
PCFIRE: Towards Provable Preventative Control-Flow
Integrity Enforcement for Realistic Embedded Software

Jiaqi Tan
Carnegie Mellon University

Dept. of ECE,
Pittsburgh, PA, USA

tanjiaqi@cmu.edu

Hui Jun Tay
Carnegie Mellon University

Dept. of ECE,
Pittsburgh, PA, USA

htay@andrew.cmu.edu

Utsav Drolia
Carnegie Mellon University

Dept. of ECE,
Pittsburgh, PA, USA

udrolia@andrew.cmu.edu
Rajeev Gandhi

Carnegie Mellon University
Dept. of ECE,

Pittsburgh, PA, USA
rgandhi@ece.cmu.edu

Priya Narasimhan
Carnegie Mellon University

Dept. of ECE,
Pittsburgh, PA, USA

priya@cs.cmu.edu

ABSTRACT
Control-Flow Integrity (CFI) is an important safety prop-
erty of software, particularly in embedded and safety-critical
systems, where CFI violations have led to patient deaths and
can render cars remotely controllable by attackers. Previous
techniques for CFI may reduce the robustness of embedded
and safety-critical systems, as they handle CFI violations
by stopping programs. In this work, we present PCFIRE, a
preventative approach to CFI that prevents the root-causes
of CFI violations to allow recovery, and enables program-
mers to specify robust recovery actions by providing CFI
via source-code safety-checks. PCFIRE’s CFI can be for-
mally proved automatically, and supports realistic features
of embedded software such as hardware and I/O access. We
showcase PCFIRE by providing, and automatically proving,
CFI for: benchmark programs, text utilities containing I/O,
and embedded programs with sensor inputs and hardware
outputs on the Raspberry Pi single-board computer.

Keywords
Control-Flow Integrity; Program Logic; Proof Assistant; In-
teractive Theorem Proving; ARM Executables; HOL

1. INTRODUCTION
Control-Flow Integrity (CFI) [5] is an important safety

property of software. Software whose CFI has been violated
can behave in unexpected ways and allow users to hijack its
execution via malicious inputs. CFI has even greater impor-
tance in embedded systems, whose software may be safety-
critical (e.g., in cyber-physical systems), where failures may
“result in loss of life, significant property damage, or dam-
age to the environment” [16]. Informally speaking, the CFI

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMSOFT’16, October 01-07, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN 978-1-4503-4485-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968478.2968492

of a program is preserved when its executed machine-code
(i.e., its control-flow) behaves as specified by its source-code.
CFI violations occur when a program’s executed machine-
code deviates from the behavior specified in its source-code
(e.g., when a buffer is overflowed to overwrite indirect jump
targets in memory, changing the program’s execution). CFI
violations in embedded software have resulted in fatal fail-
ures of medical devices, e.g., drug infusion-pumps [34], re-
sulting in large-scale safety recalls [32], and have enabled
attackers to control safety-critical software in cars [27].

There are a number of important features when ensuring
the CFI of embedded, potentially safety-critical software.
First, we need to ensure that the software is able to re-
cover from CFI violations to continue operation. Current
CFI techniques halt the execution of software when CFI vi-
olations are detected [5, 33, 38, 19, 6] to prevent attack-
ers from hijacking compromised programs. This can be a
problem for safety-critical software: e.g., a buffer-overflow
in a Baxter Colleague 3 drug infusion-pump was detected
and the pump was stopped, directly leading to a patient’s
death [34]. Second, to enable software to recover from CFI
violations and continue operating, we need to ensure that
the root-causes of CFI violations (e.g., overwriting of jump
targets or program instructions in memory) are prevented
in the first place. If CFI violations are detected only after
their root-causes have occurred, the root-causes cannot be
undone, and recovery is not possible. Third, CFI techniques
for embedded software need to support features in realis-
tic embedded software, such as system-calls in user-mode
programs running in an OS. Previous techniques for embed-
ded software [38] targeted “bare-metal” programs running
directly on hardware without an OS. As embedded systems
become more sophisticated, they often have an OS, and ap-
plications run as user-mode programs [20]. Fourth, we want
to enable automated formal proofs of CFI, so that program-
mers can easily obtain high-assurance of the CFI of their
programs without knowledge of formal methods.

In this paper, we present PCFIRE, a preventative ap-
proach to providing Control-Flow Integrity (CFI) for soft-
ware in a way that prevents the root-causes of CFI,
that: (i) enables application-specific recovery actions, (ii)
supports important features in realistic embedded applica-

tions, and (iii) is amenable to automated formal CFI proofs,
for embedded applications. First, we develop the PCFIRE-C
tool, which prescribes source-code safety-checks for CFI for
C programs, which programmers then apply to their source-
code. While source-code safety-checks are not themselves
novel, the novelty in our prescribed source-code safety-checks
is that they are specially crafted such that the safety-checks
compile to machine-code that can be proved to have CFI
fully automatically, without any user inputs (e.g., code an-
notations). Second, we build on our existing logic frame-
work, AUSPICE [31], for our CFI proofs, and we develop
a novel extension, AUSPICE+, to support CFI proofs in
machine-code with system-calls. Finally, we show how PC-
FIRE supports I/O in our case-studies. While our case-
studies do not feature actual embedded software running in
consumer devices, we demonstrate support for realistic I/O
behavior, including hardware I/O, in small utilities. We de-
velop and automatically prove the CFI of: (i) text-utilities,
and (ii) embedded software with sensor inputs and hardware
outputs on the Raspberry Pi single-board computer.

Our contributions are: (i) a novel set of heuristics for
writing safety-checks using check-and-branch statements in
C programs, such that CFI violations can be prevented, and
the compiled ARM machine-code of the programs can be
automatically proved to have CFI, (ii) a tool (PCFIRE-C)
which realizes our heuristics by prescribing source-code CFI
safety-checks for a C program, (iii) the AUSPICE+ exten-
sion of the AUSPICE logic framework, and (iv) case-studies
showing how we can write embedded applications in C con-
taining system-calls and hardware inputs/outputs (e.g., sen-
sors and LCD), which can be automatically proved to have
CFI using AUSPICE+. To the best of our knowledge, PC-
FIRE is the first framework for CFI that prevents CFI viola-
tions to enable programmers to customize recovery actions,
and supports programs containing system-calls, while still
enabling CFI to be formally proved automatically.

1.1 Control-Flow Integrity (CFI)
Control-Flow Integrity (CFI) is a safety property which

states that the execution of software follows a path of a
Control-Flow Graph (CFG) that is “determined ahead of
time” [5]. While programmers reason about software behav-
iors in the programming language they use (e.g., C), soft-
ware execution manifests as the actual (machine-code) in-
structions that are executed by the processor. Hence, there
are two views of a program’s execution: one at the source-
code level (which captures the programmer’s intentions),
and one at the machine-code level (which represents the
actual instructions executed). Then, the execution of soft-
ware with CFI follows the CFG which captures the source-
code-specified behavior of the software. CFI violations occur
when the sequence of machine-code instructions executed is
not present in the CFG of the software’s source-code. While
CFI is a general safety property, the CFI of a given pro-
gram is specific to the target architecture of its machine-
code. Thus, CFI techniques are also architecture-specific,
although they can be adapted to different architectures.

