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Abstract

A significant challenge in developing automated problem-diagnosis tools fordistributed systems is the ability of these tools to
differentiate between changes in system behavior due to workload changes from those due to faults. To address this challenge,
current, typically white-box, techniques extract semantically-rich knowledge about the target application through fairly invasive,
high-overhead instrumentation. We propose and explore two scalable, low-overhead, non-invasive techniques to infer semantics
about target distributed systems, in a black-box manner, to facilitate problem diagnosis. RAMS applies statistical analysis on
hardware performance counters to predict whether a given node in a distributed system is faulty, while BlackSheep corroborates
multiple system metrics with application-level logs to determine whether a given node is faulty. In addition, we have developed
and demonstrated a novel technique to extract, from existing application-level logs, semantically-rich behavior that is immediately
amenable to analysis and synthesis with other numerical, black-box metrics. We have evaluated the efficacy of RAMS and
BlackSheep in diagnosing real-world problems in the Hadoop distributed parallel programming system.
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1 Introduction

Finding the location and root cause of a failure in a distributed system is an inherently difficult problem.
Execution paths span multiple machines and can be arbitrarily complex. As a result, a fault may manifest
itself as an error many execution modules down the execution path, before the error manifests itself as a
failure, making the fault difficult to trace. Fault localization—tracing a systemfailure to the site of its initial
manifestation as an error—requires either a characterization of externallyobservable correct system states,
so that system states outside of this set are marked as erroneous, or a direct characterization of erroneous
states. On the other hand, root-cause analysis—tracing a system error toits fault—requires detecting when
software behavior deviates from the programmers’ intentions. This requires knowledge of the semantics of
the program, which is not present in the program.

We propose two new techniques for identifying the location and inferring theroot-cause of a failure
in a distributed system. These techniques attempt to infer semantically-rich white-box software behavior
using black-box techniques. These techniques are designed to work in an online, scalable fashion that is
amenable to use on production systems. They aim to address problem diagnosis on distributed systems with
long-lived jobs, few user-initiated requests, and complex execution paths. While we do not immediately
implement an online solution in this work, our approach has been carefully designed to ensure that the
algorithms used are amenable to being run online with reasonable computation cost. We achieve this by
usinga priori knowledge of both distributed systems in general, and the deployed software, to build two
classes of inference models. These models allow for white-box information of varying granularity about
the phase of execution of software to be inferred from black-box information. In addition, our techniques
require only intra-node information within a given node, so that these techniques are immediately scalable
to distributed systems containing arbitrarily many nodes.

We designed and investigated the efficacy of two black-box techniques.RAMS(Regression Auto-
correlation for detecting Malfunctioning nodeS) attempts to perform fault localization for Hadoop [25] by
inferring coarse-grained white-box information about application behavior (i.e. whether the target system is
malfunctioning) from black-box hardware performance counters.BlackSheepuses black-box techniques to
corroborate black-box operating system-reported metrics and white-boxapplication-level logs, for problem
diagnosis in a candidate distributed system, Hadoop, with fine-grained white-box root-cause analysis.

We demonstrate the efficacy of our root-cause diagnosis technique on Hadoop, the open-source im-
plementation of the Map/Reduce distributed parallel programming runtime environment and distributed
filesystem [25], and further demonstrate the applicability of our technique where current problem diagnosis
techniques are not immediately applicable, on Hadoop.

2 Background

There are two broad classes of techniques for analyzing systems and software. Black-box techniques treat
the software system as an enclosed, unobservable entity that cannot bemodified. We classify information
sources that do not reveal the execution path inside software components as black-box, while we classify
techniques that neither require source code nor machine code modificationas black-box techniques. White-
box information sources provide views into the internals and execution path of the software system. We
classify information sources that provide knowledge of the original source code or execution path structure
of the software, such as knowledge of the order of function calls, as white-box, while we classify techniques
that require any form of source code modification as white-box techniques. While white-box information
is a much wealthier source of information than black-box sources, there is typically an inherent trade-off
between the richness of information that can be extracted from software,and the cost of gathering that
information in terms of runtime overheads and ease of deployment. Black-boxtechniques are easy to use
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at existing software installations and typically involve setting up external software monitors that record
general system state, but provide limited information. White-box techniques may involve significant initial
programmer effort to insert source code such as assertions (which are only as good as the correctness of the
assertions, creating a dual problem), and providing a fine granularity ofinformation about control flow may
have involve high overheads as large numbers of probe-and-recordinstructions will be needed.

It would appear that white-box techniques are necessary to trace a software error to the fault that is
its root-cause. Faults occur when the software behavior deviates from the intentions of its programmers,
and programmer intentions are reflected in the execution path at the granularity of control flow through
functions. Current techniques have danced this tightrope of the inherent tension between instrumentation
overheads and the amount of information that can be extracted, to try to finda good leverage on the smallest
possible information source from which they can extract maximum diagnostic value .

Major black-box techniques have included Pinpoint, which instrumented the J2EE middleware platform
to trace message flows between software components, to associate particular groups of components with
erroneous transactions, and to find anomalous control flow paths [5]. Cohen et. al.’s work has focused
on using clustering on black-box system metrics, and building informative summaries of metrics to reduce
the amount of information that must be exchanged among the nodes of a distributed system to minimize
bandwidth use [6], but can only detect the location but not the root-cause of anomalous behavior. Magpie
correlated resource usage information from operating system-providedresource accounting facilities with
output from application event logs to build causal paths of applications on asingle node using clustering
(that is extensible to multiple nodes, albeit at possibly high cost when tracing execution flows across large
distributed systems) [2].

Major white-box techniques have included Pip, which relied on programmer-written expectations of
correct behavior, and recorded alarms of anomalous behavior raisedfrom within the software itself [16],
but Pip is only as good as the programmer-written expectations it uses. Triage works on stand-alone (non-
distributed) software to uncover the faulty source code behavior or system environment feature which caused
a crash by using a re-execution framework combined with a trial-and-error automation of the intuitive human
troubleshooting process [18], but this method is an after-the-fact technique that relies on the system being
down to allow such root-cause discovery (rather than online diagnosis).

Current techniques which allow for root-cause analysis, such as Pip and Triage, require too much
programmer input, which precludes the discovery of bugs that programmers are unaware of. Both Pip and
Triage do not allow for runtime prognostics to be made for detecting errors before they have resulted in
failures. Both Pip and Triage also require access to program source code, which may not always be feasible,
especially at commercial production sites. Even black-box techniques such as Pinpoint are not necessarily
suited to production sites, because Pinpoint requires a modified middleware,which production sites may not
allow due to various concerns such as security, while techniques such asCohen et al.’s work do not allow
for root-cause analysis although it is amenable to deployment at productionsites.

The goal of this work is to develop techniques for problem diagnosis on distributed software systems
deployed in production environments. Production environments typically deploy commercial or otherwise
third-party software packages for which source code is often not available. Production environments also
typically have strict requirements on availability and quality of service—production systems strive to achieve
maximum throughput and minimum latencies on servicing requests at a minimum cost.Production environ-
ments will generally prohibit modifying even program binaries for security and privacy concerns. Hence,
intrusive and high-overhead white-box techniques are not amenable to our goal. Instead, we infer and ex-
tract white-box information using black-box techniques, to perform root-cause analysis in addition to fault
localization.
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2.1 Scalable Problem Diagnosis

The difficulty of finding the location and root cause of failures in distributedsystems is further complicated
by the fact that execution can take place on arbitrarily many systems, leadingto an explosion in the volume
of trace data gathered. Again, there is a trade-off between gleaning moreinformation by combining trace
data across systems to obtain a system-wide view, and incurring higher bandwidth and processing costs
of transmitting large amounts of data across a network and processing it. Thiswork studies one extreme
of this trade-off, and uses only node-local information for problem diagnosis in a distributed system. We
restrict ourselves to using only information available on a single node for diagnosis on the node, to push the
boundaries of the efficacy of using only local information.

2.2 Problem Diagnosis using Multiple Data Sources

Our key to pushing the boundaries of using only node-local information for problem diagnosis is in the
synthesizing of multiple data sources on the same node in a meaningful manner togain additional infor-
mation for problem diagnosis. To this end, we have examined various local information sources available
at various levels of each node , such as hardware performance counters, operating system-reported metrics
such as processor, memory, disk and network bandwidth utilization, and application-reported information
such as logs. We make initial efforts at synthesizing this information for further analysis. This meaningful
use of many data sources (as opposed to mathematically collapsing all the data for analysis using machine
learning algorithms [6]), distinguishes our approach from current work which mostly use few(one or two)
information sources [16] [5]. By preserving the meaning in the information sources, we are able to assist
human operators by highlighting possible root-causes of the failure, in addition to localizing the fault.

2.3 Application Logs as a White-box Data Source

In addition, this work presents what is (to the best of the author’s knowledge) a novel use of application
activity logs, using application activity logs from the Hadoop distributed parallel programming platform as
a case study. Since application-level log entries are programmer-reported statements of application behav-
ior, they can be seen as a source of white-box information that provdes semantically-rich details about the
activity of the application. Most current work on the use of application logsfocuses on text-mining web
access logs to analyze traffic patterns [21], and on text-mining error and access logs to discover pertinent
features [17] [12]. However, the data mined from these logs using text-mining techniques is typically in
an unstructured, multinomial (but not ordinal) form that cannot be immediatelycombined with operating
system-reported metrics and performance counters, which are typically numerical, ordinal values, for anal-
ysis. The closest relative to our approach of interpreting event logs asa time-series of ordinal values is [10],
although the author examined error logs rather than activity logs, and examined logs from a hardware source.
The distinguishing features of our approach to application-level logs, asdemonstrated through application
activity logs from Hadoop, are: (i) our use of simple parsing instead of text-mining, (ii) inferring high-level
white-box states of application execution, and (iii) generating structured data with a fixed number of de-
scriptive numerical variables, each with ordinal values (counts of states), and that (iv) the structured, ordinal
data we generate is immediately amenable to a larger range of analysis and machine learning algorithms.

