
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3774934.3786411
.

.

RESEARCH-ARTICLE

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-
Memory
.

.

PDF Download
3774934.3786411.pdf
29 January 2026
Total Citations: 1
Total Downloads: 0
.

.

Published: 28 January 2026
.

.

Citation in BibTeX format
.

.

PPoPP '26: 31st ACM SIGPLAN Annual
Symposium on Principles and Practice of
Parallel Programming
January 31 - February 4, 2026
NSW, Sydney, Australia
.

.

Conference Sponsors:
SIGHPC
SIGPLAN

PPoPP '26: Proceedings of the 31st ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (January 2026)
hps://doi.org/10.1145/3774934.3786411

ISBN: 9798400723100

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3774934.3786411
https://dl.acm.org/doi/10.1145/3774934.3786411
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3774934.3786411&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ppopp
https://dl.acm.org/conference/ppopp
https://dl.acm.org/conference/ppopp
https://dl.acm.org/sig/sighpc
https://dl.acm.org/sig/sigplan
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3774934.3786411&domain=pdf&date_stamp=2026-01-28

PIM-zd-tree: A Fast Space-Partitioning Index

Leveraging Processing-in-Memory

Yiwei Zhao

Carnegie Mellon University

Pittsburgh, USA

yiweiz3@andrew.cmu.edu

Hongbo Kang

Tsinghua University

Beijing, China

khb20@mails.tsinghua.edu.cn

Ziyang Men

University of California,

Riverside

Riverside, USA

zmen002@ucr.edu

Yan Gu

University of California,

Riverside

Riverside, USA

ygu@cs.ucr.edu

Guy E. Blelloch

Carnegie Mellon University

Pittsburgh, USA

guyb@cs.cmu.edu

Laxman Dhulipala

University of Maryland

College Park, USA

laxman@umd.edu

Charles McGuffey

Reed College

Portland, USA

cmcguffey@reed.edu

Phillip B. Gibbons

Carnegie Mellon University

Pittsburgh, USA

gibbons@cs.cmu.edu

Abstract

Space-partitioning indexes are widely used for managing

multi-dimensional data, but their throughput is oftenmemory-

bottlenecked. Processing-in-memory (PIM), an emerging ar-

chitectural paradigm, mitigates memory bottlenecks by em-

bedding processing cores directly within memory modules,

allowing computation to be offloaded to these PIM cores.

In this paper, we present PIM-zd-tree, the first space-

partitioning index specifically designed for real-world PIM

systems. PIM-zd-tree employs a tunable multi-layer struc-

ture, with each layer adopting distinct data layouts, partition-

ing schemes, and caching strategies. Its design is theoretically

grounded to achieve load balance, minimal memory-channel

communication, and low space overhead. To bridge theory

and practice, we incorporate implementation techniques

such as practical chunking and lazy counters. Evaluation on

a real-world PIM system shows that PIM-zd-tree’s through-

put is up to 4.25× and 99× higher than two state-of-the-art

shared-memory baselines.

CCS Concepts: • Theory of computation→ Parallel al-

gorithms;Distributed algorithms; •Computer systems

organization→ Heterogeneous (hybrid) systems; Parallel ar-

chitectures.

Keywords: space-partitioning index, processing-in-memory,

near-data-processing, nearest neighbor search

ACM Reference Format:

Yiwei Zhao, Hongbo Kang, Ziyang Men, Yan Gu, Guy E. Blel-

loch, Laxman Dhulipala, Charles McGuffey, and Phillip B. Gib-

bons. 2026. PIM-zd-tree: A Fast Space-Partitioning Index Leverag-

ing Processing-in-Memory. In Proceedings of the 31st ACM SIGPLAN

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

PPoPP ’26, Sydney, NSW, Australia

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2310-0/2026/01

https://doi.org/10.1145/3774934.3786411

Annual Symposium on Principles and Practice of Parallel Program-

ming (PPoPP ’26), January 31 – February 4, 2026, Sydney, NSW, Aus-

tralia. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3774934.3786411

1 Introduction

Spatial indexes for managing multi-dimensional data points

are fundamental, with broad applications in computational

geometry [23, 46, 68, 73, 89], AI/ML [11, 34, 69, 80, 99], graph-

ics [26, 39, 51, 59], radars and robotics [70, 71, 91, 94], and

scientific simulations [21, 40, 45, 74]. Among these, some of

the most well-known spatial indexes, such as kd-trees [8]

and quad/octrees [75], are constructed by recursively par-

titioning the multidimensional space of data points—hence

referred to as space-partitioning indexes. These structures

support a variety of queries, including point searches, orthog-

onal range queries, and 𝑘-nearest neighbor (𝑘NN) searches.

With the increasing amount of data in recent decades,

space-partitioning indexes have become increasingly con-

strained by the high cost of memory access. Compared to

on-chip computation, accessing off-chip memory is orders

of magnitude slower and is often bottlenecked by the lim-

ited bandwidth attainable over off-chip memory channels

(often referred to as the memory wall problem). Processing-

in-memory (PIM), a.k.a. near-data-processing, has recently

gained attention as a compelling architectural paradigm to

overcome the memory wall problem. By adding computa-

tional units (PIM cores) near or within memory modules,

PIM enables computation to occur close to its data, in con-

trast to the traditional von Neumann architecture where any

data must first be transferred to the CPU over off-chip mem-

ory channels. In bank-level in-memory processing (BLIMP)

PIM designs, PIM cores are integrated directly into memory

banks, enabling computation to be executed on PIM mod-

ules (PIM core and its local memory). This design improves

both performance and energy efficiency by leveraging low-

latency, low-energy on-chip memory accesses, while also

exploiting memory bandwidth and computational resources

480

https://orcid.org/0000-0002-2586-8311
https://orcid.org/0009-0009-9672-6490
https://orcid.org/0000-0001-7290-690X
https://orcid.org/0000-0002-4392-4022
https://orcid.org/0000-0003-0224-9187
https://orcid.org/0000-0003-0685-064X
https://orcid.org/0000-0002-6281-4435
https://orcid.org/0000-0001-6967-2735
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774934.3786411
https://doi.org/10.1145/3774934.3786411
https://doi.org/10.1145/3774934.3786411

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Zhao et al.

that scale with the number of PIM modules. Consequently,

off-chip communication can be substantially reduced.

Prior work on designing space-partitioning indexes for

PIM (e.g., [20, 56, 88, 96]) has been limited. These works can

be divided into two groups. The first group [20, 56, 88] are

(i) evaluated only on simulators, not real-world PIM systems,

and (ii) lack theoretical guarantees, which limits their ability

to capture the fundamental characteristics of PIM systems.

The second group [96] focuses exclusively on asymptotic

theoretical analysis, with constant-factor costs and amortiza-

tion overheads that will likely render such designs inefficient

in practice (see §2.2 for discussion).

In this paper, the central question we aim to address is:

How can a space-partitioning index be efficiently imple-

mented on real-world PIM systems? At the same time, given

the considerable diversity across existing PIM architectures,

we also seek to answer the question: Can such an index be

designed in a theoretically-grounded manner that captures

the fundamental characteristics of PIM architectures, so that

it may remain effective for future PIM systems?

0000 0001 0100 0101

0010 0011 0110 0111

1000 1001 1100 1101

1010 1011 1110 1111

00 01

10 11

Figure 1. z-order

To this end, we set out to im-

plement on PIM systems a state-

of-the-art shared-memory space-

partitioning index with strong the-

oretical guarantees. There are two

main variants: the 𝑘d-trees [8] that

are usually based on object-median

partitioning, and quad/octree that

are based on spatial-median parti-

tioning [75]. Their state-of-the-art

shared-memory parallel designs are

Pkd-trees [62, 63] and zd-trees [12,

61], respectively. Specifically, zd-

trees are built by space-filling curves

(Morton order curves in Fig. 1).

In this work, we consider adapting zd-trees on PIM, and

present PIM-zd-tree, the first space-partitioning index de-

ployed (and shown to be efficient) on a real-world PIM system.

We select the zd-tree for a few reasons. First, zd-trees are

based on spatial-median partitioning, which is simpler in

practice and requires no rebalancing; both are critical in

achieving practical efficiency in PIM systems. Zd-trees are

also deterministic, in that the structure is independent of

the order of data point insertions (a.k.a. history-independent).

This determinism simplifies programming and debugging

both for developing and using the index.

Achieving an efficient PIM-based spatial index requires

addressing two fundamental challenges:

(Q1) How can we achieve a good trade-off between PIM

load balance, reduced off-chip communication, and low space

consumption? Because PIM systems commonly operate in

bulk-synchronous parallel (BSP) rounds [90], it is critical to

avoid stragglers, which determine round completion time.

Achieving such balance even under high workload skew,

however, is particularly difficult. It often necessitates either

(i) partitioning tasks and data at extremely fine granularity,

which increases off-chip traffic, or (ii) replicating data across

multiple PIM modules, which incurs additional space over-

head and update costs [48, 50].

(Q2) How can we efficiently bridge theoretical designs and

practice? Asymptotic analyses often overlook constant fac-

tors and amortization overheads, which can introduce sig-

nificant inefficiencies in real-world deployments. Hence, we

require implementation techniques that both preserve theo-

retical bounds and deliver high performance in practice.

To address (Q1), PIM-zd-tree divides the tree into three

layers based on the properties of nodes, where each layer

has its own strategy for data partitioning, placement and

lightweight sharing (caching). These strategies reduce off-

chip communication while guaranteeing low update and

space overheads. Furthermore, PIM-zd-tree is designed to be

user-tunable, allowing it to support different levels of skew

tolerance and varying communication and space require-

ments by adjusting the layer division and data management

strategy correspondingly. To address (Q2) and bridge the gap

between theory and practice, PIM-zd-tree incorporates a set

of implementation techniques (§6) that translate theoretical

insights in §5 into practical efficiency (§7).

We implement PIM-zd-tree on UPMEM [72], a real-world

BLIMP-based PIM system. PIM-zd-tree achieves up to 4.25×
and 99× speedup over Pkd-tree [63] and zd-tree [12], two

state-of-the-art non-PIM baselines and reduces memory-

channel traffic by an average of 3.5× and 18.8×.
In summary, the main contributions of this paper are:

• We design PIM-zd-tree, a tunable spatial index for PIM

that adapts to varying requirements in skew tolerance,

communication, and space overheads, with strong the-

oretical grounding.

• We adopt implementation techniques that effectively

translate theoretical efficiency into practical perfor-

mance, leveraging fundamental characteristics of BLIMP.

• We present the first implementation and evaluation

of a space-partitioning index on a real-world PIM sys-

tem, demonstrating significant performance gains for

emerging PIM systems over traditional systems.

Our code is available at https://github.com/cmuparlay/
PIM-zd-tree.

2 Background

2.1 PIM Architecture and Computation Model

PIMModel. In this paper, we use the Processing-In-Memory

(PIM) Model [47] for theoretical analysis. Experimental re-

sults from prior works [48, 50] show that the PIM Model is a

good representation of a bank-level-in-memory-processing

(BLIMP) system, which is commonly used in commercial real-

world PIM systems like UPMEM [72] and Samsung PIMs [76].

481

https://github.com/cmuparlay/PIM-zd-tree
https://github.com/cmuparlay/PIM-zd-tree

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

CPU
side CPU Cache

𝑀 words

PIM
side

… Local Memory
Θ Τ𝑁 𝑃 words

core

P PIM Modules

Local Memory
Θ Τ𝑁 𝑃 words

core

Network

cores

Figure 2. The Processing-in-Memory (PIM) Model [47].

The PIM Model, as shown in Fig. 2, consists of a host

CPU and a PIM side of 𝑃 PIM modules. The CPU features

a standard multicore architecture with an L3 cache of size

𝑀 words. Each PIM module integrates a small on-chip local

memory or PIM memory ofΘ(𝑁 /𝑃) words (where 𝑁 denotes

the total space), and a general-purpose but relatively weak

processor known as the PIM core. The host CPU can access its

cache and all PIM memory. However, each PIM core can only

access its own local memory. PIM modules cannot communi-

cate directly and must exchange data via the CPU. Programs

execute in bulk-synchronous parallel (BSP) rounds [90].

The PIM Model integrates both shared-memory and dis-

tributed metrics. For CPU computations, it quantifies the

CPU work (the total number of instructions executed by

the CPU) and CPU span (the critical path length) under a

binary forking model [4, 13, 14]. For off-chip communication,

it measures communication amount which is the sum to-

tal of words sent between the CPU and all PIM modules.

For PIM programs, it measures the PIM time, the maximum

work on any PIM core within a round. Because PIM time is

based on the maximum across all PIM modules, it is crucial

to design algorithms that ensure good load balance across

PIM modules, even under highly-skewed workloads.