Low-level programming languages, such as C, give pro-
grammers direct access to memory. This can give rise to CFI
violations in the actual instructions executed. We present
a simple example, which we will also use to illustrate our
approach later. Consider this piece of C code:

void arraycopy (int *src, int *dst, int n) {

int i;

for (i = 0; i < n; i++) { dst[i] = src[i]; }

}

At first glance, arraycopy is designed to copy the array src

to the array dst. From its C source, arraycopy superficially
appears to not have any buffer-overflows (which can give
rise to CFI violations), as the caller supplies n, limiting the
number of array elements copied. However, the compiled
machine-code of arraycopy exposes the low-level behavior
of the function, where we can see there are potential CFI
violations. Consider this fragment of ARM machine-code
for the statements dst[i] = src[i], i++, and i < n.

0x8094: e92d0810 push {fp, lr}
0x8098: e28db004 add fp, sp, #4
0x809c: e24dd018 sub sp, sp, #24
...
0x8150: e51b3008 ldr r3, [fp, #-8]
0x8154: e1a03103 lsl r3, r3, #2
0x8158: e51b2014 ldr r2, [fp, #-20]
0x815c: e0823003 add r3, r2, r3
0x8160: e51b2008 ldr r2, [fp, #-8]
0x8164: e1a02102 lsl r2, r2, #2
0x8168: e51b1010 ldr r1, [fp, #-16]
0x816c: e0812002 add r2, r1, r2
0x8170: e5922000 ldr r2, [r2]
0x8174: e5832000 str r2, [r3]
0x8178: e51b3008 ldr r3, [fp, #-8]
0x817c: e2833001 add r3, r3, #1
0x8180: e50b3008 str r3, [fp, #-8]
0x8184: e51b2018 ldr r2, [fp, #-24]
0x8188: e51b3008 ldr r3, [fp, #-8]
0x818c: e1520003 cmp r2, r3
...

CFI violations can occur when function return addresses
saved to the stack are overwritten. At the machine-code
level, an instruction must write to memory for this to occur.
In this fragment of machine-code, there are two str instruc-
tions which write to memory, at addresses 0x8174 (str r2,

[r3]), and 0x8180 (str r3, [fp, #-8]). Then, from the
function prologue (addresses 0x8094, 0x8098), we can see
that the link register, lr, which stores the return address of
the function calling arraycopy, is saved to the stack, and
the frame pointer, fp, is advanced past the address where
the link register is saved to the stack. Hence, any writes
to memory addresses smaller than fp, will not overwrite
the saved lr value on arraycopy’s stack, for a descending
stack. Thus, we know that the second memory write, str
r3, [fp, #-8], will not overwrite the saved lr value, and
cause a CFI violation, since its target address (fp− 8) < fp

(for fp > 8). However, the first memory write, str r2,

[r3], is to a dynamically computed address. This instruc-
tion potentially overwrites the saved lr value, since it is
hard to determine statically from the machine-code alone
what the address [r3] is. In fact, [r3] is computed from
arguments dst and n, and a buffer-overflow can occur, if (i)
dst does not point to an array of integers, or if (ii) n is larger
than the size of the array at dst.

2. PROBLEM STATEMENT
Goals. The main objective of PCFIRE is to enable CFI
for software to be provided in a preventative way that is
amenable to realistic embedded applications. Our goals are:
(i) to enable CFI violations to be prevented, (ii) to do so us-
ing purely source-code mechanisms, so that developers can
add application-specific recovery actions, (iii) to provide for-
mal safety proofs of the CFI of machine-code, (iv) to provide

these safety proofs automatically without user inputs (e.g.,
code annotations, loop invariants), (v) to work with unmodi-
fied, standard compilers, so that our approach is transparent
to software development methodologies, and (vi) to auto-
mate safety proofs of CFI in programs with system-calls, so
as to support realistic embedded applications.
Scope. PCFIRE targets C programs for providing source-
code safety-checks, as C is a popular programming language
for handling low-level I/O behavior on embedded platforms.
PCFIRE’s formal CFI safety proofs target machine-code
programs. We target ARM, as it is the dominant proces-
sor architecture for mobile and Internet-of-Things embed-
ded devices [4]. PCFIRE’s CFI safety proofs are at the
machine-code level, because CFI is a safety property about
the machine-code of programs, and because machine-code
safety proofs reduce the Trusted Computing Base (TCB)
of our approach by letting us exclude the compiler from
the TCB. While PCFIRE currently targets C source-code
and ARM machine-code, we believe that our approach can
be generalized to other architectures by adapting it to the
Application Binary Interface (ABI) of other architectures.
We target user-mode programs which run in an OS, and
we consider Linux user-mode programs. This is realistic, as
increasingly, embedded devices run full-featured OSes, and
applications run as user-mode programs in an OS (e.g., as
described in [20]).
Threat Model. PCFIRE’s threat model consists of an
attacker who is able to supply arbitrary (and potentially ma-
licious) inputs to the target program. We assume that the
physical security of the device running our target software
is not compromised (i.e., no hardware nor OS-/firmware-
replacement attacks). We further assume that the OS iso-
lates user processes, and that the OS is neither malicious nor
compromised (i.e., no direct changes to a process’s memory).
Assumptions. In PCFIRE, we build on the AUSPICE
logic framework [31], which builds on a trustworthy and de-
tailed formalization of the ARM Instruction Set Architec-
ture (ISA) from Cambridge University [21, 8] (the Cam-
bridge ARM model). Hence, the CFI proofs in PCFIRE
inherit the assumptions and limitations of the above frame-
works. We assume PCFIRE’s target programs:
1. Are unaffected by hardware exceptions, interrupts, and

page table operations (not modeled),
2. Do not contain floating-point instructions (not modeled),
3. Do not contain recursive function calls (AUSPICE does

not support them),
4. Do not contain goto or longjmp statements,
5. Do not contain arbitrary function pointers (PCFIRE’s

safety-checks can be extended to function pointer tar-
gets, but we leave this to future work),

6. Are single-threaded (only sequential behavior modeled),
7. Are statically compiled and linked, so that every instruc-

tion that can be executed is available to be verified,
8. Are compiled with commodity compilers, e.g., gcc, which

obey the ARM-THUMB Procedure Call Standard (AT-
PCS) [3], with gcc -O0 (or equivalent) optimization, and
with debug information,

9. Can be disassembled with well-defined function bound-
aries using standard tools such as GNU objdump,

10. Have well-defined function prologues and epilogues.
We also assume that for programs which contain system-
calls (syscalls), the underlying OS services the system-call
correctly. Recent work has verified OS microkernels [10],

making it possible for syscall servicing to be verified.
Non-goals. While PCFIRE enables developers to specify
their own recovery actions from detected CFI violations, we
do not prescribe recovery actions, as they are application-
specific. PCFIRE focuses specifically on CFI, and is not
concerned with other safety/security properties. PCFIRE’s
CFI proofs focus only on our source-code-based CFI, and we
do not claim that PCFIRE (using AUSPICE) can prove the
CFI of any safe program. We consider cooperative develop-
ers who wish to ensure the CFI of their programs, and we
do not consider maliciously-written malware. Our current
focus is on enabling preventative CFI which is automati-
cally provable, and we plan to explore lowering the run-time
overheads of our safety-checks in future.

3. APPROACH

PCFIRE-C: Prescribe
check-and-branch

statements

(R
e-

)C
om

pi
le

P

ro
gr

am

C
source-

code

ARM
machine

-code

Source-code
with safety-

checks

Developer
inserts
safety-
checks

CFI
Safety
Proof

ARM
machine-

code

C
om

pi
le

P

ro
gr

am
 1 2

AUSPICE:
CFI Proof

Generation
AUSPICE+

Figure 1: Overview of PCFIRE’s approach. Blue
boxes indicate our contributions.

