PDF Download
DIGITAL - -
ACM e B o iy acmopen A 3774934.3786411.pdf
C@r @ LIBRARY % e C P) 29 January 2026

updates Total Citations: 1
Total Downloads: 0

£ Latest updates: https://dl.acm.org/doi/10.1145/3774934.3786411
Published: 28 January 2026

RESEARCH-ARTICLE
PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-
Memory

Citation in BibTeX format

PPoPP 26: 31st ACM SIGPLAN Annual
Symposium on Principles and Practice of
Parallel Programming

January 31 - February 4, 2026

NSW, Sydney, Australia

Conference Sponsors:
SIGHPC
SIGPLAN

PPoPP '26: Proceedings of the 31st ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (January 2026)
https://doi.org/10.1145/3774934.3786411
ISBN: 9798400723100

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3774934.3786411
https://dl.acm.org/doi/10.1145/3774934.3786411
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3774934.3786411&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ppopp
https://dl.acm.org/conference/ppopp
https://dl.acm.org/conference/ppopp
https://dl.acm.org/sig/sighpc
https://dl.acm.org/sig/sigplan
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3774934.3786411&domain=pdf&date_stamp=2026-01-28

PIM-zd-tree: A Fast Space-Partitioning Index
Leveraging Processing-in-Memory

Yiwei Zhao
Carnegie Mellon University
Pittsburgh, USA
yiweiz3@andrew.cmu.edu

Hongbo Kang
Tsinghua University
Beijing, China

Guy E. Blelloch
Carnegie Mellon University
Pittsburgh, USA
guyb@cs.cmu.edu

Laxman Dhulipala
University of Maryland
College Park, USA
laxman@umd.edu

Abstract

Space-partitioning indexes are widely used for managing
multi-dimensional data, but their throughput is often memory-
bottlenecked. Processing-in-memory (PIM), an emerging ar-
chitectural paradigm, mitigates memory bottlenecks by em-
bedding processing cores directly within memory modules,
allowing computation to be offloaded to these PIM cores.

In this paper, we present PIM-zd-tree, the first space-
partitioning index specifically designed for real-world PIM
systems. PIM-zd-tree employs a tunable multi-layer struc-
ture, with each layer adopting distinct data layouts, partition-
ing schemes, and caching strategies. Its design is theoretically
grounded to achieve load balance, minimal memory-channel
communication, and low space overhead. To bridge theory
and practice, we incorporate implementation techniques
such as practical chunking and lazy counters. Evaluation on
a real-world PIM system shows that PIM-zd-tree’s through-
put is up to 4.25X and 99x higher than two state-of-the-art
shared-memory baselines.

CCS Concepts: « Theory of computation — Parallel al-
gorithms; Distributed algorithms; - Computer systems
organization — Heterogeneous (hybrid) systems; Parallel ar-
chitectures.

Keywords: space-partitioning index, processing-in-memory,
near-data-processing, nearest neighbor search

ACM Reference Format:

Yiwei Zhao, Hongbo Kang, Ziyang Men, Yan Gu, Guy E. Blel-
loch, Laxman Dhulipala, Charles McGuffey, and Phillip B. Gib-
bons. 2026. PIM-zd-tree: A Fast Space-Partitioning Index Leverag-
ing Processing-in-Memory. In Proceedings of the 31st ACM SIGPLAN

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

PPoPP 26, Sydney, NSW, Australia

© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2310-0/2026/01
https://doi.org/10.1145/3774934.3786411

480

khb20@mails.tsinghua.edu.cn

Ziyang Men Yan Gu
University of California, University of California,
Riverside Riverside
Riverside, USA Riverside, USA
zmen002@ucr.edu ygu@cs.ucr.edu
Charles McGuffey Phillip B. Gibbons
Reed College Carnegie Mellon University

Portland, USA
cmcguffey@reed.edu

Pittsburgh, USA
gibbons@cs.cmu.edu

Annual Symposium on Principles and Practice of Parallel Program-
ming (PPoPP °26), January 31 — February 4, 2026, Sydney, NSW, Aus-
tralia. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3774934.3786411

1 Introduction

Spatial indexes for managing multi-dimensional data points
are fundamental, with broad applications in computational
geometry [23, 46, 68, 73, 89], AI/ML [11, 34, 69, 80, 99], graph-
ics [26, 39, 51, 59], radars and robotics [70, 71, 91, 94], and
scientific simulations [21, 40, 45, 74]. Among these, some of
the most well-known spatial indexes, such as kd-trees [8]
and quad/octrees [75], are constructed by recursively par-
titioning the multidimensional space of data points—hence
referred to as space-partitioning indexes. These structures
support a variety of queries, including point searches, orthog-
onal range queries, and k-nearest neighbor (kNN) searches.

With the increasing amount of data in recent decades,
space-partitioning indexes have become increasingly con-
strained by the high cost of memory access. Compared to
on-chip computation, accessing off-chip memory is orders
of magnitude slower and is often bottlenecked by the lim-
ited bandwidth attainable over off-chip memory channels
(often referred to as the memory wall problem). Processing-
in-memory (PIM), a.k.a. near-data-processing, has recently
gained attention as a compelling architectural paradigm to
overcome the memory wall problem. By adding computa-
tional units (PIM cores) near or within memory modules,
PIM enables computation to occur close to its data, in con-
trast to the traditional von Neumann architecture where any
data must first be transferred to the CPU over off-chip mem-
ory channels. In bank-level in-memory processing (BLIMP)
PIM designs, PIM cores are integrated directly into memory
banks, enabling computation to be executed on PIM mod-
ules (PIM core and its local memory). This design improves
both performance and energy efficiency by leveraging low-
latency, low-energy on-chip memory accesses, while also
exploiting memory bandwidth and computational resources

https://orcid.org/0000-0002-2586-8311
https://orcid.org/0009-0009-9672-6490
https://orcid.org/0000-0001-7290-690X
https://orcid.org/0000-0002-4392-4022
https://orcid.org/0000-0003-0224-9187
https://orcid.org/0000-0003-0685-064X
https://orcid.org/0000-0002-6281-4435
https://orcid.org/0000-0001-6967-2735
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774934.3786411
https://doi.org/10.1145/3774934.3786411
https://doi.org/10.1145/3774934.3786411

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

that scale with the number of PIM modules. Consequently,
off-chip communication can be substantially reduced.

Prior work on designing space-partitioning indexes for
PIM (e.g., [20, 56, 88, 96]) has been limited. These works can
be divided into two groups. The first group [20, 56, 88] are
(i) evaluated only on simulators, not real-world PIM systems,
and (ii) lack theoretical guarantees, which limits their ability
to capture the fundamental characteristics of PIM systems.
The second group [96] focuses exclusively on asymptotic
theoretical analysis, with constant-factor costs and amortiza-
tion overheads that will likely render such designs inefficient
in practice (see §2.2 for discussion).

In this paper, the central question we aim to address is:
How can a space-partitioning index be efficiently imple-
mented on real-world PIM systems? At the same time, given
the considerable diversity across existing PIM architectures,
we also seek to answer the question: Can such an index be
designed in a theoretically-grounded manner that captures
the fundamental characteristics of PIM architectures, so that
it may remain effective for future PIM systems?

To this end, we set out to im-
plement on PIM systems a state-
of-the-art shared-memory space-
partitioning index with strong the-
oretical guarantees. There are two
main variants: the kd-trees [8] that
are usually based on object-median
partitioning, and quad/octree that
are based on spatial-median parti-
tioning [75]. Their state-of-the-art
shared-memory parallel designs are
Pkd-trees [62, 63] and zd-trees [12,
61], respectively. Specifically, zd-
trees are built by space-filling curves
(Morton order curves in Fig. 1).

In this work, we consider adapting zd-trees on PIM, and
present PIM-zd-tree, the first space-partitioning index de-
ployed (and shown to be efficient) on a real-world PIM system.
We select the zd-tree for a few reasons. First, zd-trees are
based on spatial-median partitioning, which is simpler in
practice and requires no rebalancing; both are critical in
achieving practical efficiency in PIM systems. Zd-trees are
also deterministic, in that the structure is independent of
the order of data point insertions (a.k.a. history-independent).
This determinism simplifies programming and debugging
both for developing and using the index.

Achieving an efficient PIM-based spatial index requires
addressing two fundamental challenges:

(Q1) How can we achieve a good trade-off between PIM
load balance, reduced off-chip communication, and low space
consumption? Because PIM systems commonly operate in
bulk-synchronous parallel (BSP) rounds [90], it is critical to
avoid stragglers, which determine round completion time.
Achieving such balance even under high workload skew,

00—

—11

0066+ 1|0, 1

0 101

1311

100611901 |1 1

1 1|11f6T1111

Figure 1. z-order

481

Zhao et al.

however, is particularly difficult. It often necessitates either
(i) partitioning tasks and data at extremely fine granularity,
which increases off-chip traffic, or (ii) replicating data across
multiple PIM modules, which incurs additional space over-
head and update costs [48, 50].

(Q2) How can we efficiently bridge theoretical designs and
practice? Asymptotic analyses often overlook constant fac-
tors and amortization overheads, which can introduce sig-
nificant inefficiencies in real-world deployments. Hence, we
require implementation techniques that both preserve theo-
retical bounds and deliver high performance in practice.

To address (Q1), PIM-zd-tree divides the tree into three
layers based on the properties of nodes, where each layer
has its own strategy for data partitioning, placement and
lightweight sharing (caching). These strategies reduce off-
chip communication while guaranteeing low update and
space overheads. Furthermore, PIM-zd-tree is designed to be
user-tunable, allowing it to support different levels of skew
tolerance and varying communication and space require-
ments by adjusting the layer division and data management
strategy correspondingly. To address (Q2) and bridge the gap
between theory and practice, PIM-zd-tree incorporates a set
of implementation techniques (§6) that translate theoretical
insights in §5 into practical efficiency (§7).

We implement PIM-zd-tree on UPMEM [72], a real-world
BLIMP-based PIM system. PIM-zd-tree achieves up to 4.25X
and 99X speedup over Pkd-tree [63] and zd-tree [12], two
state-of-the-art non-PIM baselines and reduces memory-
channel traffic by an average of 3.5x and 18.8x.

In summary, the main contributions of this paper are:

e We design PIM-zd-tree, a tunable spatial index for PIM
that adapts to varying requirements in skew tolerance,
communication, and space overheads, with strong the-
oretical grounding.

e We adopt implementation techniques that effectively
translate theoretical efficiency into practical perfor-
mance, leveraging fundamental characteristics of BLIMP.

e We present the first implementation and evaluation
of a space-partitioning index on a real-world PIM sys-
tem, demonstrating significant performance gains for
emerging PIM systems over traditional systems.

Our code is available at https://github.com/cmuparlay/
PIM-zd-tree.

2 Background
2.1 PIM Architecture and Computation Model

PIM Model. In this paper, we use the Processing-In-Memory
(PIM) Model [47] for theoretical analysis. Experimental re-
sults from prior works [48, 50] show that the PIM Model is a
good representation of a bank-level-in-memory-processing
(BLIMP) system, which is commonly used in commercial real-
world PIM systems like UPMEM [72] and Samsung PIMs [76].

https://github.com/cmuparlay/PIM-zd-tree
https://github.com/cmuparlay/PIM-zd-tree

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory

cores
CPU
side CPU Cache

M words

Network

Local Memory Local Memory
PIM O(N/P)words | g9e | ©(N/P) words
side
core core

P PIM Modules
Figure 2. The Processing-in-Memory (PIM) Model [47].

The PIM Model, as shown in Fig. 2, consists of a host
CPU and a PIM side of P PIM modules. The CPU features
a standard multicore architecture with an L3 cache of size
M words. Each PIM module integrates a small on-chip local
memory or PIM memory of ©(N /P) words (where N denotes
the total space), and a general-purpose but relatively weak
processor known as the PIM core. The host CPU can access its
cache and all PIM memory. However, each PIM core can only
access its own local memory. PIM modules cannot communi-
cate directly and must exchange data via the CPU. Programs
execute in bulk-synchronous parallel (BSP) rounds [90].