A Real-World System: UPMEM. We evaluate our tech-

niques on the latest PIM system from UPMEM [72] (recently

acquired by Qualcomm). UPMEM’s PIM DIMMs are plug-

and-play DRAM DIMM replacements; thus, UPMEM can

be configured with various ratios of traditional DRAM to

PIM-equipped DRAM (the current maximum available con-

figuration has 2560 PIM modules). The CPU has access to

the traditional DRAM and all the PIM memory, but each PIM

core only has access to its local memory. Each PIM module

has up to 628 MB/s local DRAM bandwidth, so a machine

with 2560 PIM modules can provide up to 1.6 TB/s aggregate

bandwidth [37]. To move data between PIM modules, the

CPU reads from the origin and writes to the target.

UPMEM’s main memory (traditional DRAM) enables run-

ning programs that overflow the CPU’s L3 cache, but these

additional memory accesses bring another type of communi-

cation (not in the PIM Model): CPU-DRAM communication.

Thus L3 cache efficiency is important for host programs.

Applications on PIM. Though the idea of PIM dates back

to the 1970s [86], it has regained attention recently, due to

the development in 3D-stack memory fabrication [44] and

the release of real-world PIM products [42, 72, 76]. Hundreds

of academic works have been published (see the references

of [6, 66]). PIM systems have been widely used in acceler-

ating applications of databases [9, 22, 48, 54, 58], machine

learning [15, 16, 41, 95, 97], graph processing [18, 55, 81, 87],

genome analysis [19, 28, 31, 64] and security [3, 30, 33, 36].

2.2 Prior Work: PIM-Friendly Indexes

Space-Partitioning Indexes onPIM.Most priorworks [20,

56, 88] are evaluated only on simulators, not real-world PIM

systems, and lack theoretical foundations. The only work

with theoretical guarantees [96] relies on periodic reconstruc-

tion of imbalanced subtrees as a core approach. However,

this approach is fundamentally impractical on real systems,

as its additional round complexity incurs substantial latency

frommux switch overheads [54] in current PIM architectures.

Range-Partitioning Indexes. Early PIM-based indexes [24,

25, 60] adopt range-partitioning approaches, where the key

space is divided into disjoint ranges, each stored on a PIM

module. While such designs are effective in reducing com-

munication, they are highly vulnerable to workload skew.

Skew-Resistant Indexes. More recent skew-resistant in-

dexes [47–50, 96] employ finer-grained data placement and

replication strategies to mitigate skew. However, most of

these designs are purely theoretical [47, 49, 96] and lack prac-

tical validation. PIM-tree [48, 50] represents an implemen-

tation effort, but (i) its design cannot be directly extended

to spatial indexes due to fundamental structural differences,

and (ii) it sacrifices performance in non-skewed workloads

in order to guarantee good performance even under skew.

2.3 zd-Tree

The zd-Tree [12, 61], the primary data structure in this work,

is a space-partitioning index of 𝑛 multi-dimensional points.

In a nutshell, it is a kd-tree whose splitting rule uses z-order

(see Fig.1). The tree is built by letting the root represent the

entire bounding box of the dataset, and splitting the points

into child nodes at level 𝑖 based on whether the bit at place 𝑖

of the z-order key is 0 or 1. Both internal nodes and leaf nodes

store information about their bounding box. Internal nodes

also store their children, while leaf nodes store the points

they contain. The number of points in a leaf is bounded by a

constant, and every point is included in exactly one leaf.

From one perspective, the zd-tree is similar to an oct-tree

(in 3 dimensions), except that every three levels of a zd-

tree corresponds to one level of an oct-tree. From another

perspective, the zd-tree can be viewed as a radix tree (or trie)

whose stored keys are the z-ordered integer of the points. We

adopt an implementation of a compressed radix tree, where

we (i) omit all empty leaves, and (ii) merge each node that

482

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Zhao et al.

PIM 3

…
PIM 𝑷PIM 1 PIM 2

…
PIM 𝑷PIM 1 PIM 2

…
PIM 𝑷PIM 1 PIM 2

L0: Globally-Shared

L1: Partially-Shared

L2: Exclusive

zd-tree PIM-zd-tree Layout

PIM 3

PIM 3

Figure 3. PIM-zd-tree with its three-layer structure and corresponding data layout across PIM modules. Squares denote leaves, while circles

represent internal nodes. Solid-frame nodes indicate master storage, whereas dashed-frame nodes represent cached data used in data sharing.

has only one child with that child (i.e., we compress all paths

consisting of nodes with only one child). Note that after this

compression, all internal nodes have exactly two children,

and there are 2𝑛 +𝑂 (1) nodes in total in the zd-tree.

The zd-tree supports correct operations on arbitrary multi-

dimensional datasets and has demonstrated practical effi-

ciency [12, 61] on numerous real-world datasets. It can also

achieve the theoretical cost bounds detailed in Lemma 2.1.

Lemma 2.1 (zd-Tree Properties [12]). Given a zd-tree storing

𝑛 points in a set 𝑃 with bounded ratio (Defn. 1, §5) and bounded

expansion constant 𝛾 (Defn. 2, §5), it can be proved that: (i) The

height of the tree is 𝑂 (log𝑛). (ii) The tree can be built using

𝑂 (𝑛) work and 𝑂 (𝑛𝜖) span, for a constant 𝜖 < 1. (iii) Finding

the 𝑘-nearest neighbors of a point 𝑝 ∈ 𝑃 requires expected

𝑂 (𝑘 log𝑘) work. (iv) Inserting 𝑘 nodes into the tree requires

𝑂 (𝑘 log(1 + 𝑛/𝑘)) work and 𝑂 (𝑘𝜖 + polylog(𝑛)) span.

3 PIM-zd-tree

In this section, we introduce PIM-zd-tree—a batch-dynamic

zd-tree data structure designed for Processing-In-Memory

(PIM). PIM-zd-tree maintains a binary zd-tree and this sec-

tion introduces the main techniques for data partitioning

and replication used in our design.

A straightforward design to place a zd-tree on 𝑃 PIM mod-

ules is to partition the tree into 𝑃 disjoint subtrees with equal

sizes, and place each tree on a different PIM module. How-

ever, such design is highly sensitive to workload skew—in

the worst case, all operations in a batch target the tree on

one PIM module and leave all the others idle.

To address this challenge, our PIM-zd-tree initially dis-

tributes each tree node across PIM modules using a hash-

based randomization strategy, ensuring that even adversarial

operations cannot consistently target the same node. We

refer to these distributed nodes as master nodes. However,

relying solely on master nodes does not reduce off-chip com-

munication: during searches, every tree edge incurs a remote

access because parent and child nodes are typically placed

on different PIM modules. As a result, the communication

cost remains comparable to that of shared-memory systems,

undermining the motivation for adopting PIM.

In this section, we introduce our main design to reduce

communication over this naïve master node design, without

violating load balance or incurring a large space cost.

3.1 Overall Structure

The PIM-zd-tree divides the data structure into three layers.

As shown in Fig. 3, from top (root) to bottom (leaf nodes),

the tree is divided into (i) Level 0 (L0): globally-shared nodes;

(ii) Level 1 (L1): partially-shared nodes; and (iii) Level 2 (L2):

exclusive nodes. In each layer, a different strategy is adopted

for data partitioning and caching.

Our key observation in a tree data structure is that the

internal tree nodes that lie in the upper part of a tree are

more frequently accessed in (top-down) searches and less

frequently modified in dynamic updates compared to the

nodes in lower levels. Meanwhile, the number of such nodes

(the size of the upper part) is relatively small compared with

the lower levels. Thus, sharing a consistent copy of the upper

part nodes across different hardware modules (CPU and/or

PIM modules) would be beneficial without incurring unac-

ceptable overheads in space and update costs. Intuitively,

the higher the position of a node is inside the tree, the more

times it should be replicated on different modules.

Positional Descriptor of a Tree Node.We first introduce

how to divide each node into its corresponding layer based

on its positional information. In this paper, we use the no-

tion of subtree size—the total number of multi-dimensional

data points contained in all the descendant leaf nodes of a

node, denoted as𝑇 (𝑁𝑖) for internal node𝑁𝑖—to represent the

positional information of an internal node. Unlike B-trees,

zd-trees are not strictly balanced. Thus, the height repre-

sentation of each node (as in the PIM-tree [48]) might be

an imprecise indicator of the position of this node inside

483

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

the zd-tree. For instance, even for a dataset with a bounded

expansion constant (Defn. 2), a node with log𝑛 depth from

the root can either be a leaf node or a node with Θ(
√
𝑛)

descendants. In contrast, the subtree size is a more accurate

descriptor on the position of a node, where nodes with larger

subtree sizes lie in the higher parts in the tree.

The PIM-zd-tree uses two tunable thresholds, 𝜃𝐿0 and 𝜃𝐿1
(𝜃𝐿0 ≥ 𝜃𝐿1 > 0), to control the tree structure. For all nodes

𝑁𝑖 with 𝑇 (𝑁𝑖) ≥ 𝜃𝐿0, they are categorized as L0 nodes. Any

node with𝑇 (𝑁𝑖) < 𝜃𝐿1 is categorized as an L2 node. The rest

are categorized as L1 nodes.

Globally-Shared Nodes (L0). For the nodes in the upper-

most part of the tree, their information and the tree structure

will be shared globally across all the PIM modules. Given

such storage, the concept of master nodes is unnecessary.

The size of L0 can be tuned by the designer or the user.

When the L0 nodes all fit in the CPU cache, L0 will be

maintained completely in the cache. Because the query and

update workload starts from the host CPU side, keeping

the L0 structure in CPU cache is equivalent to sharing the

structure over all PIM modules.

On the other hand, when the size of L0 exceeds the CPU

cache, its structure will be replicated over all PIM modules.

To keep overhead of space and updates low, the size of L0

should be bounded by selecting an appropriate 𝜃𝐿0 value.

Partially-Shared Nodes (L1). Each tree node in L1 will

have their master node stored on a random PIM module.

The tree structure of other nodes in L1 will be shared and

attached to the master storage as an auxiliary structure to

reduce communication in tree traversal. However, due to the

large number of L1 nodes, a full global data sharing of the

entire L1 structure over all PIM modules will be too costly

in terms of update cost and space overhead.

In PIM-zd-tree, for each of the L1 nodes, a copy of all its

ancestors and descendants (and the corresponding tree struc-

ture) in L1 will be attached to the master storage and stored

on the same PIM module. This information suffices to cover

all traversal paths of a search query that is passing through

this L1 node, and thus the subsequent search query could be

executed locally through these cached tree structures.

Exclusive Nodes (L2). For internal and/or leaf nodes with

𝑇 (𝑁𝑖) < 𝜃𝐿1, due to their large total number, high frequency

in updates and unlikeliness in facilitating search queries, a

PIM-zd-tree does not make replicas of these nodes and only

stores their master copies. Each leaf node is allowed to hold

a maximum of 𝐵 data points (defined later in §3.2).

Promotion andDemotion. PIM-zd-tree assumes that struc-

tural changes to the tree occur only through dynamic updates

(insertions and deletions). Such updates affect the subtree

sizes of all internal nodes along the path from the root to the

modified leaf node. Roughly, if the updated size of an internal

node causes its transition between categories (L0/L1/L2), the

L2: Exclusive

L0: Globally-Shared

L1: Partially-Shared
𝑻(𝑵𝟎)

Border of 𝑻(𝑵𝟎)/𝑩

Figure 4. Example of dividing an L1 subtree into meta-nodes. Each

region enclosed by a red dashed line corresponds to a meta-node.

The L1 root has subtree size𝑇 (𝑁0), while the blue dashed linemarks

the boundary below which all nodes satisfy 𝑇 (𝑁𝑖) < 𝑇 (𝑁0)/𝐵.
Recursive division would be applied if any L1 nodes further satisfy

𝑇 (𝑁𝑖) < 𝑇 (𝑁0)/𝐵2, but this step is omitted for clarity.

node is promoted or demoted accordingly, and its associated

caching for data sharing is adjusted to reflect the change.

3.2 Chunking for Imbalanced Trees

Chunking (or blocking) is a widely adopted technique in

locality-aware data structures, such as transforming binary

search trees into B-trees. However, traditional chunking

methods that rely on adjusting fanout (as in B-trees) are

incompatible with imbalanced trees like zd-trees, since the

fanout approach fundamentally assumes that tree height and

level are well-defined and meaningful.

PIM-zd-tree employs a chunking strategy for its L1 and

L2 layers that is based entirely on subtree sizes, guided by

a user-defined chunking factor 𝐵. For a highest node 𝑁𝑖 in

L1 or L2, all descendants 𝑁 𝑗 satisfying 𝑇 (𝑁 𝑗) ≥ 𝑇 (𝑁𝑖)/𝐵
are grouped into the same chunk as 𝑁𝑖 . Each chunk, which

naturally forms an imbalanced tree, is referred to as ameta-
node. This chunking process is then applied recursively to

the highest unchunked nodes until every node is contained

within some meta-node. An example is shown in Fig. 4.