PCFIRE provides preventative enforcement of CFI, which
(i) prevents the root-causes of CFI violations, (ii) enables
developers to insert application-specific recovery behavior,
and (iii) is automatically provable at the machine-code level.
Figure 1 summarizes the two-step process for obtaining a
program with provable preventative CFI. First, given the
C source-code and (initially) compiled machine-code of a
program, the PCFIRE-C tool prescribes safety-checks in C
for the program. These safety-checks are based on a set of
heuristics about program locations that require CFI safety-
checks (§3.2). We intentionally leave it to developers to
insert these safety-checks into their source-code, so they can
specify application-specific recovery where necessary. Sec-
ond, developers recompile their source-code (with the in-
serted C safety-checks), and pass the machine-code to AUS-
PICE, which automatically generates a CFI safety proof for
the program (§3.3). If the CFI proof fails, AUSPICE returns
the machine-code addresses where the CFI proof failed [31]
(we will handle proof failures in future work). Third, we de-
velop the AUSPICE+ extension to AUSPICE to automate
CFI proof generation for programs with syscalls (§3.4).

3.1 Ensuring Control-Flow Integrity for ARM

3.1.1 Necessary and Sufficient Properties for CFI
We begin by describing the CFI safety property provided

by PCFIRE, which is based on the safety theorem proved
by AUSPICE [31]. For programs which AUSPICE proves
are safe, the following safety properties hold:

Prop.1 The instructions in the program’s text section loaded
to memory cannot be modified,

Prop.2 Function-return addresses saved to the stack cannot
be modified, and

Prop.3 Only initially-loaded instructions are executed.
Together, these properties eliminate the root-causes of CFI
violations. We explain how these properties are necessary
and sufficient to ensure CFI holds for a machine-code pro-
gram. The execution of a machine-code program possesses
CFI when the control-flow of its machine-code obeys the
CFG captured by its source-code (§1.1). Supposing the pro-
gram has not been modified since compilation (which implies
that the loaded instructions obey the source-code CFG of
the program), then the program’s CFI will be violated when
its CFG is changed at run-time. The CFG of the program
comprises vertices representing instructions, and edges rep-
resenting control transfers between instructions. The three
properties of AUSPICE’s safety theorem prevent CFI vi-
olations by implying that the program’s CFG cannot be
changed at run-time (in the absence of unstructured jumps
such as goto and longjmp statements, as stated in §2), as
summarized in Table 1 (edges cannot be added to a CFG as
this corresponds to adding a jump target, which requires an
instruction, i.e., a vertex, to be changed).

Change to CFG Effect on CFG Protected by

Modify loaded
instructions

Change CFG
vertices

(1) prevents changing
loaded instructions

Change function
return address

Modify CFG
edges

(2) prevents changing
callee-saved registers

Inject and run
instructions

Add CFG ver-
tices

(3) prevents executing
injected instructions

Table 1: CFI via AUSPICE’s Safety Theorem

Previous Link Register
(Saved R14)

Previous Stack Pointer
(Saved R13)

Previous Frame
Pointer (Saved R11)

Caller-save register
values (if any) …

Must not be
overwritten

Stack (called function)
Stack of
callee

function

Stack of
caller

function

Kernel space
(reserved)

Typical addresses
(may vary slightly
across kernels)

0xC0000000
0xBF000000

Stack

Heap

BSS segment

Data segment

Text segment
0x08048000

A
ll m

em
ory

w
rites m

ust be
confined to here

A

B

C

(a) Process Memory Lay-
out for Linux

Previous Link Register
(Saved R14)

Previous Stack Pointer
(Saved R13)

Previous Frame
Pointer (Saved R11)

Caller-save register
values (if any) …

Must not be
overwritten

Stack (called function)
Stack of callee

function
(address in

r11)

Stack of
caller

function

Kernel space
(reserved)

Typical addresses
(may vary slightly
across kernels)

0xC0000000
0xBF000000

Stack

Heap

BSS segment

Data segment

Text segment
0x08048000

A
ll m

em
ory

w
rites m

ust be
confined to here

A

B

C

Stack grows
to smaller

addresses

(b) Activation Record for
Function Calls

Figure 2: PCFIRE’s CFI safety (diagram from [31]).

3.1.2 Allowed Program Behaviors for CFI
We concretely describe the behaviors that a Linux user-

mode program executing on the ARM architecture must
have for it to meet AUSPICE’s safety properties. First, con-
sider the memory layout for a user-mode process in Linux
for a 32-bit architecture (Figure 2(a)). To prevent overwrit-
ing of loaded program instructions (Property 1), all mem-
ory writes must be restricted to addresses from 0xBF000000

(largest user-mode address) to the location A in Figure 2(a)
(largest address where a program instruction has been loaded).

Second, consider the memory layout of the stack activa-
tion record for function calls as specified by the ATPCS [3]
(Figure 2(b)). In a function call, the prologue of a function

saves the values of callee-saved registers to the stack. Based
on the ATPCS, these callee-saved registers include the link
register (r14), stack pointer (r13) and frame pointer (r11).
Also, the stack and frame pointers, which point to the end
and start of the stack respectively, must not be overwritten,
as they indicate where the link register is saved in mem-
ory. Hence, for Property 2 to hold, all saved link register,
stack, and frame pointer values from all function calls prior
to the current function must not be overwritten in memory.
Hence, all memory writes must be to addresses smaller than
the current value of the frame pointer.

Third, Property 3 states that only loaded program in-
structions can be run. This means that the value of the
program counter must always be in the range of addresses
where program instructions have been loaded.

3.2 Source-code Enforcement of CFI
Next, we construct safety-checks in source-code to ensure

our 3 CFI safety properties (§3.1) hold. Safety-checks are
needed before potentially dangerous C statements, which we
will call suspect statements. Suspect statements may cause
CFI violations, and are surrounded with safety-checks. Each
safety-check is a check-and-branch statement in C: it checks
if the suspect statement will cause a CFI violation when run:
if so, it branches to an alternative statement (which can be
a recovery action); if not, it allows the suspect statement
to run. By running safety-checks before suspect statements,
we can recover before a CFI violation occurs.

First, we consider the kinds of C statements where the
safety properties may be violated. Properties 1 and 2 can
be violated only when an instruction writes to memory. In
a program without unstructured control-flow jumps (i.e., no
goto, longjmp, explicit function pointers, or direct writing
to the program counter), Property 3 can be violated only at
function returns, as all other jump targets are statically fixed
(as long as the loaded program text and program counter are
not overwritten, and no injected instructions are executed).
Then, since function return addresses are saved to the stack,
ensuring Property 2 will ensure Property 3. Thus, we only
need to ensure that C statements that write to memory obey
Properties 1 and 2, for all three properties to hold.

Second, we consider the check-and-branch C statements
needed to ensure Properties 1 and 2, which require the mem-
ory addresses being written to, to be within safe ranges. The
check-and-branch statements need to extract the addresses
written to by the C statement and ensure that the addresses
are safe. The safe address range for Property 1 can be stat-
ically obtained from the machine-code (e.g., extract the ad-
dress and size of the text section using GNU readelf), while
the safe address range for Property 2 requires the frame
pointer value (in register r11) to be extracted at run-time.

Third, we need to identify C statements that are poten-
tially dangerous, which need to be surrounded by check-
and-branch statements. While C statements that write to
memory may violate Properties 1 and 2, AUSPICE can auto-
matically prove that (the compiled machine-code of) certain
classes of memory-write statements will not violate CFI, and
we need to add check-and-branch statements only around
the remaining statements.

3.3 Formal Proofs of CFI: AUSPICE
AUSPICE is a Hoare-Logic-based framework for auto-

matically proving CFI safety in ARM machine-code [31].