The PIM Model integrates both shared-memory and dis-
tributed metrics. For CPU computations, it quantifies the
CPU work (the total number of instructions executed by
the CPU) and CPU span (the critical path length) under a
binary forking model [4, 13, 14]. For off-chip communication,
it measures communication amount which is the sum to-
tal of words sent between the CPU and all PIM modules.
For PIM programs, it measures the PIM time, the maximum
work on any PIM core within a round. Because PIM time is
based on the maximum across all PIM modules, it is crucial
to design algorithms that ensure good load balance across
PIM modules, even under highly-skewed workloads.

A Real-World System: UPMEM. We evaluate our tech-
niques on the latest PIM system from UPMEM [72] (recently
acquired by Qualcomm). UPMEM’s PIM DIMMs are plug-
and-play DRAM DIMM replacements; thus, UPMEM can
be configured with various ratios of traditional DRAM to
PIM-equipped DRAM (the current maximum available con-
figuration has 2560 PIM modules). The CPU has access to
the traditional DRAM and all the PIM memory, but each PIM
core only has access to its local memory. Each PIM module
has up to 628 MB/s local DRAM bandwidth, so a machine
with 2560 PIM modules can provide up to 1.6 TB/s aggregate
bandwidth [37]. To move data between PIM modules, the
CPU reads from the origin and writes to the target.
UPMEM’s main memory (traditional DRAM) enables run-
ning programs that overflow the CPU’s L3 cache, but these
additional memory accesses bring another type of communi-
cation (not in the PIM Model): CPU-DRAM communication.
Thus L3 cache efficiency is important for host programs.

482

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

Applications on PIM. Though the idea of PIM dates back
to the 1970s [86], it has regained attention recently, due to
the development in 3D-stack memory fabrication [44] and
the release of real-world PIM products [42, 72, 76]. Hundreds
of academic works have been published (see the references
of [6, 66]). PIM systems have been widely used in acceler-
ating applications of databases [9, 22, 48, 54, 58], machine
learning [15, 16, 41, 95, 97], graph processing [18, 55, 81, 87],
genome analysis [19, 28, 31, 64] and security [3, 30, 33, 36].

2.2 Prior Work: PIM-Friendly Indexes

Space-Partitioning Indexes on PIM. Most prior works [20,
56, 88] are evaluated only on simulators, not real-world PIM
systems, and lack theoretical foundations. The only work
with theoretical guarantees [96] relies on periodic reconstruc-
tion of imbalanced subtrees as a core approach. However,
this approach is fundamentally impractical on real systems,
as its additional round complexity incurs substantial latency
from mux switch overheads [54] in current PIM architectures.

Range-Partitioning Indexes. Early PIM-based indexes [24,
25, 60] adopt range-partitioning approaches, where the key
space is divided into disjoint ranges, each stored on a PIM
module. While such designs are effective in reducing com-
munication, they are highly vulnerable to workload skew.

Skew-Resistant Indexes. More recent skew-resistant in-
dexes [47-50, 96] employ finer-grained data placement and
replication strategies to mitigate skew. However, most of
these designs are purely theoretical [47, 49, 96] and lack prac-
tical validation. PIM-tree [48, 50] represents an implemen-
tation effort, but (i) its design cannot be directly extended
to spatial indexes due to fundamental structural differences,
and (ii) it sacrifices performance in non-skewed workloads
in order to guarantee good performance even under skew.

2.3 zd-Tree

The zd-Tree [12, 61], the primary data structure in this work,
is a space-partitioning index of n multi-dimensional points.
In a nutshell, it is a kd-tree whose splitting rule uses z-order
(see Fig.1). The tree is built by letting the root represent the
entire bounding box of the dataset, and splitting the points
into child nodes at level i based on whether the bit at place i
of the z-order key is 0 or 1. Both internal nodes and leaf nodes
store information about their bounding box. Internal nodes
also store their children, while leaf nodes store the points
they contain. The number of points in a leaf is bounded by a
constant, and every point is included in exactly one leaf.
From one perspective, the zd-tree is similar to an oct-tree
(in 3 dimensions), except that every three levels of a zd-
tree corresponds to one level of an oct-tree. From another
perspective, the zd-tree can be viewed as a radix tree (or trie)
whose stored keys are the z-ordered integer of the points. We
adopt an implementation of a compressed radix tree, where
we (i) omit all empty leaves, and (ii) merge each node that

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

zd-tree

S

Zhao et al.

PIM-zd-tree Layout
LO: Globally-Shared

|
|
|
I a AY 4 AY 4 N\ o '
| pim1 | pim2 |f Pim3 PIM P
I Aa /I A
1
| L1: Partially-Shared

o ' o '
1 pM3 | [PimP
| PRI B
1 LO“‘ J \ o J
1 L2: Exclusive
1 ~ \ 2 Y4 N D
I PIM 1 PIM 2 PIM 3 PIM P
1| O 0 0) O
R \ J \\ 7 \ V \ V

Figure 3. PIM-zd-tree with its three-layer structure and corresponding data layout across PIM modules. Squares denote leaves, while circles
represent internal nodes. Solid-frame nodes indicate master storage, whereas dashed-frame nodes represent cached data used in data sharing.

has only one child with that child (i.e., we compress all paths
consisting of nodes with only one child). Note that after this
compression, all internal nodes have exactly two children,
and there are 2n + O(1) nodes in total in the zd-tree.

The zd-tree supports correct operations on arbitrary multi-
dimensional datasets and has demonstrated practical effi-
ciency [12, 61] on numerous real-world datasets. It can also
achieve the theoretical cost bounds detailed in Lemma 2.1.

Lemma 2.1 (zd-Tree Properties [12]). Given a zd-tree storing
n points in a set P with bounded ratio (Defn. 1, §5) and bounded
expansion constanty (Defn. 2, §5), it can be proved that: (i) The
height of the tree is O(logn). (ii) The tree can be built using
O(n) work and O(n€) span, for a constant € < 1. (iii) Finding
the k-nearest neighbors of a point p € P requires expected
O(klogk) work. (iv) Inserting k nodes into the tree requires
O(klog(1+n/k)) work and O(k€ + polylog(n)) span.

3 PIM-zd-tree

In this section, we introduce PIM-zd-tree—a batch-dynamic
zd-tree data structure designed for Processing-In-Memory
(PIM). PIM-zd-tree maintains a binary zd-tree and this sec-
tion introduces the main techniques for data partitioning
and replication used in our design.

A straightforward design to place a zd-tree on P PIM mod-
ules is to partition the tree into P disjoint subtrees with equal
sizes, and place each tree on a different PIM module. How-
ever, such design is highly sensitive to workload skew—in
the worst case, all operations in a batch target the tree on
one PIM module and leave all the others idle.

To address this challenge, our PIM-zd-tree initially dis-
tributes each tree node across PIM modules using a hash-
based randomization strategy, ensuring that even adversarial
operations cannot consistently target the same node. We
refer to these distributed nodes as master nodes. However,
relying solely on master nodes does not reduce off-chip com-
munication: during searches, every tree edge incurs a remote

483

access because parent and child nodes are typically placed
on different PIM modules. As a result, the communication
cost remains comparable to that of shared-memory systems,
undermining the motivation for adopting PIM.

In this section, we introduce our main design to reduce
communication over this naive master node design, without
violating load balance or incurring a large space cost.

3.1 Overall Structure

The PIM-zd-tree divides the data structure into three layers.
As shown in Fig. 3, from top (root) to bottom (leaf nodes),
the tree is divided into (i) Level 0 (L0): globally-shared nodes;
(ii) Level 1 (L1): partially-shared nodes; and (iii) Level 2 (L2):
exclusive nodes. In each layer, a different strategy is adopted
for data partitioning and caching.

Our key observation in a tree data structure is that the
internal tree nodes that lie in the upper part of a tree are
more frequently accessed in (top-down) searches and less
frequently modified in dynamic updates compared to the
nodes in lower levels. Meanwhile, the number of such nodes
(the size of the upper part) is relatively small compared with
the lower levels. Thus, sharing a consistent copy of the upper
part nodes across different hardware modules (CPU and/or
PIM modules) would be beneficial without incurring unac-
ceptable overheads in space and update costs. Intuitively,
the higher the position of a node is inside the tree, the more
times it should be replicated on different modules.

Positional Descriptor of a Tree Node. We first introduce
how to divide each node into its corresponding layer based
on its positional information. In this paper, we use the no-
tion of subtree size—the total number of multi-dimensional
data points contained in all the descendant leaf nodes of a
node, denoted as T(N;) for internal node N;—to represent the
positional information of an internal node. Unlike B-trees,
zd-trees are not strictly balanced. Thus, the height repre-
sentation of each node (as in the PIM-tree [48]) might be
an imprecise indicator of the position of this node inside

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory

the zd-tree. For instance, even for a dataset with a bounded
expansion constant (Defn. 2), a node with log n depth from
the root can either be a leaf node or a node with ©(+/n)
descendants. In contrast, the subtree size is a more accurate
descriptor on the position of a node, where nodes with larger
subtree sizes lie in the higher parts in the tree.

The PIM-zd-tree uses two tunable thresholds, 0r, and 0
(BLo = 61 > 0), to control the tree structure. For all nodes
N; with T(N;) > 6y, they are categorized as L0 nodes. Any
node with T(N;) < 0y is categorized as an L2 node. The rest
are categorized as L1 nodes.

Globally-Shared Nodes (L0). For the nodes in the upper-
most part of the tree, their information and the tree structure
will be shared globally across all the PIM modules. Given
such storage, the concept of master nodes is unnecessary.
The size of L0 can be tuned by the designer or the user.

When the L0 nodes all fit in the CPU cache, L0 will be
maintained completely in the cache. Because the query and
update workload starts from the host CPU side, keeping
the LO structure in CPU cache is equivalent to sharing the
structure over all PIM modules.

On the other hand, when the size of L0 exceeds the CPU
cache, its structure will be replicated over all PIM modules.
To keep overhead of space and updates low, the size of LO
should be bounded by selecting an appropriate 01 value.

Partially-Shared Nodes (L1). Each tree node in L1 will
have their master node stored on a random PIM module.
The tree structure of other nodes in L1 will be shared and
attached to the master storage as an auxiliary structure to
reduce communication in tree traversal. However, due to the
large number of L1 nodes, a full global data sharing of the
entire L1 structure over all PIM modules will be too costly
in terms of update cost and space overhead.

In PIM-zd-tree, for each of the L1 nodes, a copy of all its
ancestors and descendants (and the corresponding tree struc-
ture) in L1 will be attached to the master storage and stored
on the same PIM module. This information suffices to cover
all traversal paths of a search query that is passing through
this L1 node, and thus the subsequent search query could be
executed locally through these cached tree structures.

Exclusive Nodes (L2). For internal and/or leaf nodes with
T(Nj) < 011, due to their large total number, high frequency
in updates and unlikeliness in facilitating search queries, a
PIM-zd-tree does not make replicas of these nodes and only
stores their master copies. Each leaf node is allowed to hold
a maximum of B data points (defined later in §3.2).

Promotion and Demotion. PIM-zd-tree assumes that struc-
tural changes to the tree occur only through dynamic updates
(insertions and deletions). Such updates affect the subtree
sizes of all internal nodes along the path from the root to the
modified leaf node. Roughly, if the updated size of an internal
node causes its transition between categories (L0/L1/L2), the

484

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

: LO: Globally-Shared

L2: Exclusive

Figure 4. Example of dividing an L1 subtree into meta-nodes. Each
region enclosed by a red dashed line corresponds to a meta-node.
The L1 root has subtree size T (Np), while the blue dashed line marks
the boundary below which all nodes satisfy T(N;) < T(Np)/B.
Recursive division would be applied if any L1 nodes further satisfy
T(N;) < T(No)/B?, but this step is omitted for clarity.

node is promoted or demoted accordingly, and its associated
caching for data sharing is adjusted to reflect the change.