All nodes within the same meta-node are placed on a

single PIMmodule, and any internal caching for data sharing

among them is now eliminated. The original zd-tree is thus

restructured into a higher-level tree composed of meta-nodes.

For nodes in L1, remote caching to enable data sharing across

different meta-nodes is preserved, but maintained at the

granularity of meta-nodes rather than individual nodes.

3.3 Push-Pull Search

We use push-pull search [48–50, 96, 98] as a core technique

in PIM-zd-tree to achieve load balance when accessing L1

and L2 nodes under skewed workloads. Unlike distributed

systems, PIM architectures feature a powerful host CPU,

enabling the use of shared-memory techniques. Push-pull

search exploits this capability by flexibly coordinating com-

putation between the host CPU and the PIM modules, in

contrast to prior distributed algorithms that rely solely on

offloading computation.

484

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Zhao et al.

Push-pull search uses contention information within a

batch to decide whether computation in a PIM-zd-tree is

performed on the CPU side or on PIM modules. To illustrate,

consider a top-down Search query from root to leaf. In a PIM

execution round with batch size 𝑆 , suppose𝑚 queries need to

access an L1 meta-node𝑀𝑖 to determine which descendant

subtree to follow. If𝑚 is below a load-imbalance threshold

(defined later), all𝑚 queries are pushed to the PIM module

storing𝑀𝑖 , where the search proceeds using the local caching

of its descendant subtrees until it reaches the L1-L2 border.

Conversely, if𝑚 exceeds the threshold, then𝑀𝑖 will be pulled

from the PIM side into the CPU, where a parallel search is

performed. Notably, only the master storage of the meta-

node is fetched; caching of its descendant meta-nodes is

excluded to prevent communication imbalance. After the

CPU search, the𝑚 queries are partitioned according to the

destination descendants from their meta-node traversal, and

the push-pull decision is recursively applied level by level at

the granularity of meta-nodes until the leaves are reached.

3.4 Lazy Counters

As noted, subtree size is a key component in the design of

the PIM-zd-tree. However, maintaining an accurate and con-

sistent version of this metric across all nodes is challenging.

A straightforward approach would involve storing precise

counters on every node and its replicas, while ensuring con-

sistency during dynamic updates. But the overall strategy

of the PIM-zd-tree is to replicate higher-level nodes more ex-

tensively. As a result, changes in subtree counters propagate

toward the upper levels of the tree, making it prohibitively

expensive to maintain strict consistency during updates.

A key observation is that a provably small degree of ap-

proximation is acceptable in these counters. Prior work has

explored the design of randomized counters [65, 83–85, 93,

96]. However, employing randomization in practice on PIM

systems can lead to irregular and unpredictable execution

flows, in addition to the overhead of random number gener-

ation or hash computations on lightweight PIM cores.

To resolve this challenge, PIM-zd-tree adopts lazy coun-
ters, which in each node maintains a slightly out-of-date

global snapshot of the subtree sizes. This snapshot is within

a degree of approximation to ensure algorithm correctness,

is replicated across caching, and is infrequently updated.

Specifically, all nodes record changes in their subtree sizes

during dynamic updates. Changes are propagated to par-

ent nodes and global snapshots are synchronized across all

replicas on other PIM modules only when the change ex-

ceeds a threshold Δ, −𝑇 (𝑁𝑖)/2 < Δ < 𝑇 (𝑁𝑖). With suitable

choices of Δs in each layer as detailed in Table 1, lazy coun-

ters achieve sufficient accuracy as formalized in Lemma 3.1.

Lemma 3.1 (Lazy Counter Value). In PIM-zd-tree, the value

of a global snapshot counter 𝑆𝐶 (𝑁𝑖) on any node 𝑁𝑖 always

satisfies 𝑇 (𝑁𝑖)/2 ≤ 𝑆𝐶 (𝑁𝑖) ≤ 2𝑇 (𝑁𝑖).

Proof Sketch. Due to space limitations, we present only a

proof sketch for the insertion-only case, where 𝑇 (𝑁𝑖)/2 ≤
𝑆𝐶 (𝑁𝑖) ≤ 𝑇 (𝑁𝑖). The cases with deletions and 𝑇 (𝑁𝑖) ≤
𝑆𝐶 (𝑁𝑖) ≤ 2𝑇 (𝑁𝑖) are symmetric.

In the insertion-only setting, it is immediate that 𝑆𝐶 (𝑁𝑖) ≤
𝑇 (𝑁𝑖), so we show 𝑇 (𝑁𝑖)/2 ≤ 𝑆𝐶 (𝑁𝑖). Any L0 node has

𝑇 (𝑁𝑖) ≥ 𝜃𝐿0, and since the unfinished updates are fewer

than 𝜃𝐿0, it follows that 𝑇 (𝑁𝑖)/2 ≤ 𝑆𝐶 (𝑁𝑖). Similarly, any

L1 global snapshot deviates from the true subtree size by at

most a factor of 0.5. □

Table 1. Lazy counter configurations in each level.

Layer Δmin Δmax

L0 −𝜃𝐿0/2 𝜃𝐿0

L1 −0.5min

{
𝜃𝐿1, log𝐵

𝜃𝐿0
𝜃𝐿1

}
min

{
𝜃𝐿1, log𝐵

𝜃𝐿0
𝜃𝐿1

}
L2 0 0

4 Operations

We describe here our algorithms for implementing PIM-zd-

tree and various queries over them. The theoretical analysis

on the cost of these algorithms will be provided in §5.

4.1 Top-Down Search

Top-down Search queries (Alg. 1) try to locate the leaf node

where a given data point lies in. This can be used as a prepro-

cessing for dynamic updates and 𝑘NN queries. The search

answers a batch 𝑄 of queries by traversing L0, L1, and L2,

using push-pull search (for L1 and L2) and local caching.

Algorithm 1. Search (𝑄 : batch of query points)

1. [𝐿0] Traverse L0 to search𝑄 by (1) searching in CPU cache; or

(2) dividing 𝑄 into 𝑃 groups, each searched on a PIM module.

2. [𝐿1 Pull] While the number of queries that will be sent to each

PIM module for L1 is imbalanced (i.e., the busiest module gets

more than 3× the average load), do:

a. Pull all meta-nodes with more than𝐾 = 𝐵 log𝐵
𝜃𝐿0
𝜃𝐿1

queries

back to the CPU.

b. Search through the meta-nodes on the CPU.

3. [𝐿1 Push] Push load-balanced queries in𝑄 to the PIMmodules

holding their L1 nodes, and traverse L1 using local caching.

4. [𝐿2 Push-Pull] For each level in L2, perform one push-pull

round: Pull the L2 nodes with more than 𝐾 = 𝐵 queries to the

CPU and search in the CPU cache; otherwise, search on PIM.

Perform such rounds until reaching the bottom level and re-

trieve the corresponding leaf nodes.

4.2 Dynamic Updates

Insert adds new data points to PIM-zd-tree, while Delete

removes existing data points from the structure. Here we

only provide Insert in Alg. 2 due to space constraints.

485

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

Step 3c proceeds as follows. Since the search trace is

recorded on the CPU, the update occurs in two rounds. In

the first round, the CPU allocates space in the cache to re-

serve memory for all remote-node modifications and fixes

all local parent-child links. In the second round, once these

cache reservations are in place, the system updates all remote

parent-child links to reflect the structural changes.

For Step 3d, promoting L2 nodes to L1 is straightforward:

the CPU modifies the corresponding cache entries of their L1

ancestors, as in Step 3c. Promoting L1 nodes to L0, however,

involves additional coordination. Each PIM module main-

tains a buffer of L1 nodes scheduled for promotion. In the

first round, PIM modules send the promotion candidates to

the CPU and garbage-collect the local cache entries of these

nodes. In the second round, the CPU broadcasts each pro-

moted node to the fully replicated L0 across all PIM modules,

and the related remote parent-child links are constructed.

Algorithm 2. INSERT(𝑄 : batch of inserted points)

1. Search (Q) and record the search traces on CPU. (A search

trace is the on-PIM addresses of the starting and ending nodes

along each top-down search path within every replica.)

2. In one communication round, for each key to insert:

a. Create a new leaf node if Search ends at an empty child.

b. If Search ends in an existing leaf, return the address if

the leaf node is not full after insertion. Otherwise, return

the points in the original leaf node to be split, and create a

new leaf node.

c. Create new nodes if a compressed tree edge is split.

d. the CPU will deduplicate if multiple keys to insert conflict

in creating the same new nodes.

3. In two communication rounds:

a. Insert data points to the leaf nodes.

b. Link all parent–child pointers for newly-created nodes.

c. Modify the shared data caching. (Two rounds.)

d. Promote/demote internal nodes. (Two rounds.)

e. Update the lazy counters.

4.3 𝑘 Nearest Neighbors

A 𝑘 nearest neighbor (𝑘NN) query requires to return the

exact 𝑘 nearest points in PIM-zd-tree to a given point with a

pre-defined distance metric (e.g., ℓ1-norm or ℓ2-norm).

Algorithm 3. KNN (𝑄 : batch of query points; 𝑘 : INT)

1. Search (Q) and record the search traces.

2. For each 𝑞 ∈ 𝑄 , find on the search trace the lowest node

𝑁𝑞,1 whose lazy counter records 𝑆𝐶 (𝑁𝑞,1) ≥ 𝑘 . Use push-pull
search to traverse its descendants to find 𝑘 nearest candidates.

3. For each 𝑞 ∈ 𝑄 , find on the search trace the lowest node 𝑁𝑞,2
which entirely contains the smallest sphere S𝑞 centered at 𝑞

that contains all the 𝑘 candidates from 𝑁𝑞,1.

4. For each 𝑞 ∈ 𝑄 , use push-pull search to traverse the descen-

dants of 𝑁𝑞,2 who intersect with S𝑞 . Return all points from

the descendants of 𝑁𝑞,2 that lie inside S𝑞 .

5. Filter the returned points on the CPU, outputting the final

𝑘NN for each 𝑞.

4.4 Orthogonal Range Query

An orthogonal range query, or box query, specifies one (or

a batch of) axis-aligned rectangular boxes. There are two

categories based on their output: a BoxCount query returns

the number of points in PIM-zd-tree that fall within the

box, while a BoxFetch query retrieves all such points. The

execution procedure closely follows that of Search, where

push-pull search is applied level by level. The key difference

is that box queries must also track all nodes intersecting the

query box. Pseudocode is omitted due to space constraints.

5 Theoretical Analysis

In this section, we analyze PIM-zd-tree on the PIM Model

and show that it achieves good performance
1
regardless of

workload skew. Our analysis in this section adopts two com-

mon assumptions used in prior work: bounded ratio (Defn. 1)

and bounded expansion constant (Defn. 2). However, this

does not mean that PIM-zd-tree is only practically efficient

under such dataset distributions. In §7, we will show that

the design choices we made in PIM-zd-tree are practically

efficient in various real-world datasets, regardless of whether

these datasets satisfy the two assumptions or not.

For readers less interested in the mathematical details, we

suggest focusing on the main conclusions of Theorems 5.1

and 5.3 to 5.5; or directly on Table 2, which summarizes the

configurations implemented on real-world machines.

Definition 1 (Bounded Ratio [5, 12, 17]). Given a point set

𝑃 of size 𝑛, let 𝑑𝑚𝑎𝑥 denote the maximum distance between

any two points in the set, and let 𝑑𝑚𝑖𝑛 denote the minimum

distance. Then 𝑃 has bounded ratio if
𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛
= 𝑝𝑜𝑙𝑦 (𝑛).

Definition 2 (Bounded Expansion Constant [1, 2, 10, 12,

27, 52, 53, 79]). Given a point set 𝑃 contained in a bounded

Euclidean space 𝑋 , 𝑃 has expansion contant 𝛾 if for ∀𝑥 ∈ 𝑋
and ∀𝑟 > 0, if |𝑏𝑜𝑥 (𝑥, 𝑟) | = 𝑘 > 1 then

|𝑏𝑜𝑥 (𝑥, 2𝑟) | ≤ 𝛾𝑘 .
The expansion constant is referred to as bounded if 𝛾 = 𝑂 (1).

We also define (𝛼, 𝛽)-skew in Defn. 3 to asymptotically

characterize the skew of the distribution in a batch.

1
All analytical bounds in this section would include a cost of 𝐷 for each

𝐷-dimensional point accessed in a leaf. We omit this for clarity.

486

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Zhao et al.

Definition 3 (Skew). A batch of 𝑆 queries with keys in the

range [𝑈𝑙 ,𝑈𝑟] is defined to have (𝛼, 𝛽)-skew iff for every inte-

ger ∀𝑖 ∈ [1, 𝛽], the number of keys falling in the subinterval[
𝑈𝑙 + 𝑖−1

𝛽
(𝑈𝑟 −𝑈𝑙),𝑈𝑙 + 𝑖

𝛽
(𝑈𝑟 −𝑈𝑙)

]
is at most

𝑆
𝛼
.