We briefly describe AUSPICE; detailed proof rules can be
found in [31]. AUSPICE is built on the Cambridge ARM
model [8, 21], in the HOL4 interactive theorem prover [29].
PCFIRE uses AUSPICE to generate CFI safety proofs for
ARM machine-code. AUSPICE can automatically prove
CFI safety in programs whose CFI safety-checks comprise
long instruction sequences, e.g., when safety-checks are pro-
vided in source-code, as compared to the simpler machine-
code safety-checks in prior verified CFI techniques [38, 33].
AUSPICE uses Hoare Logic to reason about single instruc-
tions and basic blocks of instructions, and automatically in-
serts safety assertions at each instruction asserting the CFI
safety properties described in §3.1.

AUSPICE begins by obtaining Hoare Logic theorems (Hoare
triples) for each machine-code instruction from the Cam-
bridge ARM model, and composes them to form Hoare triples
about basic blocks (linear sequences) of instructions. Hoare
Logic [13] describes programs as triples, ` {p} c {q}, where
p and q are predicates about machine resources, i.e., regis-
ter values, flag values, and memory contents. c is a program
(one or more ARM machine-code words), and p and q de-
scribe the state of the processor before and after running
c respectively. Hence, Hoare Logic theorems describe the
before-and-after effects of executing one or more instructions
on processor state. Figure 3(a) shows an example Hoare
triple for the instruction 0xE5832000 (“str r2 [r3]”).

Hoare triple with ARM
instruction semantics Pre-state, p

Post-state, q
Code, c

Register number 3w stores variable r3
(w indicates “3” is a fixed-width word.)

Program counter stores variable p
Memory has domain df and is represented by
variable f, mapping addresses to stored words

Memory f stores variable r2 at address r3

(a) Example Hoare triple. p: instruction ad-
dress, 0xE5832000: instruction described.

Hoare triple with ARM
instruction semantics Pre-state, p

Post-state, q
Code, c

Register number 3w stores variable r3
(w indicates “3” is a fixed-width word.)

Program counter stores variable p
Memory has domain df and is represented by
variable f, mapping addresses to stored words

Memory f stores variable r2 at address r3

(b) Key concepts of the example Hoare triple.

Figure 3: Hoare triple for instruction “str r2 [r3]”.

Figure 3(b) explains key parts of the Hoare triple theorem
in Figure 3(a). “∗” is a Separating Conjunct from Separation
Logic [26]. “cond((r3 && 3w = 0w)∧ (r3 ∈ df))” states the
memory alignment requirement for writes to the address r3 ,
and that r3 is a valid address for memory f .

These Hoare triples can be augmented with pre-conditions,
which are predicates that hold before an instruction executes
(e.g., for statements in the body of “if (i == j) {...}”,
the pre-condition (i == j) holds), and with assertions,
which are predicates we assume to be true. Then, AUSPICE
instantiates its CFI safety properties (§3.1) at each instruc-
tion’s Hoare triple as assertions to be proved. AUSPICE au-
tomatically discharges the safety assertions at each instruc-
tion where possible (e.g., when addresses written to are a
constant offset from the frame pointer). Then, it carries out
a proof search at the intra- and inter-procedural level. For
each basic block, AUSPICE checks if its CFI safety asser-

Source-code

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

C
hecks if safety

assertions hold

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

AUSPICE +
Cambridge
logic frameworks

void arraycopy
(int *src,
 int *dst,
 int n) {
for (int i = 0;
 i < n;
 i++) {

 dst[i] = src[i];

}

U
nsafe

Statem
ent

U
nsafe

Instruction

Safety
assertion
does not

hold

✖	

AUSPICE +
Cambridge
logic frameworks

Source-code

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

AUSPICE +
Cambridge
logic frameworks

void arraycopy
(int *src,
 int *dst,
 int n) {
for (int i = 0;
 i < n;
 i++) {
 if (SAFE(dst,i)) {
 dst[i] = src[i];
 } else
 { /* recovery */ }
}

U
nsafe

Statem
ent

U
nsafe

Instruction

(SAFETY CHECK)

C
om

pi
la

tio
n

Im
plies safety

assertions hold

✔	
SAFETY CHECK

(a) Proofs of
CFI

Source-code

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

C
hecks if safety

assertions hold

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

AUSPICE +
Cambridge
logic frameworks

void arraycopy
(int *src,
 int *dst,
 int n) {
for (int i = 0;
 i < n;
 i++) {

 dst[i] = src[i];

}

U
nsafe

Statem
ent

U
nsafe

Instruction

Safety
assertion
does not

hold

✖	

AUSPICE +
Cambridge
logic frameworks

Source-code

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

AUSPICE +
Cambridge
logic frameworks

void arraycopy
(int *src,
 int *dst,
 int n) {
for (int i = 0;
 i < n;
 i++) {
 if (SAFE(dst,i)) {
 dst[i] = src[i];
 } else
 { /* recovery */ }
}

U
nsafe

Statem
ent

U
nsafe

Instruction

(SAFETY CHECK)

C
om

pi
la

tio
n

Im
plies safety

assertions hold

✔	
SAFETY CHECK

(b) Proof failure
(unsafe program)

Source-code

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

C
hecks if safety

assertions hold

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

AUSPICE +
Cambridge
logic frameworks

void arraycopy
(int *src,
 int *dst,
 int n) {
for (int i = 0;
 i < n;
 i++) {

 dst[i] = src[i];

}

U
nsafe

Statem
ent

U
nsafe

Instruction

Safety
assertion
does not

hold

✖	

AUSPICE +
Cambridge
logic frameworks

Source-code

Machine-code

ldr r3, [fp,#-8]
......
str r2 [r3]
......

ldr r3, [fp,#-8]
......
bcs 8178 BB1

BB2

Hoare Logic
Theorems

BB2 Theorem

BB1 Theorem

AUSPICE +
Cambridge
logic frameworks

void arraycopy
(int *src,
 int *dst,
 int n) {
for (int i = 0;
 i < n;
 i++) {
 if (SAFE(dst,i)) {
 dst[i] = src[i];
 } else
 { /* recovery */ }
}

U
nsafe

Statem
ent

U
nsafe

Instruction

(SAFETY CHECK)

C
om

pi
la

tio
n

Im
plies safety

assertions hold

✔	
SAFETY CHECK

(c) Provable CFI us-
ing C checks

Figure 4: How PCFIRE’s source-code safety-checks
yield machine-code programs with provable CFI.
BB1 and BB2 represent basic block addresses.

tions can be discharged by the pre-conditions of all its prede-
cessor blocks (Figure 4(a)). For C statements (and their cor-
responding compiled instructions) with potentially unsafe
operations, the Hoare triples for these instructions will have
safety assertions that cannot be automatically discharged
by the predecessor blocks, leading to a safety proof failure
(Figure 4(b)). In §4.1, we describe how PCFIRE-C pre-
scribes source-code safety-checks whose compiled machine-
code have Hoare triples that have pre-conditions which im-
ply that the safety assertions of the Hoare triples of unsafe
instructions hold, enabling the AUSPICE CFI safety proof
to succeed (Figure 4(c)).

3.4 CFI Proofs for Realistic Code: AUSPICE+
The Cambridge ARM model [21] does not model the user-

mode-visible outcomes of syscall-servicing by an OS. Thus,
AUSPICE is unable to prove the CFI of programs with
syscalls. We extend AUSPICE with AUSPICE+ to support
programs that invoke syscalls using the ARM svc instruc-
tion. AUSPICE+ is currently specific to Linux on the ARM
platform, and we assume that the OS services syscalls as
specified by the POSIX standard (for Linux).