3.2 Chunking for Imbalanced Trees

Chunking (or blocking) is a widely adopted technique in
locality-aware data structures, such as transforming binary
search trees into B-trees. However, traditional chunking
methods that rely on adjusting fanout (as in B-trees) are
incompatible with imbalanced trees like zd-trees, since the
fanout approach fundamentally assumes that tree height and
level are well-defined and meaningful.

PIM-zd-tree employs a chunking strategy for its L1 and
L2 layers that is based entirely on subtree sizes, guided by
a user-defined chunking factor B. For a highest node N; in
L1 or L2, all descendants N; satisfying T(N;) > T(N;)/B
are grouped into the same chunk as N;. Each chunk, which
naturally forms an imbalanced tree, is referred to as a meta-
node. This chunking process is then applied recursively to
the highest unchunked nodes until every node is contained
within some meta-node. An example is shown in Fig. 4.

All nodes within the same meta-node are placed on a
single PIM module, and any internal caching for data sharing
among them is now eliminated. The original zd-tree is thus
restructured into a higher-level tree composed of meta-nodes.
For nodes in L1, remote caching to enable data sharing across
different meta-nodes is preserved, but maintained at the
granularity of meta-nodes rather than individual nodes.

3.3 Push-Pull Search

We use push-pull search [48-50, 96, 98] as a core technique
in PIM-zd-tree to achieve load balance when accessing L1
and L2 nodes under skewed workloads. Unlike distributed
systems, PIM architectures feature a powerful host CPU,
enabling the use of shared-memory techniques. Push-pull
search exploits this capability by flexibly coordinating com-
putation between the host CPU and the PIM modules, in
contrast to prior distributed algorithms that rely solely on
offloading computation.

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

Push-pull search uses contention information within a
batch to decide whether computation in a PIM-zd-tree is
performed on the CPU side or on PIM modules. To illustrate,
consider a top-down SEARCH query from root to leaf. In a PIM
execution round with batch size S, suppose m queries need to
access an L1 meta-node M; to determine which descendant
subtree to follow. If m is below a load-imbalance threshold
(defined later), all m queries are pushed to the PIM module
storing M;, where the search proceeds using the local caching
of its descendant subtrees until it reaches the L1-L2 border.
Conversely, if m exceeds the threshold, then M; will be pulled
from the PIM side into the CPU, where a parallel search is
performed. Notably, only the master storage of the meta-
node is fetched; caching of its descendant meta-nodes is
excluded to prevent communication imbalance. After the
CPU search, the m queries are partitioned according to the
destination descendants from their meta-node traversal, and
the push-pull decision is recursively applied level by level at
the granularity of meta-nodes until the leaves are reached.

3.4 Lazy Counters

As noted, subtree size is a key component in the design of
the PIM-zd-tree. However, maintaining an accurate and con-
sistent version of this metric across all nodes is challenging.
A straightforward approach would involve storing precise
counters on every node and its replicas, while ensuring con-
sistency during dynamic updates. But the overall strategy
of the PIM-zd-tree is to replicate higher-level nodes more ex-
tensively. As a result, changes in subtree counters propagate
toward the upper levels of the tree, making it prohibitively
expensive to maintain strict consistency during updates.

A key observation is that a provably small degree of ap-
proximation is acceptable in these counters. Prior work has
explored the design of randomized counters [65, 83-85, 93,
96]. However, employing randomization in practice on PIM
systems can lead to irregular and unpredictable execution
flows, in addition to the overhead of random number gener-
ation or hash computations on lightweight PIM cores.

To resolve this challenge, PIM-zd-tree adopts lazy coun-
ters, which in each node maintains a slightly out-of-date
global snapshot of the subtree sizes. This snapshot is within
a degree of approximation to ensure algorithm correctness,
is replicated across caching, and is infrequently updated.

Specifically, all nodes record changes in their subtree sizes
during dynamic updates. Changes are propagated to par-
ent nodes and global snapshots are synchronized across all
replicas on other PIM modules only when the change ex-
ceeds a threshold A, —T(N;)/2 < A < T(N;). With suitable
choices of As in each layer as detailed in Table 1, lazy coun-
ters achieve sufficient accuracy as formalized in Lemma 3.1.

Lemma 3.1 (Lazy Counter Value). In PIM-zd-tree, the value
of a global snapshot counter SC(Nj;) on any node N; always
satisfies T(N;)/2 < SC(N;) < 2T(Nj).

485

Zhao et al.

Proof Sketch. Due to space limitations, we present only a
proof sketch for the insertion-only case, where T(N;)/2 <
SC(N;) < T(N;). The cases with deletions and T(N;)
SC(N;) < 2T(N;) are symmetric.

In the insertion-only setting, it is immediate that SC(N;) <
T(Nj), so we show T(N;)/2 < SC(N;). Any L0 node has
T(N;) > 019, and since the unfinished updates are fewer
than 6y, it follows that T(N;)/2 < SC(N;). Similarly, any
L1 global snapshot deviates from the true subtree size by at
most a factor of 0.5. o

IA

Table 1. Lazy counter configurations in each level.

Layer Apmin A
Lo —0r0/2 010
L1 | —-0.5min {Gm, logg Z—i‘l’} min {Gm, logg g—i‘:}
L2 0 0

4 Operations

We describe here our algorithms for implementing PIM-zd-
tree and various queries over them. The theoretical analysis
on the cost of these algorithms will be provided in §5.

4.1 Top-Down SEARCH

Top-down SEARCH queries (Alg. 1) try to locate the leaf node
where a given data point lies in. This can be used as a prepro-
cessing for dynamic updates and kNN queries. The search
answers a batch Q of queries by traversing L0, L1, and L2,
using push-pull search (for L1 and L2) and local caching.

Algorithm 1. SEArcH (Q: batch of query points)

1. [L0] Traverse L0 to search Q by (1) searching in CPU cache; or
(2) dividing Q into P groups, each searched on a PIM module.

2. [L1 Pull] While the number of queries that will be sent to each
PIM module for L1 is imbalanced (i.e., the busiest module gets
more than 3X the average load), do:

a. Pull all meta-nodes with more than K = Blogp z—;’ queries
back to the CPU.

b. Search through the meta-nodes on the CPU.

3. [L1Push] Push load-balanced queries in Q to the PIM modules
holding their L1 nodes, and traverse L1 using local caching.

. [L2 Push-Pull] For each level in L2, perform one push-pull
round: Pull the L2 nodes with more than K = B queries to the
CPU and search in the CPU cache; otherwise, search on PIM.
Perform such rounds until reaching the bottom level and re-
trieve the corresponding leaf nodes.

4.2 Dynamic Updates

INSERT adds new data points to PIM-zd-tree, while DELETE
removes existing data points from the structure. Here we
only provide INSERT in Alg. 2 due to space constraints.

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory

Step 3c proceeds as follows. Since the search trace is
recorded on the CPU, the update occurs in two rounds. In
the first round, the CPU allocates space in the cache to re-
serve memory for all remote-node modifications and fixes
all local parent-child links. In the second round, once these
cache reservations are in place, the system updates all remote
parent-child links to reflect the structural changes.

For Step 3d, promoting L2 nodes to L1 is straightforward:
the CPU modifies the corresponding cache entries of their L1
ancestors, as in Step 3c. Promoting L1 nodes to L0, however,
involves additional coordination. Each PIM module main-
tains a buffer of L1 nodes scheduled for promotion. In the
first round, PIM modules send the promotion candidates to
the CPU and garbage-collect the local cache entries of these
nodes. In the second round, the CPU broadcasts each pro-
moted node to the fully replicated L0 across all PIM modules,
and the related remote parent-child links are constructed.

Algorithm 2. INSERT(Q: batch of inserted points)

1. SEARCH (Q) and record the search traces on CPU. (A search
trace is the on-PIM addresses of the starting and ending nodes
along each top-down search path within every replica.)

2. In one communication round, for each key to insert:
a. Create a new leaf node if SEARCH ends at an empty child.

b. If SEARCH ends in an existing leaf, return the address if
the leaf node is not full after insertion. Otherwise, return
the points in the original leaf node to be split, and create a
new leaf node.

c. Create new nodes if a compressed tree edge is split.

d. the CPU will deduplicate if multiple keys to insert conflict
in creating the same new nodes.

3. In two communication rounds:
. Insert data points to the leaf nodes.

a
b. Link all parent—child pointers for newly-created nodes.

o

. Modify the shared data caching. (Two rounds.)

(=9

. Promote/demote internal nodes. (Two rounds.)

e. Update the lazy counters.

4.3 k Nearest Neighbors

A k nearest neighbor (kNN) query requires to return the
exact k nearest points in PIM-zd-tree to a given point with a
pre-defined distance metric (e.g., #;-norm or £;-norm).

Algorithm 3. KNN (Q: batch of query points; k: INT)

1. SEARCH (Q) and record the search traces.

2. For each q € Q, find on the search trace the lowest node
Ng,1 whose lazy counter records SC(Ng 1) 2 k. Use push-pull
search to traverse its descendants to find k nearest candidates.

486

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

3. For each g € Q, find on the search trace the lowest node Ng 2
which entirely contains the smallest sphere Sy centered at g
that contains all the k candidates from Ng ;.

4. For each g € Q, use push-pull search to traverse the descen-
dants of Ng 2 who intersect with Sq. Return all points from
the descendants of Ny, that lie inside Sg.

5. Filter the returned points on the CPU, outputting the final
kNN for each q.

4.4 Orthogonal Range Query

An orthogonal range query, or box query, specifies one (or
a batch of) axis-aligned rectangular boxes. There are two
categories based on their output: a BoxCOoUNT query returns
the number of points in PIM-zd-tree that fall within the
box, while a BOXFETCH query retrieves all such points. The
execution procedure closely follows that of SEArcH, where
push-pull search is applied level by level. The key difference
is that box queries must also track all nodes intersecting the
query box. Pseudocode is omitted due to space constraints.

5 Theoretical Analysis

In this section, we analyze PIM-zd-tree on the PIM Model
and show that it achieves good performance’ regardless of
workload skew. Our analysis in this section adopts two com-
mon assumptions used in prior work: bounded ratio (Defn. 1)
and bounded expansion constant (Defn. 2). However, this
does not mean that PIM-zd-tree is only practically efficient
under such dataset distributions. In §7, we will show that
the design choices we made in PIM-zd-tree are practically
efficient in various real-world datasets, regardless of whether
these datasets satisfy the two assumptions or not.

For readers less interested in the mathematical details, we
suggest focusing on the main conclusions of Theorems 5.1
and 5.3 to 5.5; or directly on Table 2, which summarizes the
configurations implemented on real-world machines.

Definition 1 (Bounded Ratio [5, 12, 17]). Given a point set
P of size n, let dy,qx denote the maximum distance between
any two points in the set, and let dp,;, denote the minimum
distance. Then P has bounded ratio if

‘{é’:ﬁ = poly(n).

Definition 2 (Bounded Expansion Constant [1, 2, 10, 12,
27,52, 53, 79]). Given a point set P contained in a bounded
Euclidean space X, P has expansion contant y if forVx € X
andVr > 0, if |box(x,r)| = k > 1 then

|box (x,2r)| < yk.
The expansion constant is referred to as bounded if y = O(1).

We also define (a,)-skew in Defn. 3 to asymptotically
characterize the skew of the distribution in a batch.

L All analytical bounds in this section would include a cost of D for each
D-dimensional point accessed in a leaf. We omit this for clarity.

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

Definition 3 (Skew). A batch of S queries with keys in the
range [Uy, U,] is defined to have (a, f)-skew iff for every inte-
gerVi € [1, B], the number of keys falling in the subinterval

[Ul+ LU, -U), U + ﬁ(U Ul)] lsatmost—

In other words, when the key range is divided into 8 equal-
sized subranges, each subrange has at most a 1/« fraction of
the query keys.

5.1 Space Consumption
Theorem 5.1 (Space) A PIM-zd-tree containing n data points

takes O (n + 9 + 9L1 logB a5 | space.

