β is k or k � 1; hence d
�
e0 � t � � 2ηβ 	�� given that e0 � t � C

� �
t � . By

Lemma 3.2, d
�
s � t � � �

1 � φ � ερβ 	 1, where i
� � β � � � 1 for all k � � � 1.

By Lemma 3.4, hi
se0

is the shortest path from s to e0 that is internal to Ĉk
�
s � t �

and hi
se0

� d
�
s � e0 � ; applying the triangle inequality, we obtain:

hi
se0

� d
�
s � e0 � � d

�
s � t � � d

�
e0 � t � � d

�
s � t � � 2ηβ 	�� � (3.3.2)

By the induction hypothesis, we know

hc
e0t � �

1 � τ � d
�
e0 � t � � 2

�
1 � τ � ηβ 	�� � (3.3.3)

Finally, we get the bound on the total path length from s to t:

hc
st � hi

se0
� hc

e0t � d
�
s � t � � 2

�
2 � τ � ηβ 	�� (3.3.4)
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Now using the fact that d
�
s � t � � �

1 � φ � ερβ 	 1, and the fact that τ � 1, we obtain

the path stretch from s to t:

hc
st

d
�
s � t � � 1 � 2

�
2 � τ � ηβ 	 �

d
�
s � t � � 1 � 6ηβ 	 ��

1 � φ � ερβ 	 1
� 1 � τ � (3.3.5)

where � � �
logρ 8 � ετ � � 2.

Finally, the algorithm switches trees for at most k � � times to finally route

within a level � cluster, after which it switches tree at most once, thus adding up to

a total number of k ��� � 1 times.

Now we look at the bound on k itself. When d
�
s � t � � �

1 � φ � ερn, for all n � h,

we have k � n by Lemma 3.1. We now verify that all statements in the theorem

still apply, for the clustered path hc
st , when d

�
s � t � � �

1 � φ � ερ � h � and Ĉk
�
s � t � is

Ch
�
s � t � . First of all, when Ĉk

�
s � t � � Ch

�
s � t � , following the Forwarding algorithm in

Section 2.4.3, we know that C
� �

t � is at level h � � and hence d
�
s � t � � �

1 � φ � ερ � h 	 1 �
by Lemma 3.2. The shortest path from s to e0 � C

� �
t � , hi

se0
, is internal to Ch

�
s � t � , the

entire network G. Upon reaching e0, hc
e0t is known by applying the theorem directly

since d
�
e0 � t � � 2ηh 	 � � �

1 � φ � ερh 	 1. Thus we have hc
e0t � �

1 � τ � d
�
e0 � t � � �

1 �
τ � 2ηh 	 � . Hence, the entire path satisfies the equation, hc

st � hi
se0

� hc
e0t . Second,

with the same calculation as the proof above, it is easy to verify that the entire

path hc
st has a stretch of at most

�
1 � τ � given that d

�
s � t � � �

1 � φ � ερ � h 	 1 � and

hc
e0t � �

1 � τ � d
�
e0 � t � � �

1 � τ � 2ηh 	�� . The algorithm switches trees for at most�
h ��� � 1 � times.

Corollary 3.1. For all t such that d
�
s � t � � ερ � , path stretch is 1.

Proof. Node s has a routing table entry for all t such that d
�
s � t � � ερ � , since

B
�
s � d �

s � t � � �
B

�
s � ερ � � is fully contained in some level- � cluster C �

�
s � � Π � j �

� in

some tree Tj, and C
� �

t � is C0
�
t � � Π � j �

0 ; the base case of the above proof shows that

path stretch is 1.
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Part II: Edge Disjoint Paths
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4 Edge-disjoint Paths in Moderately

Connected Graphs

In the next three chapters, we prove the following theorem regarding undirected

EDP.

Theorem 4.1. There is a polylog n-approximation algorithm for the edge disjoint

path problem in a general graph G with minimum cut and node degree Ω
�
log5 n � .

4.1 The Approach

We begin with a fractional relaxation of the problem, where each terminal pair can

route a real-valued amount of flow between 0 and 1, and this flow can be split

fractionally across a set of distinct paths. This can be expressed as an LP and can

be solved efficiently. We denote the value of an optimal fractional LP solution as

OPT � . Our algorithm routes a polylogarithmic fraction of this value using integral

edge-disjoint paths.

The algorithm proceeds by decomposing the graph into well-connected sub-

graphs, based on OPT � , so that a subset of the terminal pairs, that remain within

each subgraph are “well-connected”, following a decomposition procedure of from

Chekuri et al. [2005]. Then, for each well connected subgraph G, we construct an

expander graph that can be embedded into G using its terminal set. We use a result

by Khandekar, Rao and Vazirani in Khandekar et al. [2006], where they show that

one can build an expander graph H on a set of nodes V by constructing O
�
log2 n �

perfect matchings M1 ������� � MO � log2 n � between O
�
log2 n � sets of equal partitions of

V in an iterative manner.

57
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Our contribution along this line is to route each perfect matching Mt � � t, on

one of the O
�
log2 n � (edge-disjoint) subgraphs of G. The “splitting procedure”,

motivated by Karger’s theorem Karger [1994], simply assigns edges of G uniformly

at random into O
�
log2 n � subgraphs. Using Karger’s arguments, we show that all

cuts in each subgraph have approximately the correct size with high probability.

Here we crucially use the polylogarithmic lower bound on the min-cut. We then

route each matching Mt on a unique split subgraph using a max-flow computation

with unit capacities. Thus, we can route all O
�
log2 n � matchings edge disjointly in

G and embed an expander graph H integrally with congestion 1 on G.

After we construct such an expander graph H for each G, we route terminal

pairs in H greedily via short paths. This is effective since there are plenty of short

disjoint paths in an expander graph Broder et al. [1994]; Kleinberg and Rubinfeld

[1996]. Since a node in H maps to a cluster of nodes in G that is connected by a

spanning tree, we put a capacity constraint on V
�
H � : we allow only a single path

to go through each node. We greedily connect a pair of terminals from G via a path

in H while taking both nodes and edges along the chosen path away from H , until

no short paths remain between any unrouted terminal pair. For the pairs we indeed

route, we know the congestion is 1 in the original graph G, since we use each

edge and node in H only once, and edges and nodes of H correspond to disjoint

paths of G. We use a lemma in Garg et al. [1993] to show that such a greedy

method ensures that we route a sufficiently large number of such pairs; We note

that this method was proposed but analyzed somewhat differently by Kleinberg

and Rubinfeld [1996]. Our analysis is more like that of Obata [2004], and yields

somewhat stronger bounds. Our approximation factor is O
�
log10 n � . (A breakdown

of this factor is described in Theorem 6.2.)

4.1.1 Related Work

Much of recent work on EDP has focused on understanding the polynomial-time

approximability of the problem. Previously, constant or polylogarithmic approx-

imation algorithms were known for trees with parallel edges Garg et al. [1993],

expanders Kleinberg and Rubinfeld [1996]; Kolman and Scheideler [2001], grids

and grid-like graphs Aumann and Rabani [1995]; Awerbuch et al. [1994]; Klein-
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berg and Tardos [1995a,b], and even-degree planar graphs Kleinberg [2005].

For general graphs, the best approximation ratio for EDP in directed graphs is

O
�
min

�
n2 � 3 � �

m � � Chekuri and Khanna [2003]; Kleinberg [1996]; Kolliopoulos

and Stein [1998]; Srinivasan [1997]; Varadarajan and Venkataraman [2004], where

m denotes number of edges in the input graph. This is matched by the Ω
�
m

1
2 	 ε � -

hardness of approximation result by Guruswami et al Guruswami et al. [1999].

For undirected and directed acyclic graphs, the upper bound has been improved

to O
� �

n � Chekuri et al. [2006b]. For even-degree planar graphs, an O
�
log2 n � -

approximation Kleinberg [2005] is obtained recently.

A variant is the EDP with Congestion (EDPwC) problem, where the goal

is to route as many terminals as possible, such that at most ω demands can go

through any edge in the graph. For EDPwC on planar graphs, for ω � 2 and 4,

O
�
logn � Chekuri et al. [2004b, 2005] and constant Chekuri et al. [2006a] approx-

imations have been obtained respectively. For undirected graphs, the hardness re-

sults Andrews et al. [2005] are Ω
�
log1 � 2 	 ε n � for EDP and Ω

�
log � 1 	 ε � � � ω � 1 � n � for

EDPwC.

A closely related problem is the congestion minimization problem: Given a

graph and a set of terminal pairs, connect all pairs with integral paths while mini-

mizing the maximum number of paths through any edge. Raghavan and Thompson

[1987] show that by applying a randomized rounding to a linear relaxation of the

problem one obtains an O
�
logn � log log n � approximation for both directed and

undirected graphs. For hardness of approximation, Andrews and Zhang [2005a]

show a result of Ω
� �

log log1 	 ε m � � for undirected and an almost-tight result An-

drews and Zhang [2006] of Ω
�
log1 	 ε m � for directed graphs, improving that of

Ω
�
log logm � by Chuzhoy and Naor Chuzhoy and Naor [2004]. Finally, the All-or-

Nothing Flow (ANF) problem Chekuri et al. [2004a, 2005] is to choose a subset of

terminal pairs such that for each chosen pair, one can fractionally route a unit of

flow for all the chosen pairs. The hardness result for ANF and ANF with Conges-

tion is the same as that of EDP and EDPwC Andrews et al. [2005]. Currently, there

exists an O
�
log2 n � Chekuri et al. [2005] approximation for ANF. Indeed, we build

on the techniques developed in this approximation algorithm for ANF. This ratio

directly contributes to our approximation factor.

We summarize these results in Table 4.1.1.
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directed? Hardness of Approx. Upperbound
MinCong no Ω � log logn

log log log n � Andrews and Zhang [2005a] O � logn � log logn � Raghavan and Thompson [1987]

MinCong yes Ω � � log log1� ε m � Andrews and Zhang [2006] O � logn � log logn � Raghavan and Thompson [1987]

EDP yes Ω � m
1
2

� ε � Guruswami et al. [1999] O � min � n2 � 3 � � m � �

Chekuri and Khanna [2003]; Kleinberg [1996]
Kolliopoulos and Stein [1998]; Srinivasan [1997]

Varadarajan and Venkataraman [2004]

EDP no Ω � log
1
2

� ε n � Andrews et al. [2005] O � � n � Chekuri et al. [2006b]

EDPwC no Ω � log
1� ε
ω � 1 n � for w	 o 


log logn
log log logn � Andrews et al. [2005]

EDPwC no superconstant for w	 η log log n
log log logn Andrews et al. [2005]

ANFwC no Ω � log
1� ε
ω � 1 n � for w	 o � log logn

log log logn � Andrews et al. [2005] O � log2 n � for ω	 1 Chekuri et al. [2005]

Table 4.1. HARDNESS OF APPROXIMATIONS AND UPPER BOUNDS.
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4.2 Definitions and Preliminaries

We work with graph G � �
V � E � with unit-capacity edges, where we allow parallel

edges, unless we specify a capacity function for edges explicitly. For a capacitated

graph G � �
V � E � c � , where c is an integer capacity function on edges, one can

replace each edge e � E with c
�
e � parallel edges. For a cut

�
S � S̄ � V � S � in G, let

δG
�
S � , or simply δ

�
S � when it is clear, denote the set of edges with exactly one

endpoint in S in G. Let cap
�
S � S̄ � � � δG

�
S � � denote the total capacity of edges in

the cut. The edge expansion of a cut
�
S � S̄ � , where � S � � �V � � 2, is φ

�
S � � cap � S � S̄ ��

S
� .

The expansion of a graph G is the minimum expansion over all cuts in G. We call

a graph G an expander if its expansion is at least a constant.

An instance of a routing problem consists of a graph G � �
V � E � and a set of

terminals pairs T � � �
s1 � t1 � � �

s2 � t2 � ������� � �
sk � tk � � . Nodes in T are referred to as

terminals. Given an EDP instance
�
G � T � with k pairs of terminals, we will use

the following LP relaxation as specified in (4.2.1), to obtain an optimal fractional

solution. Let Pi � � i, denote the set of paths joining si and ti in G .

max
k

∑
i � 1

xi s � t � (4.2.1)

xi � ∑
p � Pi

f
�
p � � 0 � � 1 � i � k (4.2.2)

∑
p:e � p

f
�
p � � 1 � � e � E (4.2.3)

xi � f
�
p � � �

0 � 1 � � � 1 � i � k � � p (4.2.4)

We let OPT �
�
G � T � be the value of this linear program for the optimal solution f̄

of the LP. In the text, where we always refer to a single instance, we primarily use

OPT � .

Given a non-negative weight function �π : X � � � on a set of nodes X in G, we

use following definitions from Chekuri et al. [2005].

Definition 4.1. (CKS2005 Chekuri et al. [2005]) X is �π-cut-linked in G if � S such

that �π �
S � X � � ∑x � S � X �π

�
x � � �π �

X � � 2, � δ �
S � � � �π �

S � X � ; We also refer to
�
G � X �

as a �π-cut-linked instance.
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Definition 4.2. (CKS2005 Chekuri et al. [2005]) A set X is �π-flow-linked in G if

there is a feasible multicommodity flow for the problem with demand dem
�
u � v � �

�π �
u ���π �

v � � �π �
X � between every unordered pair of terminals u � v � X.

Remark 4.1. Note this is a product flow with dem
�
u � v � � w

�
u � w

�
v � , where w

�
u � �

�π �
u � ��� �π �

X � .

We have the following proposition immediately from the definitions above.

Proposition 4.1. (CKS2005 Chekuri et al. [2005]) If a set X is �π-flow-linked in

G, then it is �π � 2-cut-linked. If X is �π-cut-linked in G, then it is �π � β
�
G � -flow-linked,

where β
�
G � is the worst-case mincut-maxflow gap on product multicommodity flow

instances on G .

Definition 4.3. (CKS2005 Chekuri et al. [2005]) A set of nodes X is well-linked

in G if � S such that � S � X � � �X � � 2, � δ �
S � � � � S � X � .

4.3 Decomposition of the Input Instance

In this section, we first present Theorem 4.2 regarding a preprocessing phase of our

algorithm that decomposes and processes
�
G � T � into a collection of cut-linked in-

stances with a min-cut Ω
�
log3 n � in each subgraph. We then state our main theorem

with a breakdown of the polylog n approximation factor. Finally, we give an out-

line on how we route terminal pairs in each cut-linked instance
�
G � T � ; Note that

we use G to refer to a subgraph that we obtain through Theorem 4.2 starting from

Section 6.1 till the end of the paper, while G refers to the original input graph. We

first specify the following parameters.

– Parameters related to original EDP instance
�
G � T �

– ω log2 n is the number of matchings as in Figure 6.1.1;

– min-cut κ � Ω
�
log3 n � � 12 � ln n � � ω log2 n � 1 �

ε2 , where ε � 1;

– β
�
G � � O

�
logn � : as in Proposition 4.1 for G .

– λ
�
n � � 10β

�
G � log OPT �

�
G � T � � O

�
log2 n � : as introduced in Theo-

rem 5.1 in Chekuri et al. [2005].
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Theorem 4.2. There is a polynomial time decomposition algorithm, that given an

EDP instance
�
G � T � , where G has a min-cut of size Ω

�
κ log2 n � , and a solution f̄

to the fractional EDP problem, with xi � � i, being specified as in (4.2.1), produces a

disjoint set of subgraphs and a weight function �π : V
�
G � � � � on V

�
G � where

(1) there are α1 ������� � αk such that � u in a subgraph H, �π �
u � � ∑i:si � u � ti � H αixi �

(note that this implies � siti � T , xi contributes the same amount of weight to

�π �
si � and �π �

ti � );

(2) the set of nodes V
�
H � in each subgraph H is �π-cut-linked in H;

(3) each subgraph H has min-cut κ � Ω
�
log3 n � ;

(4) � u in a subgraph H s.t. �π �
H � � Ω

�
log3 n � , �π �

u � � ∑i:si � u � ti � H
xi

β � G � λ � n � ;

(5) and �π �
G � � Ω

�
OPT � � β

�
G � λ

�
n � � .

The decomposition essentially says that summing across all subgraphs G, a

fair fraction of terminal pairs in T remain (condition 4, 5); indeed, we lose only

a constant fraction of the terminal pairs (by assigning a zero weight to those lost

terminals) of T . In addition, each subgraph G is well connected with respect to X ,

the set of induced terminals of T in G, in the sense of
�
G � X � being a �π-cut-linked

instance. This decomposition is essentially the same as Theorem 5.1 of Chekuri,

Khanna, and Shepherd Chekuri et al. [2005]. We need to do some additional work

to ensure that the min-cut condition (condition 3) holds. We prove a flow-based

version of the result in Section 5.1.

In particular, we sketch a proof to Theorem 5.2, which states a more refined

and stronger version of Theorem 4.2. Actual proof of Theorem 5.2 is shown in

Section 5.3.
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5 Obtaining a Cut-Linked

Decomposition

5.1 An Outline of the Decomposition Procedure

In this section, we first sketch a proof to Theorem 5.2, which states a more refined

and stronger version of Theorem 4.2. Actual proof of Theorem 5.2 is shown in

Section 5.3.

We first transform
�
G � T � to a set of flow-linked instances by following a de-

composition procedure in CKS05 Chekuri et al. [2005], the outcome of which is

summarized in the following theorem.

5.1.1 The CKS Flow-Linked Decomposition Theorem

Theorem 5.1. (CKS2005 Chekuri et al. [2005]) Let OPT �
�
G � T � be a solution to

the LP for a given instance
�
G � T � of EDP in an input graph G . One can efficiently

compute a partition of G into node-disjoint induced subgraphs G1, G2, . . . , G � ,
and weight functions �π : V

�
Gi � � � � with the following properties. Let Ti be the

induced pairs of T in Gi and let Xi be the set of terminals of Ti.

(1) �πi
�
u � � �πi

�
v � for uv � Ti.

(2) Xi is �πi-flow-linked in Gi.

(3) ∑ �i � 1 �πi
�
Xi � � Ω

�
OPT �

�
G � T � � λ

�
n � � , where λ

�
n � �

10β
�
G � log OPT �

�
G � T � .

65
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Remark 5.1. Although the statement of condition 1 in the CKS decomposition

theorem assumes that each node u belongs to only a single terminal pair in T ,

their actual proof does not depend on such an assumption.

The proof of the theorem appears in CKS05 Chekuri et al. [2005]. They use

this procedure as the first step in a two-step transformation from the optimal mul-

ticommodity flow solutions f̄ to obtain sets of well-linked terminal sets, that even-

tually leads to an O
�
log2 K � -approximation for the ANF problem described in Sec-

tion 4.1, where K � � T � . We place details regarding this decomposition in the Sec-

tion 5.3. From now on, we refer to both
�
Gi � Ti � and

�
Gi � Xi � as a �πi-flow-linked

instance without differentiation.

5.1.2 Processing Subgraphs to Maintain Mincut Condition

We treat the induced subproblems
�
Gi � Ti � � � i independently. Given

�
Gi � Xi � such

that Xi is �πi-flow-linked in Gi, there are two post-processing stages.

(1) Min-cut processing stage. Formally, let V
�
Gi � be the current set of vertices

of Gi. We keep cutting off the smaller side S of a minimum cut, in terms of

weight �πi, from Gi when cap
�
S � V �

Gi � � S � is less than ĉ, until every cut in

Gi is at least ĉ, where we set ĉ � Ω
�
log3 n � .

By cutting off, we remove both nodes in S and edges that are adjacent to

S in current Gi; this includes the cases when we get rid of any single node

whose degree fall below ĉ from its original degree of Ω
�
log5 n � . We call such

a stage a min-cut processing stage.

(2) Sparsest-cut processing stage. In order to guarantee that we have an in-

stance X
�
i that is �π �i-flow-linked in Gi for a new weight function �π �i, we need

to further “mute” some terminals with a positive weight under �π by setting

their weight to zero under �π �i. This way, we can guarantee that every cut in

Gi is good with respect to a product multicommodity flow demand that is

defined based on the new weight function �π �i. We emphasize that we do not

remove any nodes or edges in this stage; hence the min-cuts are guaranteed

to be Ω
�
log3 n � .
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5.1.3 A Modified Flow-Linked Decomposition Theorem

Therefore, we have the following theorem about the instances that we have by the

end of this post-processing stage. The proof of this theorem is in Section 5.3.

Theorem 5.2. Given a graph G with min-cut value C0 � �
4a0λ

�
n � � a0 � 2 � ĉ, for

some a0 � 2. By the end of the sparsest-cut processing, we obtain a set of node-

disjoint induced subgraphs Ĝ1 ������� � Ĝ � , all with min-cut ĉ, and the corresponding

disjoint subsets T
�

1 ������� � T �
� of T , such that terminals pairs in T

�
i belong to Ĝi and

there exist a set of weight functions �π �i : V
�
Ĝi � � � � with the following properties.

Let X
�
i be the set of terminals of T

�
i .

(1) there are α1 ������� � αk such that � u in a subgraph Ĝi, �π
�
u � � ∑i:si � u � ti � Ĝi

αixi �
(note that this implies � siti � T

�
i , xi contributes the same amount of weight

to �π �i �
si � and �π �i �

ti � );

(2) X
�
i is �π �i-flow-linked in G

�
i;

(3) � u in a subgraph Ĝi s.t. �π �i �
X
�
i � � Ω

�
log3 n � , �π �i �

u � � ∑i:si � u � ti � Ĝi

xi
β � G � λ � n � ;

(4) ∑ �i � 1 �π
�
i

�
X
�
i � � Ω

�
OPT �

�
G � T � � λ

�
n � β

�
G � � , where λ

�
n � �

β
�
G � log OPT �

�
G � T � and β

�
G � is the worst-case mincut-maxflow gap

on product multicommodity flow instances on G .

Finally, we define a weight function on V
�
G � as follows: (a) � i � � u � Ĝi, where

Ĝi is a subgraph of G , we assign �π �
u � � �π �i �

u � � 2; and (b) assign �π �
u � � 0, for

nodes of V
�
G � not in any Ĝi. We thus have defined the weight function �π : V

�
G � �

� � on the entire set of nodes of G as required by Theorem 4.2 with the same

decomposition as we obtain for Theorem 5.2.

5.2 Details Regarding CKS Flow-linked Decompositions

The following notation appears in proof of Theorem 5.1 as in Chekuri et al. [2005].

We will inherit these in our proofs in Section 5.3. Let H � �
V

�
H � � E �

H � � be a node

induced subgraph of G � �
V � E � .

– γ
�
G � � OPT �

�
G � T � .
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– γ
�
H � � ∑P � P :P � H f̄

�
P � : the total flow induced in H by the original flow f̄ ;

it counts flow only on flows paths f̄
�
P � from the the original flow path de-

composition that are completely contained in H . P refers to the entire set of

paths from the original flow decomposition.

– γ
�
u � H � : the flow in H for u, hence γ

�
H � � 1 � 2 ∑u � V � H � γ

�
u � H � .

Recall the following results from their decomposition procedure. Let

G1 � G2 ������� � G � be the subgraphs produced by the decomposition.

(1) If γ
�
Gi � � λ

�
n � � 10, assign �πi

�
u � � �πi

�
v � � 1 for some pair uv � Ti with

positive flow in Gi; and �πi
�
y � � 0 for y

�� u � v. Hence one can just route a

unit flow between the chosen pair uv � Ti along an integral path; such a path

exists since Gi is a connected component.

(2) Else, for γ
�
Gi � � λ

�
n � � 10, Xi is �πi-flow-linked in Gi, where �πi is defined as

follows for Gi; Recall λ
�
n � � 10β

�
G � log OPT �

�
G � T � .

(a) �πi
�
u � � γ � u � Gi �

λ � n � � � u � Xi

(b) �πi
�
u � � γ

�
u � Gi � � 0 for u

�� Xi

Remark 5.2. For both cases, the CKS weight function on V
�
Gi � satisfy �πi

�
Gi � �

Ω
�
γ

�
Gi � � λ

�
n � � , given that �πi

�
Gi � � ∑x � Xi

�πi
�
x � � ∑x � V � Gi � γ

�
x � Gi � � λ

�
n � �

2γ
�
Gi � � λ

�
n � ; And the flow that one route in Gi satisfies the following two equiva-

lent conditions.

(1) Define � uv � V
�
Gi � ,

demω �
u � v � � γ

�
u � Gi � γ

�
v� Gi �

γ
�
Gi � � (5.2.1)

as demands for the multicommodity product flow problem based on origi-

nal induced flow values at each node u � V
�
Gi � of f̄ in Gi; in Gi � � i, the

concurrent max-flow value f for product flow demω �
u � v � , satisfy

f � f0 � 1
2λ

�
n � � (5.2.2)



5.3 An Analysis on Postprocessing to Maintain Cut Conditions � 69

Thus f0demω �
u � v � units of demands can be simultaneously routed � uv in Gi

with congestion 1.

(2) For a scaled-down product flow problem dem
�πi

�
u � v � , such that each demand

is f0 of the original, � uv � V
�
Gi � ,

dem
�πi

�
u � v � � �πi

�
u ���πi

�
v �

�πi
�
Xi � � γ

�
u � Gi � γ

�
v� Gi �

2λ
�
n � γ

�
Gi � � demω �

u � v �
2λ

�
n � � f0demω �

u � v � �
(5.2.3)

there is is a feasible flow in Gi since the concurrent max-flow value is at least

1.

Depending on the context, we may prefer to use the original product flow

demω �
u � v � than the feasible product flow dem

�πi
�
u � v � , or the other way around.

5.3 An Analysis on Postprocessing to Maintain Cut Conditions

The analysis of this section will lead to the proof of Theorem 5.2 eventually.

Throughout this section, we keep reducing the set of terminals pairs of T i that

are relevant, in the sense that these pairs will remain to be candidate pairs that we

eventually route edge disjointly in G . Therefore, we keep track of the following set

of parameters in each subgraph Gi that we obtain through flow decomposition:

– Ti: the induced pairs of T in Gi that we still consider to route edge disjointly.

– A weight function �πi defined on the V
�
Gi � , with positive values only on

terminals Xi of Ti.

Finally, we use remaining-flow to keep track of the total remaining flows of f̄

between terminal pairs in Ti, across all i; note that remaining-flow is the lower

bound on ∑i � Ti � .
By the end of the CKS flow decomposition, Ti is the induced pairs of T in

Gi. There exists at least one flow path between a pair of terminals uv � Ti, with a

positive amount of flow, from original flow path decomposition of f̄ that is entirely

contained in Gi. We lose at most half of f̄ , where �� f̄ �� � OPT �
�
G � T � , because the
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number of edges that were cut during flow decomposition is at most OPT � � 2 �
γ

�
G � � 2; hence

remaining-flow � �∑
i � 1

γ
�
Gi � � OPT �

�
G � T � � 2 � γ

�
G � � 2 � (5.3.4)

and the total amount of the weights across all clusters is at least:

�∑
i � 1

�πi
�
Xi � � �∑

i � 1

2γ
�
Gi � � λ

�
n � � Ω

�
OPT �

�
G � T � � λ

�
n � � � (5.3.5)

We are going to keep computing the original flows of f̄ that we lose during the

post-processing stages.

We specify the following parameters that are related to minimum cuts:

(1) ĉ: the smallest minimum cut value that we allow in Gi, � i, which is θ
�
log3 n � .

(2) C 0: the minimum cut value in original graph G , which is Ω
�
log5 n � .

(3) �
�
S � � cap

�
S � V � S � : size of a cut

�
S � V � S � in original graph G � �

V � E � .

(4) LOSS � OPT �
�
G � T � � 2: number of edges that are cut during the CKS flow-

decomposition process.

We analyze the minimum cut processing stage in the next two sections. For-

mally, let V
�
Gi � be the current set of vertices of Gi. We keep cutting off the smaller

side S of a minimum cut, in terms of weight �πi, from Gi when cap
�
S � V �

Gi � � S � is

less than ĉ, until every cut in Gi is at least ĉ. By cutting off, we remove both nodes

in S and edges that are adjacent to S in current Gi.