We model the effects of syscall servicing that are visible
to user-mode programs, to capture the effects on the CFI
of the program. We formally encode our assumption that
the OS services each syscall “correctly” (according to the
POSIX standard) by constructing Hoare triples to represent
these assumptions, which we add to the hypotheses of an
AUSPICE+ CFI proof. Thus, for each machine-code svc

instruction, which invokes a syscall, instead of obtaining a
Hoare triple theorem from the Cambridge ARM model, we
construct a Hoare triple assumption that encodes the POSIX
specification of the syscall’s behavior. We analyze the Hoare
triples of the instructions leading up to the svc instruction
to obtain the machine state (i.e., register values) prior to the
svc instruction, which tell us the parameters passed to the
OS on invoking the svc instruction. For instance, consider

this instruction leading up to the svc instruction: mov r7,

#4 / svc 0x00000000. For the Linux kernel on ARM, the
syscall number is passed in register r7 by convention. Hence,
we know that syscall 4 is invoked (i.e., write()), and we
construct the Hoare triple shown in Figure 5.

SPEC ARM MODEL ` SPEC ARM MODEL

(aR 0w r0 ∗ aR 1w r1 ∗ (aR 0w r0 ∗ aR 1w r1 ∗
aR 2w r2 ∗ aR 7w 4w ∗ aR 2w r2 ∗ aR 7w 4w ∗

aR 14w r14 ∗ aMEMORY df f) aR 14w r14 ∗ aMEMORY df f)

{(p, 0xEF000000)} {(p, 0xEF000000)}
(aR 0w rv ∗ aR 1w r1 ∗ (aR 0w rv ∗ aR 1w r1 ∗
aR 2w r2 ∗ aR 7w 4w ∗ aR 2w r2 ∗ aR 7w 4w ∗

aR 14w r14 ∗ aMEMORY df f) aR 14w r14 ∗ aMEMORY df f)

Figure 5: Constructed Hoare triple for write syscall.

The post-state of the Hoare triple for the write() syscall
does not change the processor’s state, except for register r0,
which stores the return value from the syscall, as captured
by the symbolic variable rv. For the write syscall, the OS
outputs the contents of the buffer to the given file descriptor,
without changing any of the user-mode visible state (register
and flag values, and memory) of the program (apart from
register r0). Note that the Hoare triple is repeated on the
left of the turnstile “`”, indicating that the Hoare triple is a
hypothesis. Note, also, that the values for registers r0, r1,
r2, r14, which provide the OS with the file descriptor, buffer
address, buffer length, and return address respectively, con-
tain symbolic variables. These variables are concretely filled
in only at each call-site to the syscall. We also modified the
composition of basic block theorems in AUSPICE to fill in
concrete values for syscall arguments at each call-site.

For syscalls that modify user-mode processor state (e.g.,
read(), which copies its results to a specified location in
the memory of the calling process), we construct a mem-
ory expression in the Hoare triple to represent this modi-
fied user-process memory. Then, the CFI safety assertion
for the Hoare triple of the syscall will reflect the process’s
memory addresses that are written to by the syscall. Note
that our approach does not capture aspects of system state
that are not explicitly visible in user-mode (e.g., file descrip-
tor mappings in open, and user-space memory mappings in
mmap). Our current goal is to focus on proving CFI safety
of user-mode programs, which is (directly) affected only by
user-mode-visible state. We have implemented automatic
Hoare triple construction for the following syscalls as an
initial proof-of-concept, to provide basic I/O functionality:
read, write, open, close, exit, mmap, munmap, nanosleep.
AUSPICE+ added 1.2 KLOC of ML proof scripts for HOL4
to the existing 11.8 KLOC code-base of AUSPICE [31].

4. DESIGN AND IMPLEMENTATION

4.1 Source-code Safety-checks: PCFIRE-C
Next, we describe the implementation of the PCFIRE-C

tool for prescribing safety-checks in C programs. PCFIRE-
C takes as input: (i) C source files, and (ii) a single, stati-
cally linked and compiled binary file (with debug symbols),
and prescribes safety-checks to ensure CFI. These safety-
checks are check-and-branch C statements, which program-
mers insert in their programs. First, we describe our pre-

scribed check-and-branch statements (§4.1.1). Second, we
describe how to identify suspect statements needing check-
and-branch statements (§4.1.2).

4.1.1 Check-and-Branch for C Programs
The key idea of PCFIRE’s safety-checks is to provide a

guard that ensures that suspect C statements with mem-
ory writes (which AUSPICE cannot automatically prove to
be safe) will execute only if the target address being writ-
ten to is safe with respect to PCFIRE’s safety policy (§3.1).
We need to ensure that the safety-checks, which are C state-
ments, will be compiled to machine-code whose Hoare triples
will provide the pre-conditions needed to discharge the safety
assertions for the dangerous memory write instruction from
the suspect statement (§3.3 and Fig. 4(c)). PCFIRE-C uses
the Clang [2] compiler front-end for C programs to analyze
the Abstract Syntax Tree (AST) of each suspect statement
to construct the prescribed safety-checks.

The safety-checks, or guards, which PCFIRE-C constructs,
are (memory) address comparison statements with two parts:
(i) the address being written to by the suspect statement
on the left-hand-side (LHS), and (ii) the upper and lower
bounds allowed for the memory address being written to
on the right-hand-side (RHS). First, PCFIRE-C walks the
Clang AST of the suspect C statement to find the sub-
expression for the memory address being written to. PCFIRE-
C then converts the sub-expression into a form that enables
the exact memory address being written to, to be checked
in the guard statement. Table 2 shows how PCFIRE-C con-
verts LHS sub-expressions into a comparable memory ad-
dress for guard statements. For complex LHS expressions,
PCFIRE-C will extract the type of the LHS of the expres-
sion, and suggest to programmers to extract the address
being written to (e.g. for “<lhs expr> = <expr>;”, use
“tmp_ptr = &(<lhs expr>); (*tmp_ptr) = <expr>;”).

Statement type Original expression Expression for
safety-check

Prefix operation *++s = <expr>; (s+1)
Postfix operation *s++ = <expr>; s
Memory write *s = <expr>; s
Memory write *(s <binop> t) =

<expr>;
(s <binop> t)

Array access s[i] = <expr>; (s + i)

Table 2: LHS expressions for memory safety guards.

Second, PCFIRE-C adds the upper- and lower-bounds for
allowed memory-write addresses to the RHS of the address
comparison statements, as shown in Table 3. PCFIRE-C
creates a conjunction of the conditions listed in Table 3,
using the memory address expression from the last step as
the LHS for each conjunct. PCFIRE-C first places a guess
for the value of text_hi, as newly inserted safety-checks
will increase the size of the program. PCFIRE-C provides a
utility for programmers to query the recompiled binary for
the new value of text_hi to insert in their source-code.

Additional code is required to dynamically extract the
current value of the frame pointer from register r11 before
each safety guard. The value of the frame pointer must be
stored in a register rather than a local variable stored on the
stack to ensure that AUSPICE is able to use the value in its
comparison. Figure 6 shows the macro used to extract the
current value of the frame pointer to a temporary register

Name Bound Value Origin

text_hi Lower-
bound

Highest-address
of text section

Program text

stack_lo Upper-
bound

Highest-allowed
address of
program stack

Constant
(0xBF000000)

fp Upper-
bound

Current frame
pointer

Dynamically
obtained (r11)

Table 3: RHS values for memory safety guards.

for checking against in the safety guard, and the C variable
declaration required for a local variable stored in a register
to store the frame pointer value.

#define GET_FRAME_POINTER(dest_var) \
asm ("mov r4,r11" \

: "=r" (dest_var) \
: /* no inputs */ \
: /* no clobber */)
register unsigned int r11_val asm ("r4");

Figure 6: Macro to extract frame pointer value, and
local register variable to hold frame pointer value.