In other words, when the key range is divided into 𝛽 equal-

sized subranges, each subrange has at most a 1/𝛼 fraction of

the query keys.

5.1 Space Consumption

Theorem5.1 (Space). APIM-zd-tree containing𝑛 data points

takes 𝑂

(
𝑛 + 𝑛𝑃

𝜃𝐿0
+ 𝑛

𝜃𝐿1
log𝐵

𝜃𝐿0
𝜃𝐿1

)
space.

Proof Sketch. Due to bounded expansion constant, L0 has

𝑂 (𝑛/𝜃𝐿0) nodes. L1 has 𝑂 (𝑛/𝜃𝐿1) nodes, each of which is

replicated𝑂

(
log

max{𝛾−1, 1

𝛾−1 }
𝜃𝐿0
𝜃𝐿1

/log𝐵
)
= 𝑂

(
log𝐵

𝜃𝐿0
𝜃𝐿1

)
times

(the maximum height of an L1 path). □

5.2 Top-Down Search

The costs for Search is presented in Theorem 5.3. By prop-

erly tuning 𝜃𝐿0, 𝜃𝐿1 and 𝐵, the PIM-zd-tree can be adapted

to varying degrees of (𝛼, 𝛽)-skew, ensuring a desired cost

bound. Load balance is proved using Lemma 5.2.

Lemma 5.2 (Balls into Bins [77]). Uniformly randomly plac-

ing weighted balls with total weight𝑊 =
∑
𝑤𝑖 and 𝑤𝑖 <

𝑊 /(𝑃 log 𝑃) into 𝑃 bins yields 𝑂 (𝑊 /𝑃) weight per bin whp
2
.

Theorem 5.3 (Search). A batch of 𝑆 Search queries can

be executed in worst-case 𝑂 (log𝐵 𝜃𝐿0) communication rounds,

and takes a total of𝑂 (𝑆 log𝐵 𝜃𝐿1) communication amount and

𝑂 (𝑆 log𝑛) PIM work. The PIM execution is load-balanced whp

if the batch size is 𝑆 = Ω(𝑃 log 𝑃 · 𝐵 log𝐵 𝜃𝐿0) or if the batch
has

(
𝑃 log 𝑃 log𝐵 𝜃𝐿0,

𝑛
𝜃𝐿0

)
-skew. CPU takes 𝑂 (𝑆 log𝐵 𝜃𝐿1) ex-

pected work and 𝑂 (log 𝑆 log𝐵 𝜃𝐿1 + log𝐵 𝜃𝐿0) span whp.

Proof Sketch. The PIM work is 𝑂 (𝑆 log𝐵 𝑛) to search the 𝑆

queries through the tree. The worst-case communication

round is the total height of L1 and L2 (due to pulling at

every level), which is 𝑂 (log𝐵 𝜃𝐿0). Communication amount

for each Search query, due to the amortization of push-pull

search, is 𝑂 (1) for L0 and L1, and is height 𝑂 (log𝐵 𝜃𝐿1) for
L2. When either the batch size or the skew condition holds,

the balance in PIM computation and communication can be

proved using Lemma 5.2. The proof for CPU execution uses

parallel work-efficient semi-sort [35] and radix sort [43]. □

5.3 Dynamic Updates

In this section, we present the overall cost of dynamic up-

dates. We restrict our analysis here to the insertion-only case

due to space constraints.

2
We use𝑂 (𝑓 (𝑛)) with high probability (whp) (in 𝑛) to mean𝑂 (𝑐 𝑓 (𝑛))
with probability at least 1 − 𝑛−𝑐 for 𝑐 ≥ 1.

Theorem 5.4 (Insert). A batch of 𝑆 Insert can be executed

in worst-case 𝑂 (log𝐵 𝜃𝐿0) communication rounds, and takes

a total of 𝑂

(
𝑆𝑃
𝜃𝐿0

+ 𝑆
𝜃𝐿1

log𝐵
𝜃𝐿0
𝜃𝐿1

+ 𝑆 log𝐵 𝜃𝐿1
)
communication

amount and 𝑂

(
𝑆𝑃
𝜃𝐿0

log
𝑛
𝜃𝐿0

+ 𝑆
𝜃𝐿1

log𝐵
𝜃𝐿0
𝜃𝐿1

log
𝜃𝐿0
𝜃𝐿1

+ 𝑆 log𝑛
)

PIM work. The PIM execution is load-balanced whp if batch

size 𝑆 = Ω
(
𝑃 log 𝑃 ·

(
𝐵 log𝐵 𝜃𝐿0 + log

𝜃𝐿0
𝜃𝐿1

))
or if the batch has(

𝑃 log 𝑃 log𝐵 𝜃𝐿0,
𝑛
𝜃𝐿0

)
-skew and 𝑆 = Ω(𝑃 log 𝑃 log 𝜃𝐿0

𝜃𝐿1
). CPU

execution takes 𝑂

(
𝑆𝑃
𝜃𝐿0

+ 𝑆
𝜃𝐿1

log𝐵
𝜃𝐿0
𝜃𝐿1

+ 𝑆 log𝐵 𝜃𝐿1
)
expected

work and 𝑂 (𝑠𝑜𝑟𝑡 (𝑆) + log 𝑆 log𝐵 𝜃𝐿1 + log𝐵 𝜃𝐿0) span whp.

Proof Sketch. For the proof of computation work, we refer to

the proof of shared-memory zd-trees [12]. For the commu-

nication analysis, we combine Theorem 5.3 and additional

costs in updating the data sharing structures. The update

costs of data sharing structures are in the same frequency as

lazy counters: updating 𝑃 L0 copies every Θ(𝜃𝐿0) updates in
expectation, andΘ(log𝐵

𝜃𝐿0
𝜃𝐿1

) L1 copies everyΘ(𝜃𝐿1) updates
in expectation. The 𝑠𝑜𝑟𝑡 (𝑆) term in the CPU span denotes the

best-known parallel span for sorting 𝑆 items [13, 29]. This

cost arises in Insert, where points within a batch must be

sorted when inserted into the same leaf and when potentially

constructing a subtree. In contrast, Search does not require

this span overhead, as it only relies on key equality rather

than strict ordering, and thus requires only a semi-sort. □

5.4 𝑘 Nearest Neighbors

Theorem 5.5 (𝑘NN). Finding the 𝑘 nearest neighbors of a

data point requires expected 𝑂 (𝑘 + log𝐵 𝜃𝐿1) communication

amount, worst-case 𝑂 (log𝐵 𝜃𝐿0) communication rounds, ex-

pected 𝑂 (𝑘 + log𝑛) PIM work, expected 𝑂 (𝑘 log𝑘 + log𝐵 𝜃𝐿1)
CPU work and expected 𝑂 (𝑘) CPU cache footprint.

Proof Sketch. For zd-trees, 𝑘 nodes in expectation will be

touched in a 𝑘NN, which makes up the PIM work, together

with an𝑂 (log𝑛) top-down search cost [12]. Since Alg. 3 uses
push-pull search in all upwards and downwards searching,

the communication amount and CPU work in expectation is

equivalent to the height of levels without data-sharing (i.e.,

Θ(log𝐵 𝜃𝐿1)) plus the output size 𝑘 . The CPU has another

𝑂 (𝑘 log𝑘) work due to a priority queue. □

6 Implementation

To demonstrate the practical efficiency of our methods, we

implement two configurations of PIM-zd-tree that repre-

sent the two extremes of the design frontier. The first is a

throughput-optimized version, which prioritizes commu-

nication and computation efficiency. The second is a skew-
resistant version, capable of tolerating arbitrary adversarial
skew when 𝑆 = Ω(𝑃 log2 𝑃). Both the throughput-oriented

and skew-resistant versions are special cases of the tunable

design described in §3.1 and §3.2. Their key configurations

and the operation costs are summarized in Table 2.

487

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

We implement our methods on UPMEM [37, 72]. In this

section, we describe the practical techniques adopted to

achieve high performance. Most of these techniques build on

fundamental characteristics of BLIMP, and we expect them

to apply to a wide range of architectures beyond UPMEM.

Table 2. Configurations of implementations, space consumption,

and communication amount per operation.

Method Throughput-Optimized Skew-Resistant

𝜃𝐿0 𝑛/𝑃 Θ(𝑃)
𝜃𝐿1 1 Θ(log𝐵 𝑃)
𝐵 𝜃𝐿0 Θ(1) = 16

Allowed Skew (𝑃 log 𝑃, 𝑛
𝑃
) Arbitrary

Required 𝑆 Ω(𝑃 log 𝑃) Ω(𝑃 log2 𝑃)

Space 𝑂 (𝑛) 𝑂 (𝑛)
Search 𝑂 (1) 𝑂 (log𝐵 log𝐵 𝑃)
Updates 𝑂 (1) 𝑂 (log𝐵 log𝐵 𝑃)
𝑘NN 𝑂 (𝑘) 𝑂 (𝑘 + log𝐵 log𝐵 𝑃)

Practical Chunking. We provide an adaptive node struc-

ture design for L1 with two capacity modes, which is in-

spired by the adaptive radix tree (ART) [57]. It implements

the imbalanced-tree-shaped chunking described in §3.2. The

key observation is that dense internal nodes are highly likely

to appear in the inner levels of the tree, where the chunk

structure tends to be well balanced. In contrast, sparse inter-

nal nodes are more likely to occur near the leaf levels, where

the chunk structure may become imbalanced.

• Sparse Mode: If an L1 chunk contains fewer than 𝐵/4
nodes, we use two arrays of length 𝐵/4—one for keys
and one for pointers. Keys are stored in sorted order,

and each pointer is aligned with its corresponding key.

• DenseMode: If the chunk contains at least 𝐵/4 nodes,
we instead use an array of 𝐵 pointers to represent the

root node of the chunk. A descendant can be located

with a single lookup using the key byte as an index.

Our subtree-size based chunking differs from conventional

chunking, which uses a fixed-height fanout. Such conven-

tional chunking can lead to imbalanced tree shapes, requiring

𝐿/log𝐵 jumps across chunks for key length 𝐿 and fanout 𝐵.

The intuition behind our approach is that chunk shapes are

biased toward the longer branch in the original tree. As a

result, jumps can be reduced from 𝐿/log𝐵 down to 𝐿/𝐵.
Fast z-Order Computation. Computing the z-order of the

keys is a critical step in the performance of PIM-zd-tree. Most

prior academic works adopt the direct bit-wise interleaving

method (e.g., [12, 61]), which has a complexity of 𝑂 (bits).
In contrast, our implementation employs a faster Z-order

computation [7, 82] based on the recursive construction of

gaps over the original coordinates, reducing the complexity

to 𝑂 (log(bits)). We further optimize for commonly encoun-

tered low-dimensional settings and extend the implementa-

tion to support higher-dimensional cases that are not covered

by existing implementations. As an example, we illustrate

below how 3D data points are transformed into 64-bit keys:

function Split_By_Three(uint64 x) { // x in [0, 2^21]
x = (x | (x << 32)) & 0x001f00000000ffff;
x = (x | (x << 16)) & 0x001f0000ff0000ff;
x = (x | (x << 8)) & 0x100f00f00f00f00f;
x = (x | (x << 4)) & 0x10c30c30c30c30c3;
x = (x | (x << 2)) & 0x1249249249249249;
return x;

}
function Z_Order_Key_3d(uint64 x, y, z) {

x = Split_By_Three(x);
y = Split_By_Three(y);
z = Split_By_Three(z);
return (x << 3) | (y << 2) | (z << 1);

}

Execution of Complex Distance Metrics on PIMs. Due

to limited area inside memory chips, BLIMP architectures

often suffer from constrained computational power on the

PIM cores. This makes the computation of complex distance

metrics on the PIM side comparatively slow. For example, on

UPMEM machines, multiplication and division may take up

to 32 cycles, much slower than simpler arithmetic operations

(e.g., addition or bitwise AND/OR) [37], which significantly

hinders the efficient computation of the ℓ2-norm on PIM.

We propose an efficient execution flow for cases where a

complex distance metric can be anchored by a simpler one.

For example, the ℓ2-norm can be anchored by the ℓ1-norm

since, for any 𝑥 ∈ R𝐷 , | |𝑥 | |2/| |𝑥 | |1 ∈ [1/
√
𝐷, 1]. As a result,

in a 𝑘NN query, if the 𝑘-th nearest neighbor under ℓ1-norm

has distance 𝑥 , then the 𝑘-th nearest neighbor under ℓ2-norm

must have ℓ1-distance of at most 𝑥
√
𝐷 .