Proof Sketch. Due to bounded expansion constant, L0 has
O(n/B1y) nodes. L1 has O(n/@Ll) nodes, each of which is

(logB) times
o

replicated O (logmax{y 1) 9 L /log B)
(the maximum height of an L1 path).

5.2 Top-Down SEARCH

The costs for SEARCH is presented in Theorem 5.3. By prop-
erly tuning 0y, 011 and B, the PIM-zd-tree can be adapted
to varying degrees of («a, f)-skew, ensuring a desired cost
bound. Load balance is proved using Lemma 5.2.

Lemma 5.2 (Balls into Bins [77]). Uniformly randomly plac-
ing weighted balls with total weight W = ' w; and w; <
W /(Plog P) into P bins yields O(W /P) weight per bin whp?.

Theorem 5.3 (SEARCH). A batch of S SEARCH queries can
be executed in worst-case O(logg 019) communication rounds,
and takes a total of O(S logg 01.1) communication amount and
O(Slogn) PIM work. The PIM execution is load-balanced whp
if the batch size is S = Q(Plog P - Blogg 010) or if the batch

has (P log Plogg 010, 5~) -skew. CPU takes O(S logg 011) ex-
pected work and O(log Slogg 011 + logg O1) span whp.

Proof Sketch. The PIM work is O(Slogg n) to search the S
queries through the tree. The worst-case communication
round is the total height of L1 and L2 (due to pulling at
every level), which is O(logg 619). Communication amount
for each SEARCH query, due to the amortization of push-pull
search, is O(1) for L0 and L1, and is height O(logg 611) for
L2. When either the batch size or the skew condition holds,
the balance in PIM computation and communication can be
proved using Lemma 5.2. The proof for CPU execution uses
parallel work-efficient semi-sort [35] and radix sort [43]. O

5.3 Dynamic Updates

In this section, we present the overall cost of dynamic up-
dates. We restrict our analysis here to the insertion-only case
due to space constraints.

2We use O(f(n)) with high probability (whp) (in n) to mean O(cf (n))
with probability at least 1 — n~¢ for ¢ > 1.

487

Zhao et al.

Theorem 5.4 (INSERT). A batch of S INSERT can be executed
in worst-case O(logB 0r0) communication rounds, and takes

a total of O (g 5. logg 5 9“’ +Slogg GLI) communication

amount and O (P Iog o+ 5 — logg 5) 2 log 5 HLO + Slog n)
PIM work. The PIM execution is load balanced whp if batch
sizeS =Q (P log P - (B logg 010 + log %)) or if the batch has

(P log Plogg 010, 5)-skew and S = Q(Plog Plog 9L0) CPU

execution takes O (g + 9 logg 5 9L° + Slogy 9L1) expected
work and O(sort(S) +log Slogg 9L1 + logg O10) span whp.

Proof Sketch. For the proof of computation work, we refer to
the proof of shared-memory zd-trees [12]. For the commu-
nication analysis, we combine Theorem 5.3 and additional
costs in updating the data sharing structures. The update
costs of data sharing structures are in the same frequency as
lazy counters: updating P L0 copies every ©(61) updates in
expectation, and ©(logg g—fl’) L1 copies every ©(6.;) updates
in expectation. The sort(S) term in the CPU span denotes the
best-known parallel span for sorting S items [13, 29]. This
cost arises in INSERT, where points within a batch must be
sorted when inserted into the same leaf and when potentially
constructing a subtree. In contrast, SEARCH does not require
this span overhead, as it only relies on key equality rather
than strict ordering, and thus requires only a semi-sort. O

5.4 k Nearest Neighbors

Theorem 5.5 (kNN). Finding the k nearest neighbors of a
data point requires expected O(k +logg 011) communication
amount, worst-case O(logg 0r9) communication rounds, ex-
pected O(k +log n) PIM work, expected O(klogk +logg 611)
CPU work and expected O(k) CPU cache footprint.

Proof Sketch. For zd-trees, k nodes in expectation will be
touched in a kNN, which makes up the PIM work, together
with an O(log n) top-down search cost [12]. Since Alg. 3 uses
push-pull search in all upwards and downwards searching,
the communication amount and CPU work in expectation is
equivalent to the height of levels without data-sharing (i.e.,
©(logg 611)) plus the output size k. The CPU has another
O(k log k) work due to a priority queue. O

6 Implementation

To demonstrate the practical efficiency of our methods, we
implement two configurations of PIM-zd-tree that repre-
sent the two extremes of the design frontier. The first is a
throughput-optimized version, which prioritizes commu-
nication and computation efficiency. The second is a skew-
resistant version, capable of tolerating arbitrary adversarial
skew when S = Q(Plog® P). Both the throughput-oriented
and skew-resistant versions are special cases of the tunable
design described in §3.1 and §3.2. Their key configurations
and the operation costs are summarized in Table 2.

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory

We implement our methods on UPMEM [37, 72]. In this
section, we describe the practical techniques adopted to
achieve high performance. Most of these techniques build on
fundamental characteristics of BLIMP, and we expect them
to apply to a wide range of architectures beyond UPMEM.
Table 2. Configurations of implementations, space consumption,
and communication amount per operation.

Method ‘ Throughput-Optimized =~ Skew-Resistant
Oro n/P G(P)
011 1 O(logp P)
B Oro 0(1) =16
Allowed Skew (PlogP, 3) Arbitrary
Required S Q(PlogP) Q(Plog? P)
Space O(n) O(n)
SEARCH 0(1) O(logg logg P)
Updates 0(1) O(logg logg P)
kNN O(k) O(k +logglogg P)

Practical Chunking. We provide an adaptive node struc-
ture design for L1 with two capacity modes, which is in-
spired by the adaptive radix tree (ART) [57]. It implements
the imbalanced-tree-shaped chunking described in §3.2. The
key observation is that dense internal nodes are highly likely
to appear in the inner levels of the tree, where the chunk
structure tends to be well balanced. In contrast, sparse inter-
nal nodes are more likely to occur near the leaf levels, where
the chunk structure may become imbalanced.

e Sparse Mode: If an L1 chunk contains fewer than B/4
nodes, we use two arrays of length B/4—one for keys
and one for pointers. Keys are stored in sorted order,
and each pointer is aligned with its corresponding key.
Dense Mode: If the chunk contains at least B/4 nodes,
we instead use an array of B pointers to represent the
root node of the chunk. A descendant can be located
with a single lookup using the key byte as an index.
Our subtree-size based chunking differs from conventional
chunking, which uses a fixed-height fanout. Such conven-
tional chunking can lead to imbalanced tree shapes, requiring
L/log B jumps across chunks for key length L and fanout B.
The intuition behind our approach is that chunk shapes are
biased toward the longer branch in the original tree. As a
result, jumps can be reduced from L/log B down to L/B.
Fast z-Order Computation. Computing the z-order of the
keys is a critical step in the performance of PIM-zd-tree. Most
prior academic works adopt the direct bit-wise interleaving
method (e.g., [12, 61]), which has a complexity of O(bits).
In contrast, our implementation employs a faster Z-order
computation [7, 82] based on the recursive construction of
gaps over the original coordinates, reducing the complexity
to O(log(bits)). We further optimize for commonly encoun-
tered low-dimensional settings and extend the implementa-
tion to support higher-dimensional cases that are not covered

488

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

by existing implementations. As an example, we illustrate
below how 3D data points are transformed into 64-bit keys:

function Split_By_Three(uint64 x) { // x in [0, 2*21]

x = (x | (x << 32)) & 0x001f00000000ffff;
X = (x | (x << 16)) & 0x001f0000ff0000ff;
x = (x | (x << 8)) & 0x100foofoofoofoof;
X = (x| (x << 4)) & 0x10c30c30c30c30c3;
X = (x | (x << 2)) & 0x1249249249249249;
return x;

3
function Z_Order_Key_3d(uint64 x, vy, z) {
x = Split_By_Three(x);
y = Split_By_Three(y);
z = Split_By_Three(z);
return (x << 3) | (y << 2) | (z << 1);

Execution of Complex Distance Metrics on PIMs. Due
to limited area inside memory chips, BLIMP architectures
often suffer from constrained computational power on the
PIM cores. This makes the computation of complex distance
metrics on the PIM side comparatively slow. For example, on
UPMEM machines, multiplication and division may take up
to 32 cycles, much slower than simpler arithmetic operations
(e.g., addition or bitwise AND/OR) [37], which significantly
hinders the efficient computation of the ,-norm on PIM.

We propose an efficient execution flow for cases where a
complex distance metric can be anchored by a simpler one.
For example, the £,-norm can be anchored by the #;-norm
since, for any x € RP, ||x||;/||x|l; € [1/VD, 1]. As a result,
in a kNN query, if the k-th nearest neighbor under #;-norm
has distance x, then the k-th nearest neighbor under #£-norm
must have £ -distance of at most xVD.

We decompose the candidate-finding process in Alg. 3
into two stages: coarse-grained filtering and fine-grained
filtering. In the coarse-grained stage, PIM cores use a simple-
to-compute (on PIM) distance metric (e.g., £;-norm) to de-
termine a small candidate set that is guaranteed to con-
tain all k nearest neighbors. The fine-grained stage is ex-
ecuted on the CPU, where a more complex distance metric
(e.g., £-norm) produces the accurate final results. For low-
dimensional D = O(1) and the #;- and £;-norm case (and
assuming bounded ratio and bounded expansion constant),
the candidate set returned by the coarse-grained filtering
still has size O(k), and Theorem 5.5 still holds.

Improved Direct API. We use a lightweight Direct Inter-
face/API [50] to mitigate the overhead of the original UP-
MEM interface in small-batch scenarios. In the original UP-
MEM SDK [72], the PIM local memories are mapped to ac-
cessible regions in the virtual memory, and the UPMEM SDK
communication APIs eventually translate into simple reads
and writes to these regions. The Direct Interface [50] we
use, in contrast, bypasses the intermediate SDK layers and
directly manipulates the actual memory locations.

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

7 Evaluation
7.1 Experimental Setup

We evaluate PIM-zd-tree on an UPMEM®PIM-equipped server.
The server features two Intel®Xeon Silver 4216 CPUs (32
threads total, 2.1 GHz, 22 MB LLC) and 12 memory channels,
of which eight are populated with UPMEM DIMMs and four
with standard DDR4 2400MT/s DRAM DIMMs. In total, the
system includes 32 UPMEM ranks (2048 modules) providing
128 GB of PIM memory, with PIM cores running at 350 MHz.

Shared-Memory Competitors. We compare the throughput-
optimized PIM-zd-tree against two state-of-the-art shared-
memory implementations—zd-tree [12] and Pkd-tree [63].
We cannot evaluate shared-memory indexes on the UP-
MEM server because two-thirds of its memory channels are
occupied by PIM-equipped DIMMs, which cannot serve as
main memory. Running shared-memory indexes directly on
this server would thus create an unfair limitation on memory
bandwidth. Instead, we evaluate shared-memory indexes on
a separate machine equipped with two Intel Xeon E5-2630 v4
CPUs, each with 10 cores at 2.20GHz and 25MB cache. Each
socket has four memory channels, and no PIM-equipped
DIMMs are present. This machine has similar performance
to the CPU on the UPMEM server, and is used to evaluate
the non-PIM baselines as we could not find an exact match.

Measurement. We evaluate on two metrics: (i) Through-
put: Defined as the number of returned elements per second.
For point operations (INSErRT, BoxCouUNT), throughput is
the number of operations executed per second, whereas for
range operations (BoxFETcH, kNN), it is the number of ele-
ments returned in the final output per second. (ii) Per-Element
Memory Traffic: Defined as the total memory-bus communi-
cation (in bytes) incurred per returned element in the final
output, including both CPU-DRAM and CPU-PIM commu-
nication. Memory traffic is a primary contributor to power
consumption in index-based applications (see [37, 48, 66] for
detailed studies on energy consumption).