Let S1
i � S2

i ������� � Sxi
i be the sets of vertices that we take away from Gi and in that

order. We define the following notation to track this process of updating G i.

– G0
i � �

V 0
i � E0

i � : the subgraph Gi before any of St
i � t � 1 ������� � xi have been take

out.

– X0
i : the set of terminals of G0

i right after flow decomposition, such that X 0
i is

�πi-flow-linked in G0
i as guaranteed by CKS decomposition.
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– Gt
i � �

V t
i � Et

i � � � t � 1 ������� � xi: the remaining subgraph of G0
i after removing

S1
i ������� � St

i and their adjacent edges; hence V t
i � V 0

i � � j � 1 � � � � � t S
j
i .

– Ĝi �
�
V̂i � Êi � � Gxi

i � �
V xi

i � Exi
i � be the remaining subgraph of G0

i by the end

of the min-cut processing stage.

5.3.1 Bound Edges Lost Due to Min-Cut Processing

Denote the number of edges that we take away from G0
i due to the min-cut pro-

cessing by edge-lossi � � i.

Definition 5.1. edge-lossi is the sum of capacities of the minimum cuts that have

caused S1
i ������� � Sxi

i to be cut off from Gi � � i. Denote the sum of edge-lossi across all

i with edge-loss,

edge-loss � ∑
i � 1 � 2 � � � �

edge-lossi � ∑
i � 1 � 2 � � � �

∑
t � 1 � � � � � xi

cap
�
St

i � V t
i � �

Remark 5.3. Note that the number of edges that we take away from the final set of

nodes V
�
Gi � � V xi

i � V 0
i � � j � 1 � � � � � xi S

j
i during the min-cut processing stage is upper

bounded, and in fact may be smaller than edge-lossi � � i.

We prove the following lemma in this section.

Lemma 5.1. The total number of edges that we take away from decomposed sub-

graphs G0
i � G1

i ������� is at most

edge-loss � ∑
i � 1 � 2 � � � �

edge-lossi � 2LOSS � ĉ
C 0 � 2ĉ

� (5.3.6)

Proof. We use a potential function ψ
�
Gi � to count the number of edges we lose

from nodes currently in Gi, as compared to the original graph G � �
V � E � , while Gi

keeps shrinking due to its min-cut processing. The counting process is as follows.

We start with a component Gi such that ψ0
i � LOSSi denotes the number of edges

that we initially lose from nodes in G0
i right after the CKS flow decomposition

procedure. Hence

ψ0
i � ψ

�
G0

i � � LOSSi � 0 � (5.3.7)
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and

∑
i � 1 � 2 � � � �

LOSSi � 2LOSS � (5.3.8)

When a subset S is cut off, it claims away some credit from the current ψ
�
Gi � , since

S is cut off because cap
�
S � V � S � has decreased from above C 0 to its current size

in Gi, cap
�
S � V �

Gi � � S � � ĉ due to edges lost from nodes in S during CKS flow

decomposition. That is, the amount of edge loss from nodes in S has contributed to

the current value of ψ
�
Gi � .

Let ψt
i be value of ψ

�
Gi � after taking t sets of vertices S1

i ������� � St
i and their

adjacent edges away from Gi. Let
�
St � 1

i � V t
i � St � 1

i � be the minimum cut in Gt
i ,

and hence St � 1
i be the

�
t � 1 � st set of vertices that we cut off from Gi because

cap
�
St � 1

i � V t
i � St � 1

i � is less than ĉ. The amount of credit St � 1
i takes away from

ψ
�
Gi � is

�
cap

�
St � 1

i � V � St � 1
i � � cap

�
St � 1

i � V t
i � St � 1

i � � and the credit it puts back is

cap
�
St � 1

i � V t
i � St � 1

i � , since we remove edges in
�
St � 1

i � V t
i � St � 1

i � from Gt
i , in addition

to the subgraph induced by St � 1
i in Gt

i .

Let us denote the size of the original cut
�
St � 1

i � V � St � 1
i � in G with

� t � 1
i � � �

St � 1
i � � cap

�
St � 1

i � V � St � 1
i � � C 0 � (5.3.9)

Hence, we update ψ
�
Gi � as follows,

ψt � 1
i � ψt

i �
�
cap

�
St � 1

i � V � St � 1
i � � cap

�
St � 1

i � V t
i � St � 1

i � � � cap
�
St � 1

i � V t
i � St � 1

i �
� ψt

i �
�
� t � 1

i � cap
�
St � 1

i � V t � 1
i � � � cap

�
St � 1

i � V t � 1
i � �

Since cap
�
St � 1

i � V t � 1
i � � ĉ, we have

ψt � 1
i � ψt

i �
�
� t � 1

i � ĉ � � ĉ � (5.3.10)

Since the credit that a cut puts back is much less than the credit that it spent, there

is only finite number xi of such small cuts in Gi, � i. By the end of xi rounds, there

must be a non-negative credit in ψ
�
Gi � , since nodes in current Gi can never gain
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any edges. Hence

0 � ψ
�
Gi � � ψx

i � LOSSi �
�
� 1i � ĉ � � ĉ � �

� 2i � ĉ � � ĉ � ����� � �
� xi

i � ĉ � � ĉ �

Summing the above inequalities over all i,

∑
i � 1 � 2 � � � �

xi � C0 � ∑
i � 1 � 2 � � � �

∑
j � 1 � 2 � � � � � xi

� j
i � 2 � LOSS � 2 ∑

i � 1 � 2 � � � �

xi � ĉ �

Hence the total number of minimum cuts across all Gi that we process is

∑
i � 1 � 2 � � � �

xi � 2LOSS
C 0 � 2ĉ

� (5.3.11)

Denote the sum of edge-lossi across all i with edge-loss and thus

edge-loss � ∑
i � 1 � 2 � � � �

edge-lossi (5.3.12)

� ∑
i � 1 � 2 � � � �

∑
t � 1 � � � � � xi

cap
�
St

i � V t
i � (5.3.13)

� ∑
i � 1 � 2 � � � �

xi � ĉ (5.3.14)

� 2LOSS � ĉ
C 0 � 2ĉ

� (5.3.15)

5.3.2 Bound the Flow Lost Due to Min-Cut Processing

Lemma 5.2. The total flow of f̄ that we lose from min-cut processing is

flow-loss1 � 2LOSS � ĉ
C 0 � 2ĉ

�
2λ

�
n � � 1 � 2 � � (5.3.16)

Proof. For a set of nodes St
i � V 0

i � � t � 1 ������� � xi, in G0
i � �

V 0
i � E0

i � , we denote the

size of cut
�
St

i � V 0
i � St

i � with B t
i � cap

�
St

i � V 0
i � St

i � . B t
i determines the amount of

flow of f̄ that we take away from γ
�
Gi � as we remove St

i from Gi as the smaller

side of a min-cut
�
St

i � V t
i � in Gt 	 1.
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A closer examination of the above cutting process shows that

∑
t � 1 � 2 � � � � � xi

B t
i � 2edge-lossi � (5.3.17)

and

∑
i � 1 � 2 � � � �

∑
t � 1 � 2 � � � � � xi

B t
i � 2edge-loss � (5.3.18)

since the edges in B t
i come either from previous min-cuts:

� �
S j

i � V j
i � � � j � t � , or

from new edges that contribute to
� �

St
i � V t

i � � ; in addition, each edge e counted in

edge-lossi can be used at most twice toward ∑xi
t � 1 B t

i , once for each of the two

neighboring sets in
�
St

i � t � 1 ������� � xi � that share e � G0
i .

Hence fix B t
i for some t. We now calculate the amount of flows of f̄ that we

lose by cutting off St
i . The flow that we lose falls into one of the four types:

(1) flow whose paths are entirely contained in the subgraph of Gi induced by St
i ;

(2) flow that has to go through edges that are counted in B t
i , but not counted in�

St
i � V t

i � ;

(3) flow that has to cross
�
St

i � V t
i � with at least one endpoint in St

i ;

(4) flow with both endpoints u
�
v
� � V t

i such that the flow path intersects the min-

cut
�
St

i � V t
i � at least twice.

Flow of type 1 is counted in ∑u � St
i
γ

�
u � Gi � twice. Flow of type 2 has been

counted before when S j
i were cut off for some j � t. Flow of type 3 contributes its

flow amount once to ∑u � St
i
γ

�
u � Gi � and once to the usage of cap

�
St

i � V t
i � . Flow of

type 4 are counted twice in the usage of cap
�
St

i � V t
i � .

Note that flow that crosses cut
�
St

i � V t
i � either has been counted in ∑u � St

i
γ

�
u � Gi �

at least once or it crosses
�
St

i � V t
i � at least twice. Hence 1 � 2

�
∑u � St

i
γ

�
u � Gi � �

cap
�
St

i � V t
i � � upper bounds the amount of flow that we lose from f̄ , that has not
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been counted earlier, due to cutting off induced subgraph of St
i from Gt 	 1

i :

1
2 ∑

u � St
i

γ
�
u � Gi � � 1

2
cap

�
St

i � V t
i � � 1

2
�πi

�
St

i � X0
i � λ

�
n � � 1

2
cap

�
St

i � V t
i �

� cap
�
St

i � V 0
i � St

i � λ
�
n � � 1

2
cap

�
St

i � V t
i �

� B t
i λ

�
n � � 1

2
cap

�
St

i � V t
i � �

where second inequality is due to the fact that X 0
i is �πi-flow-linked and Proposi-

tion 4.1, which implies that X 0
i is �πi � 2-cut-linked in G0

i .

Sum over all St
i � � t, we obtain the total flow lost:

flow-loss1 � ∑
i � 1 � 2 � � � �

∑
t � 1 � � � � � xi

�
B t

i λ
�
n � � 1

2
cap

�
St

i � V t
i � � (5.3.19)

� 2edge-loss � λ �
n � � 1

2
edge-loss (5.3.20)

� 2LOSS � ĉ
C 0 � 2ĉ

�
2λ

�
n � � 1 � 2 � � (5.3.21)

Let 1 � a0 denote the ratio of amount of flow of f̄ that we lose during min-cut

processing with respect to LOSS in CKS flow decomposition:

flow-loss1

LOSS
� 1

a0
� (5.3.22)

Thus we require

flow-loss1

LOSS
�

�
2λ

�
n � � 1 � 2 � � 2ĉ
C 0 � 2ĉ

�
�
4λ

�
n � � 1 ��� ĉ

C 0 � 2ĉ
� 1

a0
� (5.3.23)

Given an a0, in order to satisfy (5.3.23), we require

C 0 � �
4a0λ

�
n � � a0 � 2 ��� ĉ � (5.3.24)
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Plugging (5.3.24) in (5.3.12), we obtain the following bound on edge loss due to

post-processing of Gi:

edge-loss � 2LOSS � ĉ
C 0 � 2ĉ

� 2LOSS � ĉ
a0

�
4λ

�
n � � 1 ��� ĉ � LOSS

a0
�
2λ

�
n � � 1

2 � � (5.3.25)

5.3.3 Obtain the Final Set of Terminals

Recall that G0
i � �

V 0
i � E0

i � denote the subgraph Gi we obtain through CKS flow

decomposition before any subset of nodes have been removed; Ĝi � �
V̂i � Êi � � � i

are the remaining subgraphs of Gi � � i at the end of the min-cut processing stage.

By (5.3.23), the total flow of f̄ that remains is the sum of flow of f̄ induced in Ĝi,

across all i,

remaining-flow � ∑
i � 1 � 2 � � � �

γ
�
Ĝi � (5.3.26)

� OPT �
�
G � T �

2
� flow-loss1 (5.3.27)

� 1
2

OPT �
�
G � T � �

1 � 1
a0

� � (5.3.28)

where flow-loss1 � LOSS � a0 and LOSS � OPT �
�
G � T � � 2.

In the sparsest-cut processing, we remove P1
i � P2

i ������� � Pyi
i from the graph Ĝi that

do not meet a certain sparsest cut condition. In the end, we have a subgraph G
�
i that

does meet the sparsest cut condition on the demands in the remaining subgraph.

Now we assign a zero weight to all vertices in the removed regions to zero out

demands on these regions and put P1
i � P2

i ������� � Pyi
i all back in. This graph Ĝi is only

more connected with regard to the non removed demand induced by f̄ inside G
�
i � � i.

Hence we emphasize that Ĝi � � i � 1 ������� � � are the set of subgraphs that we pass on

to the next stage. We give an algorithm for computing the final disjoint subsets

T
�

1 ������� � T �
� of T such that terminal pairs in T

�
i belong to G

�
i, and hence Ĝi � � i, and

assigning a positive weight to the set of terminals in T
�

i � � i.

In the rest of this section, we prove Theorem 5.2.

Proof of Theorem 5.2: Given a subgraph Ĝi � �
V̂i � Êi � , we use the procedure as

in Figure 5.3.3 to update Ĝi recursively by muting regions that do not satisfy the

sparsest cut condition; by “muting” a region P, we treat nodes in P and their ad-
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0. Given a subgraph Ĝi.
1. If γ

�
Ĝi � � �

a1 � 4 � βλ
�
n � , �π �i �

u � � �π �i �
v � � 1 for some pair uv � T

�
i

with positive flow in Ĝi; and �π �i �
y � � 0 for y

�� u � v.
Hence we can just route a unit flow between the chosen pair uv � T

�
i

along an integral path; such a path exists since Ĝi is a connected component.
2. Suppose that γ

�
Ĝi � � �

a1 � 4 � βλ
�
n � . For dem

�
u � v � � γ

�
u � Ĝi � γ

�
v� Ĝi � � γ

�
Ĝi � ,

let f
�
be the maximum concurrent flow for this instance.

(a) if f
� � f1, set �π �i �

u � � γ � u � Ĝi �� a1 � 2 � βλ � n � � u � V̂i and stop.

(b) else f
� � f1, find an approximate sparsest cut such that cap � S � V̂i

�
S �

dem � S � V̂i
�
S � � β f

�
.

set �π �i �
u � � 0, � u � S, and

shut off edges in δ0 �
S � � �

S � V̂i � S �
so that we recurse on Ĝi

�
V

�
Ĝi ��� S � .

3. End

Figure 5.3.1. Algorithm FINDING SPARSEST CUTS

jacent edges as if they were removed from Ĝi during the sparsest-cut processing

stage, although in the end, we retain these regions entirely in Ĝi. We define the fol-

lowing parameters given a remaining subgraph Ĝt
i of Gi after muting some regions,

P1
i ������� � Pt 	 1

i .

(1) Ĝt
i � �

V̂ t
i � Êt

i � : the remaining subgraph of Ĝi after muting nodes in P1
i ������� � Pt

i

and their adjacent edges. V̂ t
i � V̂i � � j � 1 � � � � � t P

j
i is the remaining set of vertices

in Ĝi at stage t.

(2) δt �
S � � cap

�
S � V̂ t

i � S � denotes the size of cut
�
S � V̂ t

i � S � in subgraph Ĝt
i .

(3) ∆
�
S � � cap

�
S � V 0

i � S � denotes the size of cut
�
S � V 0

i � S � in subgraph G0
i .

Given Ĝt
i , we try to route the following multicommodity product flow between

any unordered pair of vertices u � v:

demt �
u � v � � γ

�
u � Ĝt

i � γ
�
v� Ĝt

i �
γ

�
Ĝt

i � � (5.3.29)

where γ
�
u � Ĝt

i � is the flow of f̄ at node u � V̂ t
i that is induced in Ĝt

i .
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We define f1 � 1
a1β � G � λ � n � , where a1 � 8, as the minimum concurrent flow value

that one needs to obtain for demt �
u � v � in order for subgraph Ĝt

i to satisfy the flow-

linked property. When the actual flow value f
� � f1, we can find a set Pt � 1

i such

that δt �
Pt � 1

i � � demt �
Pt � 1

i � V̂ t
i � Pt � 1

i � β f
�
. We say Pt � 1

i does not meet the sparsest

cut condition for the demands demt �
u � v � in subgraph Ĝt

i , and we mute Pt � 1
i in

Ĝt
i and recurse on Ĝi

�
V̂ t

i � Pt � 1
i � � Ĝt � 1

i . When the flow value f
� � f1, we stop the

recursion, and assign �π �i �
u � � γ � u � Ĝt

i �� a1 � 2 � βλ � n � for all u � V̂ t
i .

Let G
�
i � Ĝyi

i � �
V̂ yi

i � Êyi
i � be the remaining subgraph of Ĝi by end of sparsest-

cut processing after muting nodes in P1
i ������� � Pyi

i and their adjacent edges. Let the

set of terminal pairs T
�

i be the subset of Ti that are contained in subgraph G
�
i and

let X
�
i be the set of terminals of T

�
i .

If γ
�
G
�
i � � �

a1 � 4 � βλ
�
n � when the algorithm terminates, we have obtained a ter-

minal pair T
�

i to route in G
�
i and a weight assignment that satisfy all three conditions

in the theorem. And we are done with this subgraph.

When γ
�
G
�
i � � �

a1 � 4 � βλ
�
n � , a product flow based on the flow of f̄ induced in

G
�
i is routable with throughput at least f1 � 1

a1β � G � λ � n � in G
�
i, where a1 � 8. Hence

by assigning a new weight

�π �i �
u � � γ

�
u � G �

i ��
a1 � 2 � βλ

�
n � � (5.3.30)

for all u � V
�
G
�
i � , and �π �i �

u � � 0 for all other nodes u � V̂i in Ĝi, we can define a mul-

ticommodity flow problem, where for any unordered pair of vertices u � v � V
�
G
�
i � ,

dem
�π �i

�
u � v � � �π �i �

u ���π �i �
v � � �π �i �

X
�
i � , that is feasible in both G

�
and Ĝi. Hence X

�
i is

�π �i-flow-linked in Ĝi � � i. Finally, we put Pt
i � � t back in Ĝi with zero node weight,

while retaining the same weight assignment for nodes in G
�
i. Hence the sum of the

total weight is:

�π �i �
Ĝi � � �π �i �

G
�
i � � ∑

u � G �i

γ
�
u � G �

i ��
a1 � 2 � βλ

�
n � � γ

�
G
�
i ��

a1 � 4 � βλ
�
n � � (5.3.31)

Hence for both terminating conditions of the algorithm, we have

�π �i �
G
�
i � � γ

�
G
�
i � �

a1 � 4 � βλ
�
n � � (5.3.32)
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Hence

�∑
i � 1

�π �i �
X
�
i � � �∑

i � 1

γ
�
G
�
i ��

a1 � 4 � βλ
�
n � � OPT �

�
G � T �

16βλ
�
n � �

where ∑ �i � 1 γ
�
G
�
i � � OPT �

�
G � T � � 4 by taking a0 � 4 and a1 � 16 in Lemma 5.3

and requiring that C 0 � 16λ
�
n � ĉ.
�

Hence by the end of sparsest-cut processing, we get a new instance X
�
i on Ĝi ��

V̂i � Êi � with min-cut at least ĉ � Ω
�
log3 n � , such that X

�
i is �π �i-flow-linked in Ĝi,

which can be only more connected than G
�
i. We tune two parameters: a0 and a1, to

balance the the initial node degree requirement and the amount of flow of f̄ that

we retain by the end of min-cut and sparsest-cut processing stages.

Lemma 5.3. Given a graph G with min-cut value C0 � �
4a0λ

�
n � � a0 � 2 � ĉ, where

a0 � 2. By the end of sparsest-cut processing, the total amount of flow of f̄ that we

will pass on to next stage of the algorithm for finding EDP in G is the sum of flow

of f̄ induced in G
�
i, across all i,

∑
i � 1 � 2 � � � �

γ
�
G
�
i � � 1

2
OPT �

�
G � T �

�
1 � 1

a0
� 1

2a0
�
1 � 8 � a1 ��� � (5.3.33)

where a1 � 8.

Proof. In the beginning of the sparsest-cut processing stage, we have

remaining-flow � ∑
i � 1 � 2 � � � �

γ
�
Ĝi � (5.3.34)

� 1
2

OPT �
�
G � T � �

1 � 1
a0

� � (5.3.35)

Combine this initial condition with Lemma 5.4, we have

remaining-flow � ∑
i � 1 � 2 � � � �

γ
�
G
�
i � � 1

2
OPT �

�
G � T �

�
1 � 1

a0
� 1

2a0
�
1 � 8 � a1 � � �

(5.3.36)

where LOSS � OPT �
�
G � T � � 2.
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Lemma 5.4. The amount of flow that we lose from ∑i � 1 � 2 � � � �

γ
�
Ĝi � due to sparsest-

cut processing is flow-loss2 � LOSS
2a0 � 1 	 8 � a1 � , where a1 � 8.

Proof. To analyze the amount of flow that we lose from sparsest-cut processing,

we use a potential function ϕ
�
Ĝi � to keep track of the edges of G0

i � �
V 0

i � E0
i � that

we take away from nodes currently in Ĝi, after min-cut and during sparsest-cut

processing. Note that those lost edges connect to other nodes in V 0
i from nodes

internal to Ĝt
i at stage t.

The counting process is the following. We start with a component Gi such that

some nodes in Ĝi have lost some of their edges right after min-cut processing and

ϕ0
i � edge-lossi � 0 �

Let ϕt
i be value of ϕ

�
Ĝi � after removing t sets of vertices P1

i ������� � Pt
i and their

adjacent edges from Ĝi. Let Pt � 1
i be the

�
t � 1 � st set of vertices that we shut off

from Ĝi because internal boundary capacity of Pt � 1
i has decreased from ∆

�
Pt � 1

i � to

δt �
Pt � 1

i � � demt �
Pt � 1

i � V̂ t
i � Pt � 1

i � β f
�
.

We update ϕ
�
Gi � as the following,

ϕt � 1
i � ϕt

i �
�
∆

�
Pt � 1

i � � δt �
Pt � 1

i � � � δt �
Pt � 1

i � �

Since the credit that a cut puts back is less than the credit that it spent, there is

a only finite number yi of such small cuts. By the end of yi rounds, there must be

non-negative credit in ϕ
�
Ĝi � , since nodes in current Ĝi can never gain any internal

edges:

ϕ
�
Ĝi � � ϕyi

i

� edge-lossi �
�
∆

�
P1

i � � δ0 �
P1

i � � � δ0 �
P1

i � � �
∆

�
P2

i � � δ1 �
P2

i � � � δ1 �
P2

i �
� ����� � �

∆
�
Pyi

i � � δyi 	 1 �
Pyi

i � � � δyi 	 1 �
Pyi

i �
� 0 �



5.3 An Analysis on Postprocessing to Maintain Cut Conditions � 81

Hence by summing above inequalities over all i,

∑
i � 1 � 2 � � � �

∑
j � 1 � 2 � � � � � yi

�
∆

�
P j

i � � 2δ j 	 1 �
P j

i � � � ∑
i � 1 � 2 � � � �

edge-lossi (5.3.37)

� edge-loss (5.3.38)

� LOSS

a0
�
2λ

�
n � � 1

2 � � (5.3.39)

.

Fix Pt � 1
i for some i � t � �

0 ������� � yi � 1 � , we have the following two lemmas on

∆
�
Pt � 1

i � and δ � Pt � 1
i � .

Lemma 5.5. For all i and all t � �
0 ������� � yi � 1 � ,

∆
�
Pt � 1

i � � cap
�
Pt � 1

i � V 0
i � Pt � 1

i � � ∑
u � Pt � 1

i

γ
�
u � Ĝt � 1

i � � 2λ
�
n � �

Lemma 5.6. For all i and all t � �
0 ������� � yi � 1 � , δt �

Pt � 1
i � � 4

a1
∆

�
Pt � 1

i � .

Plugging Lemma 5.6 in 5.3.37, we get

∑
i � 1 � 2 � � � �

∑
t � 1 � 2 � � � � � yi

∆
�
P j

i � �
1 � 8

a1
� � ∑

i � 1 � 2 � � � �

∑
t � 1 � 2 � � � � � yi

∆
�
P j

i � � 2δt 	 1 �
Pt

i � �

� LOSS

a0
�
2λ

�
n � � 1

2 � �

Hence

∑
i � 1 � 2 � � � �

∑
t � 1 � 2 � � � � � yi

∆
�
P j

i � � LOSS

a0
�
2λ

�
n � � 1

2 � �
1 � 8 � a1 � � (5.3.40)

Fix Ĝt
i �

�
V̂ t

i � Êt
i � for some t � �

1 ������� � yi � . We now calculate the amount of flows

of f̄ that we lose from ∑i � 1 � 2 � � � �

γ
�
Ĝi � by shutting off Pt � 1

i in Ĝi. The flow that we

lose falls into one of the four types:

(1) its path are entirely contained in the subgraph of Ĝi induced by nodes in

Pt � 1
i ;

(2) its path contains edges counted in ∆
�
Pt � 1

i � but not those in δt �
Pt � 1

i � ;
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(3) its path contains edges counted in δt �
Pt � 1

i � , but with at least one endpoint in

Pt � 1
i ;

(4) those flow with both endpoints u
�
v
� � V̂ t � 1

i , such that its path intersects edges

counted in δt �
Pt � 1

i � for at least twice.

Flow of type 1 contributes to the sum ∑u � Pt � 1
i

γ
�
u � Ĝt

i � twice. Flow of type 3

contribute its flow value to ∑u � Pt � 1
i

γ
�
u � Ĝt

i � once and to the usage of δt �
Pt � 1

i � �
cap

�
Pt � 1

i � V̂ t � 1
i � at least once. Flow of type 4 contribute its flow amount at least

twice to the usage of cap
�
Pt � 1

i � V̂ t � 1
i � . Flow of type 2 has been counted before

when P j
i were mute for some j � t from Ĝi. Note that those flow that crosses�

Pt � 1
i � V t � 1

i � either has been counted in ∑u � Pt � 1
i

γ
�
u � Gi � at least once or it goes

through the cut
�
Pt � 1

i � V t � 1
i � in Ĝt

i at least twice.

Hence the total amount of flow of f̄ that we lose from γ
�
Ĝi � , that has not been

counted in earlier stages than t, by muting the induced subgraph of Pt � 1
i and its

adjacent edges in Ĝt
i:

1
2

�
∑

u � Pt � 1
i

γ
�
u � Gi � � cap

�
Pt � 1

i � V t � 1
i � � � 1

2 ∑
u � Pt � 1

i

γ
�
u � Gi � � 1

2
δt �

Pt � 1
i �

� ∆
�
Pt � 1

i � λ
�
n � � 1

2
δt �

Pt � 1
i �

� ∆
�
Pt � 1

i � �
λ

�
n � � 2 � a1 � �

where the last two inequalities are due to Lemma 5.5 and 5.6.