We have built an online parser library for the application activity logs of the various components of
the Hadoop platform that reports (i) significant white-box application events in the lifecycle of Hadoop, and
(ii) the instantaneous workload/behavior state of Hadoop. The ability of ourparsing algorithm to extract
semantically-rich information about application behavior useful for problem diagnosis can also provide
insight into how application logging can be designed to aid problem diagnosis of the application.
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2.4 Problem Diagnosis for Hadoop

Distributed systems, such as Hadoop, and other Map/Reduce-type distributed parallel processing systems,
are designed for batch processing of large datasets [25] [7], and are not amenable to problem diagnosis using
most existing techniques.

These distributed systems see much fewer user-initiated requests, so that there are much fewer runs
on which techniques such as Cohen’s work, Magpie, and Pinpoint can perform clustering for learning the
correct behavior of the system. Cohen et al.’s work, Magpie, Pinpoint,and Pip all assume the availability of
large numbers of short-lived user-initiated requests, so that each of these requests can be used as a sample for
clustering to determine which requests are anomalous. This model is well-suitedto the vast majority of tra-
ditional multi-tier web-based applications, with common tiers being a web-serverfront-end, an application
server tier, and a database back-end, but not to Hadoop.

Also, Hadoop has uninteresting execution paths through its components, asit implements a node-based
processing model in which every node performs the same computation, rather than a path-based processing
model in which each node along the processing path performs specialized processing. Thus, there is only
one type of execution component (the TaskTracker), such that path-based techniques such as Pinpoint’s
Probabilistic Context-Free Grammars and Pip will have limited leverage from analyzing paths of execution
flows for problem diagnosis.

Hence another key objective of our work is to use node-local, path-agnostic techniques for problem
diagnosis on Map/Reduce-type distributed parallel processing systems for which current problem diagnosis
techniques are not effective.

2.5 Hadoop failure scenarios

We studied 9 months of data (October 2006 to July 2007) from the bug database [23] of Hadoop, an open-
source implementation of the MapReduce distributed parallel programming model,which motivated the
characteristics of our target system, to identify common failure manifestations offaults. We found that the
majority of faults manifested as process hangs and resource exhaustions. Out of 23 bugs surveyed from
the Hadoop bug database, 11 resulted in process hangs in which no forward progress was made, 3 resulted
in excessive CPU usage that slowed nodes down, 2 resulted in out of memory errors, while 7 resulted
in application-level Java exceptions being thrown. Hence, we focused our fault-injection and problem-
diagnosis efforts on detecting process hangs and memory leaks (in which objects that were allocated but
which the system failed to dereference failed to be garbage collected, leading to out of memory errors).

3 Approach

3.1 Target System

Hadoop, an open-source implementation of Google’s Map/Reduce infrastructure, handles a workload of
long-running jobs that aim to process large datasets. Hadoop’s master-slave architecture has a few (O(1) in
the number of slave nodes) master nodes coordinating many slave nodes which all have the same functional-
ity. Master nodes provide two types of functionality in two separate daemons:the NameNode serves as the
directory service for the Hadoop Distributed Filesystem (HDFS, a block-replicated filesystem that imple-
ments the Google Filesystem (GFS) [8]), providing the mapping from named files to the slaves on which the
individual fixed-size blocks are stored, while the JobTracker servesas the coordinator for Map/Reduce jobs.
Similarly, slave nodes provide two types of functionality in two separate daemons: the DataNode serves as
a chunk server in GFS terminology, providing actual storage of blocks, while the TaskTracker shepherds
execution of tasks on slave nodes by starting up new Java Virtual Machines (JVMs) to execute tasks.
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Long-running jobs are divided by the JobTracker on the master node intosmaller, short-lived (relative
to jobs) subtasks that are processed by the TaskTrackers on slave nodes. A job’s subtasks are likely to be
small relative to the job itself, in order to minimize the amount of re-computation whena node fails. We
assume that the number of slave nodes can be large: any fault-tolerance techniques that warrant the remote
inspection of nodes (e.g., through heartbeats) from a central/master location are likely to be costly in network
bandwidth, thus the case for node-local diagnosis. We make no assumptions about the number of culprit
nodes in the system, and do not currently probe further to discern which of the fingerpointed culprit nodes
might be more to blame than the others. We focus our problem diagnosis efforts on node-local diagnosis
on slave nodes, since these can be arbitrarily many while there are few master nodes; we first attempt to
localize the fault to a single node, and make further efforts at localizing the fault to a phase of execution in
the TaskTracker or DataNode on the slave node.

3.2 Manifestation-centric Problem Diagnosis: Goals and Non-goals

The actual root causes of performance problems are often difficult to diagnose without detailed applica-
tion/domain knowledge. On the other hand, the manifestations of performanceproblems are observable
errors or anomalous system activity, ultimately leading to system unavailability orunresponsiveness. Thus,
our approach to problem diagnosis seeks to identify the culprit (node) ofa performance problem by tracing
any observed problem manifestations back to their source node. This alsoallows us to perform black-box
problem diagnosis in a production setting, with neither access to nor modification of application source-
code.

The goal of our work is to perform online problem determination: to locate, during the execution of
the system, the node(s) on which a performance problem occurred, andto provide suggestions as to what
the root-cause of the failure might be—these suggestions are in the form ofsystem resource categories that
are possible sources of performance issues, such as processing, memory, disk, and network resources. The
eventual aim of this work is to expedite system recovery from a failure, either by aiding system administra-
tors and operators in isolating faults and identifying recovery actions, or by providing diagnostic information
for automated tools to decide the best course of action for system recovery.

In the context of the candidate failures identified in Section2.5, the goal of our work is to flag off nodes
exhibiting failure manifestations to isolate the failure, and to then provide informative metrics as suggestions
as to what the root-cause of the failure might be.

Program debugging is a non-goal of our work. Our techniques are not intended to aid programmers
in performing code-level analysis and extremely fine-grained localization of faults. Instead, our techniques
bridge the gap between requiring access to and instrumentation of application source code for extremely
fine-grained, code-level analysis, and using coarse-grained non-invasive black-box information sources by
introducing (i) the use of statistical analysis to gain additional insights and enable inference about application
behavior, and (ii) white-box information sources that can be accessed using black-box techniques.

3.3 Available Data Sources

The following main categories of sources of performance data about systems that can be accessed using
black-box techniques, requiring no access nor modification to application source-code, have been utilized
in our approach. A brief description of the type of information, the means ofcollection, and the cost of
collecting each data source, in terms of overheads imposed, follows.

3.3.1 Hardware Performance Counters

Modern microprocessors implement performance counters to provide counts of hardware events, such as the
number of unhalted cycles, or the number of cache hits and misses [22]. Hardware performance counters
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provide the lowest-level view of a system from the perspective of software, and provide a most fundamental
(to the extent that collecting performance counter values causes minimal perturbations) view of the system
closest to the ground truth of the bare metal of the system, free of artifacts as introduced by operating system
or middleware-induced abstractions. TheRAMStechnique of our approach examines hardware performance
counters to make inferences about the (correctness of the) behavior of the candidate application.

However, hardware performance counters can be potentially expensive to collect, as each data collec-
tion requires a context-switch into kernel mode to access the performance counter values. Nonetheless,
our work uses theoprofile hardware performance counter monitoring package, which has a measured
overhead of between 1-8% [29].

3.3.2 Operating System-reported Resource Metrics

The next higher level of abstraction from system hardware at which monitoring can be performed is the oper-
ating system. Major operating systems report aggregate statistics about various system resource categories—
namely processing, memory, disk, network, and the virtual memory subsystem. These statistics are typically
reported periodically as part of the service provided by the operating system, regardless of whether they are
collected. Hence, these metrics can typically be collected in a low-overhead fashion. Specifically, Linux and
many variants of Unix implement theproc filesystem, an interface through which a comprehensive array of
operating system-provided information about aggregate system state and per-process state can be accessed.

The BlackSheeptechnique of our approach leverages on the low overheads of this data source and
focuses on synthesizing the wide array of information available through theproc filesystem on Linux for
problem diagnosis.

3.3.3 Application Logs

Many software applications, especially Internet-deployed and distributedsoftware applications, have activ-
ity logs that describe the actions of the software application. Traditionally, application logs have provided
a trace of error messages for system administrators and users to identify problems and for programmers to
debug the application; application logs also sometimes provide a trace of accesses for audit trails to identify
security breaches. These software applications typically have configurable levels of logging detail, so that
they can be set to generate log messages about the software’s actions withvarying levels of verbosity. At
the minimum level of verbosity, log messages are usually generated only in the event of fatal errors which
caused the application to fail completely and crash, while at the maximum level ofverbosity, log messages
may be generated during the course of normal application execution as well,to report events.

Applications can be thought of as being in one of a finite number of high-level states, with each state
corresponding to a particular mode in which a particular type of task is being executed, giving rise to a
signature of that state which characterizes it. A key insight is that the normalapplication events as reported
by detailed log messages will typically correspond to the entrance and exit ofabstract application states as
described above.

Hence, if an application has sufficiently few types of states, these states and the events which demarcate
the entrance into/exit from abstract application states can be enumerated. Then, well-structured logs from
the application can be parsed to process textual event reports to generate numerical counts of the states
which the application is in. These numerical reports are more amenable to synthesis with other metrics, as
they are all numerical and hence can be synthesized and treated with statistical analysis and learning as with
typical numerical metrics.
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3.4 Analytical Framework

Next, we provide an overview to the key ideas that the two techniques of ourapproach use for identifying
deviant application behavior.