7.2 End-to-End Comparison

Workload Setup. We begin with a microbenchmark using
a uniformly random dataset. Each test first warms up the
index by inserting 300 million uniformly random 3D data
points. The benchmark then executes batches with same
type of operations, each batch containing (i) 50 million point
operations, or (ii) range operations that retrieve a total of 50
million elements in expectation. For BoxCounT, BoxFETCH
and kNN queries, we evaluate each with three different query
range sizes, covering on average 1, 10, and 100 data points.
In addition, we evaluate on two real-world datasets: COS-
MOS (CM) [78] and the Northern American region of Open-
StreetMap (OSM) [38]. For each dataset, we use 80% of the
data points for warmup and the remaining 20% for testing.
These datasets exhibit real-world spatial skew. COSMOS,

489

Zhao et al.

which captures astronomical objects in the galaxy, shows
moderate skew, while OSM road network data for North
America exhibits significantly stronger skew. We quantify
their skew using Gini coefficients over the distribution of
data points when each dataset is partitioned into P = 2048
bins. The resulting Gini coefficients are 0.287 and 0.967, cor-
responding approximately to Zipf distributions [100] with
Y = 0.455 and 1.5, respectively.

Main Results in Throughput. Fig. 5 compares the UPMEM-
based throughput-optimized PIM-zd-tree with CPU-based
Pkd-tree and zd-tree across ten types of operations. PIM-
zd-tree achieves geometrically averaged speedups of 1.82x,
4.25%,3.08%, and 1.46X over Pkd-tree for INSERT, BOXCOUNT,
BoxFETCH, and kNN. Against zd-tree, the corresponding
speedups are 1.49X, 518x%, 99X, and 3.46x. The geometrically
averaged memory traffic reduction across all operations is
3.5% compared to Pkd-tree and 18.8X compared to zd-tree.

The few cases where PIM-zd-tree does not outperform
Pkd-tree in throughput occur for kNN queries with large k
values. This is because large kNN queries are more likely
to cross the boundaries between PIM modules, resulting in
multiple rounds of communication and incurring significant
mux switch overhead [54] when switching control of PIM
memory between CPU and PIM-core accesses.

Latency Results. PIM-zd-tree also exhibits superior latency
performance. For example, for 1-NN on OSM, excluding
warmup, the P99 latencies of PIM-zd-tree, Pkd-tree, and zd-
tree are 0.0325 s, 0.0449 s, and 0.210 s, respectively.

7.3 Ablation Study

Breakdown of Time. Fig. 6 illustrates the time breakdown
of CPU computation, PIM computation, and CPU-PIM com-
munication. The INSERT operation incurs significant CPU
time, primarily due to preprocessing over the batch. In con-
trast, BoxFETCH with size 100 exhibits high CPU-PIM com-
munication time, as its computation is simple but the output
size is large. For all other operations, the majority of the time
is spent on PIM execution, which aligns with our design goal
of offloading computation to PIM.

Sensitivity to Dimensions. We evaluate two-dimensional
and three-dimensional uniform random workloads. The re-
sults show that 2D insertion throughput is only 1.02X higher
than 3D, since execution is primarily bottlenecked by searches
over fixed-length Morton keys. On the other hand, for box
counts, box fetches, and kNN queries, 2D workloads achieve
geometric-mean speedups of 1.49x%, 1.22%, and 2.13X over 3D,
respectively, due to the reduced cost of multi-dimensional
vector computations and comparisons in these range queries.

Sensitivity to Batch Sizes. Batch size plays a critical role in
the execution of PIM-zd-tree. Larger batch sizes are preferred
to amortize the mux switch overhead [54] and to achieve
effective load balance. However, excessively large batches,

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

—~80 107
2]
370 [PIM-zd-tree [Pkd-tree [zd-tree 1022
O 60 T
=50 N % * 10¢ §
240 A 4 E‘E
<30 * A A wes
520 305
3 + + s @
€10 [o
~ 0 1102
(a) Uniform random workloads.
’a 60 107
8§50 + PIM-zd-tree A Pkd-tree * zd-tree 106§ 45
240 Se
) [}
5 >0
%zg ax AX 5%
g FAX o+ +* GE) fl;"
e =m
= - =
(b) COSMOS dataset [78].
I E=)
U=
o=
Fa
>w
* S~
A £d
* =)
£ [l =
Insert BC-1 BC-10 BC-100 BF-1 BF-10 BF-100 1-NN 10-NN 100-NN

(c) OSM dataset [38].

Figure 5. Comparison of PIM-zd-tree, Pkd-tree, and zd-tree across three datasets on INSERT, BoxCoUNT (BC), BoxFETCH (BF) and nearest
neighbor (NN) operations. The bar plots report throughput, while the scatter plots show memory traffic, measured as the number of bytes

transmitted through the memory bus per element in the final output.

Insert Box Count 1 Box Count 100

‘ ‘ ‘ Time
I CPU

Box Fetch 100 100-NN @@= pPim

’ ‘ ‘- R

Figure 6. Runtime breakdown of different operations.

combined with auxiliary structures, may exceed the capacity
of the L3 cache, resulting in increased memory traffic.

Fig. 7 presents an ablation study on the impact of differ-
ent batch sizes for INSERT operations. While increasing the
batch size improves throughput, batch sizes exceeding 200k
operations result in higher memory traffic per operation.
This finding suggests that future systems with larger caches
would be advantageous. Similar trends were observed for
box and kNN queries, but are omitted here due to space limit.

Sensitivity to Dataset Sizes. One theoretical result we ob-
tain is that, while search paths in shared-memory indexes

490

= ——700%
340 eooé
235 5002
=301 + + + w
= 25 oy 400'a
220 300%,
= 2002
o 100&
£ 511 1] =
F o 0 =

50 100 200 500 1000 2000 F

Batch Size (k)

Figure 7. INSERT performance given different batch sizes.

have a length bounded by O(log n), the communication cost
of PIM-zd-tree, as shown in §5, is bounded solely by the
number of PIM modules P and is independent of n. Conse-
quently, PIM-zd-tree is expected to maintain robust perfor-
mance across datasets of varying sizes.

We evaluate the performance of the three methods un-
der varying base dataset sizes during warmup, as shown in
Fig. 8. The performance of PIM-zd-tree remains stable across
dataset sizes, whereas the throughput of Pkd-tree and zd-tree
degrades by 1.4x and 1.6X, respectively. Correspondingly,
their memory traffic increases by 1.3x and 1.5X%.

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

wn = m [[PIM-zd-tree 5_—
3_10 0 Pkd-tree 10 [oR
(@) | = zd-tree @]
s 8 M @
~ * * * ')
- * * 104+
S 6 >
E_ A R A A A o
2" =
103%=
o 2 ©
o +
= b L L b |!:
oo

2 4 10 20 30
Base Dataset Size (x10M)

Figure 8. 1-NN throughput and memory traffic given different
base dataset sizes during warmup before testing.

Table 3. Impact of implementation techniques on slowdown under
uniform workloads. Results for box queries and kNN are reported
as geometric means across three query sizes. N.A. indicates that the
corresponding technique is not optimized for the given operation.

Technique | INSERT BoxCouNT BoxFETcH kNN
Lazy Counter | 1.49X% N.A. N.A. N.A.
Fast z-order 1.99%x 1.58% 1.31x 1.67X
Fast £,-norm N.A. N.A. N.A. 1.58%

Direct API 1.06X% 1.07X 1.09% 1.09%

g_lo —A— Throughput-Optimized
(@] —@— Skew-Resistant

s 8

5 6

I

o 4

S

o 2

<

= 0

0 0010205 1 2 5 10 20
Proportion of Varden (%o)

Figure 9. 1-NN throughputs of throughput-optimized and skew-
resistant PIM-zd-tree, given combinations of Uniform+Varden [32].

Sensitivity to Optimizations. We evaluate the impact of
four implementation techniques in PIM-zd-tree: lazy counter,
fast z-order, fast £,-norm, and improved Direct API. Table 3
reports the slowdown observed when each technique is in-
dividually removed from the final design. All techniques
provide substantial performance benefits, with the exception
of Direct APIL The limited impact of Direct API arises from
our use of large batch sizes to maximize performance, which
falls outside the scenarios for which it is primarily optimized.

Skew Resistance. We further evaluate the skew-resilience
of PIM-zd-tree under non-uniform workloads. Specifically,
we compare the performance of both the throughput-optimized
and the skew-resistant versions on kNN under skewed condi-
tions. The skewed workload is derived from Varden [32], an
extremely skewed distribution generated via random walk.

491

Zhao et al.

In our experiments, we mix kNN queries generated from
the skewed Varden distribution into batches of uniformly dis-
tributed kNN queries. Fig. 9 presents the throughputs across
varying proportions of skewed queries. The skew-resistant
version of PIM-zd-tree demonstrates highly stable perfor-
mance, with fluctuations of no more than 4.1%. In contrast,
while the throughput-optimized version performs well un-
der workloads with low degrees of skew, it is outperformed
by the skew-resistant variant when more than 0.1% of the
workload is skewed, and its performance degrades by 10.66x
when 2% of the queries originate from Varden distribution.

8 Related Work

Comparison with PIM-tree. PIM-zd-tree supports an ad-
justable design that spans the full spectrum between the
range-partitioning and skew-resistant layouts, whereas PIM-
tree [48, 50] targets only one end point (skew-resistance).
Moreover, if comparing only the skew-resistant invariant,
PIM-tree enforces skew resistance by partitioning equal-
height levels, which is effective for balanced trees but un-
suitable for imbalanced zd-trees. In contrast, PIM-zd-tree
partitions by subtree size and relies on a lazy counter mecha-
nism to efficiently maintain approximate sizes, which is also
required for kNN and orthogonal range queries. While PIM-
zd-tree adopts push-pull search from PIM-tree, it employs
a design-specific push-pull threshold and uses imbalanced
chunking rather than the balanced chunking of PIM-tree.

Comparison with GPU-based Designs. Existing spatial
indexes on GPUs, such as kd-trees [92] and R-trees [67], re-
port relatively low performance, with construction through-
put below 20 MOp/s in both works. Moreover, GPUs are sig-
nificantly more energy-consuming than PIM systems. There-
fore, while end-to-end comparison against GPU-based de-
signs would be valuable future work, we do not expect such
comparisons to change the main conclusions of this work.

9 Conclusion

We present PIM-zd-tree, the first space-partitioning index
evaluated on a real-world PIM system. Our design introduces
a provably-efficient tunable structure that adapts to different
requirements in skew tolerance, communication, and space
overheads. We further adopt implementation techniques that
effectively translate theoretical efficiency into practical per-
formance. PIM-zd-tree delivers up to 4.25X and 99X speedup
over two shared-memory baselines, and reduces memory-
channel traffic by an average of 3.5x and 18.8x.

Acknowledgments

This research was supported by NSF grants CCF-2119352,
CCF-2339310, CCF-2403235, CNS-2211882 and CNS-2317194,
and the Parallel Data Lab Consortium (Bloomberg, Datadog,
Google, Intel, Jane Street, LayerZero, Meta, Microsoft, Oracle,
Pure Storage, Salesforce, Samsung, and Western Digital).