Summing over all Pt
i � � t � � i, given that a1 � 8, the total flow lost in sparsest-cut

processing stage is

flow-loss2 � ∑
i � 1 � 2 � � � �

∑
t � 1 � � � � � yi

∆
�
Pt

i � λ
�
n � � 1

2
δt 	 1 �

Pt
i �

� ∑
i � 1 � 2 � � � �

∑
t � 1 � � � � � yi

∆
�
Pt

i � �
λ

�
n � � 2 � a1 �

�
�
λ

�
n � � 2 � a1 � LOSS

2a0
�
λ

�
n � � 1 � 4 � �

1 � 8 � a1 �
� LOSS

2a0
�
1 � 8 � a1 � �
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Proof of Lemma 5.5: Given that ∑u � Pt � 1
i

γ
�
u � Ĝt

i � � ∑v � V̂ t � 1
i

γ
�
v� Ĝt

i � and

∑u � Pt � 1
i

γ
�
u � Ĝt

i � � ∑v � V̂ t � 1
i

γ
�
v � Ĝt

i � � ∑u � V̂ t
i

γ
�
u � Ĝt

i � , we have

∑
u � Pt � 1

i

γ
�
u � Ĝt

i � � 1
2 ∑

u � V̂ t
i

γ
�
u � Ĝt

i � � (5.3.41)

Next let us define a2 as the additional flow of f̄ for node u in G0
i as compared

to that in subgraph Ĝt
i ,

∑
u � Pt � 1

i

γ
�
u � G0

i � � ∑
u � Pt � 1

i

γ
�
u � Ĝt

i � � a2 � (5.3.42)

Since each unit of flow of a2 uses at least one unit capacity from edges that

connect two set of vertices Pt � 1
i and V 0

i � V̂ t
i in G0

i , we have

a2 � ∆
�
Pt � 1

i � � δt �
Pt � 1

i � � (5.3.43)

In addition, we know that

∑
u � X0

i

γ
�
u � G0

i � � ∑
u � V̂ t

i

γ
�
u � G0

i � � ∑
u � V̂ t

i

γ
�
u � Ĝt

i � � a2 � (5.3.44)

Thus we have

∑
u � Pt � 1

i

γ
�
u � G0

i � � ∑
u � Pt � 1

i

γ
�
u � Ĝt

i � � a2 (5.3.45)

� ∑u � V̂ t
i

γ
�
u � Ĝt

i � � a2

2
� a2

2
(5.3.46)

� ∑
u � V̂ t

i

1
2

γ
�
u � G0

i � � 2 � a2

2
(5.3.47)

� ∑
u � X0

i

1
2

γ
�
u � G0

i � � 2 � a2

2
� (5.3.48)
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Now if ∑u � Pt � 1
i

γ
�
u � G0

i � � 1
2 ∑u � V 0

i
γ

�
u � G0

i � , i.e. �πi
�
Pt � 1

i � X0
i � � 1

2 �πi
�
X0

i � ,

∆
�
Pt � 1

i � � cap
�
Pt � 1

i � V 0
i � Pt � 1

i �
� 1

2
�πi

�
Pt � 1

i � X0
i �

� ∑u � Pt � 1
i

γ
�
u � G0

i �
2λ

�
n �

� ∑u � Pt � 1
i

γ
�
u � Ĝt

i �
2λ

�
n � �

Otherwise, ∑u � Pt � 1
i

γ
�
u � G0

i � � 1
2 ∑u � V 0

i
γ

�
u � G0

i � . First we have

∑
u � V 0

i

�
Pt � 1

i

γ
�
u � G0

i � � ∑
u � V 0

i

γ
�
u � G0

i � � 2 � a2 � 2 (5.3.49)

because of (5.3.47) and

∑
u � Pt � 1

i

γ
�
u � G0

i � � ∑
u � V 0

i

�
Pt � 1

i

γ
�
u � G0

i � � ∑
u � V 0

i

γ
�
u � G0

i � � (5.3.50)

Therefore, we have

∆
�
Pt � 1

i � � cap
�
Pt � 1

i � V 0
i � Pt � 1

i �
� 1

2
�πi

� �
V 0

i � Pt � 1
i � � X0

i �

� ∑u � V 0
i

�
Pt � 1

i
γ

�
u � G0

i �
2λ

�
n �

�
�
∑u � V 0

i
γ

�
u � G0

i � � 2 � a2 � 2

2λ
�
n �

� ∑u � Pt � 1
i

γ
�
u � G0

i � � a2

2λ
�
n �

� ∑u � Pt � 1
i

γ
�
u � Ĝt

i �
2λ

�
n � �

where the last three (in)equalities are due to (5.3.49), (5.3.47), and (5.3.42), and in

this order.
�
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Next, let us bound the size of δt �
Pt � 1

i � .

Proof of Lemma 5.6: Given that ∑u � Pt � 1
i

γ
�
u � Ĝt

i � � ∑v � V̂ t � 1
i

γ
�
v� Ĝt

i � and 2γ
�
Ĝt

i � �
∑u � Pt � 1

i
γ

�
u � Ĝt

i � � ∑v � V̂ t � 1
i

γ
�
v � Ĝt

i � , we have ∑v � V̂ t � 1
i

γ
�
v� Ĝt

i � � 2γ
�
Ĝt

i � .

By terminating condition 2(b) in Figure 5.3.3, we have

δt �
Pt � 1

i � � demt �
Pt � 1

i � V̂ t
i � Pt � 1

i � β f1

� demt �
Pt � 1

i � V̂ t
i � Pt � 1

i � 1
a1λ

�
n �

� ∑u � Pt � 1
i

γ
�
u � Ĝt

i � � ∑v � V̂ t � 1
i

γ
�
v� Ĝt

i �
a1λ

�
n ��� γ �

Ĝt
i �

�
2∑u � Pt � 1

i
γ

�
u � Ĝt

i �
a1λ

�
n �

� 4
a1 � ∑u � Pt � 1

i
γ

�
u � Ĝt

i �
2λ

�
n � � � 4

a1
∆

�
Pt � 1

i � �

where demt �
Pt � 1

i � V̂ t
i � Pt � 1

i � is defined in (5.3.29).
�
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6 Finding Disjoint Paths in

Decomposed Graphs

6.1 Outline of Routing in a Decomposed Subgraph G

We assume that we have the �π-cut-linked subgraphs given by Theorem 4.2. We

will treat each subgraph and its induced subproblem
�
G � T � independently. We use

�π �
G � to denote �π �

V
�
G � � in the following sections. Let X be the set of terminals of

T that is assigned with a positive weight by function �π in instance G. We further

assume that �π �
G � � Ω

�
log7 n � . If not, we just route an arbitrary pair of terminals in

T ; otherwise, we use PROCEDURE EMBEDANDROUTE
�
G � T ���π � in Figure 6.1.1 to

route. We first specify a few more parameters and conditions related to
�
G � T � ; We

then state Theorem 6.1, which we prove through the rest of the paper. Combining

Theorem 6.1 and Theorem 4.2 proves Theorem 6.2.

6.1.1 Parameters and Conditions Regarding Subproblem
�
G � T �

– sampling probability p � 12
�
ln n � � ε2κ � 1 � �

ω log2 n � 1 �

– number of split subgraphs Z � 1 � p � ω log2 n � 1

– W � �
ω log2 n � 1 � � �

1 � ε � , for some ε � 1;

– r � max
�
1 � � �π �

G � � �
W � 1 � � � �

2W � 1 � � , such that � i � �
1 ������� � r � � 2W � 1 �

�π �
Xi � � ∑v � Xi

�π �
v � � W and �π �

X � � �π �
G � � �

W � 1 � : i.e., at most W � 1 unit

of weight is not counted in X .

87



88 � Routing, Disjoint Paths, and Classification

0. Given graph G with min-cut Ω
�
log3 n � and a weight function �π : V

�
G � � � �

1.
�
G1 ������� � GZ � = SPLIT

�
G � Z � �π �

2.
�
X � C � = CLUSTERING

�
GZ � �π � , where X � �

X1 ������� � Xr � and C � �
C1 ������� � Cr �

3. Given a set of superterminals X of size r
4. Let X map to vertex set V

�
H � of Expander H

5. For t � 1 to ω log2 n
6.

�
S � S̄ � X � S � = KRV-FINDCUT

�
X � � Mk : k � t � � s. t. � S � � �� S̄ �� � r � 2

7. Matching Mt = FINDMATCH
�
S � S̄ � Gt � s.t. Mt is routable in Gt

8. Combine M1 ������� � Mω log2 n to form the edge set F on vertices V
�
H �

9. EXPANDERROUTE
�
H � T � X �

10. End

Figure 6.1.1. Procedure EMBEDANDROUTE
�
G � T � �π �

6.1.2 Two Theorems to Prove

Theorem 6.1. Given an induced instance
�
G � T � with min-cut of G being Ω

�
log3 n �

and a weight function �π : V
�
G � � � � such that X is �π-cut-linked in G and �π �

G � �
Ω

�
log7 n � , EMBEDANDROUTE routes at least max

�
1 � Ω � �π �

G � � log7 n � � pairs of T

in G edge disjointly.

Theorem 6.2. Given an EDP instance
�
G � T � , where G has a min-cut Ω

�
λ

�
n � κ � ,

we can route Ω
�
OPT �

�
G � T � � f � terminal pairs edge disjointly in G , where the

approximation factor f is O
�
λ

�
n � β

�
G � W log5 n � .

6.2 Obtaining Z Split Subgraphs of G

In this section, we analyze a procedure that splits a graph G, with min-cut κ �
Ω

�
log3 n � , into Z subgraphs b extending a uniform sampling scheme from Karger

[1994]. We thus obtain a set of cut-linked instances as in Lemma 6.1, which imme-

diately follows from Theorem 6.3.

Procedure Split
�
G � Z �
�π � : Given a graph G � �

V � E � with min-cut κ � Ω
�
log3 n � ,

a weight function �π : V
�
G � � � � , a set of terminals X in G such that

�
G � X � is a

�π-cut-linked instance, and probability p � 1 � Z.
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Output: A set of randomized split subgraphs G1 ������� � GZ of G.

Each split subgraph G j � � j � 1 ������� � Z inherits the same set of vertices of G; Edges

of G are placed independently and uniformly at random into the Z subgraphs; each

e � �
u � v � � E is placed between the same endpoints u � v in the chosen subgraph.

We retain the same weight function �π for all nodes in V in each split subgraph

G j � � j.

Lemma 6.1. With high probability, X is � 1 	 ε � �π
Z -cut-linked in G j � � j, for some ε � 1.

Proof. Since X is �π-cut-linked in G hence � δ �
S � � � �π �

S � X � , � S such that �π �
S �

X � ���π �
X � � 2 in G. Let δ j

�
S � denote the size of cut

�
S � V � S � in G j. With probability

1 � O
�
log2 n � n2 � , we have �� δ j

�
S � �� �

�
1 � ε � p � δ �

S � � � �
1 � ε � p �π �

S � X � � , for all

S such that �π �
S � X � � �π �

X � � 2 and all j as shown in Theorem 6.3. Hence X is�
1 � ε � �π � Z-cut-linked in G j � � j.

Theorem 6.3 says that all cuts can be preserved in all split graphs G1 ������� � GZ of

G we thus obtain. Recall for S � V , � δG
�
S � � denote the size of

�
S � V � S � in G. For

the same cut
�
S � V � S � , we have E

� � δG j

�
S � � � � p � δG

�
S � � in G j � � j, where p is the

probability that an edge e � E is placed in G j � � j.

Theorem 6.3. Let G � �
V � E � be any graph with unit-weight edges and min cut κ.

Let ε � � 3
�
d � 2 � �

lnn � � pκ. If ε � 1, then with probability 1 � O
�
log2 n � nd � , every

cut
�
S � V � S � in every subgraph G1 � G2 ������� � GZ of G has value between

�
1 � ε � and�

1 � ε � times its expected value p � δG
�
S � � .

We give an overview of our proof by introducing a definition by Karger [1994],

regarding a uniform random sampling scheme on an unweighted graph G � �
V � E � ;

Lemma 6.2 immediately follows from this definition. We then state Karger’s the-

orem regarding preserving all cuts of G in a sampled subgraph, under a certain

min-cut condition. Finally, we show the details of our proof to Theorem 6.3. For

the sake of completeness, we also give Karger’s proof to Theorem 6.4.

Definition 6.1. (Karger [1999]) A p-skeleton of G is a random subgraph G
�
p �

constructed on the same vertices of G by placing each edge e � E in G
�
p � inde-

pendently with probability p.

Lemma 6.2. Every randomized subgraph G j � � j, is a p-skeleton of G.
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Proof. Recall the construction of a random subgraph G j � � j, of G: on the same set

of vertices as G, each edge e � E of the original graph G is placed in G j indepen-

dently with probability p. Hence, G j � � j, is a p-skeleton of G by Definition6.1.

Theorem 6.4. (Karger [1999]) Let G be a graph with unit-weight edges and min-

cut κ. Let p � 3
�
d � 2 � �

ln n � � ε2κ. With probability 1 � O
�
1 � nd � , every cut in a

p-skeleton of G has value between
�
1 � ε � and

�
1 � ε � times its expected value.

Proof of Theorem 6.3: Define an indicator variable X j
e � � j � � e � E , such that X j

e � 1

when e is placed in G j, and 0 otherwise; hence X j
e is a Bernoulli random variable

with success probability p, � j � � e. Note that random variables X j
e � � j � 1 ������� � 1 � p,

are not independent; in fact, ∑1 � p
j � 1 X j

e � 1 for all e.

Consider a cut
�
S � S̄ � of size c in G. Let X j

1 � X j
2 ������� � X j

c be the indicator vari-

ables that signal whether edges e1 � e2 ������� � ec of cut
�
S � S̄ � appear in G j. Define

X j
�
S � S̄ � � ∑c

y � 1 X j
y as the size of the cut in a random subgraph G j of G. Given

that X j
1 � X j

2 ������� � X j
c are i.i.d. random variables whose common distribution is the

Bernoulli distribution with parameter p, we can apply Chernoff bound to obtain

the following lemma.

Lemma 6.3. Consider a cut
�
S � V � S � of size c in unweighted graph G � �

V � E � .

Let X j
�
S � S̄ � be the size of the corresponding cut in a randomized split graph G j.

Then � S, � j, we have

Pr � �� X j
�
S � V � S � � pc �� � εpc � � 2e 	 ε2 pc � 3 � (6.2.1)

Lemma 6.4. Chernoff [1952]) Let X be a sum of independent Bernoulli random

variables with success probability p1 ������� � pm and expected value µ � ∑ pi. Then

for ε � 1

Pr
� �X � µ � � εµ � � 2e 	 ε2µ � 3 �

Let r � 2n � 2 be the number of cuts in graph G, and hence G1 ������� � GZ , and let

c1 ������� � cr be the expected values of the r cuts in a p-skeleton listed in nondecreasing

order so that pκ � c1 � c2 ������� � � cr. Given a split graph G j � � j, let E j
k � � j � � k be

the event that the value of a cut X j
�
S � V � S � in G j diverges from its expectation ck
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by more than εck. First we have Pr � E j
k � � 2e 	 ε2ck � 3 by Lemma 6.3. We then apply

a union bound to sum up ( 6.2.1) for all r cuts in G j � � j.

Given that every random split subgraph G j � � j, is a p-skeleton of G by

Lemma 6.2, we apply Karger’s statement as in the form below, to all subgraphs G j

with the following parameters: p � 12
�
ln n � � ε2κ and κ � 12

�
ln n � �

ω log2 n � 1 � � ε2

for a given ε; following Karger’s proof to Theorem 6.4, we have:

Lemma 6.5. (Karger [1999]) � G j, ∑r
k � 1 Pr � E j

k � � O
�
1 � nd � .

We can then use a union bound to sum up probabilities of bad events across all

split subgraphs G1 ������� � GZ of G, which yields following:

Z

∑
j � 1

r

∑
k � 1

Pr � E j
k � � O

�
log2 n � nd � (6.2.2)

Note that E j
k � � j � 1 ������� � Z, are not independent, since the indicator random vari-

ables that contribute to value of X j
�
S � V � S � are not at all independent across all

subgraphs. However, we only use a union bound that does not assume anything

about dependency among events.
�

Proof of Theorem 6.4: (Karger [1999]) We give a sketch of Karger’s proof as

shown in Karger [1999] here for the sake of completeness. To prove Theorem 6.4,

Karger uses a union bound to show that the sum of probabilities of all bad events in

a p-skeleton of G is O
�
1 � nd � , where a bad event refers to some cut in a p-skeleton

of G diverges from its expected value k by more than εk. The proof of this claim

follows by using two lemmas:

Lemma 6.6. (Karger [1999]) In an undirected graph, the number of α-minimum

cuts is less than n2α.

The “expected value” graph Ḡ of G j � � j, is a weighted graph with all vertices

and edges of the original unweighted graph G � �
V � E � , and with edge weight p

assigned to edge e � � e � E . Note that the minimum cut of Ḡ is pκ, where κ is the

minimum cut of G. Lemma 6.6 applied to Ḡ, the “expected value” graph of a p-

skeleton of G, states that the number of cuts within α factor of the minimum pκ
increases exponentially with α. On the other hand, the Chernoff bound says that
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one such cut diverges too far from its expected value decreases exponentially with

α as shown in ( 6.2.1). Combining these two lemmas and balancing the exponential

rates proves Theorem 6.4 using a union bound.
�

6.3 Forming Superterminals that are Well-Linked

The procedure in this section constructs superterminals as follows. It finds con-

nected subgraphs C in GZ , where �π �
C � � Ω

�
log2 n � , each connecting a subset of

terminals. Roughly, the idea is that these clustered terminals are better connected

than individual terminals. They are well linked in the sense that any cut that splits

off K superterminals as one entity contains at least K edges in G j � � j This allows

us to compute congestion-free maximum flows in Section 6.4.1.

Given split subgraphs G1 ������� � GZ of G, each with the same weight function �π on

its vertex set V
�
G j � � V � � j, that we obtain through PROCEDURE SPLIT

�
G � Z � �π � ,

we aim to find a set X � �
X1 ������� � Xr � of node-disjoint “superterminals”, where each

superterminal Xi � X consists of a subset of terminals in X and each Xi gathers

a weight between W and 2W � 1. In addition, we want to find an edge-disjoint

set of clusters C � �
C1 ������� � Cr � , where Ci � �

Vi � Ei � , such that Xi
�

Vi and Ci is a

connected component, and hence all nodes in Xi are connected through Ei. W.l.o.g.,

we pick GZ for forming such clusters Ci � � i; note that GZ is a connected graph with

a min-cut of Ω
�
log n � � whp, by Theorem 6.3.

Procedure Clustering
�
GZ � �π � : Given a split subgraph GZ and a weight function

�π : V
�
GZ � � � � and �π �

V
�
GZ � � � �π �

G � � W .

Output: X � �
X1 ������� � Xr � and C � �

C1 ������� � Cr � as specified in Lemma 6.7.

We group subsets of vertices of V in an edge-disjoint manner, following a proce-

dure from Chekuri et al. [2004a], by choosing an arbitrary rooted spanning tree of

GZ and greedily partitioning the tree into a set C of edge-disjoint subgraphs of GZ .

Lemma 6.7. (CKS2004 Chekuri et al. [2004a]) Let GZ be a connected graph

with a weight function �π : V
�
GZ � �

�
0 � W � such that �π �

V
�
GZ � � � W . We can find

r � max
�
1 � � �π �

G � � �
W � 1 � � � �

2W � 1 � � edge-disjoint connected subgraphs, C1 ��
V1 � E1 � ������� � Cr � �

Vr � Er � , such that there exist vertex-disjoint subsets X1 ������� � Xr

and for each i: (a) Xi
�

Vi and (b) 2W � 1 � ∑v � Xi
�π �

v � � W .
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Result. To get an intuition of the purpose of forming such clusters, consider a cut�
U � V � U � in a split subgraph G j � � j. Let U be a subset of V

�
G � such that �π �

U � �
∑x � U � X �π

�
x � � �π �

X � � 2. Let K be the number of superterminals that are contained

in U . We have the following lemma, which captures the notion of superterminals

being “well-linked”, with a hint of Definition 4.3.

Lemma 6.8. � split subgraphs G1 ������� � GZ , where Z � ω log2 n � 1, and � U � V
�
G �

s.t. �π �
U � � �π �

X � � 2, � δG j

�
U � � � K, where K � � � Xi � X : Xi

�
U � � .

Proof. With high probability, X is � 1 	 ε � �π
� ω log2 n � 1 � -cut-linked in G1 ������� � GZ , as shown in

Lemma 6.1. Recall that in our clustering scheme, total weight of all terminals in

one cluster is at least W � � ω log2 n � 1 �
1 	 ε , then � j,

� δG j
�
U � � � ∑

x � U

�
1 � ε � �π �

x ��
ω log2 n � 1 �

�
�
1 � ε ��

ω log2 n � 1 � ∑
i:Xi � U

∑
x � Xi

�π �
x �

�
�
1 � ε � KW�

ω log2 n � 1 �
� K

6.4 Construct and Embed an Expander H in G

In this section, we use the superterminals from the previous section as nodes in an

expander H that we embed in G. The edges of H are defined using a technique

in Khandekar et al. [2006] that builds an expander using O
�
log2 n � matchings. We

embed this expander in G by routing each matching in one of the split graphs

using a maximum flow computation. This allows us to embed H into G with no

congestion. The following procedure restates this outline. Theorem 6.5 is a main

technical contribution of this paper.

Procedure EmbedExpander
�
G1 ������� � Gω log2 n � X � :
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0. Given a set of points V
�
H � of size k

1. for t � 1 to ω log2 n
2.

�
S � S̄ � V

�
H � � S � = KRV-FINDCUT

�
V

�
H � � � Mk : k � t � � s.t. � S � � �� S̄ �� � k � 2

3. Mt = FINDMATCH
�
S � S̄ � s.t. Mt is a matching between S and S̄

4. Combine M1 ������� � Mω log2 n to form the edge set F on vertices V
�
H �

5. End

Figure 6.4.2. KRV-Procedure CONSTRUCTING AN α-EXPANDER H .

Output: An expander H � �
V
� � F � routable in G s.t. �V � � � r and � i � V

�
, �π �

i � �
�π �

Xi � and �π �
H � � �π �

X � ; F consists of M1 ������� � Mω log2 n.

We use Step (3) to (8) of PROCEDURE EMBEDANDROUTE in Figure 6.1.1, where

we substitute PROCEDURE FINDMATCH with Figure 6.4.3 while relying on an

existing PROCEDURE KRV-FINDCUT Khandekar et al. [2006]. At each round t,

we use KRV-FINDCUT to generate an equal-sized partition
�
S � X � S � S̄ � ; we then

find a matching Mt between S and S̄ by computing a single-commodity max-flow

using FINDMATCH
�
S � S̄ � Gt � in Gt , that we add to F as edges.

Theorem 6.5. (a) EMBEDEXPANDER constructs a 1 � 4-expander H � �
V
� � F � ;

(b) in addition, H is embedded into G as follows. Each node i of H corresponds

to a superterminal Xi in X in G such that all superterminals are mutually node

disjoint and each superterminal is connected by a spanning tree, Ti, in G. Each

edge
�
i � j � in H corresponds to a path, Pi j from a node in Xi to a node in X j. All

paths Pi j and trees Ti are mutually edge disjoint in G.

Proof. The expander property (a) follows from a result of Khandekar, Rao and

Vazirani Khandekar et al. [2006]; they show the procedure in Figure 6.4.2 produces

an expander H .

Theorem 6.6. (KRV06 Khandekar et al. [2006]) Given a set of nodes V
�
H �

of size k, � a KRV-FINDCUT procedure s.t. given any FINDMATCH procedure,

the KRV-PROCEDURE as in Figure 6.4.2. produces an α-expander graph H, for

α � 1 � 4.

Each edge e � �
i � j � in the matching Mt maps to an integral flow path that

connects Xi and X j in Gt ; all such flow paths can be simultaneously routed in
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Gt edge disjointly due to the max-flow computation as we show in Lemma 6.9.

Since each matching Mt is on a unique split subgraph Gt , the entire set of edges

in M1 ������� � Mω log2 n, that comprise the edge set F of H , correspond to edge disjoint

paths in G1 ������� � GZ 	 1, where Z � ω log2 n � 1. Finally, all spanning trees Ti � � i, are

constructed using disjoint set of edges in GZ as in Lemma 6.7.

6.4.1 Finding a Matching through a Max-flow Construction

0. Given an equal partition
�
S � S̄ � of X , we form a flow graph G

�
from Gt

by adding auxiliary nodes and directed unit-capacity edges:
1. Add a special source and sink nodes s0 and t0;
2. Add nodes s1 ������� � sr � 2 and an edge from s0 to sk � � k � 1 ������� � r � 2;
3. Add nodes t1 ������� � tr � 2; from each tk � � k � 1 ������� � r � 2, add an edge to t0

4. From each sk � � k, add an edge to each terminal x � Xik s.t. Xik � S
5. To each node tk, add an edge from each terminal x � X jk s.t. X jk � S̄
6. Route a max-flow from s0 to t0
7. Decompose the flow to obtain a matching between S and S̄
8. End

Figure 6.4.3. Procedure FINDMATCH
�
S � S̄ � Gt �

In this section, we show that given an arbitrary equal partition
�
S � S̄ � of the

set X � �
X1 ������� � Xr � , that we obtain through PROCEDURE CLUSTERING

�
GZ � �π � ,

we can use the following procedure to route a max-flow of size r � 2, such that the

integral flow paths that we obtain through flow decomposition induce a perfect

matching between S and S̄. Let S � �
Xi1 ������� � Xir � 2

� and S̄ � �
X j1 ������� � X jr � 2

� .

Lemma 6.9. In each sampled graph Gt , FINDMATCH produces a perfect matching

Mt between an equal partition
�
S � S̄ � of X such that for each edge in e � �

i � j � � Mt ,

there is an integral unit-flow path Pi j from a terminal in Xi � S to a terminal in

X j � S̄. All paths Pi j � s � t � �
i � j � � Mt are edge disjoint in Gt .

We first prove the following lemma.

Lemma 6.10. Every s0 � t0 cut has size at least r � 2 in the flow graph G
�
.
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Proof. Let
�
U � Ū � be a cut in the flow graph that separates s0 from t0; w.l.o.g., let

U be subset such that �π �
U � X � � �π �

X � � 2, and let s0 � U (otherwise, we can just

rename all the auxiliary nodes and the two subsets S and S̄).

Consider any superterminal X � X that we obtained through lemma 6.7; if X

is contained either in U or Ū , we call such a superterminal X uncut; otherwise, we

say X is cut by
�
U � Ū � .

(1) Let Ks
c � � � X � S : X � U � X � Ū

�� /0 � � denote the number of superterminals

in S that is cut by
�
U � Ū � .

(2) Let Ks
uc � � � X � S : X

�
Ū � � be the number of superterminals in S that is

contained in Ū ;

(3) Let Ks
uc � � � X � S : X

�
U � � denote the number of superterminals in S that

is contained in U ; hence Ks
uc � Ks

uc � Ks
c � r � 2, where r � �X � .

(4) Let Kt
c � ��

�
X � S̄ : X � U � X � Ū

�� /0 � �� denote the number of superterminals

in S̄ that is cut.

(5) Let Kt
uc � ��

�
X � S̄ : X

�
Ū � �� denote the number of superterminals in S̄ that

is contained in U .

Given that G is �π-cut-linked, we know that the sampled graph G j is
�
1 �

ε ���π � �
ω log2 n � 1 � -cut-linked whp by Lemma 6.1. Recall that in our clustering

scheme, total weight of all terminals in one superterminal is at least W � � ω log2 n � 1 �
1 	 ε .

Note that there is at least one directed auxiliary edge crossing the cut for all supert-

erminals except those in S that is contained in U or those in S̄ that is contained in

Ū .

Thus we know

� δG �
�
U � � � � δGt

�
U � � � Kt

uc � Ks
uc � Ks

c � Kt
c

�
�
1 � ε � ∑x � U �π �

x �
ω log2 n � 1

� Kt
uc � Ks

uc � Ks
c � Kt

c

�
�
1 � ε � �

Ks
uc � Kt

uc � W
ω log2 n � 1

� Kt
uc � Ks

uc � Ks
c � Kt

c

� Ks
uc � Ks

uc � Ks
c

� r � 2 �
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Hence we have shown that the size of every cut
�
U � Ū � in the flow graph G

�
has

size at least r � 2.

Proof of Lemma 6.9: By Lemma 6.10, and the fact that there � a s0 � t0 cut of size

r � 2, (e.g.,
� �

s0 � � V �
G
� � � �

s0 � � ) we know the s0 � t0 min-cut is r � 2. Hence by the

max-flow min-cut theorem, we know that there � a max-flow of size r � 2 from s0

to t0. We next decompose the max-flow into r � 2 integer flow paths, which induce

a perfect matching Mt between S and S̄ as follows. Consider an integral flow path

Pk � � k � 1 ������� � r � 2. Let directed path Pk start with s0 and go through sk � x � Xik � S

for some x; and let Pk end with y � X jk � � S̄ � tk � � t0 for some k
� � �

1 ������� � r � 2 � and

some terminal y. No other path in the max-flow can go through the same pair

of superterminals Xik , X jk � due to the capacity constraints on edges
�
s0 � sk � and�

tk � � t0 � . Hence Mt � � �
ik � jk � � � � k � �

1 ������� � r � 2 � � where k
� � �

1 ������� � r � 2 � � is a perfect

matching between S and S̄.
�

6.5 Routing on an Expander H Node Disjointly

In this section, we show that the following greedy algorithm routes Ω
�
K � log5 n �

pairs of terminals, where K � �V �
H � � � Ω

� �π �
G � � W � , in H .