3.4.1 RAMS: an a priori Model of System Activity

The RAMStechnique is based on the following hypothesized model of the local behavior of nodes in a
distributed system.

The processing on slave nodes is always in one of two modes: (i) communication with the other nodes
in the system, or (ii) actual data processing to compute a subtask. The user-space application (henceforth
the application) invokes system calls to perform its external communication, which is recorded as operat-
ing system (OS), or kernel-space activity. Hence, under communication-intensive operations, a node’s OS
activity will dominate that node’s application activity; conversely, under compute-intensive operations, the
node’s application activity will be higher.

The processing of a job’s subtasks will likely involve repeated communicationbetween nodes in the
cluster—for subtasks to be dispatched to nodes, and for the results of subtasks to be returned to the dis-
patcher.

Consider a sufficiently long observation window on a node that encompasses both the communication
phase of receiving and returning the results of the subtask as well as thecomputation phase to execute the
subtask locally. Our hypothesis is that when a node experiences a performance problem, its processing is
likely to be interrupted or to take significantly longer (possibly never returning), so that the node might
not be observed (albeit indirectly) to be communicating as much with the other nodes in the system within
the window of observation. Thus, we expect the system metrics that respectively characterize OS’ and
application’s activity to be correlated in the absence of performance problems. OS activity and application
activity will increase together in the same window, reflecting the external communication and the local
computation required to process a subtask. However, when the node experiences a performance problem,
we expect to see significantly less correlation between the node’s OS’ andapplication’s activity, as either
no computation nor communication are occurring, or the application is failing to return—in both cases,
application activity moves independently of OS activity. An obvious side-benefit of this hypothesis (if
indeed, it is borne out by experimental evidence) is that a node’s observed local behavior alone ought to
suffice for deciding whether that node is a culprit of a performance problem.

3.4.2 BlackSheep: Corroborating Application Behavior with System Activity

TheBlackSheeptechnique is based on the key hypothesis that during normal, problem-freeexecution, the
abstract state or mode of execution of the application should be approximatelyin line with the observed
black-box metrics of the system.

We hypothesize that given normal execution, during a given mode of execution of the application,
particular black-box metrics will exhibit stable patterns, such that changesin the mode of execution of the
application will be followed by, possibly with a time lag, changes in the aggregatebehavior of black-box
aggregate system metrics.

Conversely, when there is a problem in the application, two scenarios are possible. First, there can
be changes in the mode of execution of the application as reported by the application in its logs, but no
changes in the aggregate behavior of system metrics, due to a failure of theapplication to transition to the
new execution mode. Second, there can be changes in the aggregate behavior of system metrics although
there was no change in the mode of execution of the application, as the change in system behavior was
brought about by the transitioning of the application from its normal execution mode to a problematic one.
By detecting the phase of execution at which an anomaly occurred (unexpected change in system activity,

10



or unexpected absence of change in system activity, relative to application behavior), we can thus isolate the
fault to a phase of execution in a particular component (DataNode/TaskTracker) of our target application.

Hence, the key idea behindBlackSheepis in quantifying changes in both the mode of execution of the
application, and in black-box system metrics, and in identifying black-box system metrics whose changes
co-occur with changes in the mode of execution of the application.

4 Application Log Parsing Case Study: Hadoop activity logs

There are four different types of activity logs provided by Hadoop: one for each of the four different types
of daemons (NameNode, JobTracker, DataNode, TaskTracker) thatprovide services in Hadoop. Our initial
efforts focus on the activity logs from the DataNode and TaskTracker.Hadoop uses the Apache Log4J
[24] logging framework, thus emitting logs that are standardized across many other open-source software
which also use this framework, suggesting that our approach is possibly portable to other applications also
using Log4J (to the extent that the application developers of other applications using Log4J also provide log
messages with similar semantic content as Hadoop does).

4.1 Log Overview

A snippet of log messages from the TaskTracker logs are shown in Figure 1. Log entries are timestamped,
and the level of verbosity and the originating component of the log entry arestated, followed by a descriptive
message. The Log4J framework used by Hadoop allows the destination of log messages to be configured;
we assume that the default configuration of Log4J in Hadoop is used, so that log messages are written to
plain text files.

Our Hadoop log parser parses each log message into its timestamp, the level oflogging verbosity,
the reporting component, and its message, and parses the log message to generate application events, from
which application states are inferred, as described next.

2008-04-22 08:53:10,347 INFO org.apache.hadoop.mapred.TaskRunner:

task 0003 r 000000 0 Copying task 0003 m 004566 0 output from pc69.emulab.net.

2008-04-22 08:53:10,349 INFO org.apache.hadoop.mapred.TaskRunner:

task 0003 r 000000 0 Copying task 0003 m 001577 0 output from pc73.emulab.net.

2008-04-22 08:53:10,358 INFO org.apache.hadoop.mapred.TaskRunner:

task 0003 r 000000 0 done copying task 0003 m 004566 0 output from pc69.emulab.net.

2008-04-22 08:53:10,436 INFO org.apache.hadoop.mapred.TaskRunner:

task 0003 r 000000 0 done copying task 0003 m 001577 0 output from pc73.emulab.net.

Figure 1: A snippet from a TaskTracker log showing log entries which trigger StateStartEvents and
StateStopEvents for theReduceCopyTaskLocal andReduceCopyTaskRemotestates.

4.2 Application Views: Events and States

4.2.1 Events and States

In order to interpret the semantic meaning of application logs (in a manner useful for problem diagnosis),
we propose two orthogonal ways of viewing the high-level modes of execution of applications in general:
as eventsand states, using Hadoop as a case-in-point: Consider each single thread of execution in an
application as a deterministic finite automaton (a transition must be taken at each step, and the machine can
be in at most one state) which is in exactly one DFA state at each time instant. Then, the mode of execution
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of the application can be viewed asstatesof the DFA, or asevents, which are related to the transitions in
the DFA, as explained next.

We definestatesin the DFA to correspond to high-level tasks (e.g. serving a block read request to
a remote client in a DataNode), andeventsto be the entering and exiting of states, from which we derive
transitions in the DFA to correspond to a composition of one state-entrance and one state-exit event. We
define the two types of events as StateStartEvents and StateStopEvents. Then, multi-threaded applications
would comprise multiple threads of execution, with one DFA representing the execution mode of each
thread. The mode of execution of the application at each time instant can then be represented by (i) a vector
of states in each of the DFAs, with one for each thread of execution, showing the instantaneous composite
workload of the application, or as (ii) a vector of events in each of the DFAs, showing the changes that have
taken place in the system at the time instance.

4.2.2 Events and States in Logs for Hadoop

A key observation about the log messages in Hadoop is that they correspond to notifications about the events
as defined above. At the highest level of logging verbosity, they precisely denote the starting and stopping
of each high-level task (e.g. Maps, various Reduce phases, block reads/writes served) undertaken by the
DataNode and TaskTracker. Hence, our model of high-level application behavior can be directly parsed and
extracted from the activity logs of Hadoop.

There are, however, exceptions: only the occurrence, and not the entrance to and exit from certain
states in the DataNode and TaskTracker are reported, presumably because the tasks corresponding to these
states are short-lived; we define a third event type, an InstantStateEvent, for transient states for these types
of states. Events of this type, when composed with an event before it and an event after it, then corresponds
to a transition into the state, followed by an immediate transition out of the state, in the context of a DFA.

A list of states for the DataNode and the TaskTracker are included in Appendix A, and each state
has two associated events: one for the entrance to the state, and one for the exit from the state, and an
InstantStateEvent is included for states whose execution is reported only ina transient manner.

4.3 Parsing Algorithm

The log parser implements a discrete window over the activity log. The log entries reported in each window
of time under consideration are processed to return theEventsoccurring in the window. In addition, the
Eventsoccurring in the window are processed to return thestatesthat the application is in within the window
of consideration.

Log entries are read sequentially in strictly increasing chronological order, and parsed to assign an
Event to each log entry. AnEventmay be one of{ StateStartEvent, StateStopEvent, InstantStateEvent,
NoOpEvent, ErrorEvent}, with the last two events added for log entries extraneous to our analysis that do
not describe any significant change in workload (such as idle heartbeat messages, or a message indicating
no useful work is being done), and for error messages, respectively. Thus, a time series of events can be
immediately generated from the Hadoop activity logs (for DataNodes and TaskTrackers presently) with a
single forward pass over the log entries.

In order to generate the vector ofstatesthat the application is in for each window, the log parser
maintains internal state to remember the number ofStateStartEvents andStateStopEvents that it has seen for
eachstateat each time instance. Then, the number of threads executing eachstateis simply the difference
between the number ofStateStartEvents andStateStopEvents, plus the number ofInstantStateEvents seen
for eachstate, within the given window.

A minor complication arises with theStateStartEvents for theReadBlockandWriteBlockstates in the
DataNode—StateStartEvents for most states in the logs of DataNodes are denoted by a generic message,

12



while state-specific information is available only inStateStopEvents. Hence, we make the simplifying as-
sumption thatStateStartEvents andStateStopEvents corresponding to the samestateoccurrence occur in
FIFO order to make processing possible. This also implies that for any given StateStartEvent, the state it
corresponds to cannot be identified before its (assumed) corresponding StateStopEventis observed.StateS-
tartEvents in the DataNode logs are given an additional designation asDeferredStateStartEvents to indicate
that the identity of the state corresponding to the event has not been ascertained, and the window is pre-
vented from sliding forward until the identity of theStateStartEventhas been resolved (by observing a
correspondingStateStopEvent).

4.4 Parser architecture

The log parsing algorithm has been implemented as a library of C++ calls that can be easily reused in a
larger software framework.