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory PPoPP °26, January 31 - February 4, 2026, Sydney, NSW, Australia

References [15] Pedro Carrinho, Oscar Ferraz, Joao Dinis Ferreira, Yann Falevoz, Vitor
Silva, and Gabriel Falcao. 2024. Processing Multi-Layer Perceptrons
In-Memory. In 2024 IEEE Workshop on Signal Processing Systems (SiPS).
7-12. doi:10.1109/SiPS62058.2024.00010

[1] Evangelos Anagnostopoulos, Ioannis Z. Emiris, and loannis Psarros.
2015. Low-Quality Dimension Reduction and High-Dimensional
Approximate Nearest Neighbor. In 31st International Symposium on

Computational Geometry (SoCG 2015) (Leibniz International Proceed- [16] Pe.dr o Carrinho, Hamid. Mog}.ladaspour, Osc.ar Ferraz, Jodo Dinis Fer-
ings in Informatics (LIPIcs), Vol. 34), Lars Arge and Janos Pach (Eds.). reira, Yann Falevoz, -Vltor Silva, and Gabriel Félcao. 2026. .An Ex-
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Ger- perimental Exploration of In-Memory Computing for Multi-Layer
many, 436-450. doi:10.4230/LIPlcs.SOCG.2015.436 Perceptrons. Journal of Signal Processing Systems 98, 1 (2026), 1.
[2] Evangelos Anagnostopoulos, Ioannis Z. Emiris, and Ioannis Psarros. d(')i:10‘1007/s1 1265-025-01974-7) o
2018. Randomized Embeddings with Slack and High-Dimensional [17] Timothy M. Chan. 2008. Well-separated pair decomposition in linear
Approximate Nearest Neighbor. ACM Trans. Algorithms 14, 2, Article time? Inform. Process. Lett. 107, 5 (2008), 138—141. doi:10.1016/j.ipl.
18 (April 2018), 21 pages. doi:10.1145/3178540 2008.02.008 _ S
[3] Md Tanvir Arafin and Zhaojun Lu. 2020. Security Challenges of (18] Deting Chen, Yu Huang, Yi Huang, Binbin Lin, Yi Zhang, Long Zheng,
Processing-In-Memory Systems. In Proceedings of the 2020 on Great Xiaofei Liao, and Hai Jin. 2025. Prism: Practical In-Memory Accelera-
Lakes Symposium on VLSI (GLSVLSI ’20). 229-234. doi:10.1145/ tion for Subgraph Matching at Scale. In 2025 IEEE High Performance
3386263.3411365 Extreme Computing Conference (HPEC). 1-7. doi:10.1109/HPEC67600.
[4] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread 2(_)25'1 1 19'621 1)
scheduling for multiprogrammed multiprocessors. In Proceedings (19] Llang—'Chl Chen, Chlen—Cbung HO’ and Yuan-Hao C}'lang‘ 2025. Ac-
of the Tenth Annual ACM Symposium on Parallel Algorithms and celerating RNA-Seq Quantification on a Real Processing-in-Memory
Architectures (Puerto Vallarta, Mexico) (SPAA ’98). Association for System. IEEE Trans. Comput. 74, 7 (2025), 2334-2347. doi:10.1109/TC.
Computing Machinery, New York, NY, USA, 119-129. doi:10.1145/ 2025.3558075
277651.277678 [20] Mingkai Chen, Cheng Liu, Shengwen Liang, Lei He, Ying Wang, Lei
[5] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, Zhang, Huawei Li, and Xiaowei Li. 2024. An Energy-Efficient In-

and Angela Y. Wu. 1998. An optimal algorithm for approximate Memory Accelerator for Graph Construction and Updating. IEEE

nearest neighbor searching fixed dimensions. J. ACM 45, 6 (Nov. Transactions on Computer-Aided Design of Integrated Circuits and
1998), 891-923. doi:10.1145/293347.293348 Systems 43, 6 (2024), 1781-1793. doi:10.1109/TCAD.2024.3355038

[6] Kazi Asifuzzaman, Narasinga Rao Miniskar, Aaron R. Young, Frank [21] Qile P. Chen, Bai Xue, and J. Ilja Siepmann. 2017. Using the k-d Tree
Liu, and Jeffrey S. Vetter. 2023. A survey on processing-in-memory Data Structure to Accelerate Monte Carlo Simulations. Journal of
techniques: Advances and challenges. Memories - Materials, Devices, Chemical. Theory and Computation 13, 4 (2017), 1556-1565. doi:10.
Circuits and Systems 4 (2023), 100022. doi:10.1016/j.memori.2022. 1021/acs jetc.6b01222
100022 [22] Sitian Chen, Amelie Chi Zhou, Yucheng Shi, Yusen Li, and Xin Yao.

[7] Jeroen Baert. 2013. Morton encoding/decoding through bit interleav- 2025. UpANNS: Enhancing Billion-Scale ANNS Efficiency with Real-

ing: Implementations. https://www.forceflow.be/2013/10/07/morton- World PIM Architecture. In Proceedings of the International Conference
encodingdecoding-through-bit-interleaving-implementations/. Ac- Jfor High Performance Computing, Networking, Storage and Analysis
cessed December 2025. (SC °25). Association for Computing Machinery, New York, NY, USA,

[8] Jon Louis Bentley. 1975. Multidimensional binary search trees used 789-804. doi:10.1145/3712285.3759777

for associative searching. Commun. ACM 18, 9 (Sept. 1975), 509-517. (23] Yewang Chen, Lida Zhou, Yi Tang, Jai Puneet Singh, Nizar Bouguila,
doi:10.1145/361002.361007 Cheng Wang, Huazhen Wang, and Jixiang Du. 2019. Fast neighbor
[9] Arthur Bernhardt, Andreas Koch, and Ilia Petrov. 2023. pimDB: From search by using revised k-d tree. Information Sciences 472 (2019),

Main-Memory DBMS to Processing-In-Memory DBMS-Engines on 145-162. doi:10.1016/}.in5.2018.09.012

Intelligent Memories. In Proceedings of the 19th International Work- [24] Jiwon Choe, Andrew Crotty, Tali Moreshet, Maurice Herlihy, and
shop on Data Management on New Hardware (DaMoN °23). 44-52. R. Iris Bahar. 2022. HybriDS: Cache-Conscious Concurrent Data Struc-
doi:10.1145/3592980.3595312 tures for Near-Memory Processing Architectures. In Proceedings of the
[10] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover 34th ACM Symposium on Parallelism in Algorithms and Architectures
trees for nearest neighbor. In Proceedings of the 23rd International (PI.nladelphla, PA, USA) (SPAA °22). Assoc‘1at10n for Computing Ma-
Conference on Machine Learning (Pittsburgh, Pennsylvania, USA) C'hmery, New York, NY, USA"321_332‘ d01:10.'1 145/34?0148'35385?1
(ICML *06). Association for Computing Machinery, New York, NY, [25] Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R. Iris
USA, 97-104. doi:10.1145/1143844.1143857 Bahar. 2019. Concurrent Data Structures with Near-Data-Processing:
[11] Wenhao Bi, Junwen Ma, Xudong Zhu, Weixiang Wang, and An Zhang. an Architecture-Aware Implementation. In The 31st ACM Symposium
2022. Cloud service selection based on weighted KD tree nearest on Parallelism in Algorithms and Architectures (Phoenix, AZ, USA)
neighbor search. Applied Soft Computing 131 (2022), 109780. doi:10. (SPAA "19). Association for Computing Machinery, New York, NY,
1016/j.a50¢.2022.109780 USA, 297-308. doi:10.1145/3323165.3323191
[12] Guy E Blelloch and Magdalen Dobson. 2022. Parallel Nearest Neigh- [26] B. Choi, B. Chang, and L Ihm“ 2013. Imprqving Memory Space I?f'
bors in Low Dimensions with Batch Updates. In 2022 Proceedings of ficiency of Kd-tree for Real—tm?e Ray Tracing. Computer Graphics
the Symposium on Algorithm Engineering and Experiments (ALENEX). Forum 32,7 (2013), 335-344. doi:10.1111/cgf.12241
SIAM. 195-208. doi:10.1137/1.9781611977042.16 [27] Michael Connor and Piyush Kumar. 2010. Fast construction of k-
[13] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Op- nearest neighbor graphs for point clouds. IEEE Transactions on Visu-
timal Parallel Algorithms in the Binary-Forking Model. In Proceedings alization and Computer Graphics 16, 4 (2010), 599-608. doi:10.1109/
of the 32nd ACM Symposium on Parallelism in Algorithms and Archi- TVCG.2010.9
tectures (Virtual Event, USA) (SPAA °20). Association for Computing (28] qurestan I?e Moor, Me.V§n Mognol', Charles D.eltel, Erwan Dre?en,
Machinery, New York, NY, USA, 89-102. doi:10.1145/3350755.3400227 Julien Legriel, and Dominique Lavenier. 2024. MiMyCS: A Processing-
[14] Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient in-Memory Read Mapper for Compressing Next-Gen Sequencing
Scheduling of Multithreaded Computations. SIAM J. on Computing Datasets. In 2024 IEEE International Conference on Bioinformatics
27,1 (1998). doi:10.1137/S0097539793259471 and Biomedicine (BIBM). 6716-6723. doi:10.1109/BIBM62325.2024.

10821790

492

https://doi.org/10.4230/LIPIcs.SOCG.2015.436
https://doi.org/10.1145/3178540
https://doi.org/10.1145/3386263.3411365
https://doi.org/10.1145/3386263.3411365
https://doi.org/10.1145/277651.277678
https://doi.org/10.1145/277651.277678
https://doi.org/10.1145/293347.293348
https://doi.org/10.1016/j.memori.2022.100022
https://doi.org/10.1016/j.memori.2022.100022
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/3592980.3595312
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1016/j.asoc.2022.109780
https://doi.org/10.1016/j.asoc.2022.109780
https://doi.org/10.1137/1.9781611977042.16
https://doi.org/10.1145/3350755.3400227
https://doi.org/10.1137/S0097539793259471
https://doi.org/10.1109/SiPS62058.2024.00010
https://doi.org/10.1007/s11265-025-01974-7
https://doi.org/10.1016/j.ipl.2008.02.008
https://doi.org/10.1016/j.ipl.2008.02.008
https://doi.org/10.1109/HPEC67600.2025.11196211
https://doi.org/10.1109/HPEC67600.2025.11196211
https://doi.org/10.1109/TC.2025.3558075
https://doi.org/10.1109/TC.2025.3558075
https://doi.org/10.1109/TCAD.2024.3355038
https://doi.org/10.1021/acs.jctc.6b01222
https://doi.org/10.1021/acs.jctc.6b01222
https://doi.org/10.1145/3712285.3759777
https://doi.org/10.1016/j.ins.2018.09.012
https://doi.org/10.1145/3490148.3538591
https://doi.org/10.1145/3323165.3323191
https://doi.org/10.1111/cgf.12241
https://doi.org/10.1109/TVCG.2010.9
https://doi.org/10.1109/TVCG.2010.9
https://doi.org/10.1109/BIBM62325.2024.10821790
https://doi.org/10.1109/BIBM62325.2024.10821790

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

[29] Xiaojun Dong, Laxman Dhulipala, Yan Gu, and Yihan Sun. 2024.

(30]

(31

(32

(33

]

]

]

(34]

(35

(36

(37

(38

(39

[40

(42

]

]

]

]

]

]

—

Parallel Integer Sort: Theory and Practice. In Proceedings of the 29th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming (Edinburgh, United Kingdom) (PPoPP "24). Association
for Computing Machinery, New York, NY, USA, 301-315. doi:10.1145/
3627535.3638483

Dina Fakhry, Mohamed Abdelsalam, M. Watheq El-Kharashi, and
Mona Safar. 2023. An HBM3 Processing-In-Memory Architecture for
Security and Data Integrity: Case Study. In Green Sustainability: To-
wards Innovative Digital Transformation, Dalia Magdi, Ahmed Abou
El-Fetouh, Mohamed Mamdouh, and Amit Joshi (Eds.). 281-293.
doi:10.1007/978-981-99-4764-5_18

Oscar Ferraz, Gabriel Falcao, and Vitor Silva. 2024. In-Memory Bit
Flipping LDPC Decoding. In 2024 32nd European Signal Processing
Conference (EUSIPCO). 706-710. doi:10.23919/EUSIPCO63174.2024.
10715253

Junhao Gan and Yufei Tao. 2017. On the Hardness and Approximation
of Euclidean DBSCAN. ACM Trans. Database Syst. 42, 3, Article 14
(July 2017), 45 pages. doi:10.1145/3083897

Sahar Ghoflsaz Ghinani, Jingyao Zhang, and Elaheh Sadredini. 2025.
Enabling Low-Cost Secure Computing on Untrusted In-Memory
Architectures. arXiv:2501.17292 [cs.CR] https://arxiv.org/abs/2501.
17292