GET_FRAME_POINTER(r11_val);
if (((unsigned int)(s+i) <= STACK_LO)

&& ((unsigned int)(s+i) >= TEXT_HI)
&& ((unsigned int)(s+i) < (r11_val - (3*WORD_SIZE)))
&& (r11_val >= (3*WORD_SIZE))) {

s[i] = <expr>;
} else { /* recovery here */ }

Figure 7: Full safety-check for statement, “s[i] =

<expr>;” in a function with 3 callee-saved registers.

Figure 7 puts together the full PCFIRE-C safety guard
for a suspect statement, which writes to memory, s[i] =

<expr>;. The safety guard also allows programmers to spec-
ify their own recovery actions in the else branch of the
safety guard, although we do not prescribe recovery actions
in this work. In addition, WORD_SIZE stores the number of
bytes used to represent a machine-address (e.g. 4 in a 32-
bit architecture), and there is an additional guard conjunct,
(r11_val >= (N * WORD_SIZE)). This guard is used to en-
sure that there is no arithmetic underflow of the computed
address (s+i), and the lower bound (N * WORD_SIZE) is
needed if there are N callee-saved register values on the cur-
rent function’s stack. This ensures that no memory writes
can overwrite the current function’s callee-saved register val-
ues. PCFIRE-C extracts the number of callee-saved register
values written to the stack, N , by parsing the push instruc-
tion in the prologue of the suspect statement’s function.

4.1.2 Identifying Suspect Statements
PCFIRE-C identifies suspect statements by analyzing the

(disassembled text from“objdump -d”of) compiled machine-
code of target programs. PCFIRE-C first identifies the ad-
dresses of instructions that are suspects. Then, PCFIRE-C
identifies the source-file and line number of suspect state-
ments using the binary’s debug information. This analysis
is implemented using Python. We describe the analysis to
identify instructions that would cause the CFI proof in AUS-
PICE to fail. The main goal of this analysis is to identify un-

safe memory-write instructions for which additional branch
pre-conditions, as provided by source-code safety-checks, are
needed. Note that the analysis identifies potentially unsafe
instructions, but is unable to check if the necessary branch
safety pre-conditions are present.

As described in §1.1, memory-write instructions writing
to a constant offset from the current frame pointer fp (e.g.,
“str r3, [fp, #-8]”) can generally be automatically proved
to be safe, but not instructions writing to computed ad-
dresses (e.g., “str r2 [r3]”). The analysis first narrows
down its search to instructions that write to memory (specif-
ically ARM’s str, strb and strh instructions). The analysis
ignores writes to a constant offset from the frame pointer,
and reports the address of any other write instruction. The
analysis ignores the push instruction, as we observed that
gcc-emitted code only uses push in function prologues. The
analysis extracts the number of callee-saved registers for
each function from push instructions in function prologues
to construct check-and-branch statements (§4.1.1).

4.1.3 Provability of Source-code CFI
To recap, we describe how PCFIRE-C’s check-and-branch

C statements result in machine-code that can be automat-
ically proved to have CFI. First, the values of the bounds
in the memory-address checks (§4.1.1) match the bounds in
Properties 1 and 2 of the AUSPICE safety theorem (§3.1).
Second, the logic expressions for the checked and written
addresses in (i) the safety-check, and (ii) the suspect state-
ment, are the same in the machine-code Hoare triples, as
our construction uses the same C expression in (i) the LHS
of each safety-check, and in (ii) the LHS of the memory ad-
dress written to in each suspect statement. This enables
AUSPICE to reason about the suspect statement using the
safety-check, resulting in automatically-provable CFI.

The requirement that the logic expressions representing
the checked and written addresses be equal implies that
our safety-checks need to be adjacent to their suspect state-
ments. Any statements (and hence machine-code) between
a safety-check and its suspect statement are likely to cause
AUSPICE’s proof search to fail. This precludes us from op-
timizations such as moving safety-checks out of loops.

4.2 Supporting I/O Behavior
Next, we describe the practical steps for supporting C pro-

grams with I/O behavior through syscalls, whose machine-
code can be automatically verified using AUSPICE+. Typ-
ically, developers perform I/O using an implementation of
the C standard library, libc. However, libc implementa-
tions typically include additional support code, e.g., from
user-space thread libraries, which (i) cannot be verified by
AUSPICE due to unsupported concurrent behavior, and (ii)
increase the size of the machine-code (when statically com-
piled), posing scalability challenges for AUSPICE.

We aim to support I/O behavior in programs, while ensur-
ing the programs remain amenable to automatic CFI proofs.
First, we use a custom GNU ld linker script which avoids
running the libc initializer (__libc_init()) ahead of the
application’s main(). Instead, we construct a minimal ini-
tializer which only prepares command-line arguments (i.e.,
argc, argv) for the program. This minimizes the code that
is included in the target program. Second, we implement
thin wrappers around syscalls using hand-written assembly
code, whose CFI safety AUSPICE+ can prove, and provide

Test Case Source Lines Instructions Size Run-time AUSPICE
(before) (after) (before) (after) Increase Slowdown Proof Time

arrcpy 17 33 44 75 70% 113.3% 8.6 mins
sort 25 46 84 158 88% 72.3% 15.3 mins
mibench stringsearch 68 100 423 489 16% 213.2% 82.3 mins
mibench crc32 91 119 130 183 41% 43.1% 30.7 mins
matmult 30 47 134 153 14% 0.78% 6.14 hours
bionic memcpy 98 143 239 355 49% 800.8% 38.1 mins

Table 4: PCFIRE overheads: C lines, machine-code percentage size increase, and run-time slowdown.

C function prototypes for these wrappers. Developers can
invoke the relevant syscall using these C function prototypes.

5. EVALUATION

5.1 Run-time Overheads and Safety Proof Times
Next, we evaluate the program size and run-time over-

heads of PCFIRE’s safety-checks. We also report the time
taken to prove the CFI of each program. Table 4 summarizes
our results. We evaluate PCFIRE on six test programs:
1. arrcpy: Array-copy example in §1.1.
2. sort: Implementation of Selection Sort.
3. stringsearch: Boyer-Moore string search, part of MiBench

[12] benchmark suite for embedded applications.
4. crc32: Checksum algorithm, part of MiBench [12] suite.
5. matmult: Matrix multiplication (has a triply-nested loop).
6. bionic memcpy: Efficient implementation of memcpy from

the Bionic [1] C library for Android systems.
We compared the run-times of programs with and without

safety-checks. All tests ran on the Raspberry Pi 1 Model B+
with a 700 MHz ARMv6 processor and 512 MB RAM with
Linux 3.18. We report the average run-times over 1000 iter-
ations of each program. The run-time slowdown depended
on the proportion of each program’s workload that invoked
suspect statements (with safety-checks), and ranged from
0.78% for matmult, to 800.8% for bionic memcpy. matmult

had the smallest increase in run-time, as its workload was
mainly computation. bionic memcpy had the highest run-
time overhead. This is a worst-case scenario for PCFIRE
as it is made up entirely of memory writes requiring PC-
FIRE’s safety-checks. For programs with mixed workloads
(e.g., stringsearch, crc32, sort), the run-time slowdown
ranged from 43% to 213%.
Proof Times. We evaluated the time taken to prove
each program’s CFI on an Intel Core i7 2.6 GHz. The proof
times were less than 90 minutes in all but one case. The
proof time for matmult was higher at 6.14 hours, due to the
large number of memory operations in the matrix multipli-
cation loops. We contrast the proof time of 82.3 minutes for
stringsearch with ARMor [38], which took 8 hours for its
safety proof for stringsearch on an Intel Core i7 2.7 GHz.