All logs are represented by a generic base class, which defines functionality common to manipulating
each type of log, from which subclasses are derived and implemented forspecific log types. Each log-
specific subclass (e.g. DataNode, or TaskTracker) then implements its ownmonolithic parser to parse log
entries from that particular type of log. The log base class stores a chronologically ordered list ofEvents,
with the identity of theEventstored as an enumeration, and its associatedStatestored as a member vari-
able. States are defined by a generic base class, from which subclasses are defined forStates specific to
each different logged component of Hadoop. The log-specific subclasses then implement functionality for
processing a given list of events associated with states specific to the particular type of logged component to
generate time series’ of observed events and application states.

The log parser has a modular architecture, which exposes a common interface for sampling events and
states from the different types of logs produced by Hadoop. A query object accepts a log object and calls
on the log-specific event-processing method to generate samples of occurring Events or samples ofStates
that the application is in. The query object manages the window over which sampling is performed, and
manages the formating and presentation of reports of observations.

The log parser library supports on-demand, lazy parsing, and only needs to remember the latest log
entry to perform processing; all information from prior log entries is summarized and stored as internal
representations as lists ofEvents andStates, and users of the library can explicitly request the library to
clean up past reported events and states.

4.5 Offline Parser Output

In addition, the log parser provides an offline output mode, in which the log parser is provided with a
sampling interval, and the parser generates a comma-separated value (CSV) file of a time series of the
counts of each of the states and events for the particular node type—the number of each of the states and
events for the particular node type in each sampling time interval is listed as a rowin the CSV file. A
visualization of these states is shown in Figures22, 23, 24, 25.

5 RAMS: Statistical Tests of ana priori Model of System Activity

5.1 Analytical Methodology

5.1.1 Linear regression model of system activity

On each node in the system, we collect traces of the intra-node performance counter values for OS activity,
ost , and application activity,appt (as discussed later). Consider a linear ordinary least-squares regression
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fitted to the time-series of the node’s OS’ performance counters (ost) and the application’s performance
counters (appt), with Gaussian noiseut allowed:

ost = βappappt +ut

Concretely, (t) pairs of observed OS and application performance counter values form a window, and
these are plotted as a function of each other, and a straight-line which minimizesthe sum of squared errors
between observedost and fittedos′t is plotted through these points. Thus, for each pair(appt ,ost), fitted
valuesos′t and the noise, or regression residual,ut = os′t −ost , are generated from the regression.

5.1.2 Autocorrelation of residuals

Next, consider first-order lagged residuals,ut−1, (i.e. consider the residual from the preceding pair in the
time-series for each given time) and residualsut , from the linear regression. When a node is not experiencing
problems,ut−1 will be independent ofut , if the window over which regression is performed includes sam-
ples from both the communication-intensive and compute-intensive phases of the system. This is because
the strong correlation between OS and application performance counters results in a strong relationship be-
tween the regressand (ost) and regressor (appt), so that residualsut reflect purely Gaussian noise and are
uncorrelated.

When nodes are experiencing performance problems, there will be correlation betweenut andut−1.
This is because application activity becomes increasingly uncorrelated with the OS activity, so thatut and
ut−1 become correlated. The regression residuals will reflect movements in the application activity counts
and hence are no longer random noise, but become correlated.

This statistical condition in which residuals (ut) become correlated with their lags (ut−i for i > 0) is
autocorrelation.

Hence, we hypothesize that autocorrelation between lagged residuals in an observation window exists
on a node if and only if the node experiences performance problems in thatwindow.

5.1.3 Autocorrelation tests for identifying anomalous nodes

The Breusch-Godfrey and Durbin-Watson [13] tests for autocorrelation were used to detect autocorrelation
in the linear regressions of OS with application performance counter valuesfor problem diagnosis. In each
of these tests, the ordinary least-squares linear regression is first fittedto the window of observed OS and
application performance counter values, from which secondary regressions and test statistics are computed
based on the regression residuals. Each of these is a statistical test, whichtests the null hypothesis that
there is no autocorrelation present against the alternate hypothesis that there is autocorrelation present in the
regression residuals, and returns ap-value—the probability of wrongly rejecting the null hypothesis.

Since our hypothesis is that autocorrelation is present in a regression ona given window of performance
counter values if and only if the node is a problem node, the null hypothesisof these two statistical tests is
exactly the (statistical) hypothesis that the node is problem-free. Thus, a smaller p-value indicates greater
confidence that a problem is present in the node.

5.2 Experimental Setup and Methodology

We conducted a series of experiments to test theRAMShypothesis. Our goal was to study the characteristics
of the time-series of metric traces of every node’s OS’ and the application’sactivity under normal execution
and under induced performance problems.
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5.2.1 Setup

We deployed a 6-node (5 slave, 1 master) Hadoop 0.4.0 cluster on two 3.0GHz Xeon nodes, each running
the Xen 3.1.0 hypervisor [3] hosting three unprivileged Linux 2.6.18 guests, on the Emulab [20] remote
testbed. The Nutch (version 0.8.1) web-crawler [28], running on a Linux 2.6.18 guest hosted on a third
3.0GHz Xeon node over a Xen hypervisor, was used to generate workloads for the Hadoop cluster. Each
iteration of the experiment involved rebooting all of the nodes in the Hadoop cluster, running a single Nutch
web-crawling request, and collecting performance-counter traces over the duration of the execution. Each
iteration of the experiment lasted approximately as long as the execution of the Nutch web-crawling job of
40 minutes.

5.2.2 Fault Injection

As Hadoop is written in Java, we used a JVM Tool Interface (JVM TI) agent [27] to perform load-time
class bytecode-rewriting to inter-position calls to methods in our problem-injector class before the actual
methods of interest. As our problem injection uses Java methods within the same virtual machine as the
target application, all problem-injection activity is encompassed in the activity of the target application.

One of the two types of problem manifestations at one of two levels (high and low) of intensities was
injected into three of the five slave nodes in each of the problem-induced iterations of the experiment. 72
iterations of the experiment were run, of which 27 iterations had memory leaksinjected (11 high-intensity,
16 low-intensity) and 45 had process delays injected (14 high-intensity, 31low-intensity).

Process-delay injection involved awhile loop running for a preset duration—an infinite loop in the
high intensity case, and alternation between executing the loop for one second and yielding control in the
low-intensity case. The memory-leak injection involved allocating Java objects and adding them to a persis-
tent vector, for a preset duration, in a similar manner to the process-delayinjection described above.

The injected problems are representative of the manifestations of real-world performance problems
recorded in the Hadoop bug database, as described in Section2.5. As our problem diagnosis approach is a
manifestation-driven one, being able to detect the identical manifestation would be a sufficient benchmark
for our technique.

5.2.3 Instrumentation and Data Collection

The intra-node metrics that we gathered were Intel P4 performance-counter counts of instruction cycles
collected byoprofile [29] with thexenoprof [14] Xen driver. Samples of instruction-cycle counts were
taken at 10s intervals byoprofile, and attributed to the Linux processes whose instructions accounted
for the cycle counts. In particular, we examined the counts for the Linux kernel process and the aggregate
activity counters for the Java Virtual Machine (JVM) processes of the multiple Hadoop components.

5.2.4 Analysis

We analyzed the collected metrics offline after completing the experiments. For each node in each iteration
of the experiment, the time-series of instruction-cycle counts for the Linux kernel (ost) and the JVM (appt)
were fitted to the linear regression:

ost = appt +ut

Next, we ran the Breusch-Godfrey and Durbin-Watson [13] tests for autocorrelation between the first-order
lags of residuals (ut , ut−1), generating thep-values for the probability that there is no serial correlation be-
tween the first-order lagged residuals for each node. Thep-values are used as a measure of serial correlation
between the first-order lagged residuals. Then, specificp-value thresholds were used to identify the culprit
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node(s). Nodes withp-values below the threshold value were classified as being the culprits. Various p-
value thresholds were used to vary the recall of the algorithm, to study how precision varied with recall (see
Section5.3for definitions of precision and recall).

5.3 Evaluation Results

5.3.1 Statistical Characteristics of Metrics

Figure 2: Regression residuals as a function of application activity for a culprit node with a low-intensity
process delay (left) and a non-culprit node (right)

In the case of process delays, in nodes with injected problems (the culprit nodes), the residuals of
the linear regressions of OS activity (ost) with application activity (appt) were strongly correlated with
application activity, indicating strong autocorrelation in the (lagged) residuals. This is seen in the clear
linear, non-zero relationship between the residuals and application activityin the left graph in Figure2,
while in problem-free nodes, the residuals showed no clear relationship withapplication activity, as seen
in the right graph in Figure2. This observation is consistent with our hypothesis. This observation was
also confirmed by the statistically significant evidence of autocorrelation between the residuals in the culprit
nodes, in contrast with the lack of such autocorrelation in the problem-freenodes.

However, in regressions for the experiments with injected memory leaks, there appeared to be no clear
difference in the correlation patterns between the regression residuals and the application activity across the
culprit and problem-free nodes.

5.3.2 Efficacy of Problem Diagnosis

Next, we examine the effectiveness of our approach at classifying culprit and problem-free (non-culprit)
nodes.

Figures3, 4 shows the performance of our initial problem-diagnosis algorithm for eachtype of failure,
broken down by failure intensity. We quantified the efficacy of our approach usingprecisionand recall,
measures of classification effectiveness from the data-mining literature [19]. When our problem-diagnosis
algorithm indicts a node, that node becomes a suspect; this is different from the node being truly guilty, i.e.,
a culprit. Precision measures the fraction of all suspects that are indeed culprits,while recall measures the
fraction of culprits that our algorithm successfully indicted. We tuned the recall of our approach by varying
thep-value threshold (Section5.2.4), where ap-value threshold of 1.0 results in our algorithm indicting all
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Plot of Recall vs Precision (in percentages) 
for various statistical tests of autocorrelation 
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Figure 3: Overall precision as a function of recall for failure diagnosisalgorithm for high-intensity failures

of the nodes in the system. As the number of suspects increases with more aggressive indictment (higher
p-value thresholds), recall increases, but precision suffers. A perfect problem-diagnosis algorithm would
have a precision/recall curve with a precision of 1.0 for all values of recall [11].