We decompose the candidate-finding process in Alg. 3

into two stages: coarse-grained filtering and fine-grained

filtering. In the coarse-grained stage, PIM cores use a simple-

to-compute (on PIM) distance metric (e.g., ℓ1-norm) to de-

termine a small candidate set that is guaranteed to con-

tain all 𝑘 nearest neighbors. The fine-grained stage is ex-

ecuted on the CPU, where a more complex distance metric

(e.g., ℓ2-norm) produces the accurate final results. For low-

dimensional 𝐷 = 𝑂 (1) and the ℓ1- and ℓ2-norm case (and

assuming bounded ratio and bounded expansion constant),

the candidate set returned by the coarse-grained filtering

still has size 𝑂 (𝑘), and Theorem 5.5 still holds.

Improved Direct API. We use a lightweight Direct Inter-

face/API [50] to mitigate the overhead of the original UP-

MEM interface in small-batch scenarios. In the original UP-

MEM SDK [72], the PIM local memories are mapped to ac-

cessible regions in the virtual memory, and the UPMEM SDK

communication APIs eventually translate into simple reads

and writes to these regions. The Direct Interface [50] we

use, in contrast, bypasses the intermediate SDK layers and

directly manipulates the actual memory locations.

488

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Zhao et al.

7 Evaluation

7.1 Experimental Setup

Weevaluate PIM-zd-tree on anUPMEM®PIM-equipped server.

The server features two Intel®Xeon Silver 4216 CPUs (32

threads total, 2.1 GHz, 22 MB LLC) and 12 memory channels,

of which eight are populated with UPMEM DIMMs and four

with standard DDR4 2400MT/s DRAM DIMMs. In total, the

system includes 32 UPMEM ranks (2048 modules) providing

128 GB of PIM memory, with PIM cores running at 350 MHz.

Shared-MemoryCompetitors.We compare the throughput-

optimized PIM-zd-tree against two state-of-the-art shared-

memory implementations—zd-tree [12] and Pkd-tree [63].

We cannot evaluate shared-memory indexes on the UP-

MEM server because two-thirds of its memory channels are

occupied by PIM-equipped DIMMs, which cannot serve as

main memory. Running shared-memory indexes directly on

this server would thus create an unfair limitation on memory

bandwidth. Instead, we evaluate shared-memory indexes on

a separate machine equipped with two Intel Xeon E5-2630 v4

CPUs, each with 10 cores at 2.20GHz and 25MB cache. Each

socket has four memory channels, and no PIM-equipped

DIMMs are present. This machine has similar performance

to the CPU on the UPMEM server, and is used to evaluate

the non-PIM baselines as we could not find an exact match.

Measurement. We evaluate on two metrics: (i) Through-

put: Defined as the number of returned elements per second.

For point operations (Insert, BoxCount), throughput is

the number of operations executed per second, whereas for

range operations (BoxFetch, 𝑘NN), it is the number of ele-

ments returned in the final output per second. (ii) Per-Element

Memory Traffic: Defined as the total memory-bus communi-

cation (in bytes) incurred per returned element in the final

output, including both CPU-DRAM and CPU-PIM commu-

nication. Memory traffic is a primary contributor to power

consumption in index-based applications (see [37, 48, 66] for

detailed studies on energy consumption).

7.2 End-to-End Comparison

Workload Setup.We begin with a microbenchmark using

a uniformly random dataset. Each test first warms up the

index by inserting 300 million uniformly random 3D data

points. The benchmark then executes batches with same

type of operations, each batch containing (i) 50 million point

operations, or (ii) range operations that retrieve a total of 50

million elements in expectation. For BoxCount, BoxFetch

and𝑘NN queries, we evaluate each with three different query

range sizes, covering on average 1, 10, and 100 data points.

In addition, we evaluate on two real-world datasets: COS-

MOS (CM) [78] and the Northern American region of Open-

StreetMap (OSM) [38]. For each dataset, we use 80% of the

data points for warmup and the remaining 20% for testing.

These datasets exhibit real-world spatial skew. COSMOS,

which captures astronomical objects in the galaxy, shows

moderate skew, while OSM road network data for North

America exhibits significantly stronger skew. We quantify

their skew using Gini coefficients over the distribution of

data points when each dataset is partitioned into 𝑃 = 2048

bins. The resulting Gini coefficients are 0.287 and 0.967, cor-

responding approximately to Zipf distributions [100] with

𝛾 = 0.455 and 1.5, respectively.

MainResults inThroughput. Fig. 5 compares the UPMEM-

based throughput-optimized PIM-zd-tree with CPU-based

Pkd-tree and zd-tree across ten types of operations. PIM-

zd-tree achieves geometrically averaged speedups of 1.82×,
4.25×, 3.08×, and 1.46× over Pkd-tree for Insert, BoxCount,

BoxFetch, and 𝑘NN. Against zd-tree, the corresponding

speedups are 1.49×, 518×, 99×, and 3.46×. The geometrically

averaged memory traffic reduction across all operations is

3.5× compared to Pkd-tree and 18.8× compared to zd-tree.

The few cases where PIM-zd-tree does not outperform

Pkd-tree in throughput occur for 𝑘NN queries with large 𝑘

values. This is because large 𝑘NN queries are more likely

to cross the boundaries between PIM modules, resulting in

multiple rounds of communication and incurring significant

mux switch overhead [54] when switching control of PIM

memory between CPU and PIM-core accesses.

Latency Results. PIM-zd-tree also exhibits superior latency

performance. For example, for 1-NN on OSM, excluding

warmup, the P99 latencies of PIM-zd-tree, Pkd-tree, and zd-

tree are 0.0325 s, 0.0449 s, and 0.210 s, respectively.

7.3 Ablation Study

Breakdown of Time. Fig. 6 illustrates the time breakdown

of CPU computation, PIM computation, and CPU-PIM com-

munication. The Insert operation incurs significant CPU

time, primarily due to preprocessing over the batch. In con-

trast, BoxFetch with size 100 exhibits high CPU-PIM com-

munication time, as its computation is simple but the output

size is large. For all other operations, the majority of the time

is spent on PIM execution, which aligns with our design goal

of offloading computation to PIM.

Sensitivity to Dimensions. We evaluate two-dimensional

and three-dimensional uniform random workloads. The re-

sults show that 2D insertion throughput is only 1.02× higher

than 3D, since execution is primarily bottlenecked by searches

over fixed-length Morton keys. On the other hand, for box

counts, box fetches, and 𝑘NN queries, 2D workloads achieve

geometric-mean speedups of 1.49×, 1.22×, and 2.13× over 3D,

respectively, due to the reduced cost of multi-dimensional

vector computations and comparisons in these range queries.

Sensitivity to Batch Sizes. Batch size plays a critical role in

the execution of PIM-zd-tree. Larger batch sizes are preferred

to amortize the mux switch overhead [54] and to achieve

effective load balance. However, excessively large batches,

489

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

0
10
20
30
40
50
60
70
80

Th
ro

ug
hp

ut
 (M

Op
/s

)

PIM-zd-tree Pkd-tree zd-tree

102

103

104

105

106

107

M
em

or
y

Tr
af

fic
(B

yt
es

/E
le

m
en

t)

(a) Uniform random workloads.

0
10
20
30
40
50
60

Th
ro

ug
hp

ut
 (M

Op
/s

)

102

103

104

105

106

107

M
em

or
y

Tr
af

fic
(B

yt
es

/E
le

m
en

t)PIM-zd-tree Pkd-tree zd-tree

(b) COSMOS dataset [78].

Insert BC-1 BC-10 BC-100 BF-1 BF-10 BF-100 1-NN 10-NN 100-NN0
10
20
30
40
50
60
70

Th
ro

ug
hp

ut
 (M

Op
/s

)

102

103

104

105

106

107

M
em

or
y

Tr
af

fic
(B

yt
es

/E
le

m
en

t)

(c) OSM dataset [38].

Figure 5. Comparison of PIM-zd-tree, Pkd-tree, and zd-tree across three datasets on Insert, BoxCount (BC), BoxFetch (BF) and nearest

neighbor (NN) operations. The bar plots report throughput, while the scatter plots show memory traffic, measured as the number of bytes

transmitted through the memory bus per element in the final output.

Insert Box Count 1 Box Count 100

Box Fetch 100 1-NN 100-NN

Time
CPU
PIM
Comm.

Figure 6. Runtime breakdown of different operations.

combined with auxiliary structures, may exceed the capacity

of the L3 cache, resulting in increased memory traffic.

Fig. 7 presents an ablation study on the impact of differ-

ent batch sizes for Insert operations. While increasing the

batch size improves throughput, batch sizes exceeding 200k

operations result in higher memory traffic per operation.

This finding suggests that future systems with larger caches

would be advantageous. Similar trends were observed for

box and 𝑘NN queries, but are omitted here due to space limit.

Sensitivity to Dataset Sizes. One theoretical result we ob-

tain is that, while search paths in shared-memory indexes

50 100 200 500 1000 2000
Batch Size (k)

0
5

10
15
20
25
30
35
40

Th
ro

ug
hp

ut
 (M

Op
/s

)

0
100
200
300
400
500
600
700

Tr
af

fic
 (B

yt
es

/E
le

m
en

t)

Figure 7. Insert performance given different batch sizes.

have a length bounded by𝑂 (log𝑛), the communication cost

of PIM-zd-tree, as shown in §5, is bounded solely by the

number of PIM modules 𝑃 and is independent of 𝑛. Conse-

quently, PIM-zd-tree is expected to maintain robust perfor-

mance across datasets of varying sizes.

We evaluate the performance of the three methods un-

der varying base dataset sizes during warmup, as shown in

Fig. 8. The performance of PIM-zd-tree remains stable across

dataset sizes, whereas the throughput of Pkd-tree and zd-tree

degrades by 1.4× and 1.6×, respectively. Correspondingly,
their memory traffic increases by 1.3× and 1.5×.

490

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Zhao et al.

2 4 10 20 30
Base Dataset Size (×10M)

0
2
4
6
8

10
Th

ro
ug

hp
ut

 (M
Op

/s
) PIM-zd-tree

Pkd-tree
zd-tree

103

104

105

Tr
af

fic
 (B

yt
es

/O
p)

Figure 8. 1-NN throughput and memory traffic given different

base dataset sizes during warmup before testing.

Table 3. Impact of implementation techniques on slowdown under

uniform workloads. Results for box queries and 𝑘NN are reported

as geometric means across three query sizes. N.A. indicates that the

corresponding technique is not optimized for the given operation.

Technique Insert BoxCount BoxFetch 𝑘NN

Lazy Counter 1.49× N.A. N.A. N.A.

Fast z-order 1.99× 1.58× 1.31× 1.67×
Fast ℓ2-norm N.A. N.A. N.A. 1.58×
Direct API 1.06× 1.07× 1.09× 1.09×

0 0.1 0.2 0.5 1 2 5 10 20
Proportion of Varden (‰)

0
2
4
6
8

10

Th
ro

ug
hp

ut
 (M

Op
/s

)

Throughput-Optimized
Skew-Resistant

Figure 9. 1-NN throughputs of throughput-optimized and skew-

resistant PIM-zd-tree, given combinations of Uniform+Varden [32].

Sensitivity to Optimizations. We evaluate the impact of

four implementation techniques in PIM-zd-tree: lazy counter,

fast z-order, fast ℓ2-norm, and improved Direct API. Table 3

reports the slowdown observed when each technique is in-

dividually removed from the final design. All techniques

provide substantial performance benefits, with the exception

of Direct API. The limited impact of Direct API arises from

our use of large batch sizes to maximize performance, which

falls outside the scenarios for which it is primarily optimized.

Skew Resistance.We further evaluate the skew-resilience

of PIM-zd-tree under non-uniform workloads. Specifically,

we compare the performance of both the throughput-optimized

and the skew-resistant versions on 𝑘NN under skewed condi-

tions. The skewed workload is derived from Varden [32], an

extremely skewed distribution generated via random walk.

In our experiments, we mix 𝑘NN queries generated from

the skewed Varden distribution into batches of uniformly dis-

tributed 𝑘NN queries. Fig. 9 presents the throughputs across

varying proportions of skewed queries. The skew-resistant

version of PIM-zd-tree demonstrates highly stable perfor-

mance, with fluctuations of no more than 4.1%. In contrast,

while the throughput-optimized version performs well un-

der workloads with low degrees of skew, it is outperformed

by the skew-resistant variant when more than 0.1% of the

workload is skewed, and its performance degrades by 10.66×
when 2% of the queries originate from Varden distribution.

8 Related Work

Comparison with PIM-tree. PIM-zd-tree supports an ad-

justable design that spans the full spectrum between the

range-partitioning and skew-resistant layouts, whereas PIM-

tree [48, 50] targets only one end point (skew-resistance).

Moreover, if comparing only the skew-resistant invariant,

PIM-tree enforces skew resistance by partitioning equal-

height levels, which is effective for balanced trees but un-

suitable for imbalanced zd-trees. In contrast, PIM-zd-tree

partitions by subtree size and relies on a lazy counter mecha-

nism to efficiently maintain approximate sizes, which is also

required for 𝑘NN and orthogonal range queries. While PIM-

zd-tree adopts push-pull search from PIM-tree, it employs

a design-specific push-pull threshold and uses imbalanced

chunking rather than the balanced chunking of PIM-tree.