5.2 Case Study 1: File-based I/O
Next, we show that PCFIRE-provided syscall wrappers

can provide I/O functionality in realistic programs, and that
AUSPICE+ can prove CFI in these programs. We imple-
mented simple versions of three common text utilities: (i)
cat, which outputs the contents of a file, (ii) wc, which
counts the number of words in a file, and (ii) grep, which
outputs lines from a file containing a given string. Table
5 summarizes the source- and machine-code sizes of each

Prog. C Lines Instructions Proof Time

cat 411 207 44.2 mins
wc 427 641 2.7 hours
grep 428 621 1.1 hours

Run-times Slowdown

Prog. Safe Unsafe Orig. vs. Unsafe vs. Orig.
cat 151s 149s 5.7s 0.96% 2549%
wc 25.2s 24.5s 4.4s 2.7% 479%
grep 37.3s 37.2s 4.9s 0.40% 655%

Table 5: CFI-proved versions of simple text utilities,
their run-times, and run-time slowdowns.

Buffer Size Proof Time Run-time Slowdown vs. Orig

1 byte 44.2 mins 2549%
10 bytes 48.58 mins 148.9%
20 bytes 82.2 mins 61.5%
30 bytes 165.6 mins 56.5%

Table 6: Improved run-time slowdown but slower
proof times with larger buffer sizes for cat.

utility, the time taken to prove CFI, and the run-time and
slowdowns for each program. We ran each program on a
10 MB input file over 5 iterations and we report the aver-
age run-times. We report the run-time slowdown of each
“safe” utility, as compared to an “unsafe” version without
the PCFIRE-prescribed safety-checks. The “safe” version of
each utility slowed down between 0.39% to 2.71% as com-
pared to the“unsafe”version without our safety-checks. This
suggests that the slowdown due to PCFIRE’s safety-checks
in more realistic programs with a mixed workload is likely
to be much less than shown in §5.1.

Since our goal was to show that we could implement pro-
grams with I/O, we did not aim to optimize our implemen-
tations. Nonetheless, we compared the run-times of our
utilities with the system-provided versions for completeness.
Both the safe and unsafe versions of each utility were sig-
nificantly slower than their system-provided versions. Slow-
downs ranged from 4.7x for wc, to 25.5x for cat, as the
system-provided utilities used large input buffers to amor-
tize the overheads of syscalls, whereas our utilities invoke
the read syscall for each character to minimize proof times.

Next, we measured the effects of increasing input buffer
sizes on our implementation of cat. Table 6 summarizes our
results. As the buffer size is increased from 1 to 30 bytes,
the run-time slowdown improves significantly from 2549% to
56.5%, while the safety proof time increases by 4x to 165.6
minutes. The proof time increases with larger input buffers

as AUSPICE+ needs to check that each byte in the input
buffer is safe. Hence, there is a trade-off between run-time
performance and safety proof times.

5.3 Case Study 2: Raspberry Pi GPIO

Program Source Lines Instructions Proof Time

blink 418 619 81.7 mins
light 429 854 112.5 mins
lcd 559 2286 21.8 hours
fall-det 923 3169 44.9 hours

Table 7: Raspberry Pi GPIO test programs.

Next, we show that PCFIRE-provided syscall wrappers
can support I/O from external hardware, e.g., sensors, LEDs,
and an LCD display. We inserted PCFIRE-prescribed safety-
checks into all our test programs, and proved their CFI us-
ing AUSPICE+. We used the Raspberry Pi 1 Model B+
for our experiments, and we based our hardware access on
the WiringPi C library [9], which provides access to Rasp-
berry Pi’s General Purpose I/O (GPIO) hardware interface.
We ported a small number of functions in WiringPi for our
programs by changing C library calls (e.g., mmap()) to calls
to PCFIRE’s syscall wrappers. We wrote three test pro-
grams using our ported version of WiringPi with PCFIRE-
prescribed safety-checks: (i) blink periodically turns an
LED on and off; (ii) light and turns on an LED when the
ambient light falls below a threshold, and (iii) lcd outputs a
string to a 16×2 monochrome LCD. We also implemented a
fall detector (fall-det) based on Jia’s algorithm [14] using
the ADXL345 accelerometer with the Raspberry Pi. Table
7 summarizes our results.

6. DISCUSSION
Tradeoffs for Preventative CFI. Our evaluation shows
that our prescribed safety-checks introduce run-time slow-
downs of up to 800%, and between 43% to 213% for most
cases. Past CFI techniques that detect violations after-the-
fact, e.g., Abadi et al. [5], XFI [33], and CCFIR [6], incurred
average overheads of 16%, 11%, and 3.6% respectively. AR-
Mor [38], which like PCFIRE uses preventative checks (but
does not allow recovery), incurred overheads of 240% on the
stringsearch benchmark, as compared to our overhead of
213%. This suggests that preventative CFI fundamentally
incurs higher overheads, as other CFI techniques that only
stop on CFI violations need much fewer checks than pre-
ventative CFI, which requires checks at all suspect memory-
writes. We believe this is an acceptable trade-off for applica-
tions (e.g., safety-critical systems) needing robust recovery.
Strategies for CFI recovery actions. While it is not
our goal to suggest recovery actions from potential CFI vi-
olations that have been prevented, different strategies can
be used by programmers in writing recovery code in the
else branch of our inserted safety-checks. We posit that
programmers need a comprehensive approach for recovery
actions. For instance, library functions (e.g., memcpy) may
not have enough application context to robustly handle CFI
violations, and programmers should signal to the callers of
library functions to handle the potential violation.
Allowed program behaviors. PCFIRE’s (and AUSPICE’s)
requirement that memory-writes must be to addresses smaller
than the current function’s frame pointer prevents functions

from changing memory (and hence any local variable) on
their callers’ stacks. As PCFIRE does not currently support
heap memory management due to our exclusion of libc, any
memory to be changed by callee functions must be globally
declared (so that it is in the bss or data sections). This re-
duced programmer convenience is necessary for AUSPICE’s
proof automation [31], otherwise, run-time safety-checks will
need complex stack analyses, which may not be feasible.
Library functions. Currently, we use syscall wrapper
functions to directly invoke syscalls. However, programmers
are not limited to using our syscall wrappers for I/O. Safe
versions of most C standard library functions can be de-
veloped with PCFIRE-C-suggested safety-checks. We have
begun writing and using safe versions of some C library func-
tions in our example I/O programs in §5.2 and §5.3.
Source-code vs. Machine-code proofs. Proofs about
source-code require compilers to correctly compile a program
for the proven properties to hold in the compiled machine-
code. Yang et al. [36] found many bugs in mainstream C
compilers (e.g., GCC), such as incorrect unsigned integer
behavior, which can affect CFI safety. Our machine-code-
level proofs are not affected by such compiler bugs.
Other Limitations. While we currently do not sup-
port compiler optimizations, we intend to explore support-
ing them in future. Some safety-critical software standards
discourage or recommend additional tests for compiler op-
timizations (e.g., §4.4.2, §6.4.4.2 in [25]), hence we do not
see our (current) lack of support for compiler optimizations
to be significant. Also, while we do not support applica-
tions in an Real-Time OS (RTOS), we believe our approach
can be adapted for preventative CFI for RTOS applications
(e.g., RTOS tasks) by: (i) analyzing each task as a sequen-
tial program, and (ii) modeling the behavior of the RTOS
as observed by each RTOS task as hypotheses, similar to
how AUSPICE+ models syscall behavior. While the pre-
scribed safety-checks will increase the run-time of RTOS
tasks, we believe this increased run-time can be accounted
for using techniques such as WCET (Worst-case Execution
Time) analysis [24], as our safety-checks consist of only C
if statements.