From Figure3, our algorithm has some success identifying nodes suffering high-intensity problems—
precision falls gradually and does not suffer a complete collapse as recall is increased, while our algorithm
has some success with identifying nodes with low-intensity process-delay problems (Figure4), but is inef-
fective at identifying nodes with low-intensity memory leaks, as precision collapses when recall is increased.

Perhaps a more informative statistic isBalanced Accuracy(BA) [11], the average of the proportion of
problem-induced and problem-free nodes that were correctly classified. If problems occurred randomly, a
random classifier would, in the limit, achieve a balanced accuracy of 0.5. Figures5, 6 show the highest
BA achieved by our algorithm under high- and low-intensity problems for memory leaks and process delays
across allp-value thresholds used for each of the problem-intensity and problem-typecases shown (these are
upper bounds on the efficacy of the algorithm; further work is needed to find the best single threshold value
for all problem types and intensities). From Figure5, our approach is moderately effective at identifying
nodes with high-intensity problems and low-intensity process-delays, achieving a BA of greater than 0.7
using both (Breusch-Godfrey and Durbin-Watson tests) measures of autocorrelation. However, from Figure
6, our approach does only marginally better than a random classifier for nodes with low-intensity memory
leaks.

In conclusion, we have shown thatRAMSis effective at detecting both types of injected high-intensity
faults, process hangs and memory leaks, and is somewhat effective at detecting low-intensity process hangs,
but not much better than random at detecting low-intensity memory leaks.RAMSshows some promise at
being able to identify anomalous nodes exhibiting process slowdowns and hangs, which would be helpful
for detecting the large proportion of Hadoop bugs that manifest as process hangs (as surveyed in Section
2.5).
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Plot of Recall vs Precision (in percentages) 
for various statistical tests of autocorrelation 
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Figure 4: Overall precision as a function of recall for failure diagnosisalgorithm for low-intensity failures

6 BlackSheep: Application-System Corroboration through Change Point Anal-
ysis of System Activity

6.1 Analytical Methodology

The fundamental idea ofBlackSheepis that application logs and operating system-reported resource metrics
(which we will refer to as resource metrics) provide orthogonal views ofa system that should agree with each
other at a high level during problem-free operation. Application logs provide semantically rich information
about the high-level modes of execution of the application, while operating system metrics such as disk,
memory, processor, and network utilization provide evidence of the actualbehavior of the application as
observed from its system-level actions. Thus, we would expect the high-level activities that the application
reports itself as performing to correspond with its actual system-level actions during problem-free execution.
An immediate consequence is that multiple views of the system disagreeing with each other is an indication
of a problem. Then, the system resources whose metrics disagree with the view provided by application logs
will provide suggestions as to which area of the application is not behaving as the high-level log information
suggests the application should be.

Application logs typically contain textual information, while operating system-reported resource met-
rics are typically sequences of observed counts, and are not immediately comparable to determine if they
agree with each other. However, this textual information in application logs can be parsed to extract counts
of high-level states, each of which corresponds to a logical task performed by the application, and events,
which correspond to the beginning and ending of states, as we have demonstrated for Hadoop in Section4.
These counts of high-level states and events can then be compared with operating system-reported metrics.

Change point analysis is applied to resource metrics and application state counts to compare them with
each other for determining if an anomaly is present in the system.
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6.1.1 Change point analysis

Operating system-reported resource metrics and counts of high-level application states are compared by
computing the change points in resource metrics and application state counts, and ensuring that they occur
together. We define the steady state of both the application and the system resources to be durations of
absences of change points. The intuition is that when the counts of the number of occurrences of each
state remain unchanged, the application is in a steady state, so that its system-level behavior as reflected by
resource metrics should be steady and unchanging as well. Hence, we make thea priori assumption that a
change in resource metrics when the application is exhibiting a steady state is anomalous, and likewise, that
a change in application behavior when system resources are exhibiting a steady state is anomalous.

Change point detection is a classification problem over a time series of values. The objective is to
separate the time series of values into contiguous segments, in which the underlying parameters describing
the distribution of values is the same within each segment. A challenge of using popular change point
detection algorithms such as Shewart control charts and CUSUM [4] are that they require at least one of
either of (i) the parameters governing the distribution of values before the change, (ii) after the change, or
(iii) the time of change—however, it is not clear what the correct parameters of the process generating the
distribution of values of resource metrics are, and the objective is precisely to determine the time of change,
so that popular change point algorithms are not amenable.

Instead, we use a difference of means algorithm that is a variant of an image edge detection technique
[1]. This algorithm had been previously successfully applied to problem determination in enterprise mid-
dleware systems, but on individual resource metrics in a group of metrics.Our use of change points analysis
differs from [1] in that we are continuously comparing change points across two completely orthogonal
measurements (application state counts and resource metrics) to corroborate change points.

6.1.2 Change Point Detection Algorithm

Our change point detection algorithm is described as follows:

Algorithm 1 Decision function for deciding if a given observation in a time series is a change point
1: procedure CHANGEPOINT(obs[],obsnum,window, thresh, prevobs[], prevmax) ⊲ prevmaxobsis a

fixed-size persistent queue that stores the lastwindowdifferences of means
2:

µL←
∑obsnum−1

i=obsnum−windowobs[i]

window
3:

µR←
∑obsnum+window

i=obsnum+1 obs[i]

window

4: ∆µ= µL− (−µR)
5: prevobs.queue(∆µ)
6: if (max(prevobs) == ∆µ) && (∆µ> prevmax) then
7: if ∆µ> thresh∗µL then
8: prevmax= ∆µ
9: return true

10: end if
11: end if
12: return false
13: end procedure

20



Algorithm 1 takes as its input a time series of metric values (which can be resource metrics or appli-
cation state counts), and an observation number (obsnum) in the time series, and returnstrue if the given
observation number is a change point (i.e. statistical properties of the valuein the time series changed at the
time of the given observation), andf alseotherwise. For a given window size,window, the left and right
means (µL,µR) respectively are computed overwindowsamples before and after the given observation. The
criteria for determining when the time of the observation is a change point is when the difference between
the left and right means (∆µ) for the given observation is a local maximum, and exceeds the value of the
left mean,µL, by a given threshold factor,thresh. The first conditional in Line6 ensures that∆µ is indeed a
local maximum over the observation window. An additional heuristic is includedin the second conditional
in Line 6 to ensure that the same local maxima is reported only once.

The size of the observation window,window, and threshold factorthresh, are tunable parameters of the
detection algorithm, and adjust the sensitivity of change points being reported. We then apply the change
point detection algorithm to each time series for each resource metric and each application state count of
interest, and compare the change points in the two, to determine if the execution of the application is free of
anomalies. This comparison is detailed next.

The change point detection algorithm can be implemented in a lazy, dynamic fashion for online use, by
keeping only state that has size that is constant (O(1)) in the order of the length of the time series examined,
so that the algorithm can be run indefinitely with a constant amount of memory. The only persistent state
required by the algorithm iswindow number of∆µ values, and the value of the previous reported local
maxima,prevmax.

However, a disadvantage of a lazy, greedy implementation is that continuously rising metric values
will result in successive change points being reported, rather than a single local maxima—fortunately, our
analysis involves comparing change points across resource metrics and application state counts, which are
hypothesized to behave in similar ways in the event of normal operation. Thus, to the extent that our
hypothesis will be borne out, this artifact of lazy evaluation does not skewour analysis. Analytically, in
this case, a sequence of successive change points implies that the observed value of the metric of interest
is changing with a magnitude outside of the threshold of a change detection, and that the change is taking
place at an increasing rate; this can be interpreted as a continuous change taking place.

6.1.3 Corroborating system activity change points with application log events: Tests for anomalous
system behavior

The next stage of the approach is to corroborate change points in resource metrics with application log
events. The algorithm by which we corroborate the two orthogonal systemviews is as follows:

Algorithm 2 Decision function for deciding if two orthogonal views of the system agreewith each other;
changepoint’s are boolean flags indicating if a change point occurred in the time series of the resource metric
or application state count respectively.

1: procedure STATEMETRICNORMALDECISION(changepointmetric,changepointstate)
2: if (changepointmetric == true) && (changepointstate== true) then
3: return true
4: else if(changepointmetric == f alse) && (changepointstate== f alse) then
5: return true
6: else
7: return f alse
8: end if
9: end procedure
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Algorithm 2 is the (simple) decision function for determining whether the application is behaving in
a normal fashion. We declare the behavior of the application to be problematicif the absence or presence
of a change point in the given system resource metric does not correspond with an absence or presence of
a change point in the given application state count respectively. It follows that when the application is not
diagnosed as being problematic, then the application is exhibiting normal, problem-free operation.

More formally, our approach to characterizing normal application behavior, based on our hypothesis
of change points in application state counts and resource metrics agreeing with each other if and only if
the system is problem-free, is that of classifying a point in the time series of application states as being or
not being a change point given knowledge of whether the corresponding point in the time series of resource
metrics is a change point.

Then, Algorithm2 is applied to the change point pair for every metric of interest with every application
state count of interest, for each time instance for which a diagnosis is desired. The requirement of the
computation of left- and right-means for each decision point implies that the algorithm has an intrinsic lag
equal to the duration required to collect sufficient samples for the window.Nonetheless, the algorithm can
be run online, albeit with a lag, as the space requirements for its state is constant in the order of the duration
of the diagnosis run.

6.1.4 Building profiles of application behavior

Finally, training is carried out to identify application state count change pointswhich co-occur with resource
metric change points under normal, problem-free operation. Then, diagnosis is carried out using the change
point-corroboration framework as described above, on pairs of application state counts and resource metrics
that have been found to consistently exhibit change points together duringproblem-free behavior.