Comparison with GPU-based Designs. Existing spatial

indexes on GPUs, such as kd-trees [92] and R-trees [67], re-

port relatively low performance, with construction through-

put below 20 MOp/s in both works. Moreover, GPUs are sig-

nificantly more energy-consuming than PIM systems. There-

fore, while end-to-end comparison against GPU-based de-

signs would be valuable future work, we do not expect such

comparisons to change the main conclusions of this work.

9 Conclusion

We present PIM-zd-tree, the first space-partitioning index

evaluated on a real-world PIM system. Our design introduces

a provably-efficient tunable structure that adapts to different

requirements in skew tolerance, communication, and space

overheads. We further adopt implementation techniques that

effectively translate theoretical efficiency into practical per-

formance. PIM-zd-tree delivers up to 4.25× and 99× speedup

over two shared-memory baselines, and reduces memory-

channel traffic by an average of 3.5× and 18.8×.

Acknowledgments

This research was supported by NSF grants CCF-2119352,

CCF-2339310, CCF-2403235, CNS-2211882 and CNS-2317194,

and the Parallel Data Lab Consortium (Bloomberg, Datadog,

Google, Intel, Jane Street, LayerZero, Meta, Microsoft, Oracle,

Pure Storage, Salesforce, Samsung, and Western Digital).

491

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

References

[1] Evangelos Anagnostopoulos, Ioannis Z. Emiris, and Ioannis Psarros.

2015. Low-Quality Dimension Reduction and High-Dimensional

Approximate Nearest Neighbor. In 31st International Symposium on

Computational Geometry (SoCG 2015) (Leibniz International Proceed-

ings in Informatics (LIPIcs), Vol. 34), Lars Arge and János Pach (Eds.).

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Ger-

many, 436–450. doi:10.4230/LIPIcs.SOCG.2015.436
[2] Evangelos Anagnostopoulos, Ioannis Z. Emiris, and Ioannis Psarros.

2018. Randomized Embeddings with Slack and High-Dimensional

Approximate Nearest Neighbor. ACM Trans. Algorithms 14, 2, Article

18 (April 2018), 21 pages. doi:10.1145/3178540
[3] Md Tanvir Arafin and Zhaojun Lu. 2020. Security Challenges of

Processing-In-Memory Systems. In Proceedings of the 2020 on Great

Lakes Symposium on VLSI (GLSVLSI ’20). 229–234. doi:10.1145/
3386263.3411365

[4] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread

scheduling for multiprogrammed multiprocessors. In Proceedings

of the Tenth Annual ACM Symposium on Parallel Algorithms and

Architectures (Puerto Vallarta, Mexico) (SPAA ’98). Association for

Computing Machinery, New York, NY, USA, 119–129. doi:10.1145/
277651.277678

[5] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman,

and Angela Y. Wu. 1998. An optimal algorithm for approximate

nearest neighbor searching fixed dimensions. J. ACM 45, 6 (Nov.

1998), 891–923. doi:10.1145/293347.293348
[6] Kazi Asifuzzaman, Narasinga Rao Miniskar, Aaron R. Young, Frank

Liu, and Jeffrey S. Vetter. 2023. A survey on processing-in-memory

techniques: Advances and challenges. Memories - Materials, Devices,

Circuits and Systems 4 (2023), 100022. doi:10.1016/j.memori.2022.
100022

[7] Jeroen Baert. 2013. Morton encoding/decoding through bit interleav-

ing: Implementations. https://www.forceflow.be/2013/10/07/morton-
encodingdecoding-through-bit-interleaving-implementations/. Ac-
cessed December 2025.

[8] Jon Louis Bentley. 1975. Multidimensional binary search trees used

for associative searching. Commun. ACM 18, 9 (Sept. 1975), 509–517.

doi:10.1145/361002.361007
[9] Arthur Bernhardt, Andreas Koch, and Ilia Petrov. 2023. pimDB: From

Main-Memory DBMS to Processing-In-Memory DBMS-Engines on

Intelligent Memories. In Proceedings of the 19th International Work-

shop on Data Management on New Hardware (DaMoN ’23). 44–52.

doi:10.1145/3592980.3595312
[10] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover

trees for nearest neighbor. In Proceedings of the 23rd International

Conference on Machine Learning (Pittsburgh, Pennsylvania, USA)

(ICML ’06). Association for Computing Machinery, New York, NY,

USA, 97–104. doi:10.1145/1143844.1143857
[11] Wenhao Bi, JunwenMa, Xudong Zhu,WeixiangWang, and An Zhang.

2022. Cloud service selection based on weighted KD tree nearest

neighbor search. Applied Soft Computing 131 (2022), 109780. doi:10.
1016/j.asoc.2022.109780

[12] Guy E Blelloch and Magdalen Dobson. 2022. Parallel Nearest Neigh-

bors in Low Dimensions with Batch Updates. In 2022 Proceedings of

the Symposium on Algorithm Engineering and Experiments (ALENEX).

SIAM, 195–208. doi:10.1137/1.9781611977042.16
[13] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Op-

timal Parallel Algorithms in the Binary-Forking Model. In Proceedings

of the 32nd ACM Symposium on Parallelism in Algorithms and Archi-

tectures (Virtual Event, USA) (SPAA ’20). Association for Computing

Machinery, New York, NY, USA, 89–102. doi:10.1145/3350755.3400227
[14] Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient

Scheduling of Multithreaded Computations. SIAM J. on Computing

27, 1 (1998). doi:10.1137/S0097539793259471

[15] Pedro Carrinho, Oscar Ferraz, João Dinis Ferreira, Yann Falevoz, Vitor

Silva, and Gabriel Falcao. 2024. Processing Multi-Layer Perceptrons

In-Memory. In 2024 IEEEWorkshop on Signal Processing Systems (SiPS).

7–12. doi:10.1109/SiPS62058.2024.00010
[16] Pedro Carrinho, Hamid Moghadaspour, Oscar Ferraz, João Dinis Fer-

reira, Yann Falevoz, Vitor Silva, and Gabriel Falcao. 2026. An Ex-

perimental Exploration of In-Memory Computing for Multi-Layer

Perceptrons. Journal of Signal Processing Systems 98, 1 (2026), 1.

doi:10.1007/s11265-025-01974-7
[17] Timothy M. Chan. 2008. Well-separated pair decomposition in linear

time? Inform. Process. Lett. 107, 5 (2008), 138–141. doi:10.1016/j.ipl.
2008.02.008

[18] Deting Chen, Yu Huang, Yi Huang, Binbin Lin, Yi Zhang, Long Zheng,

Xiaofei Liao, and Hai Jin. 2025. Prism: Practical In-Memory Accelera-

tion for Subgraph Matching at Scale. In 2025 IEEE High Performance

Extreme Computing Conference (HPEC). 1–7. doi:10.1109/HPEC67600.
2025.11196211

[19] Liang-Chi Chen, Chien-Chung Ho, and Yuan-Hao Chang. 2025. Ac-

celerating RNA-Seq Quantification on a Real Processing-in-Memory

System. IEEE Trans. Comput. 74, 7 (2025), 2334–2347. doi:10.1109/TC.
2025.3558075

[20] Mingkai Chen, Cheng Liu, Shengwen Liang, Lei He, Ying Wang, Lei

Zhang, Huawei Li, and Xiaowei Li. 2024. An Energy-Efficient In-

Memory Accelerator for Graph Construction and Updating. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems 43, 6 (2024), 1781–1793. doi:10.1109/TCAD.2024.3355038
[21] Qile P. Chen, Bai Xue, and J. Ilja Siepmann. 2017. Using the k-d Tree

Data Structure to Accelerate Monte Carlo Simulations. Journal of

Chemical Theory and Computation 13, 4 (2017), 1556–1565. doi:10.
1021/acs.jctc.6b01222

[22] Sitian Chen, Amelie Chi Zhou, Yucheng Shi, Yusen Li, and Xin Yao.

2025. UpANNS: Enhancing Billion-Scale ANNS Efficiency with Real-

World PIM Architecture. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis

(SC ’25). Association for Computing Machinery, New York, NY, USA,

789–804. doi:10.1145/3712285.3759777
[23] Yewang Chen, Lida Zhou, Yi Tang, Jai Puneet Singh, Nizar Bouguila,

Cheng Wang, Huazhen Wang, and Jixiang Du. 2019. Fast neighbor

search by using revised k-d tree. Information Sciences 472 (2019),

145–162. doi:10.1016/j.ins.2018.09.012
[24] Jiwon Choe, Andrew Crotty, Tali Moreshet, Maurice Herlihy, and

R. Iris Bahar. 2022. HybriDS: Cache-Conscious Concurrent Data Struc-

tures for Near-Memory Processing Architectures. In Proceedings of the

34th ACM Symposium on Parallelism in Algorithms and Architectures

(Philadelphia, PA, USA) (SPAA ’22). Association for Computing Ma-

chinery, New York, NY, USA, 321–332. doi:10.1145/3490148.3538591
[25] Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R. Iris

Bahar. 2019. Concurrent Data Structures with Near-Data-Processing:

an Architecture-Aware Implementation. In The 31st ACM Symposium

on Parallelism in Algorithms and Architectures (Phoenix, AZ, USA)

(SPAA ’19). Association for Computing Machinery, New York, NY,

USA, 297–308. doi:10.1145/3323165.3323191
[26] B. Choi, B. Chang, and I. Ihm. 2013. Improving Memory Space Ef-

ficiency of Kd-tree for Real-time Ray Tracing. Computer Graphics

Forum 32, 7 (2013), 335–344. doi:10.1111/cgf.12241
[27] Michael Connor and Piyush Kumar. 2010. Fast construction of k-

nearest neighbor graphs for point clouds. IEEE Transactions on Visu-

alization and Computer Graphics 16, 4 (2010), 599–608. doi:10.1109/
TVCG.2010.9

[28] Florestan De Moor, Meven Mognol, Charles Deltel, Erwan Drezen,

Julien Legriel, and Dominique Lavenier. 2024. MiMyCS: A Processing-

in-Memory Read Mapper for Compressing Next-Gen Sequencing

Datasets. In 2024 IEEE International Conference on Bioinformatics

and Biomedicine (BIBM). 6716–6723. doi:10.1109/BIBM62325.2024.
10821790

492

https://doi.org/10.4230/LIPIcs.SOCG.2015.436
https://doi.org/10.1145/3178540
https://doi.org/10.1145/3386263.3411365
https://doi.org/10.1145/3386263.3411365
https://doi.org/10.1145/277651.277678
https://doi.org/10.1145/277651.277678
https://doi.org/10.1145/293347.293348
https://doi.org/10.1016/j.memori.2022.100022
https://doi.org/10.1016/j.memori.2022.100022
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/3592980.3595312
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1016/j.asoc.2022.109780
https://doi.org/10.1016/j.asoc.2022.109780
https://doi.org/10.1137/1.9781611977042.16
https://doi.org/10.1145/3350755.3400227
https://doi.org/10.1137/S0097539793259471
https://doi.org/10.1109/SiPS62058.2024.00010
https://doi.org/10.1007/s11265-025-01974-7
https://doi.org/10.1016/j.ipl.2008.02.008
https://doi.org/10.1016/j.ipl.2008.02.008
https://doi.org/10.1109/HPEC67600.2025.11196211
https://doi.org/10.1109/HPEC67600.2025.11196211
https://doi.org/10.1109/TC.2025.3558075
https://doi.org/10.1109/TC.2025.3558075
https://doi.org/10.1109/TCAD.2024.3355038
https://doi.org/10.1021/acs.jctc.6b01222
https://doi.org/10.1021/acs.jctc.6b01222
https://doi.org/10.1145/3712285.3759777
https://doi.org/10.1016/j.ins.2018.09.012
https://doi.org/10.1145/3490148.3538591
https://doi.org/10.1145/3323165.3323191
https://doi.org/10.1111/cgf.12241
https://doi.org/10.1109/TVCG.2010.9
https://doi.org/10.1109/TVCG.2010.9
https://doi.org/10.1109/BIBM62325.2024.10821790
https://doi.org/10.1109/BIBM62325.2024.10821790

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Zhao et al.

[29] Xiaojun Dong, Laxman Dhulipala, Yan Gu, and Yihan Sun. 2024.