Seyedeh Gol Ara Ghoreishi, Charles Boateng, Sonia Moshfeghi,
Muhammad Tanveer Jan, Joshua Conniff, Kwangsoo Yang, Jinwoo
Jang, Borko Furht, David Newman, Ruth Tappen, Monica Rosselli,
and Kelley L. Jackson. 2025. Quad-Tree-Based Driver Classification
Using Deep Learning for Mild Cognitive Impairment Detection. IEEE
Access 13 (2025), 63129-63142. doi:10.1109/ACCESS.2025.3558706
Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-
Down Parallel Semisort. In Proceedings of the 27th ACM Symposium on
Parallelism in Algorithms and Architectures (Portland, Oregon, USA)
(SPAA ’15). Association for Computing Machinery, New York, NY,
USA, 24-34. doi:10.1145/2755573.2755597

Harshita Gupta, Mayank Kabra, Juan Gémez-Luna, Konstantinos
Kanellopoulos, and Onur Mutlu. 2023. Evaluating Homomorphic
Operations on a Real-World Processing-In-Memory System. In 2023
IEEE International Symposium on Workload Characterization (IISWC).
211-215. doi:10.1109/11ISWC59245.2023.00030

Juan Gémez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, and Onur Mutlu. 2022. Benchmarking a New
Paradigm: Experimental Analysis and Characterization of a Real
Processing-in-Memory System. IEEE Access 10 (2022), 52565-52608.
doi:10.1109/ACCESS.2022.3174101

Mordechai Haklay and Patrick Weber. 2008. OpenStreetMap: User-
Generated Street Maps. IEEE Pervasive Computing 7, 4 (2008), 12-18.
doi:10.1109/MPRV.2008.80

Xu-Qiang Hu and Yu-Ping Wang. 2023. QuadSampling: A Novel
Sampling Method for Remote Implicit Neural 3D Reconstruction
Based on Quad-Tree. In International Conference on Computer-Aided
Design and Computer Graphics. Springer, 314-328. doi:10.1007/978-
981-99-9666-7_21

Yuan Huang, Zhigin Zhao, Conghui Qi, Zaiping Nie, and Qing Huo
Liu. 2018. Fast Point-Based KD-Tree Construction Method for Hybrid
High Frequency Method in Electromagnetic Scattering. IEEE Access
6 (2018), 38348-38355. doi:10.1109/ACCESS.2018.2853659

Bongjoon Hyun, Taehun Kim, Dongjae Lee, and Minsoo Rhu. 2024.
Pathfinding Future PIM Architectures by Demystifying a Commer-
cial PIM Technology. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). 263-279. doi:10.1109/
HPCA57654.2024.00029

Intel. 2025. Intel In-Memory Analytics Accelerator (Intel

TIAA). https://www.intel.com/content/www/us/en/products/docs/
accelerator-engines/in-memory-analytics-accelerator.html. Ac-

cessed December 2025.

493

Zhao et al.

[43] J.JaJa. 1992. Introduction to Parallel Algorithms.

[44] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM
architecture increases density and performance. In 2012 Symposium
on VLSI Technology (VLSIT). 87-88. doi:10.1109/VLSIT.2012.6242474

[45] Shouyan Jiang, Liguo Sun, Ean Tat Ooi, Mohsen Ghaemian, and
Chengbin Du. 2022. Automatic mesoscopic fracture modelling of
concrete based on enriched SBFEM space and quad-tree mesh. Con-
struction and Building Materials 350 (2022), 128890. doi:10.1016/j.
conbuildmat.2022.128890

[46] Jaemin Jo, Jinwook Seo, and Jean-Daniel Fekete. 2017. A progressive
k-d tree for approximate k-nearest neighbors. In 2017 IEEE Workshop
on Data Systems for Interactive Analysis (DSIA). 1-5. doi:10.1109/
DSIA.2017.8339084

[47] Hongbo Kang, Phillip B. Gibbons, Guy E. Blelloch, Laxman Dhulipala,
Yan Gu, and Charles McGuffey. 2021. The Processing-in-Memory
Model. In Proceedings of the 33rd ACM Symposium on Parallelism in
Algorithms and Architectures (Virtual Event, USA) (SPAA °21). As-
sociation for Computing Machinery, New York, NY, USA, 295-306.
doi:10.1145/3409964.3461816

[48] Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan

Gu, Charles McGuffey, and Phillip B. Gibbons. 2022. PIM-Tree: A

Skew-Resistant Index for Processing-in-Memory. Proc. VLDB Endow.

16, 4 (dec 2022), 946-958. doi:10.14778/3574245.3574275

Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan

Gu, Charles McGuffey, and Phillip B. Gibbons. 2023. PIM-Trie: A

Skew-Resistant Trie for Processing-in-Memory. In Proceedings of the

35th ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA ’23). 1-14. doi:10.1145/3558481.3591070

Hongbo Kang, Yiwei Zhao, Guy E Blelloch, Laxman Dhulipala, Yan

Gu, Charles McGuffey, and Phillip B Gibbons. 2025. PIM-tree: A

Skew-resistant Index for Processing-in-Memory: H. Kang et al. The

VLDB Journal 34, 6 (2025), 66. doi:10.1007/s00778-025-00937-5

Yoon-Sig Kang, Jae-Ho Nah, Woo-Chan Park, and Sung-Bong Yang.

2013. gkDtree: A group-based parallel update kd-tree for interactive

ray tracing. Journal of Systems Architecture 59, 3 (2013), 166—175.

doi:10.1016/j.sysarc.2011.06.003

David R. Karger and Matthias Ruhl. 2002. Finding nearest neighbors in

growth-restricted metrics. In Proceedings of the Thiry-Fourth Annual

ACM Symposium on Theory of Computing (Montreal, Quebec, Canada)

(STOC °02). Association for Computing Machinery, New York, NY,

USA, 741-750. doi:10.1145/509907.510013

Wojciech Kazana and Luc Segoufin. 2013. Enumeration of first-order

queries on classes of structures with bounded expansion. In Proceed-

ings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-

ciples of Database Systems (New York, New York, USA) (PODS ’13).

Association for Computing Machinery, New York, NY, USA, 297-308.

doi:10.1145/2463664.2463667

[54] Hyoungjoo Kim, Yiwei Zhao, Andrew Pavlo, and Phillip B. Gibbons.

2025. No Cap, This Memory Slaps: Breaking Through the Memory

Wall of Transactional Database Systems with Processing-in-Memory.

Proc. VLDB Endow. (2025), 4241-4254. doi:10.14778/3749646.3749690

Dongjae Lee, Bongjoon Hyun, Taehun Kim, and Minsoo Rhu. 2024.

PIM-MMU: A Memory Management Unit for Accelerating Data

Transfers in Commercial PIM Systems. In 2024 57th IEEE/ACM

International Symposium on Microarchitecture (MICRO). 627-642.

doi:10.1109/MICRO61859.2024.00053

Vincent T. Lee, Amrita Mazumdar, Carlo C. del Mundo, Armin Alaghi,

Luis Ceze, and Mark Oskin. 2018. Application Codesign of Near-Data

Processing for Similarity Search. In 2018 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). 896-907. doi:10.1109/

IPDPS.2018.00099

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adap-

tive radix tree: ARTful indexing for main-memory databases. In 2013

IEEE 29th International Conference on Data Engineering (ICDE). 38-49.

[49

—

(50

=

[51

—

(52

—

[53

[t

[55

=

(56

=

[57

—

https://doi.org/10.1145/3627535.3638483
https://doi.org/10.1145/3627535.3638483
https://doi.org/10.1007/978-981-99-4764-5_18
https://doi.org/10.23919/EUSIPCO63174.2024.10715253
https://doi.org/10.23919/EUSIPCO63174.2024.10715253
https://doi.org/10.1145/3083897
https://arxiv.org/abs/2501.17292
https://arxiv.org/abs/2501.17292
https://arxiv.org/abs/2501.17292
https://doi.org/10.1109/ACCESS.2025.3558706
https://doi.org/10.1145/2755573.2755597
https://doi.org/10.1109/IISWC59245.2023.00030
https://doi.org/10.1109/ACCESS.2022.3174101
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1007/978-981-99-9666-7_21
https://doi.org/10.1007/978-981-99-9666-7_21
https://doi.org/10.1109/ACCESS.2018.2853659
https://doi.org/10.1109/HPCA57654.2024.00029
https://doi.org/10.1109/HPCA57654.2024.00029
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/in-memory-analytics-accelerator.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/in-memory-analytics-accelerator.html
https://doi.org/10.1109/VLSIT.2012.6242474
https://doi.org/10.1016/j.conbuildmat.2022.128890
https://doi.org/10.1016/j.conbuildmat.2022.128890
https://doi.org/10.1109/DSIA.2017.8339084
https://doi.org/10.1109/DSIA.2017.8339084
https://doi.org/10.1145/3409964.3461816
https://doi.org/10.14778/3574245.3574275
https://doi.org/10.1145/3558481.3591070
https://doi.org/10.1007/s00778-025-00937-5
https://doi.org/10.1016/j.sysarc.2011.06.003
https://doi.org/10.1145/509907.510013
https://doi.org/10.1145/2463664.2463667
https://doi.org/10.14778/3749646.3749690
https://doi.org/10.1109/MICRO61859.2024.00053
https://doi.org/10.1109/IPDPS.2018.00099
https://doi.org/10.1109/IPDPS.2018.00099

—

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory

doi:10.1109/ICDE.2013.6544812

Chun-Chien Liu, Chun-Feng Wu, and Yunho Jin. 2025. UPVSS: Jointly
Managing Vector Similarity Search with Near-Memory Processing
Systems. In 2025 62nd ACM/IEEE Design Automation Conference (DAC).
1-7. doi:10.1109/DAC63849.2025.11132577

Xingyu Liu, Yangdong Deng, Yufei Ni, and Zonghui Li. 2015. FastTree:
A hardware KD-tree construction acceleration engine for real-time
ray tracing. In 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 1595-1598.

Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017.
Concurrent Data Structures for Near-Memory Computing. In Pro-
ceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (Washington, DC, USA) (SPAA °17). Association for
Computing Machinery, New York, NY, USA, 235-245. doi:10.1145/
3087556.3087582

Magdalen Dobson Manohar, Yuanhao Wei, and Guy E. Blelloch.
2025. CLEANN: Lock-Free Augmented Trees for Low-Dimensional k-
Nearest Neighbor Search. In Proceedings of the 37th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA °25). 131-143.
doi:10.1145/3694906.3743339

Ziyang Men, Bo Huang, Yan Gu, and Yihan Sun. 2026. Parallel Dy-
namic Spatial Indexes. In Proceedings of the 31st ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (Sydney,
Australia) (PPoPP °26). Association for Computing Machinery, New
York, NY, USA. doi:10.1145/3774934.3786412

Ziyang Men, Zheqi Shen, Yan Gu, and Yihan Sun. 2025. Parallel
kd-tree with Batch Updates. Proc. ACM Manag. Data 3, 1, Article 62
(Feb. 2025), 26 pages. doi:10.1145/3709712

Meven Mognol, Dominique Lavenier, and Julien Legriel. 2024. Paral-
lelization of the Banded Needleman & Wunsch Algorithm on UPMEM
PiM Architecture for Long DNA Sequence Alignment. In Proceedings
of the 53rd International Conference on Parallel Processing (ICPP °24).
1062-1071. doi:10.1145/3673038.3673094

Robert Morris. 1978. Counting large numbers of events in small
registers. Commun. ACM 21, 10 (Oct. 1978), 840-842. doi:10.1145/
359619.359627

Onur Mutlu, Saugata Ghose, Juan Goémez-Luna, and Rachata
Ausavarungnirun. 2023. A Modern Primer on Processing in Memory.
171-243. doi:10.1007/978-981-16-7487-7_7

[67] Jian Nong, Xi He, Jia Chen, and Yanyan Liang. 2024. Efficient Parallel

Processing of R-Tree on GPUs. Mathematics 12, 13 (2024), 2115.
doi:10.3390/math 12132115

Mohammed Otair. 2013. Approximate k-nearest neighbour based
spatial clustering using k-d tree. arXiv:1303.1951 [cs.DB] https:
//arxiv.org/abs/1303.1951

Gongalo Perrolas, Milad Niknejad, Ricardo Ribeiro, and Alexandre
Bernardino. 2022. Scalable Fire and Smoke Segmentation from Aerial
Images Using Convolutional Neural Networks and Quad-Tree Search.
Sensors 22, 5 (2022), 1701. doi:10.3390/522051701

Reid Pinkham, Shuqing Zeng, and Zhengya Zhang. 2020. QuickNN:
Memory and Performance Optimization of k-d Tree Based Nearest
Neighbor Search for 3D Point Clouds. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 180-
192. doi:10.1109/HPCA47549.2020.00024

KH Vijayendra Prasad and P Sasikumar. 2024. Energy-efficient
quad tree-based clustering using edge-assisted UAV-relay to enhance
network lifetime in WSN. Scientific Reports 14, 1 (2024), 17160.
doi:10.1038/541598-024-68085-4

Qualcomm. 2025. UPMEM Technology. https://www.upmem.com/
technology/. Accessed August 2025.

Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for Nearest
Neighbor Search. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining (KDD ’19).
1378-1388. doi:10.1145/3292500.3330875

—

=

—

=

— =

—

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

[74] W. Saftly, M. Baes, and P. Camps. 2014. Hierarchical octree and k-d

tree grids for 3D radiative transfer simulations. A&A 561 (2014), A77.
doi:10.1051/0004-6361/201322593

Hanan Samet. 1984. The Quadtree and Related Hierarchical Data
Structures. ACM Comput. Surv. 16, 2 (June 1984), 187-260. doi:10.
1145/356924.356930

Samsung. 2025. Samsung PIM Technology. https://semiconductor.
samsung.com/technologies/memory/pim/. Accessed December 2025.
Peter Sanders. 1996. On the Competitive Analysis of Randomized
Static Load Balancing. In Workshop on Randomized Parallel Algorithms
(RANDOM).

Nick Scoville, H Aussel, Marcella Brusa, Peter Capak, C Marcella Car-
ollo, M Elvis, M Giavalisco, L Guzzo, G Hasinger, C Impey, et al. 2007.
The cosmic evolution survey (COSMOS): overview. The Astrophysical
Journal Supplement Series 172, 1 (2007), 1. doi:10.1086/516585

Luc Segoufin and Alexandre Vigny. 2017. Constant Delay Enumera-
tion for FO Queries over Databases with Local Bounded Expansion.
In ICDT. Venise, Italy. https://inria.hal.science/hal-01589303
Yunxiao Shan, Shu Li, Fuxiang Li, Yuxin Cui, Shuai Li, Ming Zhou,
and Xiang Li. 2022. A Density Peaks Clustering Algorithm With
Sparse Search and K-d Tree. IEEE Access 10 (2022), 74883-74901.
do0i:10.1109/ACCESS.2022.3190958

Shunchen Shi, Xueqi Li, Zhaowu Pan, Peiheng Zhang, and Ninghui
Sun. 2024. CoPIM: A Collaborative Scheduling Framework for Com-
modity Processing-in-memory Systems. In 2024 IEEE 42nd Interna-
tional Conference on Computer Design (ICCD). 44-51. doi:10.1109/
1CCD63220.2024.00018

[82] John Sietsma. 2019. Morton Order - Introduction. https://johnsietsma.

com/2019/12/05/morton-order-introduction/. Accessed December
2025.

Guy L. Steele and Jean-Baptiste Tristan. 2016. Adding approximate
counters. SIGPLAN Not. 51, 8, Article 15 (Feb. 2016), 12 pages. doi:10.
1145/3016078.2851147

Guy L. Steele Jr. and Jean-Baptiste Tristan. 2017. Adding Approximate
Counters. ACM Trans. Parallel Comput. 4, 1, Article 5 (Oct. 2017),
45 pages. doi:10.1145/3132167

Guy L Steele Jr and Jean-Baptiste Tristan. 2018. Method and sys-
tem for latent dirichlet allocation2 computation using approximate
counters. US Patent 10,147,044.

Harold S. Stone. 1970. A Logic-in-Memory Computer. IEEE Trans.
Comput. C-19, 1 (1970), 73-78. doi:10.1109/TC.1970.5008902

Dufy Teguia, Jiaxuan Chen, Stella Bitchebe, Oana Balmau, and Alain
Tchana. 2024. vPIM: Processing-in-Memory Virtualization. In Pro-
ceedings of the 25th International Middleware Conference (Middleware
’24). 417-430. doi:10.1145/3652892.3700782

Boyu Tian, Qihang Chen, and Mingyu Gao. 2023. ABNDP: Co-
optimizing Data Access and Load Balance in Near-Data Processing. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3
(ASPLOS 2023). 3-17. doi:10.1145/3582016.3582026

Vijay R Tiwari. 2023. Developments in KD tree and KNN searches.
International Journal of Computer Applications 975 (2023), 8887. doi:10.
5120/ijca2023922879

Leslie G. Valiant. 1990. A bridging model for parallel computation.
Commun. ACM 33, 8 (Aug. 1990), 103-111. doi:10.1145/79173.79181
Yi Wang, Dun Liu, Hongmei Zhao, Yali Li, Weimeng Song, Menglin
Liu, Lei Tian, and Xiaohao Yan. 2022. Rapid citrus harvesting motion
planning with pre-harvesting point and quad-tree. Computers and
Electronics in Agriculture 202 (2022), 107348. doi:10.1016/j.compag.
2022.107348

David Wehr and Rafael Radkowski. 2018. Parallel kd-tree construction
on the gpu with an adaptive split and sort strategy. International
Journal of Parallel Programming 46, 6 (2018), 1139-1156. doi:10.1007/
s10766-018-0571-0

https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/DAC63849.2025.11132577
https://doi.org/10.1145/3087556.3087582
https://doi.org/10.1145/3087556.3087582
https://doi.org/10.1145/3694906.3743339
https://doi.org/10.1145/3774934.3786412
https://doi.org/10.1145/3709712
https://doi.org/10.1145/3673038.3673094
https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/359619.359627
https://doi.org/10.1007/978-981-16-7487-7_7
https://doi.org/10.3390/math12132115
https://arxiv.org/abs/1303.1951
https://arxiv.org/abs/1303.1951
https://arxiv.org/abs/1303.1951
https://doi.org/10.3390/s22051701
https://doi.org/10.1109/HPCA47549.2020.00024
https://doi.org/10.1038/s41598-024-68085-4
https://www.upmem.com/technology/
https://www.upmem.com/technology/
https://doi.org/10.1145/3292500.3330875
https://doi.org/10.1051/0004-6361/201322593
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://semiconductor.samsung.com/technologies/memory/pim/
https://semiconductor.samsung.com/technologies/memory/pim/
https://doi.org/10.1086/516585
https://inria.hal.science/hal-01589303
https://doi.org/10.1109/ACCESS.2022.3190958
https://doi.org/10.1109/ICCD63220.2024.00018
https://doi.org/10.1109/ICCD63220.2024.00018
https://johnsietsma.com/2019/12/05/morton-order-introduction/
https://johnsietsma.com/2019/12/05/morton-order-introduction/
https://doi.org/10.1145/3016078.2851147
https://doi.org/10.1145/3016078.2851147
https://doi.org/10.1145/3132167
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1145/3652892.3700782
https://doi.org/10.1145/3582016.3582026
https://doi.org/10.5120/ijca2023922879
https://doi.org/10.5120/ijca2023922879
https://doi.org/10.1145/79173.79181
https://doi.org/10.1016/j.compag.2022.107348
https://doi.org/10.1016/j.compag.2022.107348
https://doi.org/10.1007/s10766-018-0571-0
https://doi.org/10.1007/s10766-018-0571-0

PPoPP 26, January 31 - February 4, 2026, Sydney, NSW, Australia

[93] Jingyi Xu, Sehoon Kim, Borivoje Nikolic, and Yakun Sophia Shao.

(94]

(95]

[96]

2021. Memory-Efficient Hardware Performance Counters with
Approximate-Counting Algorithms. In 2021 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS).
226-228. doi:10.1109/ISPASS51385.2021.00041

Zhou Yijun, Xi Jiadong, and Luo Chen. 2021. A Fast Bi-Directional
A* Algorithm Based on Quad-Tree Decomposition and Hierarchical
Map. IEEE Access 9 (2021), 102877-102885. doi:10.1109/ACCESS.2021.
3094854

Yiwei Zhao, Jinhui Chen, Sai Qian Zhang, Syed Shakib Sarwar, Kle-
ber Hugo Stangherlin, Jorge Tomas Gomez, Jae-Sun Seo, Barbara
De Salvo, Chiao Liu, Phillip B. Gibbons, and Ziyun Li. 2025. H4H:
Hybrid Convolution-Transformer Architecture Search for NPU-CIM
Heterogeneous Systems for AR/VR Applications. In Proceedings of the
30th Asia and South Pacific Design Automation Conference (ASPDAC
’25). 1133-1141. doi:10.1145/3658617.3697627

Yiwei Zhao, Hongbo Kang, Yan Gu, Guy E. Blelloch, Laxman Dhuli-
pala, Charles McGuffey, and Phillip B. Gibbons. 2025. Optimal Batch-
Dynamic kd-trees for Processing-in-Memory with Applications. In
Proceedings of the 37th ACM Symposium on Parallelism in Algorithms

495

[97

[99

[100

[

=

—

]

Zhao et al.

and Architectures (SPAA °25). 350-366. doi:10.1145/3694906.3743318
Yiwei Zhao, Ziyun Li, Win-San Khwa, Xiaoyu Sun, Sai Qian
Zhang, Syed Shakib Sarwar, Kleber Hugo Stangherlin, Yi-Lun
Lu, Jorge Tomas Gomez, Jae-Sun Seo, Phillip B. Gibbons, Bar-
bara De Salvo, and Chiao Liu. 2024. Neural Architecture Search
of Hybrid Models for NPU-CIM Heterogeneous AR/VR Devices.
arXiv:2410.08326 [cs.CV]

Yiwei Zhao, Qiushi Lin, Hongbo Kang, Guy E. Blelloch, Laxman
Dhulipala, Yan Gu, Charles McGuffey, and Phillip B. Gibbons. 2025.
TD-Orch: Scalable Load-Balancing for Distributed Systems with Ap-
plications to Graph Processing. arXiv:2511.11843 [cs.DC]

Yue Zhao, Yunhai Wang, Jian Zhang, Chi-Wing Fu, Mingliang Xu,
and Dominik Moritz. 2022. KD-Box: Line-segment-based KD-tree
for Interactive Exploration of Large-scale Time-Series Data. IEEE
Transactions on Visualization and Computer Graphics 28, 1 (2022),
890-900. doi:10.1109/TVCG.2021.3114865

George Kingsley Zipf. 2016. Human behavior and the principle of least
effort: An introduction to human ecology. Ravenio Books.

Received 2025-09-01; accepted 2025-11-10

https://doi.org/10.1109/ISPASS51385.2021.00041
https://doi.org/10.1109/ACCESS.2021.3094854
https://doi.org/10.1109/ACCESS.2021.3094854
https://doi.org/10.1145/3658617.3697627
https://doi.org/10.1145/3694906.3743318
https://arxiv.org/abs/2410.08326
https://arxiv.org/abs/2511.11843
https://doi.org/10.1109/TVCG.2021.3114865

	Abstract
	1 Introduction
	2 Background
	2.1 PIM Architecture and Computation Model
	2.2 Prior Work: PIM-Friendly Indexes
	2.3 zd-Tree

	3 PIM-zd-tree
	3.1 Overall Structure
	3.2 Chunking for Imbalanced Trees
	3.3 Push-Pull Search
	3.4 Lazy Counters

	4 Operations
	4.1 Top-Down Search
	4.2 Dynamic Updates
	4.3 k Nearest Neighbors
	4.4 Orthogonal Range Query

	5 Theoretical Analysis
	5.1 Space Consumption
	5.2 Top-Down Search
	5.3 Dynamic Updates
	5.4 k Nearest Neighbors

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 End-to-End Comparison
	7.3 Ablation Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