Procedure ExpanderRoute
�
H � T � X � : Given an uncapacitated expander H with

at least 512log5 n nodes, with node degree ω log2 n. While there is a pair
�
s � t � in

T
� T whose path length is less than D in H � �

V � E � , where D � a3ω log3 n and

a3 � 32 is a constant; Remove both nodes and edges from H , along a path through

which we connect a pair of terminals in T .

Since we take away both nodes and edges as we route a path across the ex-

pander H due to the node capacity constraints on V
�
H � , routing the set P of pairs

via integral paths on H induces no congestion in G by Theorem 6.5. We now ar-

gue that �P � is large to finish our proof. Let H
�
be the remaining graph of expander

H � �
V � E � , after we take away nodes and edges along the paths used to route P.

Note that all remaining pairs T
� �

T in H
�

must have distance at least D. This is

the main condition that allows us to prove the following theorem.
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Theorem 6.7. The procedure above routes Ω
�
K � log5 n � pairs, node disjointly, in

degree-
�
ω log2 n � expander H � �

V � E � with K � 512log5 n nodes.

We first prove the following lemma regarding a multicut L in H
�
.

Lemma 6.11. � a multicut of size at most K � 2a3 in the remaining graph H
�
of H.

Proof. Let us first state the following lemma which follows from arguments of

Garg et al. [1996].

Lemma 6.12. If all remaining terminal pairs in T
� �

T have distances at least D

in H
�
, then there exists a multicut L in H

� � �
V
� � E � � of size �E � � log n � D in H

�
that

separates every source and sink pair siti � T
�
.

Applying Lemma 6.12 to H
�
, we have that there exists a multicut of size at

most Kω log3 n � 2D � K � 2a3 given that �E � � � �E � � Kω log2 n � 2 in the remaining

graph H
�
.

We prove Theorem 6.7, by noting that condition 1 of Theorem 4.2 implies that

any multicut of the terminals in H
�

ensures that no piece in H
�

separated by L

contains more than half the weight of all terminals in H . We use this fact to show

that the multicut L can be rearranged to find a “weight-balanced” cut in H
�
, which

corresponds to a node-balanced cut in H . Any node-balanced cut, however, in H

must have at least Ω
�
K � edges. Using a proper choice of a3, we force this balanced

cut to contain at most half as many edges in H
�
as in H . Thus, we show Ω

�
K � edges

have been removed when routing P. Since routing each such pair removes at most

Dω log2 n
�
O

�
log5 n � edges. We conclude �P � must be Ω

�
K � log5 n � �

Proof of Theorem 6.7: Recall that initially �π �
H � � �π �

X � � �π �
G � � �

W � 1 � , since

at most W � 1 of �π �
G � is not assigned to any node in H , and each node in H has

weight between W and 2W � 1 as in shown in proof of Lemma 6.7. Hence the total

weight taken away from routing P terminal pairs of distance at most D is at most

DP
�
2W � 1 � .

To facilitate our analysis, we first alter �π slightly to generate a new function

�π � �
i � � � i � V

�
H
� � ,

Procedure Alter
� �π, �π � � : For a pair of terminals uv � T such that u takes away a
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certain amount of weight, we remove the same amount (as specified in condition 1

of Theorem 4.2) from �π �
v � if v remains in H

�
and define this updated weight of H

�
as �π � �

H
� � . Thus we have �π � �

H
� � � �π �

G � � �
W � 1 � � 2DP

�
2W � 1 � .

It is easy to see that only remaining pairs uv � T
�
contribute a positive weight

to �π � �
H
� � according to their flow in f̄ like that of condition 1 in Theorem 4.2; hence

each connected component in H
�
, separated by multicut L, has a weight of at most

�π � �
H
� � � 2.

Let L be the multicut that separates all remaining terminals pairs T
� � T in H

�
.

L cuts the graph H
�
and hence group nodes in V

�
H
� � into clusters, such that weight

of each cluster according to �π � is less than half of the total remaining weight �π � �
H
� �

of H
�
, since each pair of terminals that contribute the same amount of weight to

�π � �
H
� � must belong to different multicut clusters.

We then use L to find a weight-balanced cut
�
U
� � V � � U

� � in H
�

such that

each side has weight at least �π � �
H
� � � 4, where �π � �

H
� � � �π �

G � � �
W � 1 � � 2

�
2W �

1 � D �P � . It is straightforward to verify that any partition
�
U � V �

H � � U � in H , such

that U
� �

U and
�
V
� � U

� � � �
V

�
H � � U � , is node-balanced in H as shown in

Lemma 6.13 and Lemma 6.14.

We build a
�
1 � 4 � 3 � 4 � -weight-balanced partition of H

�
in the following way:

start two empty sides A and B, and start adding the connected components (after

removing the multicut L) of H
�

to the smaller side repeatedly. Each component

contains at most �π � �
H
� � � 2 due to condition 1 of Theorem 4.2 and PROCEDURE

ALTER; in the end neither side can contain more than 3 �π � �
H
� � � 4 of weight; indeed,

consider the step where, w.l.o.g, side A were put over 3 � 4 of �π � �
H
� � by adding

a component d: in that step, d could not have been added to A, since �π � �
A � �

�π � �
H
� � � 4 � �π � �

B � before d were added, given that d � �π � �
H
� � � 2.

Lemma 6.13. Let
�
U
� � V �

H
� � � U

� � be a
�
1 � 4 � 3 � 4 � -weight-balanced cut in H

�
.

Consider any cut
�
U � V �

H � � U � in H, such that U
� �

U and
�
V

�
H
� � � U

� � �
�
V

�
H � � U � before we route any of the P paths:

min
� �U � � �V � U � � � �π �

G � � �
W � 1 �

4
�
2W � 1 � � DP � 2



100 � Routing, Disjoint Paths, and Classification

Proof. Indeed, if U is the smaller side, �U � � �U � � ; otherwise, we have �V �
H � � U � �

�V �
H
� � � U

� � . For both U
�
and V

�
H
� ��� U

�
, we have

�� U
�

�� � �π � �
H
� � � 4

�
2W � 1 �

�� V
�
H
� ��� U

�
�� � �π � �

H
� � � 4

�
2W � 1 �

�
� �π �

G � � �
W � 1 � � 2DP

�
2W � 1 � �

4
�
2W � 1 �

since each node in V
�
H
� � has weight at most 2W � 1 despite alterations on terminal

weights and �π � �
H
� � � �π �

G � � �
W � 1 � � 2DP

�
2W � 1 � . Therefore

min
� �U � � �V � U � � � �π �

G � � �
W � 1 �

4
�
2W � 1 � � DP � 2

Lemma 6.14. � δH
�
U � � � φ

�
H � � K8 � DP � 2 � , for any

�
U � V �

H � � U � as defined in

Lemma 6.13.

Proof. By the edge expansion property of expander H , we get the lower bound on

the size of the cut
�
U � V � U � :

� δH
�
U � � � φ

�
H � min

� �U � � �V � U � �
� φ

�
H �

� �π �
G � � �

W � 1 �
4

�
2W � 1 � � DP � 2 �

� φ
�
H �

�
�π �

G � � 8W � �π �
G � � 16W 2 � 1

8
� DP � 2 �

� φ
�
H �

�
K
8

� DP � 2 �
since K � �π �

G � � W , given that every cluster must have weight at least W in H and

�π �
G � � 16W 2 � Ω

�
log3 n � � 1 � 8.

On the other hand, by Lemma 6.12, we know that the current size of the bal-

anced cut in H
�

is at most the size of the multicut L given the construction of
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�
U
� � V �

H
� � � U

� � :

�� δH �
�
U
� � �� � �E � logn � D � Kω log2 n log n

2D
� Kω

2a3
(6.5.3)

The edge loss from the balanced cut cap
�
U � V �

H � � U � in H is caused by rout-

ing the P paths, which can take away at most DPω log2 n number of edges. Thus

we have:

�� δH �
�
U
� � �� � DPω log2 n � � δH

�
U � �

ωK
2a3

� DPω log2 n � φ
�
H �

�
K
8

� DP � 2 �
DP

�
ω log2 n � φ

�
H � � 2 � � φ

�
H � K

8
� Kω

2a3

P �
�
φ

�
H � K

8 � Kω
2a3 �

a3 log3 n
�
ω log2 n � φ

�
H � � 2 �

By taking φ
�
H � � 1 � 4, a3 � 32ω, we have D � 32ω log3 n and P �

K � 2048ω2 log5 n, for a constant ω.
�
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Imagine – John Lennon

...

Imagine there’s no countries

It isn’t hard to do

Nothing to kill or die for

And no religion too

Imagine all the people

Living life in peace...

...

Imagine no possessions

I wonder if you can

No need for greed or hunger

A brotherhood of man

Imagine all the people

Sharing all the world...



7 Global and Local Optima Lemmas

Be careful what you wish for, it might come true. – J.K.Rowling

7.1 The Problem Definition and Preliminaries

In the next three chapters, we study the following problem: Given a set of 2N

diploid individuals from two populations P1 and P2, we aim to classify individuals

according to their populations of origin, based on only a small amount of their

genotype data. Recall that for diploid organisms the choromosomes come in pairs

and a genotype is a list of unordered pairs of alleles such that one comes from each

parent. We define K as the number of attributes that we draw from each individual.

We aim to minimize K while being able to classify our sample.

We use capital letters X � Y � Z to denote individuals, each of which also repre-

sents the observed genotype data corresponding to an individual across a set of K

loci. Since each SNP has two variants (alleles), we use bit 1 and bit 0 to denote

them. We use their corresponding lower case letters xi � yi � zi to denote their bits at

locus i. We use X i � �
xi

a : a � �
1 � 2 � � to denote an unordered pair of bits (alleles)

at locus i for individual X .

In Chapter 9, we consider the case that we are given only a single bit from

each of K loci. This corresponds to the classic problem of learning mixtures of two

product distributions over the K dimensional Boolean cube
�
0 � 1 � K , when attribute

values across different dimensions are mutually independent.

105
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7.1.1 The Statistical Model and Measure of Distance

Given the population of origin of each individual, the genotypes are assumed to

be generated by drawing alleles independently from the appropriate population

frequency distribution. We use pi
x � Pr � xi

a � 1 � and pi
y � Pr � yi

a � 1 � � � i � 1 ������� � K
to denote the “success” probability (frequency of an allele mapping to bit 1) at locus

i in the population of origin of individual X and Y respectively.

In particular, assuming the population of origin for X is P1 and Y comes from

population P2: we assume that xi
a � � a � �

1 � 2 � � � i are independent Bernoulli ran-

dom variables with success probability pi
x, and yi

b � � b � �
1 � 2 � � � i are independent

Bernoulli random variables with success probability pi
y, and we define

Pr � xi
a � 1 � � pi

1 � pi
x � (7.1.1)

Pr � xi
a � 0 � � qi

1 � 1 � pi
1 � (7.1.2)

Pr � yi
a � 1 � � pi

2 � pi
y � (7.1.3)

Pr � yi
a � 0 � � qi

2 � 1 � pi
2 � (7.1.4)

For two populations P1 and P2, we call �p1 � �p2 their centers, where

�p1 � �
p1

1 � p2
1 ������� � pK

1 � � (7.1.5)

�p2 � �
p1

2 � p2
2 ������� � pK

2 � � (7.1.6)

We use the following γ to measure the average distance between P1 and P2 across

their K loci (dimensions).

Definition 7.1. γ
�
P1 � P2 � � ∑K

i � 1 � pi
1 	 pi

2 � 2

K .

We use X � �pa � � a � 1 � 2 to represent that X is a random node from population

Pa. In the following definitions, we use X to represent the sequence of K unordered

pairs of bits that we see from locus 1 to K on node X , where an unordered pair of

bits refer to one of
�
00 � 01 � 10 � 11 � . Let X k � � k represent the pair of bits at locus k

in X . Recall that an indicator variable is a discrete random variable that takes on

only the value of 0 or 1.
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Definition 7.2. Given X, we define the following indicator random variables

Ik
11

�
X � � Ik

00

�
X � � Ik� 01 �

�
X � � � k � 1 ������� � K such that:

Ik
11

�
X � � 1 : X k � 11 �

Ik
00

�
X � � 1 : X k � 00 �

Ik� 01 �
�
X � � 1 : X k � 01 � or10 �

where X k denotes the unordered pair of bits observed at locus k in X.

Definition 7.3. Given two bits x � y, Ix � y indicates if x � y, i.e.,

Ix � y � 1 : x � y �
Ix � y � 0 : x

�� y �

Definition 7.4. � k � �
1 � K � , let us denote f k �

X � � Ik
00

�
X � � Ik

11

�
X � such that

f k �
X � �

��� �� � 1 : Ik
11

�
X � � 1 �

0 : Ik� 01 �
�
X � � 1 �

� 1 : Ik
00

�
X � � 1 �

Finally, we introduce the following theorem and its corollary that we use

throughout this thesis. We refer to both as Hoeffding bound.

Theorem 7.1. (Hoeffding [1963]) If X1 � X2 ������� � XK are independent and ai � Xi �
bi � � i � 1 � 2 ������� � K, and if X̄ � �

X1 � ����� � XK � � K and µ � E
�
X̄ � , then for t � 0

Pr
�
X̄ � µ � t � � e 	 2K2t2 � ∑K

i � 1 � bi 	 ai � 2 �

We also use the following bound for the distribution function of the difference

of two sample means.

Corollary 7.1. (Hoeffding [1963]) If Y1 ������� � Yn, Z1 ������� � Zm are independent ran-

dom variables with values in the interval
�
a � b � , and if Ȳ � �

Y1 � ����� � Ym � � m,

Z̄ � �
Z1 � ����� � Zn � � n, then for t � 0

Pr
�
Ȳ � Z̄ � �

E
�
Ȳ � � E

�
Z̄ � � � t � � e 	 2t2 � � m � 1 � n � 1 � � b 	 a � 2 �
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7.2 Every Edge Has a Perfect Score

In this section, we prove a theorem regarding a score that we assign to each pair

of individuals based on their genotype data. Given a large enough K, in particular,

K � Ω
�
lnN � γ2 � , we show that scores between people from the same population are

consistently lower than scores between people from different populations. Using

this score, we can construct a complete graph where nodes are individuals and

edge weight is the score between two individuals.

In particular, we call this score Pscore
�
X � Y � . For an unordered pair of indi-

viduals
�
X � Y � ,

Definition 7.5.

Pscore
�
X � Y � �

K

∑
i � 1

Pscorei �
X � Y � �

K

∑
i � 1

Pscorei

�
xi

1 xi
2

yi
1 yi

2 � �

where

Pscorei �
X � Y � � 1

2 � �
Ixi

1 � xi
2

� Iyi
1 � yi

2
� � �

Ixi
1 � yi

1
� Ixi

2 � yi
2

� ��
Ixi

1 � xi
2

� Iyi
1 � yi

2
� � �

Ixi
1 � yi

2
� Ixi

2 � yi
1

� � �

Note that this definition utilizes a special quartet construction involving four

bits xi
1 � xi

2 � yi
1 � yi

2 that are four independent Bernoulli random variables such that

two bits from each pair
�
xi

1 � xi
2 � ,

�
yi

1 � yi
2 � are identically distributed.

Table 7.2 shows the scores, where the top row denotes
�
xi

1xi
2 � while the first

column denotes
�
yi

1yi
2 � ; we only define scores for 01 since 01 and 10 are equivalent

as an unordered pair to Pscorei �
X � Y � .

00 11 01
00 0 2 0
11 2 0 0
01 0 0 -1

Table 7.1. A TABLE ILLUSTRATING PSCOREi � � i GIVEN ANY FOUR BITS
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Lemma 7.1. If X � Y come from different populations and Z1 � Z2 are of common

origin, then,

E
�
Pscore

�
X � Y �
� � 2Kγ �

E
�
Pscore

�
Z1 � Z2 �
� � 0 �

Proof. We first define δi
x � �

pi
x � 2 � �

qi
x � 2 and δi

xy � pi
x pi

y � qi
xqi

y, where qi
x � 1 � pi

x

and qi
y � 1 � pi

y, and hence

E � Ixi
1 � xi

2
� Iyi

1 � yi
2
� �

Ixi
1 � yi

1
� Ixi

2 � yi
2

� � � E � Ixi
1 � xi

2
� Iyi

1 � yi
2
� �

Ixi
1 � yi

2
� Ixi

2 � yi
1

� �
� δi

x � δi
y � 2δi

xy

� 2
�
pi

x � pi
y � 2 � (7.2.7)

Given that X � Y come from different populations, we apply (7.2.7),

E
�
Pscore

�
X � Y �
� �

K

∑
i � 1

E � Pscorei �
X � Y � � (7.2.8)

� 1
2

K

∑
i � 1

E � Ixi
1 � xi

2
� Iyi

1 � yi
2
� �

Ixi
1 � yi

1
� Ixi

2 � yi
2

� � �

1
2

K

∑
i � 1

E � Ixi
1 � xi

2
� Iyi

1 � yi
2
� �

Ixi
1 � yi

2
� Ixi

2 � yi
1

� � (7.2.9)

� 2
K

∑
i � 1

�
pi

1 � pi
2 � 2 � 2Kγ � (7.2.10)

For Z1 � Z2, � i, pi
Z1

� pi
Z2

, hence E
�
Pscore

�
Z1 � Z2 �
� � 0.

The following theorem does not assume that the sample contains the same num-

ber of points from each population.

Theorem 7.2. Let the sample size be 2N. Given that K � 18ln N � γ2, with proba-

bility 1 � O
�
1 � N2 � , for any four individuals X � Y � Z1 � Z2 such that X � Y come from

different populations and Z1 � Z2 come from the same population,

Pscore
�
X � Y � � Pscore

�
Z1 � Z2 � �
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Proof. We first use Hoeffding bound to prove the following lemma.

Lemma 7.2. Given that K � 18ln N � γ2,

Pr
�
Pscore

�
Z1 � Z2 � � Kγ � � 1 � N4 �

Pr
�
Pscore

�
X � Y � � Kγ � � 1 � N4 �

Proof. Given that E
�
Pscore

�
Z1 � Z2 �
� � 0 and Pscore

�
Z1 � Z2 � �

∑K
i � 1 Pscorei �

Z1 � Z2 � is the sum of K independent random variables with

values in
� � 1 � 2 � , using Hoeffding bound as in Theorem 7.1 with t � Kγ � K � γ,

Pr
�
Pscore

�
Z1 � Z2 � � Kγ � � e 	 2K2 � γ � 2 � K � 3 � 2 � 1 � N4 � (7.2.11)

Similarly, given that E
�
Pscore

�
X � Y �
� � 2Kγ,

Pr
�
Pscore

�
X � Y � � Kγ � �

Pr
� � Pscore

�
X � Y � � E

�
Pscore

�
X � Y �
� � Kγ � (7.2.12)

� e 	 2K2 � γ � 2 � K � 3 � 2 � 1 � N4 � (7.2.13)

By union bound, the probability that any event of type Pscore
�
X � Y � � Kγ or

type Pscore
�
Z1 � Z2 � � Kγ happens is at most 4N2 � N4, since the total number of

such events are 2N
�
2N � 1 � . Hence the theorem holds.

7.3 How to Learn Which Side to Join?

In this section, we study the following problem: Assume that we have separated 2N

individuals, N from each population of origin, and we are now given a new node X

that we need to place on the correct side according to its population of origin. First

recall that we use X to represent the individual X’s genotype data over its K loci.

Hence X � � �
xk

1 � xk
2 � � � k � is a sequence of K pairs of unordered bits, which we also

refer to as the bit string of X loosely.

We prove the Local Optimum Lemma as follows. Given a fixed individual X

with a certain bit string, and its N peers from each population: X1 ������� � XN and
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Y1 ������� � YN , we show that given a large enough K, i.e., given enough loci, which

is parameterized over N and γ, with high probability,

N

∑
i � 1

Pscore
�
X � Yi � �

N

∑
i � 1

Pscore
�
X � Xi � � (7.3.14)

Thus we can put X on its own population side given that all of its 2N peers

X1 ������� � XN � Y1 ������� � YN have been placed correctly.

Fix X to be X̃ . Let Pscore
�
X̃ � Z � denote Pscore

�
X � Z �X � X̃ � . The idea of

the proof is that while Pscore
�
X � Xi � � Pscore

�
X � Yi � � � i are all dependent on ran-

dom variable X , they become mutually independent once we fix X to an arbitrary

bit string X̃ that we could possibly observe. In other words, random variables

Pscore
�
X̃ � Yi � � � i � 1 ������� � N, and Pscore

�
X̃ � Xi � � � i � 1 ������� � N are conditionally in-

dependent given X being fixed to X̃ . This allows us to use Hoeffding bound to prove

the Local Optimum Lemma as in Theorem 7.3.

We define the following random variable diff
�
X � such that diff

�
X̃ � repre-

sents the expected difference of two conditionally independent random variables

Pscore
�
X̃ � Yi � , Pscore

�
X̃ � Xi � , each of which depends on either Yi or Xi given that

X is fixed to X̃ . Hence expectations are taken over all possible realizations of Yi, Xi

respectively.

Definition 7.6. Let X � �p1 be a node from P1 and Y � �p2 be a node from P2. Let

Z1
� �p1, Z2

� �p2 be two nodes randomly drawn from P1 and P2 respectively.

diff
�
X � � EZ2 	 �p2

�
Pscore

�
X � Z2 �
� � EZ1 	 �p1

�
Pscore

�
X � Z1 �
� �

diff
�
Y � � EZ1 	 �p1

�
Pscore

�
Y � Z1 �
� � EZ2 	 �p2

�
Pscore

�
Y � Z2 �
� �

Remark 7.1. Hence diff
�
X � is determined by node X’s bit string X̃. diff

�
X � is a

random variable that is completely determined by the outcome X̃ of X. For a fixed

outcome X̃, diff
�
X � is a fixed value.

Proposition 7.1. � a � 1 � 2, EX 	 �pa

�
diff

�
X �
� � 2Kγ.
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Proof. W.l.o.g., assume that X � �p1; for X � �p2, proof is similar.

EX 	 �p1

�
diff

�
X �
� �

EX 	 �p1 � EZ2 	 �p2

�
Pscore

�
X � Z2 �
� � EZ1 	 �p1

�
Pscore

�
X � Z1 �
� �

� EX 	 �p1 � Z2 	 �p2

�
Pscore

�
X � Z2 �
� � EX 	 �p1 � Z1 	 �p1

�
Pscore

�
X � Z1 �
�

� 2Kγ �

where the last step is due to Lemma 7.1.

We show that when K is big enough, which is parameterized over N and γ, with

high probability, the observed bit string X̃ is conforming to what we expect to see;

specifically, this is reflected in the bounded deviation of diff
�
X � from its expected

value 2Kγ, given X̃ . Indeed,

Lemma 7.3. Given that K � 8ln 1 � τ
γ , Pr

�
diff

�
X � � Kγ � � 1 � τ �

Proof. Given X̃ , we use the following indicator random variables

Ik
11

�
X � � Ik

00

�
X � � Ik� 01 �

�
X � � � k � 1 ������� � K as defined in Definition 7.2, where

XK ���xk
1xk

2 denotes the unordered pair of bits observed at locus K in X̃ .

We first show the following claim.

Claim 7.1. Let X be any sample point. � a � 1 � 2,

EY 	 �pa � Pscore
�
X � Y �X � X̃ � � �

2
K

∑
k � 1

Ik
11

�
X � �

qk
a � 2 � 2

K

∑
k � 1

Ik
00

�
X � �

pk
a � 2 � 2

K

∑
k � 1

Ik� 01 �
�
X � pk

aqk
a �

Proof. It is straightforward to verify that for each locus i,

Pscorei �
X̃ � Y � �

������������� ������������

2 : � x̃i
1 x̃i

2

yi
1 yi

2 � � � 1 1

0 0 � � or � 0 0

1 1 � �

� 1 : � x̃i
1 x̃i

2

yi
1 yi

2 � � � 0 1

1 0 � � or � 0 1

0 1 � �

: or � 1 0

1 0 � � or � 1 0

0 1 � �

0 : otherwise �



7.3 How to Learn Which Side to Join? � 113

Therefore we have

EY 	 �pa � Pscore
�
X � Y �X � X̃ � �

�
K

∑
k � 1

EY 	 �pa � Pscorek �
X � Y �X � X̃ � �

� 2
K

∑
k � 1

�
Ik
11

�
X � �

qk
a � 2 � Ik

00
�
X � �

pk
a � 2 � 1

2
Ik� 01 �

�
X � 2pk

aqk
a �

� 2
K

∑
k � 1

Ik
11

�
X � �

qk
a � 2 � 2

K

∑
k � 1

Ik
00

�
X � �

pk
a � 2 � 2

K

∑
k � 1

Ik� 01 �
�
X � pk

aqk
a �

We next use Claim 7.1, and function f k �
X � � Ik

00

�
X � � Ik

11

�
X � , as specified

in Definition 7.4, to derive (7.3.15) for X � �p1, and (7.3.16) for Y � �p2, where

ρk � �
pk

2 � 2 � �
pk

1 � 2 �
ψk � �

qk
2 � 2 � �

qk
1 � 2 �

ωk � �
pk

2qk
2 � pk

1qk
2 � �

S � 2
K

∑
k � 1

�
pk

2 � pk
1 � �

pk
2 � pk

1 � 1 � �

diff
�
X � � EZ2 	 �p2 � Pscore

�
X � Z2 �X � X̃ � � � EZ1 	 �p1 � Pscore

�
X � Z1 �X � X̃ � �

� 2
K

∑
k � 1

Ik
11

�
X � ψk � 2

K

∑
k � 1

Ik
00

�
X � ρk � 2

K

∑
k � 1

Ik� 01 �
�
X � ωk �

� 2
K

∑
k � 1

�
pk

2 � pk
1 � �

Ik
00

�
X � � Ik

11
�
X � � � 2

K

∑
k � 1

�
pk

2 � pk
1 � �

pk
2 � pk

1 � 1 �

� 2
K

∑
k � 1

�
pk

2 � pk
1 � f k �

X � � S � (7.3.15)

diff
�
Y � � EZ1 	 �p1 � Pscore

�
Y � Z1 �Y � Ỹ � � � EZ2 	 �p2 � Pscore

�
Y � Z2 �Y � Ỹ � �

� 2
K

∑
k � 1

�
pk

1 � pk
2 � �

Ik
00

�
Y � � Ik

11
�
Y � � � 2

K

∑
k � 1

�
pk

1 � pk
2 � �

pk
2 � pk

1 � 1 �

� 2
K

∑
k � 1

�
pk

1 � pk
2 � f k �

Y � � S � (7.3.16)
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Let us define µ f , and by proposition 7.1, (7.3.15) and (7.3.16),

EX 	 �p1

�
2

K

∑
k � 1

�
pk

2 � pk
1 � f k �

X � � � µ f (7.3.17)

� EX 	 �p1

�
diff

�
X �
� � S

� 2Kγ � S � (7.3.18)

EY 	 �p2

�
2

K

∑
k � 1

�
pk

1 � pk
2 � f k �

Y � � � EY 	 �p2

�
diff

�
Y �
� � S

� 2Kγ � S � (7.3.19)

We now show the following claims using Hoeffding bound; we only show proof

for Claim 7.2, since proof for the other one is similar.