Parallel Integer Sort: Theory and Practice. In Proceedings of the 29th

ACM SIGPLANAnnual Symposium on Principles and Practice of Parallel

Programming (Edinburgh, United Kingdom) (PPoPP ’24). Association

for Computing Machinery, New York, NY, USA, 301–315. doi:10.1145/
3627535.3638483

[30] Dina Fakhry, Mohamed Abdelsalam, M. Watheq El-Kharashi, and

Mona Safar. 2023. An HBM3 Processing-In-Memory Architecture for

Security and Data Integrity: Case Study. In Green Sustainability: To-

wards Innovative Digital Transformation, Dalia Magdi, Ahmed Abou

El-Fetouh, Mohamed Mamdouh, and Amit Joshi (Eds.). 281–293.

doi:10.1007/978-981-99-4764-5_18
[31] Oscar Ferraz, Gabriel Falcao, and Vitor Silva. 2024. In-Memory Bit

Flipping LDPC Decoding. In 2024 32nd European Signal Processing

Conference (EUSIPCO). 706–710. doi:10.23919/EUSIPCO63174.2024.
10715253

[32] Junhao Gan and Yufei Tao. 2017. On the Hardness and Approximation

of Euclidean DBSCAN. ACM Trans. Database Syst. 42, 3, Article 14

(July 2017), 45 pages. doi:10.1145/3083897
[33] Sahar Ghoflsaz Ghinani, Jingyao Zhang, and Elaheh Sadredini. 2025.

Enabling Low-Cost Secure Computing on Untrusted In-Memory

Architectures. arXiv:2501.17292 [cs.CR] https://arxiv.org/abs/2501.
17292

[34] Seyedeh Gol Ara Ghoreishi, Charles Boateng, Sonia Moshfeghi,

Muhammad Tanveer Jan, Joshua Conniff, Kwangsoo Yang, Jinwoo

Jang, Borko Furht, David Newman, Ruth Tappen, Monica Rosselli,

and Kelley L. Jackson. 2025. Quad-Tree-Based Driver Classification

Using Deep Learning for Mild Cognitive Impairment Detection. IEEE

Access 13 (2025), 63129–63142. doi:10.1109/ACCESS.2025.3558706
[35] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-

Down Parallel Semisort. In Proceedings of the 27th ACM Symposium on

Parallelism in Algorithms and Architectures (Portland, Oregon, USA)

(SPAA ’15). Association for Computing Machinery, New York, NY,

USA, 24–34. doi:10.1145/2755573.2755597
[36] Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos

Kanellopoulos, and Onur Mutlu. 2023. Evaluating Homomorphic

Operations on a Real-World Processing-In-Memory System. In 2023

IEEE International Symposium on Workload Characterization (IISWC).

211–215. doi:10.1109/IISWC59245.2023.00030
[37] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula,

Geraldo F. Oliveira, and Onur Mutlu. 2022. Benchmarking a New

Paradigm: Experimental Analysis and Characterization of a Real

Processing-in-Memory System. IEEE Access 10 (2022), 52565–52608.

doi:10.1109/ACCESS.2022.3174101
[38] Mordechai Haklay and Patrick Weber. 2008. OpenStreetMap: User-

Generated Street Maps. IEEE Pervasive Computing 7, 4 (2008), 12–18.

doi:10.1109/MPRV.2008.80
[39] Xu-Qiang Hu and Yu-Ping Wang. 2023. QuadSampling: A Novel

Sampling Method for Remote Implicit Neural 3D Reconstruction

Based on Quad-Tree. In International Conference on Computer-Aided

Design and Computer Graphics. Springer, 314–328. doi:10.1007/978-
981-99-9666-7_21

[40] Yuan Huang, Zhiqin Zhao, Conghui Qi, Zaiping Nie, and Qing Huo

Liu. 2018. Fast Point-Based KD-Tree Construction Method for Hybrid

High Frequency Method in Electromagnetic Scattering. IEEE Access

6 (2018), 38348–38355. doi:10.1109/ACCESS.2018.2853659
[41] Bongjoon Hyun, Taehun Kim, Dongjae Lee, and Minsoo Rhu. 2024.

Pathfinding Future PIM Architectures by Demystifying a Commer-

cial PIM Technology. In 2024 IEEE International Symposium on High-

Performance Computer Architecture (HPCA). 263–279. doi:10.1109/
HPCA57654.2024.00029

[42] Intel. 2025. Intel In-Memory Analytics Accelerator (Intel

IAA). https://www.intel.com/content/www/us/en/products/docs/
accelerator-engines/in-memory-analytics-accelerator.html. Ac-

cessed December 2025.

[43] J. JaJa. 1992. Introduction to Parallel Algorithms.

[44] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM

architecture increases density and performance. In 2012 Symposium

on VLSI Technology (VLSIT). 87–88. doi:10.1109/VLSIT.2012.6242474
[45] Shouyan Jiang, Liguo Sun, Ean Tat Ooi, Mohsen Ghaemian, and

Chengbin Du. 2022. Automatic mesoscopic fracture modelling of

concrete based on enriched SBFEM space and quad-tree mesh. Con-

struction and Building Materials 350 (2022), 128890. doi:10.1016/j.
conbuildmat.2022.128890

[46] Jaemin Jo, Jinwook Seo, and Jean-Daniel Fekete. 2017. A progressive

k-d tree for approximate k-nearest neighbors. In 2017 IEEE Workshop

on Data Systems for Interactive Analysis (DSIA). 1–5. doi:10.1109/
DSIA.2017.8339084

[47] Hongbo Kang, Phillip B. Gibbons, Guy E. Blelloch, Laxman Dhulipala,

Yan Gu, and Charles McGuffey. 2021. The Processing-in-Memory

Model. In Proceedings of the 33rd ACM Symposium on Parallelism in

Algorithms and Architectures (Virtual Event, USA) (SPAA ’21). As-

sociation for Computing Machinery, New York, NY, USA, 295–306.

doi:10.1145/3409964.3461816
[48] Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan

Gu, Charles McGuffey, and Phillip B. Gibbons. 2022. PIM-Tree: A

Skew-Resistant Index for Processing-in-Memory. Proc. VLDB Endow.

16, 4 (dec 2022), 946–958. doi:10.14778/3574245.3574275
[49] Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan

Gu, Charles McGuffey, and Phillip B. Gibbons. 2023. PIM-Trie: A

Skew-Resistant Trie for Processing-in-Memory. In Proceedings of the

35th ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA ’23). 1–14. doi:10.1145/3558481.3591070
[50] Hongbo Kang, Yiwei Zhao, Guy E Blelloch, Laxman Dhulipala, Yan

Gu, Charles McGuffey, and Phillip B Gibbons. 2025. PIM-tree: A

Skew-resistant Index for Processing-in-Memory: H. Kang et al. The

VLDB Journal 34, 6 (2025), 66. doi:10.1007/s00778-025-00937-5
[51] Yoon-Sig Kang, Jae-Ho Nah, Woo-Chan Park, and Sung-Bong Yang.

2013. gkDtree: A group-based parallel update kd-tree for interactive

ray tracing. Journal of Systems Architecture 59, 3 (2013), 166–175.

doi:10.1016/j.sysarc.2011.06.003
[52] David R. Karger andMatthias Ruhl. 2002. Finding nearest neighbors in

growth-restricted metrics. In Proceedings of the Thiry-Fourth Annual

ACM Symposium on Theory of Computing (Montreal, Quebec, Canada)

(STOC ’02). Association for Computing Machinery, New York, NY,

USA, 741–750. doi:10.1145/509907.510013
[53] Wojciech Kazana and Luc Segoufin. 2013. Enumeration of first-order

queries on classes of structures with bounded expansion. In Proceed-

ings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-

ciples of Database Systems (New York, New York, USA) (PODS ’13).

Association for Computing Machinery, New York, NY, USA, 297–308.

doi:10.1145/2463664.2463667
[54] Hyoungjoo Kim, Yiwei Zhao, Andrew Pavlo, and Phillip B. Gibbons.

2025. No Cap, This Memory Slaps: Breaking Through the Memory

Wall of Transactional Database Systems with Processing-in-Memory.

Proc. VLDB Endow. (2025), 4241–4254. doi:10.14778/3749646.3749690
[55] Dongjae Lee, Bongjoon Hyun, Taehun Kim, and Minsoo Rhu. 2024.

PIM-MMU: A Memory Management Unit for Accelerating Data

Transfers in Commercial PIM Systems. In 2024 57th IEEE/ACM

International Symposium on Microarchitecture (MICRO). 627–642.

doi:10.1109/MICRO61859.2024.00053
[56] Vincent T. Lee, Amrita Mazumdar, Carlo C. del Mundo, Armin Alaghi,

Luis Ceze, and Mark Oskin. 2018. Application Codesign of Near-Data

Processing for Similarity Search. In 2018 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). 896–907. doi:10.1109/
IPDPS.2018.00099

[57] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adap-

tive radix tree: ARTful indexing for main-memory databases. In 2013

IEEE 29th International Conference on Data Engineering (ICDE). 38–49.

493

https://doi.org/10.1145/3627535.3638483
https://doi.org/10.1145/3627535.3638483
https://doi.org/10.1007/978-981-99-4764-5_18
https://doi.org/10.23919/EUSIPCO63174.2024.10715253
https://doi.org/10.23919/EUSIPCO63174.2024.10715253
https://doi.org/10.1145/3083897
https://arxiv.org/abs/2501.17292
https://arxiv.org/abs/2501.17292
https://arxiv.org/abs/2501.17292
https://doi.org/10.1109/ACCESS.2025.3558706
https://doi.org/10.1145/2755573.2755597
https://doi.org/10.1109/IISWC59245.2023.00030
https://doi.org/10.1109/ACCESS.2022.3174101
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1007/978-981-99-9666-7_21
https://doi.org/10.1007/978-981-99-9666-7_21
https://doi.org/10.1109/ACCESS.2018.2853659
https://doi.org/10.1109/HPCA57654.2024.00029
https://doi.org/10.1109/HPCA57654.2024.00029
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/in-memory-analytics-accelerator.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/in-memory-analytics-accelerator.html
https://doi.org/10.1109/VLSIT.2012.6242474
https://doi.org/10.1016/j.conbuildmat.2022.128890
https://doi.org/10.1016/j.conbuildmat.2022.128890
https://doi.org/10.1109/DSIA.2017.8339084
https://doi.org/10.1109/DSIA.2017.8339084
https://doi.org/10.1145/3409964.3461816
https://doi.org/10.14778/3574245.3574275
https://doi.org/10.1145/3558481.3591070
https://doi.org/10.1007/s00778-025-00937-5
https://doi.org/10.1016/j.sysarc.2011.06.003
https://doi.org/10.1145/509907.510013
https://doi.org/10.1145/2463664.2463667
https://doi.org/10.14778/3749646.3749690
https://doi.org/10.1109/MICRO61859.2024.00053
https://doi.org/10.1109/IPDPS.2018.00099
https://doi.org/10.1109/IPDPS.2018.00099

PIM-zd-tree: A Fast Space-Partitioning Index Leveraging Processing-in-Memory PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

doi:10.1109/ICDE.2013.6544812
[58] Chun-Chien Liu, Chun-FengWu, and Yunho Jin. 2025. UPVSS: Jointly

Managing Vector Similarity Search with Near-Memory Processing

Systems. In 2025 62nd ACM/IEEE Design Automation Conference (DAC).

1–7. doi:10.1109/DAC63849.2025.11132577
[59] Xingyu Liu, Yangdong Deng, Yufei Ni, and Zonghui Li. 2015. FastTree:

A hardware KD-tree construction acceleration engine for real-time

ray tracing. In 2015 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE, 1595–1598.

[60] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017.

Concurrent Data Structures for Near-Memory Computing. In Pro-

ceedings of the 29th ACM Symposium on Parallelism in Algorithms

and Architectures (Washington, DC, USA) (SPAA ’17). Association for

Computing Machinery, New York, NY, USA, 235–245. doi:10.1145/
3087556.3087582

[61] Magdalen Dobson Manohar, Yuanhao Wei, and Guy E. Blelloch.

2025. CLEANN: Lock-Free Augmented Trees for Low-Dimensional k-

Nearest Neighbor Search. In Proceedings of the 37th ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA ’25). 131–143.

doi:10.1145/3694906.3743339
[62] Ziyang Men, Bo Huang, Yan Gu, and Yihan Sun. 2026. Parallel Dy-

namic Spatial Indexes. In Proceedings of the 31st ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming (Sydney,

Australia) (PPoPP ’26). Association for Computing Machinery, New

York, NY, USA. doi:10.1145/3774934.3786412
[63] Ziyang Men, Zheqi Shen, Yan Gu, and Yihan Sun. 2025. Parallel

kd-tree with Batch Updates. Proc. ACM Manag. Data 3, 1, Article 62

(Feb. 2025), 26 pages. doi:10.1145/3709712
[64] Meven Mognol, Dominique Lavenier, and Julien Legriel. 2024. Paral-

lelization of the Banded Needleman &Wunsch Algorithm on UPMEM

PiM Architecture for Long DNA Sequence Alignment. In Proceedings

of the 53rd International Conference on Parallel Processing (ICPP ’24).

1062–1071. doi:10.1145/3673038.3673094
[65] Robert Morris. 1978. Counting large numbers of events in small

registers. Commun. ACM 21, 10 (Oct. 1978), 840–842. doi:10.1145/
359619.359627

[66] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata

Ausavarungnirun. 2023. A Modern Primer on Processing in Memory.