7. RELATED WORK
Many techniques have been proposed for CFI, and the

closely related property of Software Fault Isolation (SFI)
[35]. Most techniques detect changed control-flow, and stop
the program’s execution [5, 33, 6, 22]. They do not detect
the root-causes of CFI (due to high run-time costs), and
thus do not allow recovery from potential CFI violations.
Most techniques use machine-code safety-checks inserted au-
tomatically in binaries [5, 33, 6, 22, 38, 19, 37]. These tech-
niques provide programmer convenience, but do not allow
programmers to specify application-specific recovery code,
unlike PCFIRE’s source-code safety-checks. CFI and SFI
have been verified formally [33, 38, 19], but their verification
requires automatically-inserted machine-code safety-checks,
as compared to AUSPICE [31], which PCFIRE uses, which
supports source-code safety-checks. Goel et al. [28] enabled
proofs about x86 programs with syscalls in the ACL2 prover
for functional-correctness, whereas AUSPICE+ automates
simpler CFI proofs. CFI can also be achieved in hardware,
e.g., in SOFIA [7], although this requires processor modifi-
cations, and incurs run-time slowdowns as well.

CFI for programs can also be achieved using safe dialects

of C. Cyclone’s [30] run-time checks do not allow application-
specific recovery as they are inserted post-compilation. Control-
C [17] restricts C behaviors, e.g., no pointer arithmetic,
while PCFIRE does not, as our CFI proofs are at the machine-
code level. CompCert [18] is a verified compiler whose cor-
rectness proof implies memory safety for unambiguous pro-
grams, but CompCert does not generate safety proofs for
such programs, whereas PCFIRE generates proofs of CFI
safety. CCured [11] automatically inserts C safety-checks for
memory-safety at large-scales, and does not enable program-
mers to implement their own recovery actions. Verification
efforts for safety-critical software in medical devices have fo-
cused on functional correctness [23, 15], which is orthogonal
to CFI, which is an implementation-level safety property.

8. CONCLUSION AND FUTURE WORK
We have presented PCFIRE, a novel approach for prov-

able and preventative Control-Flow Integrity (CFI) for C
programs compiled to the ARM architecture. PCFIRE is
a step towards CFI for realistic embedded applications by
enabling programmers to specify application-specific recov-
ery actions (through source-code safety-checks), which are
important in safety-critical embedded software, and by sup-
porting automated CFI proofs in programs with syscalls us-
ing AUSPICE+. We have demonstrated PCFIRE’s flexibil-
ity through a range of case-studies, from real-world bench-
marks [12], to programs containing I/O, for which we could
prove CFI automatically. In future, we intend to improve
PCFIRE’s safety-checks using AUSPICE’s proof failures,
improve the run-time efficiency of PCFIRE’s safety-checks,
and improve AUSPICE’s proof times for larger programs.

9. REFERENCES
[1] Bionic. http://bit.ly/1V0cJl3.

[2] clang: a C language family frontend for LLVM.
http://clang.llvm.org/.

[3] The ARM-THUMB Procedure Call Standard, 2000.
http://bit.ly/1NbOQhT.

[4] As Gadgets Shrink, ARM Still Reigns As Processor
King, Sep 2013. http://onforb.es/19LIzgd.

[5] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow Integrity. In ACM CCS, 2005.

[6] C. Zhang et al. Practical Control Flow Integrity &
Randomization for Binary Executables. In IEEE
Security & Privacy, 2013.

[7] R. de Clercq et al. SOFIA: Software and Control Flow
Integrity Architecture. In DATE, 2016.

[8] A. Fox. Formal specification and verification of
ARM6. In TPHOLs, 2003.

[9] G. Henderson. WiringPi. http://wiringpi.com/.

[10] G. Klein et al. seL4: Formal verification of an OS
kernel. In SOSP, Oct 2009.

[11] G. Necula et al. CCured: Type-Safe Retrofitting of
Legacy Code. In POPL, 2002.

[12] Guthaus, M. et al. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. In IEEE
WWC Workshop, 2001.

[13] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10), Oct. 1969.

[14] N. Jia. Detecting Human Falls with a 3-Axis Digital
Accelerometer, 2009. http://bit.ly/23fXhFE.

[15] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and
R. Mangharam. Modeling and Verification of a Dual
Chamber Implantable Pacemaker. In TACAS, 2012.

[16] J. Knight. Safety Critical Systems: Challenges and
Directions. In ICSE, 2002.

[17] S. Kowshik, D. Dhurjati, and V. Adve. Ensuring Code
Safety Without Runtime Checks for Real-Time
Control Systems. In CASES, 2002.

[18] X. Leroy. Formal certification of a compiler back-end,
or: programming a compiler with a proof assistant. In
POPL, 2006.

[19] S. McCamant and G. Morrisett. Evaluating SFI for a
CISC Architecture. In USENIX Security, 2006.

[20] C. Miller and C. Valasek. Remote Exploitation of an
Unaltered Passenger Vehicle. http://bit.ly/1Xk71rn.

[21] M. Myreen, A. Fox, and M. Gordon. Hoare Logic for
ARM Machine Code. In FSEN, 2007.

[22] B. Niu and G. Tan. Modular Control-Flow Integrity.
In PLDI, 2014.

[23] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and
R. Mangharam. Safety-critical Medical Device
Development Using the UPP2SF Model Translation
Tool. ACM TECS, 13(4s), Apr. 2014.

[24] R. Wilhelm et al. The worst-case execution-time
problem–Overview of Methods and Survey of Tools.
ACM Trans. Embed. Comput. Syst., 7(3), May 2008.

[25] Radio Technical Commission for Aeronautics (RTCA).
DO-178C: Software Considerations in Airborne
Systems and Equipment Certification, 2012.

[26] J. Reynolds. Separation Logic: A Logic for Shared
Mutable Data Structures. In IEEE LICS, 2002.

[27] S. Checkoway et al. Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In USENIX
Security, 2011.

[28] S. Goel et al. Simulation and Formal Verification of
x86 Machine-Code Programs that make System Calls.
In FMCAD, 2014.

[29] K. Slind and M. Norrish. A Brief Overview of HOL4.
In TPHOLs, 2008.

[30] T. Jim et al. Cyclone: A Safe Dialect of C. In
USENIX ATC, 2002.

[31] J. Tan, H. Tay, R. Gandhi, and P. Narasimhan.
AUSPICE: Automatic Safety Property Verification for
Unmodified Executables. In VSTTE, 2015.

[32] N. Y. Times. F.D.A. Deal Leads to Recall of Infusion
Pumps, May 2010. http://nyti.ms/1TEGK8a.

[33] U. Erlingsson et al. XFI: Software Guards for System
Address Spaces. In OSDI, 2006.

[34] U.S. F.D.A. MAUDE Adverse Event Report., Aug
2007. http://1.usa.gov/25NWCKC.

[35] R. Wahbe, S. Lucco, T. Anderson, and S. Graham.
Efficient Software-Based Fault Isolation. In SOSP,
1993.

[36] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding
and Understanding Bugs in C Compilers. In PLDI,
2011.

[37] M. Zhang and R. Sekar. Control Flow Integrity for
COTS Binaries. In USENIX Security, 2013.

[38] L. Zhao, G. Li, B. D. Sutter, and J. Regehr. ARMor:
Fully Verified Software Fault Isolation. In EMSOFT,
2011.