Claim 7.2. Given that K � 8ln1 � τ
γ ,

PrX 	 �p1

�
K

∑
k � 1

2
�
pk

2 � pk
1 � f k �

X � � µ f � � Kγ � � τ �

Claim 7.3. Given that K � 8ln1 � τ
γ ,

PrY 	 �p2

�
K

∑
k � 1

2
�
pk

1 � pk
2 � f k �

Y � � �
2Kγ � S � � � Kγ � � τ �

Proof of claim 7.2: Given that each observed bit in X̃ is an independent Bernoulli

random variable, f 1 �
X � � f 2 �

X � ������� � f K �
X � are independent and � 2

�
γk � 2

�
pk

2 �
pk

1 � f k �
X � � 2

�
γk, where γk � �

pk
2 � pk

1 � 2 � � k � 1 ������� � K, then for t � Kγ � K � γ,

PrX 	 �p1

�
K

∑
k � 1

2
�
pk

2 � pk
1 � f k �

X � � µ f � � Kγ � � e 	 2K2 � γ � 2 � ∑K
k � 1 � 4 �

γk � 2 � τ �

�
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These claims immediately imply Lemma 7.3, since

PrX 	 �p1

�
K

∑
k � 1

diff
�
X � � 2Kγ � � Kγ � �

PrX 	 �p1

�
K

∑
k � 1

2
�
pk

2 � pk
1 � f k �

X � � µ f � � Kγ � � τ �

PrY 	 �p2

�
K

∑
k � 1

diff
�
Y � � 2Kγ � � Kγ � �

PrY 	 �p2

�
K

∑
k � 1

2
�
pk

1 � pk
2 � f k �

Y � � �
2Kγ � S � � � Kγ � � τ �

W.l.o.g., we assume that X � �p1. We have shown that there is a significant

difference in the expected values, given enough multilocus genotype data (e.g.,

SNPs); that is, with high probability, we will observe a bit string X̃ of node X � �p1

such that � i � 1 ������� � N,

EYi 	 �p2 � Pscore
�
X � Yi �X � X̃ � � � EXi 	 �p1 � Pscore

�
X � Xi �X � X̃ � � � Kγ � (7.3.20)

due to the bounded amount of deviation in random variable diff
�
X � from its ex-

pected value, when evaluated at X̃ . A similar statement holds for Y � �p2.

We are ready to show the theorem of this section. The theorem shows that with

high probability, we can place a node X in the correct side given enough number of

loci and N random peers from each population. In particular, the failure probability

comes from either X being a bad node such that diff
�
X � � Kγ, or from a certain

large deviation event for the sum of 2KN conditional independent random variables

as shown in the proof.

Theorem 7.3. Let K � max
� 9ln � 1 � δ �

Nγ2 � 8ln � 1 � τ �
γ � . For any X � �p1 and its observed

bit string X̃, and 2N individuals Xi
� �p1 � Yi

� �p2 � � i � 1 ������� � N that are randomly
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drawn from their populations of origin, with probability 1 � τ � δ,

N

∑
i � 1

Pscore
�
X � Yi �X � X̃ � �

N

∑
i � 1

Pscore
�
X � Xi �X � X̃ � �

A similar statement holds for Y � �p2.

Proof. Given an individual X and its observed bit string X̃ , we first define 2NK con-

ditional independent random variables, such that � i � 1 ������� � N, Pscore
�
Yi � X �X �

X̃ � and Pscore
�
Xi � X �X � X̃ � each contribute K conditional independent random

variables that are also conditional independent with respect to all other
�
2N � 1 � K

such random variables.

Let Y k
i � Pscorek �

X � Yi �X � X̃ � and Zk
i � Pscorek �

X � Xi �X � X̃ � be the 2NK

conditional independent random variables with values in
� � 1 � 2 � , and

Ȳ �
N

∑
i � 1

K

∑
k � 1

Pscorek �
X � Yi �X � X̃ � � NK � (7.3.21)

Z̄ �
N

∑
i � 1

K

∑
k � 1

Pscorek �
X � Xi �X � X̃ � � NK � (7.3.22)

Claim 7.4. Given that K � 8ln � 1 � τ �
γ and a particular bit string X̃ for node X � �p1,

with probability 1 � τ,

E
�
Ȳ � � E

�
Z̄ � � γ �

Proof. Using Lemma 7.3, we have diff
�
X � � Kγ, with probability 1 � τ, given that

K � 8ln � 1 � τ �
γ .

Hence given that individuals Xi
� �p1 � Yi

� �p2 � � i � 1 ������� � N, are randomly

drawn from their populations of origin, we have with probability 1 � τ,

E
�
Ȳ � � E

�
Z̄ � � E

� �
Ȳ � Z̄ �
�

� 1
NK

N

∑
i � 1

E � �
Pscore

�
X � Yi �X � X̃ � � Pscore

�
X � Xi �X � X̃ � � �

� 1
NK

N

∑
i � 1

diff
�
X � � NKγ � NK � γ �
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Assuming that we indeed have observed a bit string X̃ such that E
�
Ȳ � � E

�
Z̄ � �

γ, we apply Corollary 7.1 of Theorem 7.1; Given that t � E
�
Ȳ � � E

�
Z̄ � � γ and

K � 9ln � 1 � δ �
Nγ2 ,

Pr

�
N

∑
i � 1

Pscore
�
X � Yi �X � X̃ � �

N

∑
i � 1

Pscore
�
X � Xi �X � X̃ � � 0 �E �

Ȳ � � E
�
Z̄ � � γ �

� Pr
�
Ȳ � Z̄ � �

E
�
Ȳ � � E

�
Z̄ � � � � �

E
�
Ȳ � � E

�
Z̄ � �
�

� Pr
� � �

Ȳ � Z̄ � � �
E
�
Ȳ � � E

�
Z̄ � � � �

E
�
Ȳ � � E

�
Z̄ � �
�

� e
� 2 � t � 2

2 � 3 � 2 � NK � e
� 2 � γ � 2

2 � 3 � 2 � NK

� δ �

Thus the total probability of a bad event

Pr

�
N

∑
i � 1

Pscore
�
X � Yi �X � X̃ � �

N

∑
i � 1

Pscore
�
X � Xi �X � X̃ � � 0 � �

Pr
�
E
�
Ȳ � � E

�
Z̄ � � γ � �

Pr

�
N

∑
i � 1

Pscore
�
X � Yi �X � X̃ � �

N

∑
i � 1

Pscore
�
X � Xi �X � X̃ � � 0 �E �

Ȳ � � E
�
Z̄ � � γ �

� τ � δ �

Corollary 7.2. Let K � max
� 18ln N

Nγ2 � 16ln N
γ � . For any X � �p1 and its observed string

X̃, with probability 1 � O
�
1 � N2 � , given that Xi

� �p1 � Yi
� �p2 � � i are individuals

randomly drawn from their population of origin, we have

N

∑
i � 1

Pscore
�
X � Yi �X � X̃ � �

N

∑
i � 1

Pscore
�
X � Xi �X � X̃ � �

A similar statement holds for Y � �p2.
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8 Recognizing a Perfect Partition

8.1 Introduction

In this chapter, we aim to classify a balanced input instance and derive a tighter

bound on K based on the Pscore that we define in section 7.2 and the complete

graph that we construct, where nodes are individuals and edge weight is the score

between two individuals. Let P1 represent the set of nodes X1 � X2 ������� � XN from pop-

ulation 1, and P2 represent the set of nodes Y1 � Y2 ������� � YN from population 2. Recall

that a cut
�
S � S̄ � refers to the set of edges with exactly one endpoint in S. We define

Pscore for a cut
�
S � S̄ � as the sum of Pscores over the set of edges in

�
S � S̄ � . When

we say Pscore over an edge e � �
u � v � , we refer to Pscore

�
u � v � .

Consider a balanced cut
�
S � S̄ � , as shown in Figure 8.1.1, where

S � �
Xi � P1 � i � 1 ������� � N � L � V j � P2 � j � 1 ������� � L � � (8.1.1)

S̄ � �
Yi � P2 � i � 1 ������� � N � L � U j � P1 � j � 1 ������� � L � � (8.1.2)

and L � �
1 � N � 2 � is the number of nodes that have been swapped from one side of

T to the other, by definition,

Pscore
�
S � S̄ � �

N 	 L

∑
i � 1

N 	 L

∑
j � 1

Pscore
�
Xi � Yj � �

L

∑
i � 1

L

∑
j � 1

Pscore
�
Ui � Vj � �

N 	 L

∑
i � 1

L

∑
j � 1

�
Pscore

�
Xi � U j � � Pscore

�
Yi � Vj � � � (8.1.3)
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which defines Pscore
�
T � when L � 0, i.e.,

Pscore
�
T � �

N

∑
i � 1

N

∑
j � 1

Pscore
�
Xi � Yj � � (8.1.4)

Y3

U1
U2

V1

VL UL

X1

YN−L
XN−L

X3

X2

V2

Y1
Y2

Figure 8.1.1. Edges that are different between a perfect partition T and another
balanced partition

�
S � S̄ � , seen only from U1

� �p1 and V1
� �p2; red dotted edges are

in T and green solid edges are in
�
S � S̄ � .

It is easy to verify that in expectation, the perfect partition has the maximum

Pscore, i.e., � balanced
�
S � S̄ � other than T , E

�
Pscore

�
T �
� � E � Pscore

�
S � S̄ � � .

Furthermore, the following theorem says that this is also true with high probability,

given a large enough K. Formally,

Theorem 8.1. Given that K � Ω
� lnN

γ � and KN � Ω
� lnN log logN

γ2 � , where N � 8, with

probability 1 � 1 � poly
�
N � , for all other balanced cut

�
S � S̄ � in the complete graph

formed among 2N nodes, we have

Pscore
�
T � � Pscore

�
S � S̄ � �

Remark 8.1. When N � Ω
�
log logN � γ � , i.e., when we have enough individuals

from each population, K � Ω
� lnN

γ � becomes the only constraint.
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8.1.1 The Approach

We compare each balanced cut
�
S � S̄ � against the perfect partition T , and define

a random variable diff
�
T � �

S � S � � L � as in (8.1.5) to capture their difference. Fig-

ure 8.1.1 shows the nodes that we refer to in (8.1.6),

diff
�
T � �

S � S � � L � � Pscore
�
T � � Pscore

�
S � S̄ � (8.1.5)

�
L

∑
j � 1

N 	 L

∑
i � 1

Pscore
�
V j � Xi � � Pscore

�
V j � Yi � �

L

∑
j � 1

N 	 L

∑
i � 1

Pscore
�
U j � Yi � � Pscore

�
U j � Xi � � (8.1.6)

Thus for a particular balanced cut
�
S � S̄ � , diff

�
T � �

S � S � � L � � 0 immediately im-

plies that Pscore
�
T � � Pscore

�
S � S̄ � . And this is what Theorem 8.1 aims to prove

for all balanced cuts.

In more detail, we refer to Xi � �
S � P1 � and Yi � �

S̄ � P2 � , � i � �
1 � N � L � as

unswapped nodes, since they belong to the majority type in their own side; we

denote V j � �
S � P2 � � U j � �

S̄ � P1 � � � j � �
1 � L � as swapped nodes since they are the

minority on the their new side.

The random variable diff
�
T � �

S � S � � L � � � N � 2 � L � 1, comprises exactly of

Pscores over the set of edges that differ between those in T and those in
�
S � S̄ � ,

which is exactly the set of 4L
�
N � L � edges between swapped nodes and unswapped

nodes, among which 4
�
N � L � edges are shown in Figure 8.1.1.

In particular, for
�
S � S̄ � , as shown in Figure 8.1.1, original cut edges� �

Vj � Xi � � �
U j � Yi � � � j � �

1 � L � � � i � �
1 � N � L � � that belong to T are replaced with� �

Vj � Yi � � �
U j � Xi � � � j � �

1 � L � � � i � �
1 � N � L � � , which are the new edges that appear

in
�
S � S̄ � ; these new edges together with the set of common edges that belong to

T � �
S � S̄ � form

�
S � S̄ � . Hence we only need to consider the influence of 2NK ran-

dom pairs of bits over these two sets of edges, as shown in (8.1.6), � �
S � S̄ � .

In particular, observe that all random variables, diff
�
T � �

S � S � � L � � � �
S � S̄ � , � L �

0 have positive expected values, as in Proposition 8.1, as their initial advantage;

thus we need to show that the deviation of each random variable from its expected

value is less than the expected advantage with high probability.
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Proposition 8.1. E � diff
�
T � �

S � S � � L � � � 4L
�
N � L � Kγ, where expectation is over

all K random pairs of bits of Xi � Yi � � i � �
1 � N � L � and U j � Vj � � j � �

1 � L � .
We include in the next section some preliminaries on probability theory due to

our intensive use of these terms in this chapter.

8.2 Preliminaries On Probability Theory

Most of the following definitions come from the textbook Randomized Algorithms

by Motwani and Raghavan [1995]. Some others come from a paper by Chung and

Lu [2006].

In all definitions below, we shall be thinking of some sample space Ω, and

when we speak of the complement of A, denoted as Ac, we mean all those elements

of Ω which are not the elements of A.

First recall that a σ-field is the following.

Definition 8.1. A σ-field
�
Ω � F � consists of a sample space Ω and a collection of

subsets of Ω, denoted as F , satisfying the following conditions.

– /0 � F .

– If A � F , then Ac � F .

– If A1 � A2 ������� is a sequence of elements of F then

�

j

A j � F

Definition 8.2. Given a σ-field
�
Ω � F � , a probability measure Pr : F � � � is a

function that satisfies the following conditions.

– � A � F � 0 � Pr
�
A � � 1.

– Pr
�
Ω � � 1.

– For mutually disjoint events ε1 � ε2 ������� � Pr
� �

iεi � � ∑i Pr
�
εi � .

Definition 8.3. A probability space
�
Ω � F � Pr � consists of a σ-field

�
Ω � F � with a

probability measure Pr defined on it.
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Definition 8.4. Given the σ-field
�
Ω � F � with F � 2Ω, a filter F is nested sequence

F0
� F1

� ����� � Fn of subsets of 2Ω such that

– F0 � �
/0 � Ω �

– Fn � 2Ω

– for 0 � i � n,
�
Ω � Fi � is a σ-field.

Definition 8.5. If ε1 � ε2 ������� are disjoint events that partition Ω, then an event is in

the generated σ-field F if and only if it can be expressed as a union of some subset

of the events ε1 � ε2 ������� ; we refer to ε1 � ε2 ������� as the elementary events in the σ-field

F .

Remark 8.2. An intuitive view of Definition 8.4 can be obtained by associating

with each Fi a partition of Ω into blocks Bi
1 � Bi

2 ������� such that the events Bi
j generate

the σ-field Fi. Furthermore, the partition associated with Fi � 1 is a refinement of

partition associated with Fi, and F0 is generated by the trivial partition while Fn is

generated by the partition of Ω into the singleton sets containing the sample points.

Definition 8.6. (Alon and Spencer [1992]) A martingale is a sequence X0 ������� � Xn

of random variables so that for 0 � i � n,

E
�
Xi � 1 �Xi � Xi 	 1 ������� � X0 � � Xi �

Finally, for the sake of completeness, we adopt the following definitions

from Chung and Lu [2006] in order to introduce Definition 8.9, which is equiv-

alent to Definition 8.6 for the finite cases.

Definition 8.7. If f : Ω � � is a function, we define the expectation E
�
f � �

E
�
f

�
x � � x � Ω � by

E
�
f � � E

�
f

�
x � � x � Ω � : � ∑

x � Ω
f

�
x � Pr

�
x � �
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Definition 8.8. If F is a σ-field on Ω, we define the conditional expectation

E
�
f �F � : � Ω � � by

E
�
f �F � �

x � � 1

∑y � F � x � Pr
�
y � ∑

y � F � x �
f

�
y � Pr

�
y � �

where F
�
x � is the smallest element of F that contains x.

Definition 8.9. A martingale obtained from random variable X is associated

with a filter F: F0
� F1

� ����� � Fn � 2Ω and a sequence of random variables

X0 � X1 ������� � Xm satisfying

Xi � E
�
X �Fi � � (8.2.7)

and in particular, X0 � E
�
X � and Xm � X.

8.3 Proof Techniques and Some Notation

We first introduce some notation regarding the simple probability space
�
Ω � F � Pr �

as follows. The set Ω is the set of all possible outcomes for 2NK pairs of random

bits, where we denote each pair with b
�
j � k � for individual j at position k. The σ-

field F of events is the set Σ
�
Ω � of all subsets of Ω; and the probability measure

Pr is based on the product of probabilities of each pair of random bits b
�
j � k � � � j � k

corresponding to Bernoulli(pk
a), where a � �

1 � 2 � depends on the population of

origin for individual j. Formally,

Definition 8.10. The elementary events in the underlying sample space
�
Ω � F � Pr �

are all possible 42NK choices of n � 2NK pairs of bits. For 0 � i � n and w ��
00 � 01 � 10 � 11 � i , let Bw denote the event that the first i pairs of bits equal to the bit

string w. Let Fi be the σ-field generated by the partition of Ω into blocks Bw, for

w � �
00 � 01 � 10 � 11 � i . Then the sequence F0 ������� � Fn forms a filter. In the σ-field Fi,

the only valid events are the ones that depend on the values of the first i pairs, and

all such events are valid within.

The events that we define next and their interactions are shown in Figure 8.3.2.
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�

Input with 2N nodes
Examine bad node events

Give up with

Pr � EN
1 � � 2N

N32

� ĒN
1

�

For each balanced
�
S � S̄ � ,

given h as 2KL history

h � ĒL
1

diff � diff
�
T � �

S � S̄ � � L ��
�

�
�� �h � EL

2

�
�
�
� ���h � ĒL

2

Give up with � ρ2
1 	 2L � N32

Pr � h � EL
2 � h � ĒL

1 �
h � ĒL

2 � ĒL
1 � f̄ � ĒN 	 L

1

Pr � diff � 0 � h � f̄ � � ρL
3

1 	 2 � N 	 L � � N32

�
Expand into Subspace Ωh

�

Map back

ρ2 � 1
22N poly � N �

ρL
3 � 2

N4L

h � ĒL
2 � ĒL

1 f̄ : random bits

Eh � diff
�
T � �

S � S � � L � � h � f̄ � � 2L
�
N � L � Kγ

Azuma’s inequality in Ωh

Pr � diff � 0 � h � f̄ � � ρL
3 �

Figure 8.3.2. EVENTS RELATIONSHIP IN CHAPTER 8
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We show that, with high probability, all of the O
�
22N � random variables

diff
�
T � �

S � S � � L � , as in (8.1.5), one corresponding to each balanced
�
S � S̄ � , are posi-

tive.

What we do is the following: we initially confine ourselves into a good sub-

space ĒN
1 by excluding any bad node event. We then use union bound to bound

the possibility of any bad score event, where a single bad score event occurs when

diff
�
T � �

S � S � � L � � 0 for a particular balanced cut
�
S � S̄ � .

Each time we examine diff
�
T � �

S � S � � L � for a particular balanced cut
�
S � S̄ � ,

we let vector
�
H1 ������� � H2KN � record the entire history of random unordered pairs

of bits, where
�
H1 ������� � H2KL � record the partial history of unordered pairs for the

2L swapped nodes corresponding to
�
S � S̄ � . Let � � 2KL be a positive integer. We

denote this 2KL-history with H � � � . Let h be a fixed possible � -history.

We use the bounded differences method to bound a single bad score event over�
S � S̄ � : diff

�
T � �

S � S � � L � � 0. Our starting point is after we reveal the 2KL unordered

pairs and obtain a 2KL-history h. For simplicity of analysis, we first expand the

confined subspace ĒN
1 given h, by dropping constraints on the 2

�
N � L � unswapped

nodes. In this expanded subspace, we only require that the first 2L swapped nodes

are good nodes, a condition that we denote with ĒL
1

�
S � S̄ � , while leaving the re-

maining 2
�
N � L � unswapped nodes to take completely random bits according to

their distributions; that is, these nodes can be bad nodes. We then obtain a bound

on concentration for diff
�
T � �

S � S � � L � in this expanded probability space given h.

Eventually we map the probability of the bad score event that corresponds to ran-

dom variable diff
�
T � �

S � S � � L � from this expanded probability space back to the

original confined subspace ĒN
1 given h.

For now, let us first introduce some notation for convenience and see how we

expand the subspace ĒN
1 given a particular history h.
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We call the remaining 2K
�
N � L � unordered pairs as the 2K

�
N � L � -future. Let

f̄ � �
H2KL � 1 ������� � H2KN � be a fixed possible 2K

�
N � L � -future.

Let Ωh denote that event that we observe this particular 2KL-history: Ωh ��
π � Ω : H � � � �

π � � h � . Given that event Ωh occurs, we are concerned about the

following probability space
�
Ωh � Σ �

Ωh � � Prh � , where Prh is the probability measure

on Ωh. Let us use Eh for expectation in this space. Formally,

Definition 8.11. Eh � diff
�
T � �

S � S � � L � � � E � diff
�
T � �

S � S � � L � �F2KL � is the expected

value of diff
�
T � �

S � S � � L � conditioned on an event h � F2KL. This conditional expec-

tation E � diff
�
T � �

S � S � � L � �F2KL � is a random variable that can be viewed as a func-

tion into reals from the blocks in the partition of F2KL. Hence Eh � diff
�
T � �

S � S � � L � �
is an evaluation of this conditional expectation at a particular outcome h � F2KL.

Thus
�
Ωh � Σ �

Ωh � � Prh � corresponds to the expanded subspace of ĒN
1 given h;

in this expanded probability space, we can apply the bounded differences method

to analyze probability for a bad score event on diff
�
T � �

S � S � � L � for a balanced cut�
S � S̄ � in a clean manner.

In fact, our starting point of the bounded differences analysis is

Eh � diff
�
T � �

S � S � � L � � , where h is a fixed possible 2KL-history that we record while

revealing all 2KL random unordered pairs on the 2L swapped nodes for
�
S � S̄ � , sub-

ject to h � ĒL
1

�
S � S̄ � . This immediately indicates that the conditional expected value

Eh � diff
�
T � �

S � S � � L � � � 2
�
N � L � LKγ, which is our “advantageous base point”

given that Ωh occurs. Now as we reveal one by one the future 2K
�
N � L � random

unordered pairs, the conditional expected values Eh � diff
�
T � �

S � S � � L � �H � � � � � � � � � �
2KL form a martingale that is amenable to the bounded differences analysis.

This naturally brings up the second bad event E L
2 that we need to further ex-

clude from the 2KL-history h, while examining a balanced cut
�
S � S̄ � in probability

space ĒN
1 . EL

2 refers to the event that large deviation occurs simultaneously across

a set of K random variables, where the kth random variable is defined over the 2L

unordered pairs of bits at locus k across the 2L swapped nodes.

Note that despite the additional constraint we put over h � ĒL
1 � ĒL

2 ,

Eh � diff
�
T � �

S � S � � L � � remains lower bounded by 2
�
N � L � LKγ, given that h � ĒL

1

and Eh � diff
�
T � �

S � S � � L � � is a random variable whose outcome is entirely deter-

mined by h (see Proposition 8.2).
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However, excluding E L
2 from h is crucial in bounding the difference

that each of the 2
�
N � L � K-future random pairs of bits causes when we

work in probability space
�
Ωh � Σ �

Ωh � � Prh � , where the difference refers to
���
Eh � diff

�
T � �

S � S̄ � � L � �H � � � � � � Eh � diff
�
T � �

S � S � � L � �H � � � 	 1 � � ���
, where 2KN � � � �

2KL depends on the particular pair of bits, such that the square sum of all these

differences is not too big. This allows us to bound the probability on a bad score

event, i.e., diff
�
T � �

S � S � � L � � 0 � using Azuma’s inequality in probability space�
Ωh � Σ �

Ωh � � Prh � , given that Ωh occurs, where h � ĒL
1 � ĒL

2 .

After we obtain Prh � diff
�
T � �

S � S � � L � � 0 � in probability space�
Ωh � Σ �

Ωh � � Prh � , where h � ĒL
1 � ĒL

2 and f̄ is entirely at random, we can

calculate Prh � diff
�
T � �

S � S � � L � � 0 � given that h � ĒL
1 � ĒL

2 and f̄ � ĒN 	 L
1 , where

ĒN 	 L
1 denote the event that the 2

�
N � L � unswapped nodes contain no bad node

event either; hence the latter conditions imply that all nodes are drawn from E N
1 .

Since Prh � EN 	 L
1 � is small, its influence on Prh � diff

�
T � �

S � S � � L � � 0 � is small;

that is, given that Ωh occurs, where h � ĒL
1 � ĒL

2 , Prh � diff
�
T � �

S � S � � L � � 0 � re-

mains small regardless whether f̄ stays in this confined future subspace ĒN 	 L
1 or is

entirely at random as in
�
Ωh � Σ �

Ωh � � Prh � .

Let us map these notation to what we have defined in Section 7.3 regarding the

expected difference of two conditional independent random variables as follows,

where expectations are taken over all 2K
�
N � L � random unordered pairs of bits on

Xi � Yi � � i after fixing swapped nodes U j � Vj � � j � �
1 � L � for the given balanced cut.

Proposition 8.2. We work in probability space
�
Ω � F � Pr � . Eh � diff

�
T � �

S � S � � L � �
is a function of h; Hence Eh � diff

�
T � �

S � S � � L � � as a random variable according to

Definition 8.11, its value depends on random unordered pairs on the 2L swapped

nodes that we record in h � �
Ũ1 ������� � ŨL � Ṽ1 ������� � ṼL � :

Eh � diff
�
T � �

S � S � � L � � �
L

∑
j � 1

N 	 L

∑
i � 1

diff
�
U j � �

L

∑
j � 1

N 	 L

∑
i � 1

diff
�
V j �

� �
N � L �

L

∑
j � 1

K

∑
k � 1

2
�
pk

2 � pk
1 � �

f k �
U j � � f k �

Vj � � �

where diff
�
U j � and diff

�
V j � are defined in Definition 7.6.
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Proof. For each balanced cut
�
S � S̄ � , we could pair up Xi � Yi � � i � �

1 � N � L � via an

arbitrary matching between two sets of unswapped nodes. Note that actual choice

of i for Xi � Yi does not influence the value of random variable diff
�
U j � , which is

uniquely determined by the K unordered pairs of bits on node U j.

Given (8.1.5) and linearity of expectations, we have

Eh � diff
�
T � �

S � S � � L � � � E � diff
�
T � �

S � S̄ � � L � �U j � Ũ j � Vj � Ṽj � � j � �
1 � L � �

�
L

∑
j � 1

N 	 L

∑
i � 1

EYi � Pscore
�
Ũ j � Yi � � � EXi � Pscore

�
Ũ j � Xi � � �

L

∑
j � 1

N 	 L

∑
i � 1

EXi � Pscore
�
Ṽj � Xi � � � EYi � Pscore

�
Ṽj � Yi � �

�
L

∑
j � 1

N 	 L

∑
i � 1

diff
�
U j � �

L

∑
j � 1

N 	 L

∑
i � 1

diff
�
V j �

� �
N � L �

L

∑
j � 1

K

∑
k � 1

2
�
pk

2 � pk
1 � �

f k �
U j � � f k �

Vj � � � (8.3.8)

where the last equation is due to (7.3.15) and (7.3.16), given that � j, U j
� �p1 and

Vj
� �p2,

diff
�
U j � �

K

∑
k � 1

2
�
pk

2 � pk
1 � f k �

U j � � S � (8.3.9)

diff
�
V j � �

K

∑
k � 1

2
�
pk

1 � pk
2 � f k �

Vj � � S � (8.3.10)

Remark 8.3. Hence Eh � diff
�
T � �

S � S � � L � � , as a function of h, is evaluated to a

unique value, i.e., the value of
�
N � L � ∑L

j � 1 ∑K
k � 1 2

�
pk

2 � pk
1 � �

f k �
U j � � f k �

Vj � � eval-

uated at outcome
�
Ũ1 ������� � ŨL � Ṽ1 ������� � ṼL � .

8.4 Excluding Two Bad Events

There are two lemmas regarding two types of bad events that we exclude from the

set of all possible h that we consider in order to apply the bounded differences
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analysis. In more detail, after we record the � -history h, by revealing U j � Vj � � j ��
1 � L � to something like Ũ j � Ṽj � � j, we can observe that with high probability, the

history h excludes two types of bad events, from all balanced
�
S � S̄ � .