171–243. doi:10.1007/978-981-16-7487-7_7
[67] Jian Nong, Xi He, Jia Chen, and Yanyan Liang. 2024. Efficient Parallel

Processing of R-Tree on GPUs. Mathematics 12, 13 (2024), 2115.

doi:10.3390/math12132115
[68] Mohammed Otair. 2013. Approximate k-nearest neighbour based

spatial clustering using k-d tree. arXiv:1303.1951 [cs.DB] https:
//arxiv.org/abs/1303.1951

[69] Gonçalo Perrolas, Milad Niknejad, Ricardo Ribeiro, and Alexandre

Bernardino. 2022. Scalable Fire and Smoke Segmentation from Aerial

Images Using Convolutional Neural Networks and Quad-Tree Search.

Sensors 22, 5 (2022), 1701. doi:10.3390/s22051701
[70] Reid Pinkham, Shuqing Zeng, and Zhengya Zhang. 2020. QuickNN:

Memory and Performance Optimization of k-d Tree Based Nearest

Neighbor Search for 3D Point Clouds. In 2020 IEEE International

Symposium on High Performance Computer Architecture (HPCA). 180–

192. doi:10.1109/HPCA47549.2020.00024
[71] KH Vijayendra Prasad and P Sasikumar. 2024. Energy-efficient

quad tree-based clustering using edge-assisted UAV-relay to enhance

network lifetime in WSN. Scientific Reports 14, 1 (2024), 17160.

doi:10.1038/s41598-024-68085-4
[72] Qualcomm. 2025. UPMEM Technology. https://www.upmem.com/

technology/. Accessed August 2025.

[73] Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for Nearest

Neighbor Search. In Proceedings of the 25th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining (KDD ’19).

1378–1388. doi:10.1145/3292500.3330875

[74] W. Saftly, M. Baes, and P. Camps. 2014. Hierarchical octree and k-d

tree grids for 3D radiative transfer simulations. A&A 561 (2014), A77.

doi:10.1051/0004-6361/201322593
[75] Hanan Samet. 1984. The Quadtree and Related Hierarchical Data

Structures. ACM Comput. Surv. 16, 2 (June 1984), 187–260. doi:10.
1145/356924.356930

[76] Samsung. 2025. Samsung PIM Technology. https://semiconductor.
samsung.com/technologies/memory/pim/. Accessed December 2025.

[77] Peter Sanders. 1996. On the Competitive Analysis of Randomized

Static Load Balancing. InWorkshop on Randomized Parallel Algorithms

(RANDOM).

[78] Nick Scoville, H Aussel, Marcella Brusa, Peter Capak, C Marcella Car-

ollo, M Elvis, M Giavalisco, L Guzzo, G Hasinger, C Impey, et al. 2007.

The cosmic evolution survey (COSMOS): overview. The Astrophysical

Journal Supplement Series 172, 1 (2007), 1. doi:10.1086/516585
[79] Luc Segoufin and Alexandre Vigny. 2017. Constant Delay Enumera-

tion for FO Queries over Databases with Local Bounded Expansion.

In ICDT. Venise, Italy. https://inria.hal.science/hal-01589303
[80] Yunxiao Shan, Shu Li, Fuxiang Li, Yuxin Cui, Shuai Li, Ming Zhou,

and Xiang Li. 2022. A Density Peaks Clustering Algorithm With

Sparse Search and K-d Tree. IEEE Access 10 (2022), 74883–74901.

doi:10.1109/ACCESS.2022.3190958
[81] Shunchen Shi, Xueqi Li, Zhaowu Pan, Peiheng Zhang, and Ninghui

Sun. 2024. CoPIM: A Collaborative Scheduling Framework for Com-

modity Processing-in-memory Systems. In 2024 IEEE 42nd Interna-

tional Conference on Computer Design (ICCD). 44–51. doi:10.1109/
ICCD63220.2024.00018

[82] John Sietsma. 2019. Morton Order - Introduction. https://johnsietsma.
com/2019/12/05/morton-order-introduction/. Accessed December

2025.

[83] Guy L. Steele and Jean-Baptiste Tristan. 2016. Adding approximate

counters. SIGPLAN Not. 51, 8, Article 15 (Feb. 2016), 12 pages. doi:10.
1145/3016078.2851147

[84] Guy L. Steele Jr. and Jean-Baptiste Tristan. 2017. Adding Approximate

Counters. ACM Trans. Parallel Comput. 4, 1, Article 5 (Oct. 2017),

45 pages. doi:10.1145/3132167
[85] Guy L Steele Jr and Jean-Baptiste Tristan. 2018. Method and sys-

tem for latent dirichlet allocation2 computation using approximate

counters. US Patent 10,147,044.

[86] Harold S. Stone. 1970. A Logic-in-Memory Computer. IEEE Trans.

Comput. C-19, 1 (1970), 73–78. doi:10.1109/TC.1970.5008902
[87] Dufy Teguia, Jiaxuan Chen, Stella Bitchebe, Oana Balmau, and Alain

Tchana. 2024. vPIM: Processing-in-Memory Virtualization. In Pro-

ceedings of the 25th International Middleware Conference (Middleware

’24). 417–430. doi:10.1145/3652892.3700782
[88] Boyu Tian, Qihang Chen, and Mingyu Gao. 2023. ABNDP: Co-

optimizing Data Access and Load Balance in Near-Data Processing. In

Proceedings of the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 3

(ASPLOS 2023). 3–17. doi:10.1145/3582016.3582026
[89] Vijay R Tiwari. 2023. Developments in KD tree and KNN searches.

International Journal of Computer Applications 975 (2023), 8887. doi:10.
5120/ijca2023922879

[90] Leslie G. Valiant. 1990. A bridging model for parallel computation.

Commun. ACM 33, 8 (Aug. 1990), 103–111. doi:10.1145/79173.79181
[91] Yi Wang, Dun Liu, Hongmei Zhao, Yali Li, Weimeng Song, Menglin

Liu, Lei Tian, and Xiaohao Yan. 2022. Rapid citrus harvesting motion

planning with pre-harvesting point and quad-tree. Computers and

Electronics in Agriculture 202 (2022), 107348. doi:10.1016/j.compag.
2022.107348

[92] DavidWehr and Rafael Radkowski. 2018. Parallel kd-tree construction

on the gpu with an adaptive split and sort strategy. International

Journal of Parallel Programming 46, 6 (2018), 1139–1156. doi:10.1007/
s10766-018-0571-0

494

https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/DAC63849.2025.11132577
https://doi.org/10.1145/3087556.3087582
https://doi.org/10.1145/3087556.3087582
https://doi.org/10.1145/3694906.3743339
https://doi.org/10.1145/3774934.3786412
https://doi.org/10.1145/3709712
https://doi.org/10.1145/3673038.3673094
https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/359619.359627
https://doi.org/10.1007/978-981-16-7487-7_7
https://doi.org/10.3390/math12132115
https://arxiv.org/abs/1303.1951
https://arxiv.org/abs/1303.1951
https://arxiv.org/abs/1303.1951
https://doi.org/10.3390/s22051701
https://doi.org/10.1109/HPCA47549.2020.00024
https://doi.org/10.1038/s41598-024-68085-4
https://www.upmem.com/technology/
https://www.upmem.com/technology/
https://doi.org/10.1145/3292500.3330875
https://doi.org/10.1051/0004-6361/201322593
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://semiconductor.samsung.com/technologies/memory/pim/
https://semiconductor.samsung.com/technologies/memory/pim/
https://doi.org/10.1086/516585
https://inria.hal.science/hal-01589303
https://doi.org/10.1109/ACCESS.2022.3190958
https://doi.org/10.1109/ICCD63220.2024.00018
https://doi.org/10.1109/ICCD63220.2024.00018
https://johnsietsma.com/2019/12/05/morton-order-introduction/
https://johnsietsma.com/2019/12/05/morton-order-introduction/
https://doi.org/10.1145/3016078.2851147
https://doi.org/10.1145/3016078.2851147
https://doi.org/10.1145/3132167
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1145/3652892.3700782
https://doi.org/10.1145/3582016.3582026
https://doi.org/10.5120/ijca2023922879
https://doi.org/10.5120/ijca2023922879
https://doi.org/10.1145/79173.79181
https://doi.org/10.1016/j.compag.2022.107348
https://doi.org/10.1016/j.compag.2022.107348
https://doi.org/10.1007/s10766-018-0571-0
https://doi.org/10.1007/s10766-018-0571-0

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Zhao et al.

[93] Jingyi Xu, Sehoon Kim, Borivoje Nikolic, and Yakun Sophia Shao.

2021. Memory-Efficient Hardware Performance Counters with

Approximate-Counting Algorithms. In 2021 IEEE International Sym-

posium on Performance Analysis of Systems and Software (ISPASS).

226–228. doi:10.1109/ISPASS51385.2021.00041
[94] Zhou Yijun, Xi Jiadong, and Luo Chen. 2021. A Fast Bi-Directional

A* Algorithm Based on Quad-Tree Decomposition and Hierarchical

Map. IEEE Access 9 (2021), 102877–102885. doi:10.1109/ACCESS.2021.
3094854

[95] Yiwei Zhao, Jinhui Chen, Sai Qian Zhang, Syed Shakib Sarwar, Kle-

ber Hugo Stangherlin, Jorge Tomas Gomez, Jae-Sun Seo, Barbara

De Salvo, Chiao Liu, Phillip B. Gibbons, and Ziyun Li. 2025. H4H:

Hybrid Convolution-Transformer Architecture Search for NPU-CIM

Heterogeneous Systems for AR/VR Applications. In Proceedings of the

30th Asia and South Pacific Design Automation Conference (ASPDAC

’25). 1133–1141. doi:10.1145/3658617.3697627
[96] Yiwei Zhao, Hongbo Kang, Yan Gu, Guy E. Blelloch, Laxman Dhuli-

pala, Charles McGuffey, and Phillip B. Gibbons. 2025. Optimal Batch-

Dynamic kd-trees for Processing-in-Memory with Applications. In

Proceedings of the 37th ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA ’25). 350–366. doi:10.1145/3694906.3743318
[97] Yiwei Zhao, Ziyun Li, Win-San Khwa, Xiaoyu Sun, Sai Qian

Zhang, Syed Shakib Sarwar, Kleber Hugo Stangherlin, Yi-Lun

Lu, Jorge Tomas Gomez, Jae-Sun Seo, Phillip B. Gibbons, Bar-

bara De Salvo, and Chiao Liu. 2024. Neural Architecture Search

of Hybrid Models for NPU-CIM Heterogeneous AR/VR Devices.

arXiv:2410.08326 [cs.CV]

[98] Yiwei Zhao, Qiushi Lin, Hongbo Kang, Guy E. Blelloch, Laxman

Dhulipala, Yan Gu, Charles McGuffey, and Phillip B. Gibbons. 2025.

TD-Orch: Scalable Load-Balancing for Distributed Systems with Ap-

plications to Graph Processing. arXiv:2511.11843 [cs.DC]

[99] Yue Zhao, Yunhai Wang, Jian Zhang, Chi-Wing Fu, Mingliang Xu,

and Dominik Moritz. 2022. KD-Box: Line-segment-based KD-tree

for Interactive Exploration of Large-scale Time-Series Data. IEEE

Transactions on Visualization and Computer Graphics 28, 1 (2022),

890–900. doi:10.1109/TVCG.2021.3114865
[100] George Kingsley Zipf. 2016. Human behavior and the principle of least

effort: An introduction to human ecology. Ravenio Books.

Received 2025-09-01; accepted 2025-11-10

495

https://doi.org/10.1109/ISPASS51385.2021.00041
https://doi.org/10.1109/ACCESS.2021.3094854
https://doi.org/10.1109/ACCESS.2021.3094854
https://doi.org/10.1145/3658617.3697627
https://doi.org/10.1145/3694906.3743318
https://arxiv.org/abs/2410.08326
https://arxiv.org/abs/2511.11843
https://doi.org/10.1109/TVCG.2021.3114865

	Abstract
	1 Introduction
	2 Background
	2.1 PIM Architecture and Computation Model
	2.2 Prior Work: PIM-Friendly Indexes
	2.3 zd-Tree

	3 PIM-zd-tree
	3.1 Overall Structure
	3.2 Chunking for Imbalanced Trees
	3.3 Push-Pull Search
	3.4 Lazy Counters

	4 Operations
	4.1 Top-Down Search
	4.2 Dynamic Updates
	4.3 k Nearest Neighbors
	4.4 Orthogonal Range Query

	5 Theoretical Analysis
	5.1 Space Consumption
	5.2 Top-Down Search
	5.3 Dynamic Updates
	5.4 k Nearest Neighbors

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 End-to-End Comparison
	7.3 Ablation Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