6.2 Experimental Setup and Methodology

We conducted a series of experiments to quantify the behavior of Hadoop interms of the change points of
various operating system-reported resource metrics and Hadoop application state counts. The aim of these
experiments was to identify metrics and application states of interest and significance, so as to characetrize
the (problem-free) behavior of Hadoop under various workloads. This will facilitate the devising of strate-
gies for maximizing the efficacy of theBlackSheepproblem-diagnosis approach as applied to Hadoop. A
total of approximately 30 to 40 problem-free experiment runs of each workload type examined were run, and
all traces were carefully visually inspected to ensure that for each workload, only traces that were similar
to other traces for the same workload were considered. Then, traces from representative runs were used for
our analysis.

6.2.1 Setup and data collection

We deployed a 6-node (5 slave, 1 master) Hadoop 0.12.3 cluster on six 850MHz Pentium III nodes on the
Emulab remote testbed [20], each with 512 MB of main memory, and running Linux 2.6.20. A seventh 850
MHz Pentium III node was used to generate workloads for the Hadoop cluster.

Operating system-reported resource metrics were collected from theproc filesystem using thesysstat-8.0.4
system monitoring package [30]. Metrics from the following categories were collected using thesysstat

package: aggregate CPU utilization and process activity, aggregate diskI/O activity, paging and virtual
memory subsystem activity, per-disk I/O activity, per-network device activity, and per-process CPU and
memory utilization. These metrics were collected at one second intervals, and the additional overhead im-
posed on the system was not found to be significant. However, further work is required to quantify the
overheads of this instrumentation.
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Hadoop application state counts were collected by parsing Hadoop activity logs from the Hadoop
DataNodes and TaskTrackers using the Hadoop log parser as described in Section4; this parsing was per-
formed using the offline mode of the log parser to generate time series traces of application event and state
counts. Parsing was generally not time-consuming, and parsing an average log file from one node generated
from an active workload lasting one hour took less than 2 seconds. Despite this, further work is again needed
to quantify the time costs of using the log parser.

6.2.2 Candidate workloads

Candidate workloads for Hadoop were picked from the example Hadoop Map/Reduce applications as pro-
vided with the Hadoop distribution, as well as the Nutch distributed web crawler[25] [28]. Therandomwriter
andsort example applications were picked as candidate workloads as they are commonly suggested as
benchmarks for Hadoop clusters [26], while the Nutch web crawler was picked as it represents a significant
real-world application commonly used with Hadoop.

The objective of the choice of candidate workloads is to empirically observethe behavioral characteris-
tics of a gamut of possible Hadoop behavioral profiles when running various types of application workloads,
so that the normal behavior of Hadoop as exhibited with these workloads willgeneralize to arbitrary Hadoop
workloads. Application workloads can be classified as being combinations of compute-intensive, disk-read
and disk-write intensive, and network-intensive, while real application workloads will generally be com-
posed of some combination of these characteristics.

The randomwriter example application writes a given configurable number of structured records
comprised of random bytes to disk on each Hadoop node, and represents a disk-write intensive workload
with minimal disk-reads and minimal computation. Thesort example application sorts a given file of struc-
tured records by key, and represents a balanced mixed workload with disk-reads, disk-writes, and network
transactions to merge sorted records. The Nutch web crawler represents a real-world workload, and also
represents a network-intensive workload (relative to disk and compute activity). In our experiments, the
randomwriter was typically configured to write 2 GB of data to each node, thesort was typically set up
to sort 2 GB of data per node (or a 10 GB dataset), and Nutch was used to crawl a locally mirrored static
website with approximately 2000 pages, served from an independent node local to the experiment cluster
but not running any Hadoop instance. Hence, we believe that our choice of workloads feasibly provides
adequate coverage of the possible Hadoop workloads.

6.2.3 Change points applied: Characterizing normal application behavior

Next, the time series’ of each of the resource metrics and application state counts were assembled into a
single trace for each run of an experiment. Visualization tools were then applied to each trace to generate
plots of the time series’ for resource metrics and application state counts, andthe change point algorithm
was applied to the time series’ for resource metrics and application state counts. Finally, the behaviors
of pairs of the change points of resource metrics and application state counts was manually examined to
identify consistent patterns during normal application behavior that can beused as behavioral indicators of
normal application behavior. These signatures of normal application behavior can then be applied to problem
diagnosis by identifying behaviors that deviate from this prior-knowledgeof problem-free behavior.

The generation of change points for application state counts and resource metrics is as follows. First,
values for the tunable parameters of Algorithm1 were chosen: these werewindow, the size of the obser-
vation window measured in the number of samples to the left and right of the point under consideration in
the time series, andthresh, the proportion of left meanµL, that the difference of means,∆µ, must exceed
for a change point to be flagged. The tuning parameters were chosen to meet two objectives: (i) to generate
application state count change points that corresponded to high-level expectations based on oura priori un-
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derstanding of the behavior of Hadoop (for instance, the number of map tasks changing in the TaskTracker
should generate a change point in our algorithm), and (ii) to generate change points in as many resource
metrics as possible that lined up with the application state change points. This uses the implicit assumption
that the hypothesis of theBlackSheepapproach, that resource metrics and application state counts should
behave similarly, is correct—doing so is theoretically sound from a machine learning point of view, as the
assumption is akin to a Bayesian assumption of priors, with the exception that theparameters are being
tuned by hand for (at least this initial pass of) this work.

Next, change points were generated for each application state count andeach resource metric, based on
tuning parameter values that were chosen separately for application state counts, and for resource metrics.
The intermediate results and eventual chosen parameter values of the tuningprocess are reported in Section
6.3.1.

Finally, the corroboration between application state counts and resource metrics was verified using the
algorithm presented next, with the addition that the logarithms (x′ = log(x+1)) of all measured metrics was
used to perform analysis on the change points rather than the absolute values of observed values.

6.2.4 Evaluation of corroboration between application state countsand resource metrics

Next, we describe the methodology and algorithm for evaluating the paired behavior of change points in
application state counts and resource metrics. Algorithm2 is the (simple) decision function for determining
if the presence (or absence) of a change point in the resource metric correctly predicted a presence (or
absence) of a change point in the application state, in which case a true positive or true negative was recorded
respectively. Evaluation scores of the accuracy of predictions were assigned as follows: non-negative values
were assigned to points in time for which true positives or true negatives of application state change points
were predicted by resource metric change points, and negative values were assigned to points in time for
which false positives or negatives were observed. The rationale for this choice of scores is that the evaluation
score is heavily biased against misdiagnoses, so that misdiagnosing a change point (false positives/negatives)
will impact the score negatively much more than correctly diagnosing a change point will positively impact
it.

Algorithm 3 Decision function for deciding if two orthogonal views of the system agreewith each other
1: procedure STATEMETRICCORROBORATEEVAL (changepointmetric,changepointstate) ⊲

changepoint’s are boolean flags indicating if a change point occurred in the time series of the resource
metric or application state count respectively

2: if (changepointmetric == true) && (changepointstate== true) then ⊲ True positive
3: return 1
4: else if(changepointmetric == f alse) && (changepointstate== f alse) then ⊲ True negative
5: return 0
6: else if(changepointmetric == true) && (changepointstate== f alse) then ⊲ False positive
7: return −2
8: else if(changepointmetric == f alse) && (changepointstate== true) then ⊲ False negative
9: return −1

10: end if
11: end procedure

The notion of true/false positives/negatives is defined relative to resource metric change points being
used to predict application state change points. Change points in the applicationstate are arbitrarily chosen,
without loss of generality, to be the unobserved ground truth of the application’s behavior, and the change
points in resource metrics are then used to classify or predict if there is a change point in the application state.
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The observed application state change points are then used to test if the prediction made by the (absence or
presence of a) change point in the resource metric of the application state change point is correct. It should
be noted that due to our definition of normal behavior as having both application state and resource metric
change points agree with each other, this choice of ground truth is without loss of generality and can be
reversed.

6.3 Results and Analysis

Our analysis provides initial evidence supporting our hypothesis that application state counts and resource
metrics will agree with each other under problem-free, normal execution. Our results suggest further direc-
tions for developing this hypothesis into a full-fledged approach for problem diagnosis.

In general, some application state count-resource metric pairs have exhibited visually corroborating
behavior, in which change points in the count of the particular application state occurred only together with
change points in the particular resource metric, after allowing for minor edgeeffects due to possible lags in
either of the variables of interest.

In addition, there is evidence that workload types, as defined in Section6.2.2, can be identified using
change point corroboration. Particular application state count-resource metric pairs exhibited corroborating
behavior only under particular workloads, and not others, suggestingthat the absence or presence of corrob-
oration between particular application state count-resource metric pairs canserve as identifying signatures
for workload types.

6.3.1 Parameter tuning

We review the effects of different values for the two tunable parameters for Algorithm 1, the window size
measured in number of samples,window, and the thresholdthreshas a proportion of the left mean,µL,
on the change points generated for each of application state counts and resource metrics. We consid-
ered the change points in the aggregate on state counts for each of the DataNode and TaskTracker (i.e.
a change point is said to be observed in the DataNode (or TaskTracker)at time t if a change point is
observed in any of the application states for the DataNode (or TaskTracker) at timet, or more formally,
∀x ∈ {statesdatanode/tasktracker},changepointdatanode/tasktracker= max{x}) for tuning purposes. In order to
maximize the amenability of the change points generated for problem diagnosis,we aimed to generate
change points such that the separation between groups of consecutivechange points was maximized. This
was to maximize the degree to which we could visually identify corroborating change points between appli-
cation state counts and resource metrics.

First, we held the value ofthreshconstant, atthreshstate= 20.0 andthreshresource= 1.0, and varied
windowfor aggregate application state counts for both aggregated DataNode statecounts and TaskTracker
state counts.