– The first bad event is E N
1 , which is defined in Definition 8.13. We show that

by excluding a set of 2N bad node events (Definition 8.12) from the product

probability space
�
Ω � F � Pr � simultaneously, each regarding a single node’s

behavior across its K unordered pairs of bits, E N
1 does not happen.

In Section 8.4.1, we show that for all balanced cut
�
S � S̄ � , when evaluated at

a particular history h � F2KL that is determined by the 2KL unordered pairs

on the 2L swapped nodes drawn from ĒN
1 ,

Eh � diff
�
T � �

S � S � � L � � h � ĒL
1 � f̄ at random � � 2KL

�
N � L � γ � (8.4.11)

in an expanded subspace where f̄ is assumed to be at random, given h � ĒL
1 .

– The second type of bad events E L
2 , as in Definition 8.15, is regarding si-

multaneously large deviation across a set of K random variables defined

over 2L swapped nodes and across their K loci. The idea is that, at each lo-

cus, we may observe certain large deviation from the expected bit pattern

across 2L individuals in the sense of Definition 8.14; however, as we show

in Lemma 8.4, with high probability, such deviation across all K loci can

not be simultaneously large due to the mutual independence assumption that

we make across K loci. We use union bound to bound E L
2 over all balanced�

S � S̄ � .

(8.4.11) still holds given that the random variable Eh � diff
�
T � �

S � S � � L � � is a

function of h � ĒL
1 � ĒL

2 , with f̄ entirely at random.

We formally define these two events with the following definitions.

Definition 8.12. (Bad Node Event E
�
Z � ) Let a bad node event E

�
Z � be the event

that diff
�
Z � � Kγ, where Z is one sample point. Note this is an event in an individual

probability space
�
ΩZ � FZ � PrZ � , where

�
ΩZ � FZ � PrZ � is defined over all possible

outcomes for K random unordered pairs of bits for an individual Z.
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Note that all bad node events are mutually independent.

From now on, we use
�
Ωi � Fi � Pri � to refer to

�
ΩZi � FZi � PrZi � for the input 2N

nodes, assuming that we are given a unique ordered list of
�
Z1 ������� � Z2N � .

Definition 8.13. (Bad Event E N
1 ) EN

1 is the same as E
�
Z1 � � ����� � E

�
Z2N � in

the product probability space
�
Ω � F � Pr � composed of distinct probability spaces�

Ω1 � F1 � Pr1 � ������� � �
Ω2N � F2N � Pr2N � as in Definition 8.12. Hence ĒN

1 is the same as

the joint event Ē
�
Z1 ��� ����� � Ē

�
Z2N � in

�
Ω � F � Pr � .

Let
�
S � S̄ � denote a balanced cut with L swapped nodes on each side for some

L � �
1 � N � 2 � . We proceed to define E L

2 given a balanced cut
�
S � S̄ � . We first define

a set of K random variables and their deviation, each regarding 2L unordered pairs

across the 2L swapped nodes at a particular locus k � � k. Again let h be the 2KL-

history that we record after revealing bits on 2L swapped nodes in
�
S � S̄ � .

Definition 8.14. (Deviation Values) � k � 1 ������� � K, let tk

�
L be the exact deviation

of the following random variable that we observe over h, which we denote with

f k
2

�
h � , i.e., f k

2

�
h � � E � f k

2

�
h � � � tk

�
L � � k, where

f k
2

�
h � � f k

2
�
U1 ������� � UL � V1 ������� � VL �

�
L

∑
j � 1

�
Ik
00

�
U j � � Ik

11
�
U j � � � �

Ik
00

�
Vj � � Ik

11
�
Vj � �

�
L

∑
j � 1

f k �
U j � �

L

∑
j � 1

f k �
Vj � �

and f k �
U1 � ������� � f k �

UL � � f k �
V1 � ������� � f k �

VL � are all random variables in range� � 1 � 1 � , as defined in Definition 7.4.

First let us obtain the expected value of f k
2

�
h � .

Proposition 8.3. For f k
2

�
h � as in Definition 8.14,

E � f k
2

�
h � � � E

�
L

∑
j � 1

� �
Ik
00

�
U j � � Ik

11
�
U j � � � �

Ik
00

�
Vj � � Ik

11
�
Vj � � � �

�
L

∑
j � 1

E � f k �
U j � � �

L

∑
j � 1

E � f k �
Vj � �

� 2L
�
pk

2 � pk
1 � �
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Next we bound the deviation for each random variable f k
2

�
h � , as defined in

Definition 8.14.

Lemma 8.1. � k, for random variable f k
2

�
h � , we have

Pr � ���
f k
2

�
h � � E � f k

2
�
h � � ���

� tk
�

L � � 2e 	 tk2 � 4 � (8.4.12)

In addition, events corresponding to different loci are independent.

Proof. Let us define random variables Ū k � V̄ k such that

f k
2

�
h � � L

�
Ū k � V̄ k � � (8.4.13)

and

Ū k �
L

∑
j � 1

f k �
U j � � L � V̄ k �

L

∑
j � 1

f k �
Vj � � L �

Thus by Proposition 8.3,

E � Ū k � � E � V̄ k � � 1
L

E � f k
2

�
h � � � 2

�
pk

2 � pk
1 � � (8.4.14)

In order to bound probability of deviation on both sides of the expected differ-

ences, we let t � tk
�

L � L and apply Corollary 7.1 of Theorem 7.1,

Pr � ���
f k
2

�
h � � E � f k

2
�
h � � ���

� tk
�

L � �
Pr � ���

Ū k � V̄ k � �
E � Ū k � � E � V̄ k � � ���

� tk
�

L � L � (8.4.15)

� 2e
� 2 � tk � L � L � 2

� 2 � L � � 2 � 2 (8.4.16)

� 2e 	 t2
k � 4 � (8.4.17)

Definition 8.15. (Bad Deviation Event E L
2 ) In probability space

�
Ω � F � Pr � , given

a balanced cut
�
S � S̄ � and its corresponding 2KL-history h, E L

2 is the event such that

the set of random variables t1 ������� � tk regarding 2KL unordered pairs recorded in h,
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as defined in Definition 8.14, are simultaneously large and satisfy

K

∑
k � 1

t2
k � Λ � 32N ln2 � 16K ln2

�
log log N � 1 � � 6lnN �

Using Definition 8.15 and 8.14, we immediately have the following lemma,

which we use in Section 8.5.

Lemma 8.2. Given that h � ĒL
2 , we have � k,

�� f k
2

�
h � �� � ���

E � f k
2

�
h � � ���

� ���
tk

�
L ���

�

and

K

∑
k � 1

t2
k � Λ �

where tk is defined in Definition 8.14, and the bad deviation event E L
2 is given in

Definition 8.15.

Proof. By definition of tk � � k, we have that f k
2

�
h � � E � f k

2

�
h � � � tk

�
L, where tk �

� 	 2L 	 E � f k
2 � h ���

�
L

� 2L 	 E � f k
2 � h ���

�
L

� .
Thus we immediately have �� f k

2

�
h � �� � �� E � f k

2

�
h � � �� � �� tk

�
L �� , where ∑K

k � 1 t2
k � Λ,

given that h � ĒL
2 .

We are now ready to bound the probability for events ĒN
1 and ĒL

2 ; We want

to emphasize the we exclude ĒN
1 once for all 2N nodes, while excluding one ĒL

2

from each balanced cut
�
S � S̄ � , where L denotes that the event ĒL

2 is defined over

the particular set of 2KL unordered pairs across K loci on the 2L swapped nodes

in
�
S � S̄ � ; we have � NL � 2 number of such events for each L, whose probabilities we

sum up later using union bound.

Hence for all Ωh that we deal with later in bounded differences analysis, neither

of the two types of bad events happen.

Lemma 8.3. Let K � 256ln N
γ , in probability space

�
Ω � F � Pr � , Pr � EN

1 � � ρ1 � 2N
N32 .

Thus,

Pr � ĒN
1 � � �

1 � 1
N32 � 2N � 1 � 2N

N32 �
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Proof. Apply Lemma 7.3 to each diff
�
Z � with τ � 1 � N32; Given K � 256ln N

γ , we

have � Z,

PrZ
�
E

�
Z �
� � 1

N32 �

Given that at equilibrium, each node’s bits at locus k are two independent random

draws from its distribution Bernoulli(pk
a), where a � �

1 � 2 � depends on its popu-

lation of origin for node Z, we adopt the view of composing the product space�
Ω � F � Pr � through distinct probability spaces

�
Ω1 � F1 � Pr1 � , . . . ,

�
Ω2N � F2N � Pr2N �

as in Definition 8.13, where
�
Ωi � Fi � Pri � � � i, is defined over all possible outcomes

for K random unordered pairs for individual Zi.

Then for events Ē
�
Z1 � � F1 ������� � Ē �

Z2N � � F2N , the probability of the joint

event
�
Ē

�
Z1 � ������� � Ē �

Z2N � � ,

Pr � Ē �
Z1 ��� Ē

�
Z2 � � ����� � Ē

�
Z2N � � �

Pr1 � Ē �
Z1 � � � Pr2 � Ē �

Z2 � � � ������� Pr2N � Ē �
Z2N � � � (8.4.18)

where the product corresponds to performing independent experiments with re-

spect to each of the 2N probability spaces
�
Ωi � Fi � Pri � � � i, given a fixed ordering

of
�
Z1 ������� � Z2N � on the input nodes.

Therefore by definition,

Pr � ĒN
1 � � Pr

�
none of E

�
Z � happens, for all nodes Z � (8.4.19)

� Pr � Ē �
Z1 � � Ē

�
Z2 ��� ����� � Ē

�
Z2N � � (8.4.20)

� Pr1 � Ē �
Z1 � � � Pr2 � Ē �

Z2 � � � ������� Pr2N � Ē �
Z2N � � (8.4.21)

� �
1 � Pr1

�
E

�
Z1 �
� ��� �

1 � Pr2
�
E

�
Z2 �
� � � ����� � �

1 � Pr2N
�
E

�
Z2N �
� �

� �
1 � 1

N32 � 2N � 1 � 2N
N32 � (8.4.22)

Lemma 8.4. In probability space
�
Ω � F � Pr � , for each balanced cut

�
S � S̄ � ,

Pr � h � EL
2 � � ρ2 �

where ρ2 � O
� 1

22N poly � N � � and N � 8.
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Proof. To facilitate our proof, we obtain a set of nonnegative numbers
�
t̃1 ������� � t̃k �

as follows; � k, to obtain t̃k, we round � tk � down to nearest nonnegative number � t̃k �
that is power of two.

It is easy to verify that � k � tk � � 	 2L 	 E � f k
2 � h � �

�
L

� 2L 	 E � f k
2 � h � �

�
L � by Proposition 8.3.

Thus we have t̃k � � tk � � �� 2
�

L �� � ���
E � f k

2 � h ���
�

L
���
.

Let us divide the entire range of � tk � into intervals using power-of-2 non-

negative integers as dividing points; Let rk � � k represent the number of such in-

tervals: we have � k, so long as N � 8,

rk � log
� ���

2
�

L ���
� ���

2L
�
pk

1 � pk
2 � �

�
L ���

� (8.4.23)

� log4
�

L � log 4 � N � 2 � logN � (8.4.24)

Thus we have at most
�
log N � K blocks in the K-dimensional space such that

each block along each dimension is a subinterval of � 0 � �� 2
�

L �� � ���
E � f k

2 � h � �
�

L
��� � .

Let B
�
β1 ������� � βk � represent a block in the K-dimensional space, where

β1 ������� � βk are nonnegative power-of-2 integers and every point in B
�
β1 ������� � βk � has

its value fixed in interval
�
βk � 2βk � along dimension k � � k; hence

�
β1 ������� � βk � is the

point in the K-dimensional space with the smallest coordinate in every dimension

in B
�
β1 ������� � βk � .

A set of values
�
t1 ������� � tk � as in Definition 8.14 is mapped into one of these

blocks uniquely as follows. We say a point
�
t1 ������� � tk � maps to B

�
β1 ������� � βk � , if

� k � 2βk � � tk � � βk, i.e.,
�
t̃1 ������� � t̃k � � �

β1 ������� � βk � .

We first bound the following event using Lemma 8.5. Let us fix one block

B
�
β1 ������� � βk � for a fixed set of values β1 ������� � βk such that ∑K

k � 1 β2
k � Λ � 4.

Lemma 8.5. Let Λ � 4 � 8N ln2 � 4K
�
ln2 � �

log logN � 1 � � �
3lnN � � 2 as Λ is de-

fined in Definition 8.15.

Pr

�
h maps to a particular B

�
β1 ������� � βk � s.t.

K

∑
k � 1

t̃2
k � Λ � 4 � � 1

22N � �
logN � K � N3 � 2

�

Proof. Let t1
�

L ������� � tk
�

L be the deviation that we observe in h for random vari-

ables f 1
2

�
h � � f 2

2

�
h � ������� � f k

2

�
h � as in Definition 8.14. If coordinates

�
t̃1 ������� � t̃k � of h
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maps to
�
β1 ������� � βk � , we know that � k � 2βk � � tk � � βk given the definition of

B
�
β1 ������� � βk � .

In addition, by Lemma 8.1, we know that

Pr � ���
f k
2

�
h � � E � f k

2
�
h � � ���

� βk

�
L � � 2e 	 βk

2 � 4 � (8.4.25)

and events corresponding to different loci are independent; Thus we have

Pr

�
h maps to a particular B

�
β1 ������� � βk � s.t.

K

∑
k � 1

β2
k � Λ � 4 �

�
K

∏
k � 1

Pr

�
2βk

�
L �

�
���
f k
2

�
h � � E � f k

2
�
h � � ���

� ���
tk

�
L ��� � � βk

�
L s.t.

K

∑
k � 1

β2
k � Λ � 4 �

�
K

∏
k � 1

Pr

�
���
f k
2

�
h � � E � f k

2
�
h � � ���

� βk

�
L s.t.

K

∑
k � 1

β2
k � Λ � 4 �

�
K

∏
k � 1

2e 	 β2
k � 4 � 2Ke 	 ∑k

k � 1 β2
k

4 � 2Ke 	 Λ � 16 (8.4.26)

� 2Ke 	 � 2N ln2 � K ln2 � log logN � 1 � � 3lnN � 2 � (8.4.27)

� 2K

22N � �
2log N � K � N3 � 2

(8.4.28)

� 1

22N � �
logN � K � N3 � 2

� (8.4.29)

Given that t2
k � 4t̃2

k � � k, we know that ∑K
k � 1 t2

k � Λ implies that

K

∑
k � 1

t̃2
k � 1

4

K

∑
k � 1

t2
k � Λ � 4 �
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Thus we have

Pr

�
K

∑
k � 1

t2
k � Λ � � Pr

�
K

∑
k � 1

t̃2
k � Λ � 4 � (8.4.30)

� Pr

�
h maps to some B

�
β1 ������� � βk � s.t.

K

∑
k � 1

β2
k � Λ � 4 � �

This allows us to upper bound Pr � EL
2 � with events regarding ∑K

k � 1 t̃2
k as follows:

Pr � EL
2 � � Pr

�
K�

k � 1

�
f k
2

�
h � � E � f k

2
�
h � � � tk

�
L � s.t.

K

∑
k � 1

t2
k � Λ � (8.4.31)

� Pr

�
h maps to some B

�
β1 ������� � βk � s.t.

K

∑
k � 1

β2
k � Λ � 4 �

�
�
logN � K

22N � �
logN � K � N3 � 2

(8.4.32)

� 1
22N poly

�
N � � (8.4.33)

Hence the probability that the 2KL unordered pairs induce simultaneously large

deviation for random variables f 1
2

�
h � ������� � f k

2

�
h � , as in Definition 8.15, is at most

ρ2 � O
� 1

22N poly � N � � .

This immediately implies the following corollary.

Corollary 8.1. For all balanced
�
S � S̄ � with L � � 0 � L � N � 2 � swapped nodes on

each side, with probability 1 � 1 � poly
�
N � in probability space

�
Ω � F � Pr � , the set of

t1 ������� � tk as defined in Definition 8.14 over 2KL unordered pairs satisfy ∑K
k � 1 t2

k � Λ.

Hence, we have an advantageous bounded differences case as we enter the

expanded probability space Ωh by excluding h that belong to E N
1 or EL

2 for all

balanced
�
S � S̄ � .

8.4.1 Preparation for Landing in Expanded Subspaces

We first give two definitions.
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Definition 8.16. E L
1

�
S � S̄ � is the same as E

�
U1 � � ����� � E

�
UL � � E

�
V1 � � ����� � E

�
VL �

in the product probability space composed of distinct probability spaces defined

over nodes U1 ������� � UL � V1 ������� � VL as in Definition 8.12.

Definition 8.17. E N 	 L
1

�
S � S̄ � is the same as E

�
X1 � � ����� � E

�
XN 	 L � � E

�
Y1 � � ����� �

E
�
YN 	 L � in the product probability space composed of distinct probability spaces

defined over nodes X1 ������� � XN 	 L � Y1 ������� � YN 	 L as in Definition 8.12.

Hence ĒL
1 and ĒN 	 L

1 imply that no bad node event happens in the appropriate

product spaces thus defined. We omit
�
S � S̄ � from EL

1

�
S � S̄ � and EN 	 L

1

�
S � S̄ � when it

is clear from the context.

Given a balanced cut
�
S � S̄ � , h records a history on the 2KL unordered pairs on

swapped nodes U1 ������� � UL � V1 ������� � VL.

Proposition 8.4. Given all nodes are drawn from ĒN
1 , for any balanced cut

�
S � S̄ �

and its particular 2KL-history h that we record satisfy the following: h � ĒL
1

�
S � S̄ � .

Proof. Given ĒN
1 , we know that the joint event

�
Ē

�
Z1 � ������� � Ē

�
Z2N � � must happen

in the product probability space
�
Ω � F � Pr � . Hence for all nodes Z1 ������� � Z2N ,

diff
�
Zi � � Kγ � (8.4.34)

simultaneously in the product probability space
�
Ω � F � Pr � , where diff

�
Zi � is a ran-

dom variable solely determined by node Zi’s bits across K loci, before or after we

ever reveal it.

In particular, for each balanced
�
S � S̄ � , we focus on the product probability

space that is composed of distinct probability spaces defined over swapped nodes

U1 ������� � UL � V1 ������� � VL as in Definition 8.16. After we reveal these 2KL bits on nodes

U j � Vj � � j � 1 ������� � L, by (8.4.34),

diff
�
U j � � Kγ � � j � 1 ������� � L � (8.4.35)

diff
�
V j � � Kγ � � j � 1 ������� � L � (8.4.36)

due to (8.4.34). Thus we have h � ĒL
1

�
S � S̄ � .

Definition 8.18. We use f̄ to denote the future of the 2
�
N � L � K random unordered

pairs that we are going to reveal for the unswapped nodes on a given balanced cut
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�
S � S̄ � . Recall that once we are fixed to the probability space such that E N

1 does not

happen, we know that both h and f̄ are confined; the following two notation are

equivalent:

�
h � ĒL

1
�
S � S̄ � � � �

f̄ � ĒN 	 L
1

�
S � S̄ � � �

�
h � f̄ � � ĒN

1 �

Remark 8.4. Another way of seeing ĒL
1

�
S � S̄ � (with respect to a particular bal-

anced cut
�
S � S̄ � ) is to view it as an event in the simple probability space

�
Ω � F � Pr � ,

such that we put constraints only on the specific 2L swapped nodes defined on
�
S � S̄ �

while leaving the f̄ at random. Hence we have ĒN
1

� ĒL
1

�
S � S̄ � , in

�
Ω � F � Pr � .

Thus h as a 2KL-history on nodes drawn from ĒN
1 (the product probability

space
�
Ω � F � Pr � excluding E N

1 ), must satisfy h � ĒL
1

�
S � S̄ � .

We leave this confined space given ĒN
1 for now and explore the following ex-

panded subspace, where we require h � ĒL
1 while leaving the future f̄ at random.�

Ωh � Σ
�
Ωh � � Prh � corresponds to this expanded subspace, where h � ĒL

1 .

Lemma 8.6. For a balanced cut
�
S � S̄ � , given a particular 2KL-history h � F2KL on

the 2L swapped nodes such that h � ĒL
1 ,

Eh � diff
�
T � �

S � S � � L � � h � ĒL
1 � f̄ at random � � 2L

�
N � L � Kγ � (8.4.37)

where expectation is over all possible outcome of the 2
�
N � L � K random unordered

pairs in f̄ in probability space
�
Ωh � Σ �

Ωh � � Prh � .

Proof. For a balanced cut
�
S � S̄ � , given h � ĒL

1 , where h records 2KL bits over

swapped nodes U j � Vj � � j � 1 ������� � L, by Definition 8.12,

diff
�
U j � � Kγ � � j � 1 ������� � L � (8.4.38)

diff
�
V j � � Kγ � � j � 1 ������� � L � (8.4.39)
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Thus, in subspace
�
Ωh � Σ

�
Ωh � � Prh � , where f̄ is at random and h � ĒL

1 , we have

from Proposition 8.2,

Eh � diff
�
T � �

S � S̄ � � L � � �
L

∑
j � 1

N 	 L

∑
i � 1

diff
�
U j � �

L

∑
j � 1

N 	 L

∑
i � 1

diff
�
V j �

� �
N � L �

L

∑
j � 1

diff
�
U j � � �

N � L �
L

∑
j � 1

diff
�
V j �

� 2L
�
N � L � Kγ �

Recall that ĒL
2 is the event that no simultaneously large deviation happens

across 2L individuals over their 2KL unordered pairs.

Corollary 8.2. Given that h � ĒL
1 � ĒL

2 , and f̄ is at random:

Eh � diff
�
T � �

S � S � � L � � h � ĒL
1 � ĒL

2 � f̄ at random � � 2L
�
N � L � Kγ � (8.4.40)

which holds so long as h � ĒL
1 .

We next bound Eh � diff
�
T � �

S � S � � L � � for all balanced
�
S � S̄ � , where h is con-

fined in ĒN
1 and ĒL

2 , before we enter each individually expanded subspace�
Ωh � Σ �

Ωh � � Prh � .

Theorem 8.2. Assume that all nodes in our sample are drawn from ĒN
1 , the prob-

ability space
�
Ω � F � Pr � excluding E N

1 , we have � balanced cut
�
S � S̄ � , where h is

a particular 2KL-history that corresponds to the 2L swapped nodes specified over�
S � S̄ � with respect to T ,

Eh � diff
�
T � �

S � S � � L � � � 2L
�
N � L � Kγ � (8.4.41)

where the conditional expectation is over each of the individually expanded prob-

ability space
�
Ωh � Σ �

Ωh � � Prh � , given h � ĒL
1 .

This statement remains true after we require that h � ĒL
2 in addition.
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Proof. By Proposition 8.4, for each balanced cut
�
S � S̄ � , we have

h � ĒL
1

�
S � S̄ � � (8.4.42)

Now apply Corollary 8.2, given that h � ĒL
1

�
S � S̄ � � ĒL

2 , we immediately have the

theorem.

Remark 8.5. diff
�
Z � is determined by node Z’s bit pattern, which is the same when

we observe it from every balanced cut, where it acts as a swapped node. Hence

although we do have O
�
2N � balanced cuts, Eh � diff

�
T � �

S � S̄ � � L � � for all balanced

cuts are just determined by the 2N random variables diff
�
Z1 � ������� � diff

�
Z2N � , each

of which is determined by the genotype of an individual in our sample.

Hence, during the entire analysis of O
�
22N � balanced cuts, we may reveal a

node Z in many cuts, but every time we reveal it, it is the same node; and the random

bits at each locus k � � k are just random draws from their corresponding distribution

(e.g.,Bernoulli(pk
a) for an individual from population a � � a � 1 � 2), before we start

to reveal them in any cut, or after we have revealed them many times.

After we exclude the bad event E N
1 from probability space

�
Ω � F � Pr � , given

any 2KL-history h that corresponds to a balanced cut
�
S � S̄ � , we have an ad-

vantageous “base point” as we enter an individually expanded probability space�
Ωh � Σ

�
Ωh � � Prh � , where h � ĒL

2 � ĒL
1 . This is true for all balanced cuts.

8.5 The Bounded Differences Approach in an Expanded Subspace

In this section, we bound the deviation of random variable diff
�
T � �

S � S � � L � for a

particular balanced cut
�
S � S̄ � ; recall that we let vector

�
H1 ������� � H2KN � record the

entire history of random unordered pairs that we see, where
�
H1 ������� � H2KL � record

the 2KL-history H � � � on 2L swapped nodes.

First it is convenient to introduce some more notation: For �
� � 2KL, we

begin to reveal the random unordered pairs on unswapped nodes in
�
S � S̄ � .

The random variable Eh � diff
�
T � �

S � S � � L � �H � � � � � depends on the random ex-

tension H � � � � of h observed. By definition Eh � diff
�
T � �

S � S � � L � �H � � � � � �
π � �

Eh � diff
�
T � �

S � S � � L � �H � � � � � h
� � for π � Ωh, where h

� � H � � � � �
π � ; another notation
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for this is Eh � diff
�
T � �

S � S � � L � �F � where F is the σ-field generated by H � � � � re-

stricted to Ωh. To prove the theorem, we introduce the following.

Lemma 8.7. (Azuma’s Inequality) Let Z0 � Z1 ������� � Zm � f be a martingale on

some probability space, and suppose that � Zi � Zi 	 1 � � ci, � i � 1 � 2 ������� � m, then

Pr
� � f � E

�
f � � � t � � 2e 	 t2 � 2σ2 �

where σ2 � ∑m
i � 1 c2

i .

Theorem 8.3. Let h be a possible 2KL-history that we record for a balanced cut�
S � S̄ � such that h � ĒL

2 � ĒL
1 . Then, for t � 0, in probability space

�
Ωh � Σ �

Ωh � � Prh �
such that all future 2

�
N � L � K unordered pairs in f̄ are completely at random,

Prh � �Eh � diff
�
T � �

S � S̄ � � L � �H2KN � � Eh � diff
�
T � �

S � S̄ � � L � � � � t � � 2e 	 t2 � 2σ2 �

where σ2 � 64L2 �
N � L � Kγ � 16L

�
N � L � Λ, for all balanced

�
S � S̄ � with 0 � L �

N � 2 swapped nodes.

Proof. We shall set up things to use Lemma 8.7.

We work in probability space
�
Ωh � Σ �

Ωh � � Prh � . We start to reveal the 2K
�
N �

L � unordered pairs on unswapped nodes that are chosen independently at random,

and rely on 2L swapped nodes having a good history h, given that h � ĒL
2 � ĒL

1 .

Given the σ-field
�
Ωh � Σ �

Ωh � � , with Σ
�
Ωh � � 2Ωh , let us first define a filter F.

Given the independent random unordered pairs H2KL � 1 ������� � H2KN . The filter is

defined by letting Fi � � i � 1 ������� � m, where m � 2K
�
N � L � , be the σ-field generated

by histories H � 2KL � 1 � ������� � H � 2KL � i � . We thus obtain a natural F:

�
/0 � Ωh � � F0

� F1
� ����� � Fm � 2Ωh �

where for 0 � i � m � 2K
�
N � L � ,

�
Ωh � Fi � is a σ-field.

Hence F corresponds to the increasingly refined partitions of Ωh obtained from

all the different possible extensions of the 2KL-history h.
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We obtain a martingale for random variable diff
�
T � �

S � S̄ � � L � such that: Let

Z0 � Eh � diff
�
T � �

S � S̄ � � L � � and

Z � � 	 2KL � Eh � diff
�
T � �

S � S̄ � � L � �H � � � � � (8.5.43)

� Eh � diff
�
T � �

S � S � � L � �F � � 	 2KL � � (8.5.44)

where F � � 	 2KL is the σ-field generated by H � � � � restricted to Ωh and 2KN � � � �
2KL.

We let H2KL � 1 ������� � H2KN map to random unordered pairs on

X1
i ������� � XK

N 	 L � Y 1
i ������� Y K

N 	 L, where X k
i or Y k

i refers to an unordered pair of bits

on locus k on individual Xi or Yi respectively.

We first define the following, � j � 1 � 2 ������� � m, where m � 2K
�
N � L � ,

�� Z j � Z j 	 1 �� � c j � (8.5.45)

We also need to translate between c j , where j � 1 � 2 ������� � m, and di � k
�
Xi � and

di � k
�
Yi � , � i � 1 ������� � N � L � k � 1 ������� � K that correspond to unordered pairs on locus

k of Xi and Yi respectively. In particular, � i � � k, we let

c � i 	 1 � K � k � di � k
�
Xi � � (8.5.46)

c � N 	 L � i 	 1 � K � k � di � k
�
Yi � � (8.5.47)

Let j � 2KL � �
i � 1 � K � k � 1, we have

di � k
�
Xi � �

���
Eh � diff

�
T � �

S � S̄ � � L � �H � j � � X k
i � � Eh � diff

�
T � �

S � S̄ � � L � �H � j � � ���
�

And similarly, let �
� � 2KL � �

N � L � K � �
i � 1 � K � k � 1, we have

di � k
�
Yi � �

���
Eh � diff

�
T � �

S � S̄ � � L � �H � � � � � Y k
i � � Eh � diff

�
T � �

S � S̄ � � L � �H � � � � � ���
�

We immediately have the following lemmas that we can plug into Azuma’s

inequality, where di � k applies to both di � k
�
Xi � and di � k

�
Yi � .
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Y2
Y3

U1
U2

V1

X3

XN−L YN−L

VL UL

X1
X2

V2

Y1

Figure 8.5.3. Set of edges that random unordered pairs on Y1 influence upon

Lemma 8.8. For the 2
�
N � L � K random unordered pairs on unswapped nodes

Xi � Yi � i � �
1 � N � L � that we reveal, at locus k � �

1 � K � ,

di � k � �� 4L
�
pk

2 � pk
1 � �� � ���

2tk
�

L ���
�

where tk and Λ are defined in Definition 8.14 and Definition 8.15 respectively, and

K

∑
k � 1

t2
k � Λ �

Proof. Assume before we fix Yi � k , we have reached history H � � � � . W.l.o.g, assume

the pair of random bits that we are fixing are on Yi, and we let Yi � 00 � 01 � 10 � 11 re-

spectively and obtain the corresponding di � k
�
Yi � � � i � k; and we go through the same

process to obtain di � k
�
Xi � � � i � k.

Recall that by Definition 8.14, f k
2

�
h � � ∑L

j � 1
�
Ik
00

�
U j � � Ik

11

�
U j � � � �

Ik
00

�
Vj � �

Ik
11

�
Vj � � , where f k

2

�
h � is defined in Definition 8.14 and �� E � f k

2

�
h � � �� � �� 2L

�
pk

2 � pk
1 � ��

as shown in Proposition 8.3.
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Thus by definition of di � k
�
Yi � and di � k

�
Xi � , we have

di � k
�
Yi � �

��� �� �� 2pk
2 �� �� f k

2

�
h � �� : Y k

i � 00

�� 2qk
2 �� �� f k

2

�
h � �� : Y k

i � 11

�� 1 � 2pk
2 �� �� f k

2

�
h � �� : Y k

i � 01 � 10 �

and

di � k
�
Xi � �

��� �� �� 2pk
1 �� �� f k

2

�
h � �� : X k

i � 00

�� 2qk
1 �� �� f k

2

�
h � �� : X k

i � 11

�� 1 � 2pk
1 �� �� f k

2

�
h � �� : X k

i � 01 � 10 �
Note these changes reflect scores at locus k, which correspond to the set of

edges in diff
�
T � �

S � S̄ � � L � , which are adjacent to Yi and Xi respectively, as in Fig-

ure 8.5.3. Hence

di � k
�
Yi � � 2 �� f k

2
�
h � �� � (8.5.48)

di � k
�
Xi � � 2 �� f k

2
�
h � �� � (8.5.49)

Thus given that h � ĒL
2 and Lemma 8.2, we have

di � k
�
Yi � � 2 �� f k

2
�
h � �� (8.5.50)

� 2
�

���
E � f k

2
�
h � � ���

� ���
tk

�
L ��� � (8.5.51)

� �� 4L
�
pk

2 � pk
1 � �� � ���

2tk
�

L ���
� (8.5.52)

and similarly,

di � k
�
Xi � � �� 4L

�
pk

2 � pk
1 � �� � ���

2tk
�

L ���
� (8.5.53)

where ∑K
k � 1 t2

k � Λ.

We are now ready to obtain a bound for σ2 � 2∑N 	 L
i � 1 ∑K

k � 1 d2
i � k , where d2

i � k �
�� 4L

�
pk

2 � pk
1 � �� � �� 2

�
L

�
tk � �� � 2 applies to unswapped nodes Xi � Yi � � i � 1 ������� � N �

L � � k � 1 ������� � K in bounding the differences they cause by revealing the unordered

pairs on locus k.
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Given that ∑K
k � 1 t2

k � Λ,

σ2 � ∑
i � k

�
d2

i � k
�
Xi � � d2

i � k
�
Yi � � � 2∑

i � k

d2
i � k

� 2
N 	 L

∑
i � 1

K

∑
k � 1

�
�� 4L

�
pk

2 � pk
1 � �� � ���

2
�

L
�
tk � ��� � 2

� 2
�
N � L � ∑

k

2
�
4L

�
pk

2 � pk
1 � � 2 � 2

�
2

�
L

�
tk � � 2

� 64L2 �
N � L � ∑

k

�
pk

2 � pk
1 � 2 � 16L

�
N � L � ∑

k

t2
k

� 64
�
N � L � L2 �

Kγ � � 16
�
N � L � LΛ �

where Λ � 32N ln2 � 16K ln2
�
log logN � 1 � � 6lnN as in Definition 8.15.

We now apply Theorem 8.3 to obtain the following bound on a bad event. Note

that the constant in the following lemma has not been optimized.

Lemma 8.9. Let h be the specific 2KL-history that we record for a balanced cut�
S � S̄ � such that h � ĒL

1 � ĒL
2 . Let ρL

3 � 2
N4L . Then,

Pr � diff
�
T � �

S � S � � L � � 0 � h � ĒL
2 � ĒL

1 � f̄ at random � � ρL
3 �

given that K � Ω
� lnN

γ � and KN � Ω
� ln N log log N

γ2 � , and N � 4.

Proof. By Theorem 8.3 with t � Eh � diff
�
T � �

S � S̄ � � L � � � 2KL
�
N � L � γ,

Pr � diff
�
T � �

S � S � � L � � 0 � h � ĒL
2 � ĒL

1 �
� Prh � Eh � diff

�
T � �

S � S̄ � � L � �H2KN � � Eh � diff
�
T � �

S � S̄ � � L � � � � Eh � diff
�
T � �

S � S̄ � � L � � �
� 2e 	 t2 � 2σ2 � 2e 	 � 2KL � N 	 L � γ � 2 � 2σ2 � (8.5.54)

where σ2 is defined in Theorem 8.3.

In the following calculation, we assume N � 4 at various places, but not any

larger. Given that log log N � 1 � � N � 4, we first rewrite σ2 as the following:

σ2 � 64
�
N � L � L2 �

Kγ � � 16
�
N � L � LΛ (8.5.55)

� 64K
�
N � L � L2γ � 512ln2K

�
N � L � L log logN � 16

�
N � L � L

�
32N ln2 � 6lnN � �
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We will prove that for all N, so long as

(1) K � Ω
� lnN

γ � ,

(2) KN � Ω
� lnN log log N

γ2 � ,

we will have

2e 	 t2 � 2σ2 � 2e 	 � 2KL � N 	 L � γ � 2 � 2σ2 � 2
N4L � (8.5.56)

In what follows, we show that given different values of N, by choosing slightly

different constants in (1) and (2), (8.5.56) is always satisfied.

Case 1: 4 � N � log logN � 2γ.

In this case, we require that KN � c1 lnN log logN
γ2 , where c1 � 1488, which im-

mediately implies the following inequalities given that N � log logN � 2γ:

(1) K � 2c1 lnN
γ ,

(2) N � K log logN
4c1 lnN ,

(3) log logN � 4γ � � N � 4, i.e., we consider cases where γ is small enough,

(4) lnN � 2ln 2, � N � 4.

We first derive the following term that appears in σ2 as in (8.5.55):

16L
�
N � L � �

32N ln2 � 6lnN � � 512ln 2
�
N � L � LN � 96

�
N � L � L lnN

� 128ln 2K
�
N � L � L log logN
c1 lnN

� 48γK
�
N � L � L
c1

� 64K
�
N � L � L log log N

c1
� 12K

�
N � L � L log logN

c1

� 76K
�
N � L � L log log N

c1

� K
�
N � L � L log log N �

given that c1 � 1488.
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Next, given that Lγ � Nγ � 2 � log logN
4 , we have

σ2 � 64K
�
N � L � L

�
Lγ � � 355K

�
N � L � L log logN � KL

�
N � L � log logN

� 16KL
�
N � L � log log N � 356KL

�
N � L � log logN

� 372KL
�
N � L � log logN �

Finally, given that KN � 1488log log N lnN
γ2 , we have:

2e 	 t2 � 2σ2 � e 	 � 2KL � N 	 L � γ � 2 � 2σ2

� 2e 	 4KL � N � L � γ2

2 � 284 loglogN � 2e 	 LKNγ2

284 loglogN

� 2
N4L �

Thus we also have K � 2c1 lnN
γ � 2976ln N

γ given that N � log log N � 2γ.

Case 2: log logN
2γ � N � K log logN

20 .

In this case, K and N are close and we require the following,

(1) K � c2 lnN
γ , where c2 � 512,

(2) KN � c0 lnN log logN
γ2 , where c0 � 2000.

Note that constants c0 � c2 above are not optimized; given any N, an opti-

mal combination of c0 � c2 will result in the lowest possible K given that K �
max

� c0 lnN log logN
Nγ2 � c2 lnN

γ � .

Given that N � K log logN
20 , we have:

16L
�
N � L � �

32N ln2 � 6lnN � � 400
20

K
�
N � L � L log logN

� 20K
�
N � L � L log logN �

and hence

σ2 � 64K
�
N � L � L2γ � 355K

�
N � L � L log logN � 20K

�
N � L � L log logN

� 64
�
N � L � L2Kγ � 375KL

�
N � L � log logN �
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The following inequalities are due to (1) and (2) respectively,

�
2KL

�
N � L � γ � 2

2 � 64K
�
N � L � L2γ

� 16L ln N � (8.5.57)

�
2KL

�
N � L � γ � 2

2 � 375KL
�
N � L � log log N

� 16
3

L lnN � (8.5.58)

and thus

2σ2 �
�
2KL

�
N � L � γ � 2

16L ln N
�

�
2KL

�
N � L � γ � 2

16L ln N � 3
(8.5.59)

�
�
2KL

�
N � L � γ � 2

4L ln N � 3
� (8.5.60)

and 2e 	 t2 � 2σ2 � 2e
� � 2KL � N � L � γ � 2

2σ2 � 2e 	 4L lnN � 2 � N4L.

Case 3: N � K log logN
20 � 16.

Here we require that K � c3 lnN
γ for some c3 to be determined. Thus we have

KN � c2
3 ln2 N log logN

80γ2 , which satisfies the constraint of the form KN � Ω
� lnN log logN

γ2 �
as in other cases.

Given that N � 4, we have that lnN � 2ln2 and hence

16L
�
N � L � �

32N ln2 � 6lnN � � 128
�
N � L � LN lnN � 6NL

�
N � L � lnN

� 134
�
N � L � LN lnN �

Given that K log logN � 20N, we have:

σ2 � 64K
�
N � L � L2γ � 512ln 2 � �

K log log N � �
N � L � L � 134

�
N � L � LN lnN

� 64
�
N � L � L2 �

Kγ � � 512ln2 � 20N
�
N � L � L � 102

�
N � L � LN lnN

� 64

�
c3 lnN

γ � γ
�
N � L � L

�
N � 2 � � �

N � L � LN lnN
�
128 � 20 � 134 �

� �
32c3 � 2694 � �

N � L � LN lnN �
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By taking c3 � 188 such that c2
3 � 4

�
32c3 � 2694 � , we have

t2 � 2σ2 �
�
2K

�
N � L � Lγ � 2

2σ2 �
�
2c3

�
N � L � L lnN � 2

2σ2

� 2
�
c3

�
N � L � L lnN � 2

�
32c3 � 2694 � N

�
N � L � L lnN

� 2c2
3

�
N � L � L lnN�

32c3 � 2694 � N

� c2
3L lnN�

32c3 � 2694 � � 4L ln N �

Thus 2e 	 t2 � 2σ2 � 2e 	 c2
3L lnN

� 32c3 � 2694 � � 2e 	 4L ln N � 2
N4L .

In summary, we have the following requirements. Note that N always falls into

one of these cases. For all cases, we require that K � Ω
�
lnN � γ � (which is implicit

for Case 1); the constant that we require in K for Case 2 is larger than that for

Case 3, (i.e., c2 � c3 as in above), so that the two cases can overlap.

– Case 1: 16 � N � log logN � 2γ. We require that KN � 1488ln N log logN
γ2 , which

implies that K � 2976ln N � γ.

– Case 2: log logN
2γ � N � K log logN

20 . We require that K � 512ln N
γ , and KN �

2000ln N log logN
γ2 .

– Case 3: N � K log logN
20 . We require K � 188ln N

γ .

In summary, instead of bounding the deviation of a random variable

diff
�
T � �

S � S � � L � in a complete random space with all nodes taking random un-

ordered pairs across all loci, we first reveal pairs of bits on all swapped nodes

U j � Vj � � j � �
1 � L � and record h for each

�
S � S̄ � . We exclude two bad events E L

1 � EL
2

from h for each
�
S � S̄ � in the original probability space

�
Ω � F � Pr � , where all

2NK bits are at random. All histories that we consider for all balanced
�
S � S̄ � are

good from this point on, and we can then apply bounded differences analysis in�
Ωh � Σ �

Ωh � � Prh � for all balanced cuts.
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8.6 Mapping Back to Product Space Given Ē1
N

We first prove one utility lemma.

Lemma 8.10. For all balanced
�
S � S̄ � , Pr � h � EL

2 � h � ĒL
1 � � ρ2

1 	 2L � N32 , hence

Pr � h � ĒL
2 � h � ĒL

1 � � 1 � ρ2

1 � 2L � N32 �

Proof. Given the following equations:

Pr � h � EL
2 � �

Pr � h � EL
2 � h � EL

1 � � Pr � h � EL
1 � �

Pr � h � EL
2 � h � ĒL

1 � � Pr � h � ĒL
1 � � (8.6.61)

Pr � h � ĒL
1 � � �

1 � 1
N32 � 2L � 1 � 2L � N32 � (8.6.62)

we have:

Pr � h � EL
2 � h � ĒL

1 � �
Pr � h � EL

2 � � Pr � h � EL
2 � h � EL

1 � � Pr � h � EL
1 �

Pr � h � ĒL
1 � (8.6.63)

� Pr � h � EL
2 �

Pr � h � ĒL
1 � (8.6.64)

� ρ2

1 � 2L � N32 � (8.6.65)

Lemma 8.11. For a balanced cut
�
S � S̄ � , where its history h is conditioned on ĒN

1 ,

Pr � diff
�
T � �

S � S � � L � � 0 � ĒN
1 � � ρ2

1 � 2L � N32 � ρL
3

1 � 2
�
N � L � � N32 �
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Proof. By assumption of independence between node events,

Pr � h � EL
2 � ĒN

1 � � Pr � h � EL
2 � h � ĒL

1 � f̄ � ĒN 	 L
1 � (8.6.66)

� Pr � h � EL
2 � h � ĒL

1 � (8.6.67)

� ρ2

1 � 2L � N32 � (8.6.68)

When h � EL
2 , we give up trying to bound diff

�
T � �

S � S � � L � � 0; hence

Pr � diff
�
T � �

S � S � � L � � 0 � ĒN
1 �

� Pr � h � EL
2 � ĒN

1 � �
Pr � diff

�
T � �

S � S � � L � � 0 � �
h � f̄ � � ĒN

1 � h � ĒL
2 � � Pr � h � ĒL

2 � ĒN
1 �

� ρ2

1 � 2L � N32 � ρL
3

1 � 2
�
N � L � � N32 �

where the last inequalities are due to Lemma 8.10 and Lemma 8.12.

Lemma 8.12. For a balanced cut
�
S � S̄ � ,

Pr � diff
�
T � �

S � S � � L � � 0 � �
h � f̄ � � ĒN

1 � h � ĒL
2 � � ρL

3

1 � 2 � N 	 L �
N32

�

Proof. We use e0 to replace
�
diff

�
T � �

S � S � � L � � 0 � and bound the following:

Pr � e0 �
�
h � ĒL

1 � ĒL
2 ��� f̄ � ĒN 	 L

1 � , which is the same as the term in the statement

of the lemma,

Pr � e0 � h � ĒL
2 � ĒL

1 � f̄ at random � �
Pr � e0 �

�
h � ĒL

2 � ĒL
1 ��� f̄ � ĒN 	 L

1 � � Pr � f̄ � ĒN 	 L
1 � h � ĒL

2 � ĒL
1 � �

Pr � e0 �
�
h � ĒL

2 � ĒL
1 ��� f̄ � EN 	 L

1 � � Pr � f̄ � EN 	 L
1 � h � ĒL

2 � ĒL
1 � �

By independence between node events:

Pr � f̄ � ĒN 	 L
1 � h � ĒL

2 � ĒL
1 � � Pr � f̄ � ĒN 	 L

1 � � (8.6.69)

Pr � f̄ � EN 	 L
1 � h � ĒL

2 � ĒL
1 � � Pr � f̄ � EN 	 L

1 � � (8.6.70)
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Given that events E L
2 � EL

1 defined on 2L swapped nodes are independent of

event EN 	 L
1 on 2

�
N � L � unswapped nodes, we have the following, where we omit

writing out the f̄ at random condition,

Pr � e0 �
�
h � ĒL

2 � ĒL
1 ��� f̄ � ĒN 	 L

1 �
� Pr � e0 � h � ĒL

2 � ĒL
1 � � Pr � e0 �

�
h � ĒL

2 � ĒL
1 ��� f̄ � EN 	 L

1 � � Pr � f̄ � EN 	 L
1 �

Pr � f̄ � ĒN 	 L
1 �

� Pr � diff
�
T � �

S � S � � L � � 0 � h � ĒL
2 � ĒL

1 �
Pr � f̄ � ĒN 	 L

1 � (8.6.71)

� ρL
3�

1 � 1
N32 � 2 � N 	 L � � ρL

3�
1 � 2 � N 	 L �

N32 �
� (8.6.72)

where Pr � f̄ � ĒN 	 L
1 � � 1 � 2 � N 	 L �

N32 following a proof similar to that of Lemma 8.3.

8.7 Putting Things Together

Finally, we prove Theorem 8.1.

Proof of theorem 8.1: Let E3 be the event that any balanced cut
�
S � S̄ � has a score

higher than that of perfect partition T ,

Pr
�
E3 � � Pr � EN

1 � � ∑
� S � S̄ �

Pr � diff
�
T � �

S � S � � L � � 0 � ĒN
1 �

�
�

1 � �
1 � 1

N32 � 2N � � ∑
� S � S̄ �

ρ2

1 � 2L � N32 � ρL
3

1 � 2
�
N � L � � N32

�
�

1 � �
1 � 1

N32 � 2N � � 22Nρ2

1 � 2L � N32 �
N � 2

∑
L � 1

�
N
L � �

N
L � ρL

3

1 � 2
�
N � L � � N32

� O
�
1 � poly

�
N � � �

where h is the specific 2KL-history that we record for each
�
S � S̄ � after we exclude

bad events E1 � E2 from probability space
�
Ω � F � Pr � .

�



9 Learning Product Distributions

9.1 Introduction

After exploring the power of drawing two random vectors from its product distribu-

tion, i.e., two random draws from each of the K dimensional distributions, for each

sample point, we ponder at the possibility of achieving the same power of cluster-

ing using a single random draw from each of the K dimensional distributions for

each sample point. Let us first formally define a product distribution.

Definition 9.1. A product distribution Dm � � m � 1 � 2, over Boolean cube
�
0 � 1 � K is

characterized by its expected value �pm � �
p1

m ������� � pK
m � � �

0 � 1 � K , which we refer to

as the center of Dm.

We then restate our problem as a fundamental problem of learning mixtures

of two product distributions over discrete domains, in particular, over the K-

dimensional Boolean cube
�
0 � 1 � K , where K is a variable whose value we need

to resolve. Given a small sample, i.e., when N is small, can we learn the perfect

partition with a small number of attributes from each sample point such that, for

each attribute, we are given only a single bit that is randomly drawn from its cor-

responding Bernoulli distribution?

We finish this section by giving some more notation, followed by two results.

We use X � �x � �
x1 � x2 ������� � xK � to represent a random K-bit vector, given a set of

K attributes. Sometimes we also use xi
j to represent the ith coordinate of point X j.

Definition 9.2. A random vector �x from the distribution �pm, which we denote as

�x � �pm, is generated by independently selecting each coordinate xi to be 1 with

probability pi
m � � i � � m.

155
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We first define an alternative measure for the average distance between two

product distributions D1, D2 across their K dimensions.

Definition 9.3.
�
D1 � D2

� ��� �p1 	 �p2 � 1K � ∑K
i � 1 � pi

1 	 pi
2 �

K .

We prove in Section 9.2 Theorem 9.2, which holds under a special condition

such that we know whether pi
1 � pi

2, or vice versa, � i. Under this condition, The-

orem 9.2 states a result that is similar to Theorem 7.2 (in Section 7.2), i.e., the

Global Optimum Lemma, using only K � Ω
�
lnN � α2 � attributes, where �α � � γ is

the same measure as in Definition 9.3. Similar to Theorem 7.2, we do not require a

balanced input instance.

We next use the inner-product of two K-dimensional vectors �x and �y as the

Rscore between X and Y , as in Definition 9.4, and define a complete graph where

nodes are sample points and edge weight is the Rscore between the two points.

Definition 9.4. Rscore
�
X � Y � � � �x � �y � � ∑K

i � 1 xiyi.

Similar to Section 8.1, we define Rscore for a cut
�
S � S̄ � as the sum of Rscores

over the set of edges in
�
S � S̄ � . Let P1 represent the set of points X1 � X2 ������� � XN from

a product distribution D1, and P2 represent the set of points Y1 � Y2 ������� � YN from

a product distribution D2. We show that the perfect partition T � �
P1 � P2 � is the

minimum cut (min-cut) in terms of Rscore among all balanced cut
�
S � S̄ � , both

in expectation and with high probability, despite the deviation of an individual

Rscore or the sum of Rscores over a set of edges from its expectation. Formally,

Theorem 9.1. Given K � Ω
� lnN

γ � attributes from each of the 2N sample points,

where N points come from each distribution, and KN � Ω
� lnN log logN

γ2 � , and N � 4,

with probability 1 � 1 � poly
�
N � , for all other balanced cut

�
S � S̄ � in the complete

graph formed among 2N sample points,

Rscore
�
T � � Rscore

�
S � S̄ � �

It is easy to check that, following the same line of arguments in this chapter

for Theorem 9.1, using scores based on pairwise Hamming distances, i.e., � X � Y �
H

� �x � �y � � ∑K
i � 1 xi � yi, the max-cut will identify the perfect partition with high prob-

ability, given the same order of number of attributes.



9.2 An Alternative Score � 157

We also note that this inner-product based or Hamming distance based scores

can not give results that are similar to the Global and Local Optimum lemmas in

Chapter 7.

9.2 An Alternative Score

In this section, we prove Theorem 9.2, which is similar to Theorem 7.2, while re-

quiring only a single bit from each attribute, under the condition that we know

whether pi
1 � pi

2, or vice versa, � i. We design a new score, which we call Bscore

such that, with high probability, the absolute values of Bscores, each defined over

K � Ω
�
lnN � α2 � attributes, between points from the same distribution are consis-

tently lower than those between sample points from different distributions, where

α is the same as the measure in Definition 9.3.

To simplify presentation, the Bscore we define in this section is based on the

assumption that pi
1 � pi

2 � � i. When this assumption is not true, we only need to alter

the definition of the Bscore such that for the set of attributes pi
1 � pi

2, we add �
signs, while for the other set of attributes we add � signs before Bscorei that we

currently define.

Definition 9.5. For an unordered pair of points
�
X � Y � , let

Bscorei �
X � Y � � �

xi � yi � � � i � (9.2.1)

and

Bscore
�
X � Y � �

K

∑
i � 1

Bscorei �
X � Y � �

Under this assumption, the α as in Definition 9.6 is exactly the same measure

as in Definition 9.3 and hence �α � � γ.

Definition 9.6. α � �
1 � K � ∑K

i � 1 αi, where αi � pi
1 � pi

2.

Definition 9.7. For two sample points X � Pa and Y � Pb, where a � b � �
1 � 2 � ,

α
�
X � Y � � � α

�
Y � X � � �

1 � K �
K

∑
i � 1

�
pi

x � pi
y � �
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And hence α � �α �
X � Y � � � �α �

Y � X � � .

Thus whether we subtract Y from X , or vice versa, it has a similar effect in

terms of Theorem 9.2. We first show the following lemma.

Lemma 9.1. Let X � Y come from different distributions, and Z1 � Z2 be of common

origin,

E
�
Bscore

�
X � Y �
� � Kα

�
X � Y � �

E
�
Bscore

�
Z1 � Z2 �
� � 0 �

Proof. Given α
�
X � Y � as in Definition 9.7,

E
�
Bscore

�
X � Y �
� �

K

∑
i � 1

E � Bscorei �
X � Y � � (9.2.2)

�
K

∑
i � 1

E � xi � yi � (9.2.3)

�
K

∑
i � 1

�
pi

x � pi
y � (9.2.4)

� Kα
�
X � Y � � (9.2.5)

Given all frequencies are exactly the same for Z1 � Z2, it follows that

E
�
Bscore

�
Z1 � Z2 �
� � 0.

The following theorem does not assume a balanced input instance.

Theorem 9.2. Let 2N be the size of the sample. Given that K � 72ln N � α2, with

probability 1 � O
�
1 � N2 � , for all points X � Y that come from different distributions,

and for all points Z1 � Z2 that come from the same distribution,

�Bscore
�
X � Y � � � 2K �α � � 3 �

�Bscore
�
Z1 � Z2 � � � K � α � � 3 �

Proof. We first use the Hoeffding bound to prove the following lemma.

W.l.o.g, assume that X � P1 and Y � P2 and hence α
�
X � Y � � 0.
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Lemma 9.2. Given that K � 72ln N � α2,

Pr
� �Bscore

�
Z1 � Z2 � � � Kα � 3 � � 2 � N4 �

Pr
� �Bscore

�
X � Y � � � 2Kα � 3 � � 2 � N4 �

Proof. Given E
�
Bscore

�
Z1 � Z2 �
� � 0 and Bscore

�
Z1 � Z2 � � ∑K

i � 1 Bscorei �
Z1 � Z2 �

is the sum of K independent random variables with values in
� � 1 � 1 � , using Hoeffd-

ing bound as in Theorem 7.1, by taking t � Kα � 3K � α � 3,

Pr
� �Bscore

�
Z1 � Z2 � � � Kα � 3 � � 2e 	 2K2 � α � 3 � 2 � K � 2 � 2 � 2 � N4 � (9.2.6)

and similarly, given that E
�
Bscore

�
Y � X �
� � � E

�
Bscore

�
X � Y �
� � � α, we use one

of the following depending on the order of X � Y that we use for subtraction,

Pr
�
Bscore

�
X � Y � � 2Kα � 3 � �

Pr
� � Bscore

�
X � Y � � E

�
Bscore

�
X � Y �
� � Kα � 3 � (9.2.7)

� e 	 2K2 � α � 3 � 2 � K � 2 � 2
(9.2.8)

� 1 � N4 � (9.2.9)

Pr
�
Bscore

�
Y � X � � � 2Kα � 3 � �

Pr
�
Bscore

�
Y � X � � E

�
Bscore

�
Y � X �
� � Kα � 3 � (9.2.10)

� e 	 2K2 � α � 3 � 2 � K � 2 � 2
(9.2.11)

� 1 � N4 � (9.2.12)

By union bound, for α � 0, the probability that any event of type

�Bscore
�
X � Y � � � 2Kα � 3 or type �Bscore

�
Z1 � Z2 � � � Kα � 3 happens is at most

8N2 � N4, since the total number of such events is 2N
�
2N � 1 � . Thus the theorem

holds.