We found that the optimal values ofwindow that resulted in the greatest separation between groups
of change points differed for DataNode state counts and resource metrics. Consider Figure7 and Figure
8: the change points for the resource metric are relatively well-spaced in Figure7, where thewindow= 5,
while the change points for the DataNode state counts are relatively poorly spaced and do not appear to
mark out distinguishable logical phases of execution; on the other hand, inFigure8, with window= 45, the
change points for the resource metric are less well-spaced and less coherent than in Figure7, but the change
points for the application state counts in Figure8 have significantly greater separation between groups of
consecutive change points. Hence, we propose as a heuristic that the value ofwindow for change point
generation for resource metrics be approximately one order of magnitude smaller than that for DataNode
state counts, withwindowresourcemetric≈ 5, andwindowapplicationstatecounts≈ 45.
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Figure 7: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for DataNode in bottom panel, with x-axis measured in
seconds for both plots;window= 5.

Figure 8: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for DataNode in bottom panel, with x-axis measured in
seconds for both plots;window= 45.
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However, we found that the optimal value ofwindowfor TaskTracker state counts and resource metrics
that resulted in the greatest separation between groups of change pointswas similar—for both TaskTracker
state counts and resource metrics, smaller values ofwindowgave rise to greater separation between groups
of change points. We propose, as a heuristic, that a value ofwindow= 5 be used for computing change
points in TaskTracker state counts (while the heuristic for resource metricsfrom previously holds). This is
as shown by Figures9 and10, where the change points forwindow= 5 are markedly more separated than
for the change points forwindow= 45.

The intuition behind the difference in the optimal window sizes for DataNode state counts and for
TaskTracker state counts and resource metrics is that DataNode state counts are experiencing changes in a
different time-scale than TaskTracker state counts and resource metrics. In the steady state during periods
of workload, the DataNode serviced many requests relative to the TaskTracker as each map or reduce task
handled by the TaskTracker involved multiple data blocks. Thus, DataNodestates tended to exhibit some in-
trinsic steady-state fluctuation that was normal and expected of its problem-free behavior, while TaskTracker
states were relatively longer lived as compared to DataNode states, and resource metrics experienced less
fluctuation/fewer change points than DataNode state counts for the same tuning parameters. Thus, different
tuning parameters can be used for the DataNode state counts, as the changes in the DataNode state counts
can be argued to be part of the steady state of its behavior.

Next, we studied the effect of varyingthresh, holdingwindowstate= windowresource= 20.0 constant.
We found that higher threshold values resulted in excessively many change points being omitted from

the time series of resource metrics, resulting in a sparse series of change points generated that fails to
correspond with the series of change points generated from application state counts. For a value ofthresh=
4.0, as shown in the top panel of Figure11, the series of change points generated from the time series of
the resource metric is sparse relative to the series of change points from the application state counts in the
bottom panel, while for a value ofthresh= 1.0, as shown in the top panel of Figure12, the series of change
points is less sparse than in Figure11, but the change points remain well-spaced with significant and clear
separation between groups of successive change points. We believe that the value ofthreshfor resource
metrics can be further lowered, but we have nonetheless demonstrated that lower values ofthreshare more
effective for use with generating change points for resource metrics.

In addition, we found that lower threshold values resulted in excessivelymany change points being
generated for DataNode state counts, reducing the number of consecutive change points, resulting in less
smooth state count change point plots, while lower threshold values resultedin excessively few change
points being generated for TaskTracker state counts, increasing the number of consecutive change points,
resulting in smoother state count change point plots. This is as demonstrated from the bottom panel plots
of Figures11, 12, 13 and14 respectively. The change point plots are smoother and the successivechange
points have greater inter-change point separation for DataNode state counts in Figure12, with the larger
threshstate= 4.0 than in Figure11, with the smallerthreshstate= 1.0, and so are more amenable to statistical
analysis in general. The change point plots for TaskTracker state counts, on the other hand, are smoother in
Figure14, with threshstate= 1.0, than in Figure13, with threshstate= 4.0.

The general intuition for the difference between the optimal value ofthresh in these cases is that
DataNode states, such as ReadBlock and WriteBlock, are short-lived (for the configured block sizes) relative
to TaskTracker states, such as Maps and Reduces. Hence, with shorter-lived states, the DataNode has
greater steady-state fluctuations than the TaskTracker, so that for high-level meaning to be extracted from
the DataNode state counts, greater threshold values must be used to filter out fluctuations that are intrinsic
to its steady-state behavior to characterize bulk behavior, which is more useful for problem diagnosis in
general. Also, the intuition for the optimalthreshvalue for resource metrics is that the heuristic that is
guiding our choice in this case is our prior assumption of how change points in resource metrics should
corroborate with the change points in application state counts.

Thus, we have demonstrated a few optimal tuning parameter values for Algorithm 1, and have in
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Figure 9: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bottompanel, with x-axis measured in
seconds for both plots;window= 5.

Figure 10: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bottompanel, with x-axis measured in
seconds for both plots;window= 45.
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Figure 11: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top
panel, and of change points of application state counts for DataNode in bottom panel, with x-axis measured
in seconds for both plots;threshmetric = 4.0, threshstate= 4.0.

Figure 12: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top
panel, and of change points of application state counts for DataNode in bottom panel, with x-axis measured
in seconds for both plots;threshmetric = 1.0, threshstate= 1.0.

29



Figure 13: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bottompanel, with x-axis measured in
seconds for both plots;threshmetric = 4.0, threshstate= 4.0.

Figure 14: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bottompanel, with x-axis measured in
seconds for both plots;threshmetric = 1.0, threshstate= 1.0.
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so doing demonstrated that our hypothesis has thus far been supported by the successful tuning of the
parameters. The general intuition obtained from the tuning process suggests that the parameters used by
the algorithm are sensitive to the configuration of the application, and has illuminated some aspects of the
behavior of the application.

This is a double-edged sword, as it demonstrates that analyzing the change points of application states
and resource metrics together can aid in understanding the application, butalso that tuning the algorithm can
be a challenge for users without significant prerequisite knowledge about the application to be profiled/to
have problem diagnosis carried out. However, this is also an opportunity,as Bayesian hyper-parameter
learning can be applied to the problem of learning the optimal values of the tuning parameters, and the
learning process itself can provide positive feedback to the diagnostic process, as will be described in Section
8.3.2.

6.3.2 Distinguishing workloads

From the trace data collected, we found that particular pairs of the counts of particular application states and
the metrics of particular resources displayed consistent behavior within each workload, but varied across
workloads. One such case in point is the change point series of the counts of the ReduceTask state for the
TaskTracker, and the change point series of the user-space percentage CPU utilization (user%) resource
metric.

From traces shown in Figures15 and16 for therandomwriter andsort workloads respectively, it
can be seen that there is a strong co-occurrence of the change points of the counts of the ReduceTask state
and the change points of theuser% metric, such that the presence (and absence) of a change point in the
state count or metric serves as a good predictor of the presence (and absence) of the metric or state count
respectively.

On the other hand, from the trace shown in Figure17, for the Nutch web crawler workload, it can be
seen that the co-occurrence of the change points of the counts of the ReduceTask state and the change points
of the user% metric is much weaker than in the previous two workloads, although all three traces were
drawn from problem-free runs. This suggests that the patterns of the strength of co-occurrence of change
points in application state counts and metrics can be used as a signature for workloads to infer the type of
workload being executed on a given node.

An explanation for the difference in change point behavior between therandomwriter and sort
workloads and the Nutch web crawler workload is that the former two workloads contain periods of disk-
I/O-bound activity, when large amounts of blocks are being written to disk, while the web crawler workload
does not have such a phase of execution. This suggests that a strong co-occurrence of change points for the
ReduceTask state and theuser% metric can be an indicator for disk-I/O-bound activity.

Again, the higher level implication of this observation is that patterns can be found in co-occurrences of
behaviors in application state counts and resource metrics to learn signatures of workload types for anomaly
detection.

6.3.3 Change point corroboration with resource metrics

Next, we present, in Figure18a visualization of the operation of our change point corroboration algorithm,
Algorithm 3, using a single resource metric and a single application state count, when applied to every point
in the time series of change points generated from a resource metric and an application state count. The
values of the evaluation score defined in Section6.2.4are plotted against time alongside the time series of
change points for the resource metric and counts of the chosen applicationstate. This illustrates how we
evaluate the efficacy of the corroboration of check points for a single experimental run.
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Figure 15: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bottompanel, with x-axis measured in
seconds for both plots; Trace of a single run of arandomwriter workload.

Figure 16: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bottompanel, with x-axis measured in
seconds for both plots; Trace of a single run of asort workload.
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This example trace highlights one source of false positives and negativesin the corroboration of change
points—edge effects, due to minor lags in the response of application state counts to resource metrics, or
vice versa. Even in the case that application state count change points appear to visually line up with
resource metric change points, false positives and negatives still occurin the immediate vicinity of the
change points in the time series, resulting in false positives and negatives that are spurious and not truly
indicative of prediction error. This issue is addressed, and a solution is proposed, in Section8.3.1. Apart
from edge effects, it appears that false positives and negatives alsoresult from tuning parameter values that
result in different high-level sensitivities of the change points produced, with change points being generated
for changes that have different orders, that parameter tuning will be highly critical to any success of this
approach.

6.3.4 Change point corroboration: Evaluation

Finally, we present aggregate statistics of the evaluation scores for the corroboration between the change
points of every pair of application state and resource metrics for a single representative node in a single
representative experimental run for each workload type, as an illustration of the general performance of
our corroboration technique in its current form. The histograms presentsthe frequency of mean evaluation
scores for application state-resource metric pairs.

From Figures19, 20, and21, it can be seen that the evaluation scores for all application state-resource
metric pairs are negative, indicating that the false positive/negative rate for the change point corroboration is
currently not sufficiently effective for the corroboration of change points to be used as a problem diagnosis
algorithm.

Nonetheless, the modal mean evaluation score is approximately< −0.1, with a strong distribution of
mean evaluation scores around this range. This implies that there are slightly more than two false negatives
or one false positive on average for every true positive (see Section6.2.4for a detailed definition of true/false
positives/negatives in this context). Given that the mean evaluation score isalmost 0 and only slightly
negative, this suggests that there is potential for the algorithm to be refinedto produce better classification
results than a random classifier.

Finally, the histograms of mean evaluation scores for all three workloads are similar in shape, suggest-
ing that our approach is possibly agnostic to different workload types.

7 Related Work

7.1 Problem-Diagnosis Techniques

There are many existing techniques to perform problem diagnosis in distributed systems. TheRAMSap-
proach proposed here differs from those of Cohen et al [11] and Pinpoint [5] in a few ways. First, we do
not employ any learning or training prior to problem diagnosis. Our approach is based on a hypothesized
a priori model of problem-free system behavior, and we use statistical methods to establish whether this
hypothesized behavior is being followed. Our technique has no learning overhead but is constrained by the
degree to which our hypothesized model of system behavior is applicable toother types of systems.

Second, both Pinpoint and Cohen’s ”ensembles” utilize a system-wide, global approach that examines
metrics on every node in the distributed system. This may cause scalability issuesin terms of computation
and communication overhead in large systems (although [11] presents a scalable approach). Both theRAMS
andBlackSheepapproaches addresses scalability by making the rather strong assumption that information
local to a node alone is sufficient for problem diagnosis, thereby savingthe network bandwidth needed to
transmit metrics to a central location for analysis, and limiting the analysis to the sizeof the performance-
data set of one node.
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Our approach is also a black-box technique (although we do make use of white-box information, ob-
tained via black-box techniques, in the form of application logs), andRAMSaims for problem diagnosis
without using any application-level knowledge, in constrast with Pip’s white-box approach [16]. Finally, the
”odd-man-out” peer-comparison heuristic [15] proposed by Pertet et al might apply to the target distributed
system used in our paper, as the slave nodes in a Map/Reduce cluster could conceivably be running very
similar workloads and therefore, might lend themselves to the peer comparisonof performance data for
problem diagnosis.

7.2 Vertical Profiling

The idea of correlating system behavior across multiple layers of a system isnot new. Hauswirth et al’s
”vertical profiling” [9] aims to understand the behavior of object-oriented applications by correlating metrics
collected at various abstraction levels in the system. Vertical profiling was used to diagnose performance
problems in applications in a debugging context at development time, requiringaccess to source code while
our approach diagnoses performance problems in production systems without using application knowledge.

8 Future Work

8.1 Sliding windows forRAMS

Currently, the use of an ordinary least squares linear regression to compute a test statistic as a criteria for
diagnosis requires the use of large windows of samples (at least 30 to 50 samples) for the linear regression to
produce statistically sound (unbiased estimators with reasonably good fits) estimates of the various parame-
ters. Hence, the next area of improvement forRAMSis to use more direct measures of correlation other than
autocorrelation between lagged residuals in an ordinary least squares linear regression. This will reduce the
computational cost of computing the test statistic needed for determining if a node is a problem node. Also,
the use of a sliding window, in conjunction with more direct measures of correlation, will hopefully reduce
the number of samples needed for a statistically sound test statistic to be computed.

8.2 Experimental Setup forBlackSheep

The two main areas of improvement for the experimental procedure forBlackSheepare in (i) the controlled
measuring of the overheads of instrumentation, as measured in system resource usage and impact on system
performance, and (ii) the varying of workloads for Hadoop to increasethe generality of the experiments
ran, to create workloads with a variable mix of modes of operation (disk-, compute-, memory-, or network-
intensive, for instance), and to identify any characteristics of Hadoop that exhibit a stable relationship with
workloads that vary along the dimensions we have defined.

8.3 Change Point Corroboration

Various improvements and enhancements can be made to the overall change point corroboration algorithm
to improve its accuracy in correctly predicting application state behavior (in terms of change points) using
the behavior of resource metrics, to create a viable problem diagnosis approach.

8.3.1 Accounting for edge-effects in change point corroboration

To account for edge-effects and possible lags in application behavior,we intend to implement a low-pass
Gaussian filter over a tunable window size of change points observed before and after the given instance in
time of observation–for a given change point detected in the system resource metric at timet, if a change

34



point is observed in the application state count in a time within the given windowt ′ ∈ [t−w, t +w], then, the
algorithm diagnoses the application as being problem-free with a probability that has a Gaussian fall-off, so
that the further fromt that the application state count change point is observed, the lower the probability that
the application is truly problem free. Conversely, if a change point is not observed in the system resource
metric at timet, but a change point is observed in the application state count within the given window at
t ′ ∈ [t−w, t +w], then the algorithm diagnoses the application as having a problem with probability that has
a Gaussian fall-off, so that the greater the difference|t− t ′|, the lower the probability that the application has
a problem.

8.3.2 Dealing with magic numbers: Bayesian hyper-parameter learning

TheBlackSheepapproach currently uses two tunable parameters: a window size and a threshold. However,
initial results have proved that optimal values for these parameters can be highly sensitive to the particular
variables in question that they are applied to, specifically, resource metricsand application state counts.
Hence, an approach to these magic numbers, or optimal values for tunable parameters, would be to introduce
an additional layer of Bayesian hyper-parameter learning to learn valuesfor these tunable parameters that
will optimize the classification problem of change point identification in applicationstates.

8.3.3 Learning workload identities

Finally, an extension of theBlackSheepchange point corroboration technique would be to use the same
change point corroboration ideas to attempt to learn identities of workloads,and to find out if the parameters
that identify these workloads can be composed in an intelligible manner to createsignatures of arbitrary
workloads as defined using change point corroborations between application state counts and resource met-
rics.

8.4 Application logs

Finally, yet another extension to the work presented here with the Hadoop log parser would be to identify
characteristics of applications and their logs in general that would renderthem amenable to similar treatment
of extracting events, and more importantly, inferring states of executions ofthe applications.

9 Conclusion

In conclusion, we have presented: (i) what we believe to be a novel useof application logs to extract ap-
plication events, and to use these events to infer high-level, semantically-richstates of execution of the
application; (ii)RAMS, a new, scalable black-box approach to problem diagnosis using extremely low-level
metrics, hardware performance counters, in conjunction with ana priori statistical model of the behavior of
nodes in a distributed system, to perform node-local problem determination ina distributed system, and (iii)
BlackSheep, a black-box technique for characterizing application software behavior by synthesizing appli-
cation behavior, as reported through application logs using our newly presented log parsing technique and
library, together with collections of operating system-reported resource metrics, with the eventual objective
of performing problem diagnosis by detecting anomalies from normal application behavior. Not only have
we described the principles behind the algorithm and the architecture of ourlog parser for inferring state,
we have also presented rudimentary results demonstrating the efficacy ofRAMSat problem determination.
Lastly, we have shown an approach to synthesizing information from application logs with operating system
metrics.
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APPENDIX

A Hadoop Application States

The list of DataNode and TaskTracker events and states that our Hadoop log parser extracts from the DataN-
ode and TaskTracker logs respectively are as listed. TheIdle state is a special state which is never reported,
but is included for completeness’ sake. The TaskTracker and DataNode are each implied to be in theIdle
state by an absence of counts of all other states.

The Error state can either be an instant or persistent state–instantError states are ones reported on
encountering error messages in the log, while persistentError states are reported when any of the other
persistent states are reported to have been terminated due to an error.

A.1 TaskTracker Events and States

States / Events StartStartEvent? StateStopEvent? InstantStateEvent?
Idle N N N
Error Y Y Y

ReduceTask Y Y N
ReduceCopyTask Y Y N

ReduceCopyTaskLocal Y Y N
ReduceCopyTaskRemote Y Y N

ReduceSortTask N N Y
ReduceMergeCopy Y Y N
ReduceReduceTask N N Y

MapTask Y Y N
CleanUp N N Y

A.2 DataNode Events and States

States / Events StartStartEvent? StateStopEvent? InstantStateEvent?
Idle N N N

DeleteBlock N N Y
ReadBlockRemote Y Y N
WriteBlockLocal Y Y N

WriteBlockRemote Y Y N
WriteBlockLocalReplicated Y Y N

WriteBlockRemoteReplicated Y Y N
Error Y Y Y
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Figure 17: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in bottompanel, with x-axis measured in
seconds for both plots; Trace of a single run of a Nutch workload.
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Figure 18: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel,
and of change points of application state counts for TaskTracker in the middle panel, and the evaluation score
of the change point in the resource metric for predicting a change point in the application state count, with
x-axis measured in seconds for all three plots; Trace of a single run of arandomwriter workload.
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Figure 19: Plot of histogram of evaluation score values for each possible (application state)-(resource metric)
change point series pair. Trace of a single run of arandomwriter workload on a single representative node.
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Figure 20: Plot of histogram of evaluation score values for each possible (application state)-(resource metric)
change point series pair. Trace of a single run of asort workload.
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Figure 21: Plot of histogram of evaluation score values for each possible (application state)-(resource metric)
change point series pair. Trace of a single run of aNutch workload.
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Figure 22: Plot of time series of counts of application events as reported bythe Hadoop DataNode, as parsed
by our Hadoop log parser.
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Figure 23: Plot of time series of counts of application states as reported by the Hadoop DataNode, as parsed
by our Hadoop log parser.
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Figure 24: Plot of time series of counts of application events as reported bythe Hadoop TaskTracker, as
parsed by our Hadoop log parser.
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Figure 25: Plot of time series of counts of application states as reported by the Hadoop TaskTracker, as
parsed by our Hadoop log parser.
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