Thus a simple threshold based algorithm will identify a perfect partition by

taking that set of edges that have absolute values larger than a certain threshold

in the complete graph. In particular, the perfect partition in such a graph has a
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maximum average score, i.e., the total score across edges in the perfect partition

divided by the number of such edges.

Remark 9.1. By definition of γ and α, it is easy to verify that γ � α2. Hence a

bound of K � Ω
�
lnN � γ � is tighter than that of K � Ω

�
lnN � α2 � . We give bounds

based on γ in Section 7.3 and Chapter 8, and also in the rest of this chapter.

9.3 Overview of Key Ideas

We give an overview for the key ideas that we use to prove Theorem 9.1.

The Model and Notation. We use �x to denote a K-bit vector that corresponds to X

in the sample, and xi its ith component. We use �x � Dm � � m � 1 � 2, to represent that

x is a vector that is generated from the product distribution Dm, and thus

E �x 	 Dm

� �x � � �pm � � m � 1 � 2 � (9.3.13)

Recall that we build a complete graph such that sample points map to nodes

in the graph and an edge between two nodes X and Y is given a weight of

Rscore
�
X � Y � as in Definition 9.4.

The key idea that makes an inner-product based score work is that although

from an individual sample point, e.g., Y ’s perspective, diff
�
Y � (which is similar to

that in Definition 7.6, except that Pscores there are replaced with Rscores, see

Definition 9.8,) may not be significant due to the definition of our Rscore, the sum

of diffs over a pair of swapped nodes, e.g., diff
�
X � � diff

�
Y � as in Figure 9.3.1, is

significant despite a bounded amount of deviation. Indeed, we prevent the sum of

diff
�
X � � diff

�
Y � from deviating too much from its expected value, Kγ, by excluding

bad node events as in Definition 9.10, which is in essence similar to what we define

in Definition 8.12, from X and Y .

Therefore, the advantage of a perfect partition over all other balanced cuts, i.e.,

the sum of diffs across 2L
�
N � L � pairs of edges from swapped nodes to unswapped

nodes, as shown in Figure 8.1.1, is significant enough, so that the perfect partition

can almost always win over all other balanced partitions, in terms of the particular

measure (minimum total score here), despite the deviation events that we handle in

Section 9.4.2.
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The inspiration for using an inner-product based score and pairing up

diff
�
X � � diff

�
Y � such that X � D1 and Y � D2 comes from Freund and Mansour

[1999], where they did similar analysis up till Proposition 9.3. The rest of the proof

follows exactly that in Chapter 8. And hence we only rewrite various propositions,

lemmas and claims that have changed slightly due to the definition of this new

score.

a b
dc

X Y X

c
a

d
b

Y

Figure 9.3.1. Given Dots � �p1 and Triangles � �p2. Define diff
�
X � � E

�
c �X � � E

�
b �X �

and diff
�
Y � � E

�
d �Y � � E

�
a �Y � . Given K � Ω

�
lnN � γ � , with high probability,

diff
�
X � � diff

�
Y � � Kγ � 2, given that E �x 	 �p1

�
diff

�
X �
� � E �y 	 �p2

�
diff

�
Y �
� � Kγ; Hence

a � b � c � d, with high probability, given also that KN � Ω
�
lnN log log N � γ2 � .

9.3.1 The Expected Difference of Two Edges

Proposition 9.1. � a � b � 1 � 2 � E �x 	 Da � �y 	 Db

� � �x � �y � � � � �pa � �pb � .

Proof. We have � a � b � 1 � 2,

E �x 	 Da � �y 	 Db

� � �x � �y � � � E

�
K

∑
i � 1

xiyi �
�

K

∑
i � 1

E � xiyi � �
K

∑
i � 1

pi
a pi

b � � �pa � �pb � �

Definition 9.8. Let X be a sample point from distribution D1 and Y be a sample

point from D2. Let X
�
, Y

�
be points randomly drawn from D1 and D2 respectively,

diff
�
X � � E �x � 	 �p1

� Rscore
�
X � X � � � � E �y � 	 �p2

� Rscore
�
X � Y � � � �

diff
�
Y � � E �y � 	 �p2

� Rscore
�
Y � Y � � � � E �x � 	 �p1

� Rscore
�
Y � X � � � �
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where expectations are taken over all possible realizations of X
�
, Y

�
respectively.

Proposition 9.2. Let X be a sample point from D1 and Y be a point from D2,

diff
�
X � �

K

∑
i � 1

xi �
pi

1 � pi
2 � � diff

�
Y � �

K

∑
i � 1

yi �
pi

2 � pi
1 � �

Proof. By Definition 9.8, we have

diff
�
X � � E �x � 	 �p1

� Rscore
�
X � X

� � � � E �y � 	 �p2
� Rscore

�
X � Y � � �

� E �x � 	 �p1
� � �x � �x � � � � E �y � 	 �p2

� � �x � �y � � � (9.3.14)

� � �x � �p1 � �p2 � (9.3.15)

�
K

∑
i � 1

xi �
pi

1 � pi
2 � � (9.3.16)

diff
�
Y � � E �y � 	 �p2

� Rscore
�
Y � Y � � � � E �x � 	 �p1

� Rscore
�
Y � X

� � �
� E �y � 	 �p2

� � �y � �y � � � � E �x � 	 �p1
� � �y � �x � � � (9.3.17)

� � �y � �p2 � �p1 � (9.3.18)

�
K

∑
i � 1

yi �
pi

2 � pi
1 � � (9.3.19)

We next show that the sum of two expected differences over X from D1 and Y

from D2 is significant.

Proposition 9.3. E �x 	 �p1

�
diff

�
X �
� � E �y 	 �p2

�
diff

�
Y �
� � � �p1 � �p2

� 2
2 � Kγ.

Proof. By Proposition 9.2,

E �x 	 �p1

�
diff

�
X �
� � E �y 	 �p2

�
diff

�
Y �
� �

K

∑
i � 1

pi
1

�
pi

1 � pi
2 � �

K

∑
i � 1

pi
2

�
pi

2 � pi
1 �

� � �p1 � �p1 � �p2 � � � �p2 � �p2 � �p1 �
� Kγ �
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Hence let us denote w.l.o.g. η � E �x 	 �p1

�
diff

�
X �
� � Kγ � 2, and thus

E �y 	 �p2

�
diff

�
X �
� � Kγ � η.

We next show the following two claims.

Lemma 9.3. Given that K � 8ln 1 � τ
γ , PrX

�
diff

�
X � � η � Kγ � 4 � � 1 � τ.

Lemma 9.4. PrY
�
diff

�
Y � � �

Kγ � η � � Kγ � 4 � � 1 � τ.

Proof of Lemma 9.3: Let us define γk � �
pk

1 � pk
2 � 2 � � k � 1 ������� � K. Given that

x1 ������� � xK are independent Bernoulli random variables and
�
pk

1 � pk
2 � xk is either in�

0 � �
γk � or

� � �
γk � 0 � , � k � 1 ������� � K, we apply Hoeffding bound as in Theorem 7.1

with t � Kγ � 4K � γ � 4:

PrX

�
�

K

∑
k � 1

�
pk

1 � pk
2 � xk � η � Kγ � 4 � �

PrX

�
K

∑
k � 1

�
pk

1 � pk
2 � xk � η � � Kγ � 4 �

� e 	 2K2 � γ � 4 � 2 � ∑K
k � 1 � �

γk � 2

� τ �

Thus we have that PrX � ∑K
k � 1

�
pk

1 � pk
2 � xk � η � Kγ � 4 � � 1 � τ.

�
Proof of Lemma 9.4: Similarly to proof of Lemma 9.3, we have

PrY

�
K

∑
k � 1

�
pk

2 � pk
1 � yi � �

Kγ � η � � � Kγ � 4 � � τ �

where Kγ � η � E �y 	 �p2

�
diff

�
Y �
� . And hence

PrY

�
K

∑
k � 1

�
pk

2 � pk
1 � yi � �

Kγ � η � � Kγ � 4 � � 1 � τ �

�
The rest of the proof for Theorem 9.1 follows the proof for Theorem 8.1 as

presented in Chapter 8. Hence we only include changes and important steps.
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9.4 Min-Cut Reveals the Perfect Partition

9.4.1 Probability Space

We first introduce some notation regarding the simple probability space
�
Ω � F � Pr �

as follows. The set Ω is the set of all possible outcomes for 2NK random bits,

where we denote each bit as bk
j for a point j at dimension k.

Definition 9.9. The elementary events in the underlying sample space
�
Ω � F � Pr �

are all possible 22NK choices of n � 2NK bits. For 0 � i � n and w � �
0 � 1 � i , let Bw

denote the event that the first i bits equal to the bit string w. Let Fi be the σ-field

generated by the partition of Ω into blocks Bw, for w � �
0 � 1 � i. Then the sequence

F0 ������� � Fn forms a filter. In the σ-field Fi, the only valid events are the ones that

depend on the values of the first i bits, and all such events are valid within.

Remark 9.2. Comparing the above definition and Definition 8.10, the only differ-

ence lies in whether a pair of bits or a single bit defines the random variable along

a single dimension. For all other places: wherever the phrase “a pair of bits” or

“pairs of bits” is used, it should be replaced with “a single bit” or “bits”.

We first show that the perfect partition has the minimum expected value among

all balanced cuts, when summing up scores over all edges across the cut. We first

modify the definition for a random variable diff
�
T � �

S � S � � L � as in (8.1.5) to be:

diff
�
T � �

S � S � � L � � Rscore
�
S � S̄ � � Rscore

�
T � � (9.4.20)

Proposition 9.4. E � diff
�
T � �

S � S � � L � � � �
N � L � LKγ.

Proof.

E � diff
�
T � �

S � S � � L � � � �
N � L � LE �x 	 �p1

�
diff

�
X �
� �

�
N � L � LE �y 	 �p2

�
diff

�
Y �
� (9.4.21)

� �
N � L � LKγ � (9.4.22)
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We work in probability space
�
Ω � F � Pr � . For the rest of this section, for a bal-

anced cut
�
S � S̄ � , the 2KL-history h � �

Ũ1 ������� � ŨL � Ṽ1 ������� � ṼL � is a random variable

whose value depends on 2KL random bits on 2L swapped nodes specified over�
S � S̄ � with respect to T , as shown in Figure 8.1.1; recall that X̃ is the outcome of a

particular point X in our sample.

We next restate Proposition 8.2 as the following.

Proposition 9.5. As a random variable according to Definition 8.11,

Eh � diff
�
T � �

S � S � � L � � � �
N � L �

L

∑
j � 1

diff
�
U j � � �

N � L �
L

∑
j � 1

diff
�
V j �

� �
N � L �

L

∑
j � 1

K

∑
k � 1

�
pk

1 � pk
2 � �

uk
j � vk

j � �

where diff
�
U j � and diff

�
V j � are defined in Definition 9.8.

We keep Definition 8.13 for Bad Event E N
1 , except that we replace a Bad Node

Event E
�
Z � , � Z, with the following.

Definition 9.10. (Bad Node Event) Let a bad node event E
�
Z � be the event that

diff
�
Z � � E

�
diff

�
Z �
� � Kγ � 4, where Z is a sample point. Note this is an event in an

individual probability space
�
ΩZ � FZ � PrZ � , where

�
ΩZ � FZ � PrZ � is defined over all

possible outcomes of K random bits for sample point Z.

This immediately implies the following lemma, which only slightly modifies

Lemma 8.6.

Lemma 9.5. For a balanced cut
�
S � S̄ � , given a particular 2KL-history h � F2KL on

the 2L swapped nodes such that h � ĒL
1 ,

Eh � diff
�
T � �

S � S � � L � � h � ĒL
1 � f̄ at random � � L

�
N � L � Kγ � 2 � (9.4.23)

where expectation is over all possible outcomes of the 2
�
N � L � K random bits in f̄

in probability space
�
Ωh � Σ �

Ωh � � Prh � .
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Proof. For a balanced cut
�
S � S̄ � , given h � ĒL

1 , where h records 2KL bits over

swapped nodes U j � Vj � � j � 1 ������� � L, by Definition 9.10,

diff
�
U j � � η � Kγ � 4 � � j � 1 ������� � L � (9.4.24)

diff
�
V j � � Kγ � η � Kγ � 4 � � j � 1 ������� � L � (9.4.25)

and hence diff
�
U j � � diff

�
V j � � Kγ � 2 � � j � 1 ������� � L. Thus, in

�
Ωh � Σ �

Ωh � � Prh � ,

where f̄ is at random and h � ĒL
1 , we have from Proposition 9.5,

Eh � diff
�
T � �

S � S̄ � � L � � � �
N � L �

L

∑
j � 1

diff
�
U j � � �

N � L �
L

∑
j � 1

diff
�
V j �

� �
N � L �

L

∑
j � 1

�
diff

�
U j � � diff

�
V j � �

� �
N � L � LKγ � 2 �

And thus we have the following theorem.

Theorem 9.3. Give that all points are drawn from ĒN
1 , the probability space�

Ω � F � Pr � excluding E N
1 , we have � balanced cut

�
S � S̄ � , where h is a particu-

lar 2KL-history corresponding to the 2L swapped nodes specified over
�
S � S̄ � with

respect to T ,

Eh � diff
�
T � �

S � S � � L � � � �
N � L � LKγ � 2 � (9.4.26)

where the conditional expectation is over each of the individually expanded proba-

bility space
�
Ωh � Σ �

Ωh � � Prh � given h � ĒL
1 , where EL

1 is defined in Definition 8.16.

This statement remains true after we require that h � ĒL
2 in addition, where E L

2 is

defined in Definition 9.13.

9.4.2 Large Deviation

We aim to define a Bad Deviation Event as in Definition 9.13, but we first overwrite

some definitions regarding EL
2 .
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Definition 9.11. Given vectors �u1 ������� � �uL and �v1 ������� � �vL, where uk
j � vk

j are the kth bit

of U j and Vj respectively,

f k
2

�
h � � f k

2
�
U1 ������� � UL � V1 ������� � VL � �

L

∑
j � 1

uk
j �

L

∑
j � 1

vk
j �

Definition 9.12. (Deviation Values) � k � 1 ������� � K, let tk

�
L be the exact deviation

on f k
2

�
h � , i.e., f k

2

�
h � � E � f k

2

�
h � � � tk

�
L � � k.

Definition 9.13. (Bad Deviation Event E L
2 ) In probability space

�
Ω � F � Pr � , given

a balanced cut
�
S � S̄ � and its corresponding 2KL-history h, E L

2 is the event such that

the set of random variables t1 ������� � tk regarding 2KL random bits recorded in h, as

defined in Definition 9.12, are simultaneously large and satisfy

K

∑
k � 1

t2
k � ∆ � 8N ln2 � 4K ln2

�
log logN � 1 � � 3lnN � 2 �

Using Definition 9.13 and 9.12, we immediately have the following lemma.

Lemma 9.6. Given that h � ĒL
2 , we have � k,

�� f k
2

�
h � �� � ���

E � f k
2

�
h � � ���

� ���
tk

�
L ���

�

and ∑K
k � 1 t2

k � ∆, where tk is in Definition 9.12, and E L
2 is in Definition 9.13.

Proof. By definition of tk � � k, we have that f k
2

�
h � � E � f k

2

�
h � � � tk

�
L, where tk �

� 	 L 	 E � f k
2 � h � �

�
L

� L 	 E � f k
2 � h � �

�
L

� .
Thus we immediately have

�� f k
2

�
h � �� � ���

E � f k
2

�
h � � ���

� ���
tk

�
L ���

�

where ∑K
k � 1 t2

k � ∆, given that h � ĒL
2 .

First let us obtain the expected value of f k
2

�
h � � � k as in Definition 9.11.

Proposition 9.6. E � f k
2

�
h � � � E � ∑L

j � 1 uk
j � vk

j � � L
�
pk

1 � pk
2 � �

Next we examine the deviation for each random variable f k
2

�
h � � � k.
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Lemma 9.7. � k, for random variable f k
2

�
h � as in Definition 9.11,

Pr � ���
f k
2

�
h � � E � f k

2
�
h � � ���

� tk
�

L � � 2e 	 tk2 � (9.4.27)

In addition, events corresponding to different dimensions are independent.

Proof. Let us define random variables Ū k, V̄ k such that

f k
2

�
h � � L

�
Ū k � V̄ k � � (9.4.28)

where Ū k � ∑L
j � 1 uk

j � L and V̄ k � ∑L
j � 1 vk

j � L.

Thus by Proposition 9.6,

E � Ū k � � E � V̄ k � � 1
L

E � f k
2

�
h � � � pk

1 � pk
2 �

Now applying Corollary 7.1 of Theorem 7.1 to bound probability of deviations

on both sides of the expected differences, let t � tk

�
L � L, we have

Pr � ���
f k
2

�
h � � E � f k

2
�
h � � ���

� tk
�

L � �
Pr � ���

Ū k � V̄ k � �
E � Ū k � � E � V̄ k � � ���

� tk
�

L � L �
� 2e

� 2 � tk � L � L � 2

� 2 � L �

� 2e 	 t2
k �

Lemma 9.8. In probability space
�
Ω � F � Pr � , for each balanced cut

�
S � S̄ � ,

Pr � h � EL
2 � � ρ2 �

where ρ2 � O
� 1

22N poly � N � � and N � 2.

Proof. The proof follows that of Lemma 8.4, except with the following modifica-

tions: (9.4.29) is replaced with the following: Let rk � � k represent the number of
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such intervals: we have � k, so long as N � 2,

rk � log
� ���

�
L ���

� ���
L

�
pk

1 � pk
2 � �

�
L ���

� (9.4.29)

� log2
�

L � log2 � N � 2 � logN � (9.4.30)

We also modify Lemma 8.5 to the following: whose proof follows a similar

line, except that the definition of ∆ here follows that of Definition 9.13 due to the

change of Lemma 9.7 as compared to Lemma 8.1.

Lemma 9.9. Let ∆ � 4 � 2N ln2 � K
�
ln2 � �

log logN � 1 � � �
3ln N � � 8 as ∆ is defined

in Definition 9.13.

Pr

�
h maps to a fixed B

�
β1 ������� � βk � s.t.

K

∑
k � 1

t̃2
k � ∆ � 4 � � 1

22N � �
logN � K � N3 � 2

�

9.4.3 Bounded Differences

We are now ready to use bounded differences approach in
�
Ωh � Σ �

Ωh � � Prh � and

prove the following variation of Theorem 8.3.

Theorem 9.4. Let h be a possible 2KL-history that we record for a balanced cut�
S � S̄ � such that h � ĒL

2 � ĒL
1 . Then, for t � 0, in probability space

�
Ωh � Σ �

Ωh � � Prh � ,

where all future 2
�
N � L � K random bits f̄ are completely at random,

Prh � �Eh � diff
�
T � �

S � S̄ � � L � �H2KN � � Eh � diff
�
T � �

S � S̄ � � L � � � � t � � 2e 	 t2 � 2σ2 �

where σ2 � 4
�
N � L � L2 �

Kγ � � 4
�
N � L � L∆, for all balanced cut

�
S � S̄ � with 0 � L �

N � 2 swapped nodes.

Proof. We should substitute all mentioning of “a pair of bits” with a single bit; in

particular, we substitute X k
i � Y k

i , wherever they are used in the proof of Theorem 8.3,

with xk
i � yk

i to refer to a single bit at dimension k of point X and Y respectively.
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In particular, we have

di � k
�
Xi � �

���
Eh � diff

�
T � �

S � S̄ � � L � �H � j � � xk
i � � Eh � diff

�
T � �

S � S̄ � � L � �H � j � � ���
� (9.4.31)

And similarly, let �
� � 2KL � �

N � L � K � �
i � 1 � K � k � 1, we have

di � k
�
Yi � �

���
Eh � diff

�
T � �

S � S̄ � � L � �H � � � � � yk
i � � Eh � diff

�
T � �

S � S̄ � � L � �H � � � � � ���
�

We immediately have the following lemma that we can plug into Azuma’s in-

equality, where di � k applies to both di � k
�
Xi � and di � k

�
Yi � .

Lemma 9.10. For the 2
�
N � L � K random bits on unswapped nodes Xi � Yi � i ��

1 � N � L � that we reveal, at dimension k � �
1 � K � , we have

di � k � �� L
�
pk

2 � pk
1 � �� � ���

tk
�

L ���
�

where tk is defined in Definition 9.12 and ∆ as in Definition 9.13, and ∑K
k � 1 t2

k � ∆.

Proof. This proof follows that of Lemma 8.8. Given that Yi � � i, comes from D2 and

Xi � � i, comes from D1, and by definition of di � k
�
Yi � and di � k

�
Xi � ,

di � k
�
Yi � �

�
�� p

k
2 �� �� f k

2

�
h � �� : yk

i � 0 �
�� 1 � pk

2 �� �� f k
2

�
h � �� : yk

i � 1 �

and

di � k
�
Xi � �

�
�� p

k
1 �� �� f k

2

�
h � �� : xk

i � 0 �
�� 1 � pk

1 �� �� f k
2

�
h � �� : xk

i � 1 �
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Hence given that h � ĒL
2 , Lemma 9.6, and �� E � f k

2

�
h � � �� � �� L

�
pk

2 � pk
1 � �� as in

Proposition 9.6,

di � k
�
Yi � � �� f k

2
�
h � �� (9.4.32)

� ���
E � f k

2
�
h � � ���

� ���
tk

�
L ���

(9.4.33)

� �� L
�
pk

2 � pk
1 � �� � ���

tk
�

L ���
� (9.4.34)

and similarly, di � k
�
Xi � � �� L

�
pk

2 � pk
1 � �� � �� tk

�
L �� , where ∑K

k � 1 t2
k � ∆.

We are now ready to obtain a bound for σ2 � 2∑N 	 L
i � 1 ∑K

k � 1 d2
i � k , where d2

i � k �
�� L

�
pk

2 � pk
1 � �� � ��

�
L

�
tk � �� � 2 applies to unswapped nodes Xi � Yi � � i � 1 ������� � N � L � in

bounding the differences they cause by revealing the random bits on dimension K.

Given that ∑K
k � 1 t2

k � ∆,

σ2 � ∑
i � k

�
d2

i � k
�
Xi � � d2

i � k
�
Yi � � � 2∑

i � k

d2
i � k

� 2
N 	 L

∑
i � 1

K

∑
k � 1

�
�� L

�
pk

2 � pk
1 � �� � ���

�
L

�
tk � ��� � 2

� 2
�
N � L � ∑

k

2
�
L

�
pk

2 � pk
1 � � 2 � 2

� �
L

�
tk � � 2

� 4L2 �
N � L � ∑

k

�
pk

2 � pk
1 � 2 � 4L

�
N � L � ∑

k

t2
k

� 4
�
N � L � L2 �

Kγ � � 4
�
N � L � L∆ �

where ∆ � 8N ln2 � 4K ln2
�
log logN � 1 � � 3lnN � 2 as in Definition 9.13.

We now apply Theorem 9.4 to obtain the following bound on a bad event. Note

that the constant in the following lemma has not been optimized.

Lemma 9.11. Let h be the specific 2KL-history that we record for a balanced cut�
S � S̄ � such that h � ĒL

1 � ĒL
2 . Let ρL

3 � 2
N4L . Then

Pr � diff
�
T � �

S � S � � L � � 0 � h � ĒL
2 � ĒL

1 � f̄ at random � � ρL
3 �

given that K � Ω
� lnN

γ � and KN � Ω
� ln N log log N

γ2 � , for all N � 4.
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Proof. We take t � Eh � diff
�
T � �

S � S̄ � � L � � � KL
�
N � L � γ � 2 and plug in Theo-

rem 9.4, we have the following:

Pr � diff
�
T � �

S � S � � L � � 0 � h � ĒL
2 � ĒL

1 �
� Prh � Eh � diff

�
T � �

S � S̄ � � L � �H2KN � � Eh � diff
�
T � �

S � S̄ � � L � � � � Eh � diff
�
T � �

S � S̄ � � L � � �
� 2e 	 t2 � 2σ2 � 2e 	 � KL � N 	 L � γ � 2 � 2 � 2σ2 � (9.4.35)

where σ2 is defined in Theorem 8.3.

We first rewrite σ2,

σ2 � 4
�
N � L � L2 �

Kγ � � 4
�
N � L � L∆

� 4
�
N � L � L2 �

Kγ � � �
N � L � LΛ � (9.4.36)

which is exactly 1 � 16 of what we have in proof of Lemma 8.9, as in (8.5.55), where

Λ � 4∆. Given that t2 � �
KL

�
N � L � γ � 2 � 4 is also 1 � 16 of that in (8.5.54), the rest

of the calculation is exactly the same as that in proof of Lemma 8.9, where N � 4

is assumed.

We finish this chapter by noting that, to prove Theorem 9.1, we need to bundle

the modified pieces with some original proofs in Chapter 8 according to the outline

shown in Section 8.3.



10 Conclusions and Open Problems

10.1 Hierarchical Routing

As our work is motivated by routing and distributed data location applications in

large-scale distributed systems, where hierarchy is introduced to address scalabil-

ity issues, it is important to fully understand other issues such as robustness and

dynamics posed by such applications, model them appropriately, and adapt our

algorithms accordingly.

– In particular, how can we adapt the randomized constructions to an online

setting, where nodes are allowed to join and leave the system dynamically,

while still guaranteeing the bound on path stretch and the “optimality” of the

decompositions?

– We also lack a complete understanding of the relationships between routing

that optimizes path stretch versus routing that optimizes congestion. How

can we effectively compromise these two goals?

10.2 EDP and Congestion Minimization

In EDPwC, the goal is to connect as many terminal pairs as possible subject to

the constraint that at most ω demands can be routed through any edge in the

graph. Note that when ω � O
�
logn � log logn � , we get a constant approximation via

randomized rounding Raghavan and Thompson [1987]. For an undirected graph,

the strongest hardness of approximation bounds are Ω
�
log

1
2 	 ε n � for EDP and

Ω
�
log

1 � ε
ω � 1 n � for EDPwC due to Andrews et al. [2005].
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(1) Is it possible to improve the hardness of approximation for undirected EDP

to, e.g., Ω
�
log1 	 ε n � ?

(2) Is there a better approximation for All or Nothing Multicommodity Flow

(ANF) problem such that the approximation ratio is O
�
logn � ?

(3) Is it possible to extend our algorithm to obtain a polylogarithmic approxi-

mation for undirected EDP in general graphs, in particular, when we allow

congestion ω to grow from 1 to perhaps log logn?

10.3 Classification

In the context of this population classification problem, there are many open ques-

tions that one needs to consider to come up with rigorous proofs:

(1) How to extend this to biased cases, where two populations have different

sizes? Currently, the max-cut theorem only works for balanced cases and the

proof techniques strongly rely on the fact that we compare only all balanced

cuts with the perfect partition.

(2) How to extend this analysis to multiple populations?

(3) How to allow admixture model, where each individual does not come from

the same population of origin, instead, each individual’s genotype can be a

mixture of several distributions?

(4) How to analyze it when different loci are allowed to have correlations? Our

current model assumes independence between different loci, and our pro-

gram draws samples from the genotype databases randomly to simulate this

independence.

Answering these questions will not only shed lights on our understanding of the

underlying mathematical structure of DNA, but also have significance in defining

and answering problems in this the classic domain of learning distributions.
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